radinplaid commited on
Commit
ea75b2a
·
verified ·
1 Parent(s): 2cd98bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -8,7 +8,7 @@ license: cc-by-4.0
8
  datasets:
9
  - quickmt/quickmt-train.ro-en
10
  model-index:
11
- - name: quickmt-ro-en
12
  results:
13
  - task:
14
  name: Translation ron-eng
@@ -21,19 +21,19 @@ model-index:
21
  metrics:
22
  - name: BLEU
23
  type: bleu
24
- value:
25
  - name: CHRF
26
  type: chrf
27
- value:
28
  - name: COMET
29
  type: comet
30
- value:
31
  ---
32
 
33
 
34
- # `quickmt-ro-en` Neural Machine Translation Model
35
 
36
- `quickmt-ro-en` is a reasonably fast and reasonably accurate neural machine translation model for translation from `ro` into `en`.
37
 
38
 
39
  ## Try it on our Huggingface Space
@@ -62,7 +62,7 @@ Next, install the `quickmt` python library and download the model:
62
  git clone https://github.com/quickmt/quickmt.git
63
  pip install ./quickmt/
64
 
65
- quickmt-model-download quickmt/quickmt-ro-en ./quickmt-ro-en
66
  ```
67
 
68
  Finally use the model in python:
@@ -71,7 +71,7 @@ Finally use the model in python:
71
  from quickmt import Translator
72
 
73
  # Auto-detects GPU, set to "cpu" to force CPU inference
74
- t = Translator("./quickmt-ro-en/", device="auto")
75
 
76
  # Translate - set beam size to 1 for faster speed (but lower quality)
77
  sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
@@ -94,7 +94,7 @@ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so
94
 
95
  ## Metrics
96
 
97
- `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("ron_Latn"->"eng_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
98
 
99
 
100
  | | bleu | chrf2 | comet22 | Time (s) |
 
8
  datasets:
9
  - quickmt/quickmt-train.ro-en
10
  model-index:
11
+ - name: quickmt-en-ro
12
  results:
13
  - task:
14
  name: Translation ron-eng
 
21
  metrics:
22
  - name: BLEU
23
  type: bleu
24
+ value: 42.29
25
  - name: CHRF
26
  type: chrf
27
+ value: 66.07
28
  - name: COMET
29
  type: comet
30
+ value: 89.67
31
  ---
32
 
33
 
34
+ # `quickmt-en-ro` Neural Machine Translation Model
35
 
36
+ `quickmt-en-ro` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `ro`.
37
 
38
 
39
  ## Try it on our Huggingface Space
 
62
  git clone https://github.com/quickmt/quickmt.git
63
  pip install ./quickmt/
64
 
65
+ quickmt-model-download quickmt/quickmt-en-ro ./quickmt-en-ro
66
  ```
67
 
68
  Finally use the model in python:
 
71
  from quickmt import Translator
72
 
73
  # Auto-detects GPU, set to "cpu" to force CPU inference
74
+ t = Translator("./quickmt-en-ro/", device="auto")
75
 
76
  # Translate - set beam size to 1 for faster speed (but lower quality)
77
  sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
 
94
 
95
  ## Metrics
96
 
97
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"ron_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
98
 
99
 
100
  | | bleu | chrf2 | comet22 | Time (s) |