radinplaid commited on
Commit
429dfe0
·
verified ·
1 Parent(s): b13599a

Upload folder using huggingface_hub

Browse files
.ipynb_checkpoints/README-checkpoint.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - da
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.da-en
10
+ model-index:
11
+ - name: quickmt-en-da
12
+ results:
13
+ - task:
14
+ name: Translation eng-dan
15
+ type: translation
16
+ args: eng-dan
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn dan_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 46.61
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 70.07
28
+ - name: COMET
29
+ type: comet
30
+ value: 89.49
31
+ ---
32
+
33
+
34
+ # `quickmt-en-da` Neural Machine Translation Model
35
+
36
+ `quickmt-en-da` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `da`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 32k separate Sentencepiece vocabs
49
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+
51
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
52
+
53
+
54
+ ## Usage with `quickmt`
55
+
56
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
57
+
58
+ Next, install the `quickmt` python library and download the model:
59
+
60
+ ```bash
61
+ git clone https://github.com/quickmt/quickmt.git
62
+ pip install ./quickmt/
63
+
64
+ quickmt-model-download quickmt/quickmt-en-da ./quickmt-en-da
65
+ ```
66
+
67
+ Finally use the model in python:
68
+
69
+ ```python
70
+ from quickmt import Translator
71
+
72
+ # Auto-detects GPU, set to "cpu" to force CPU inference
73
+ t = Translator("./quickmt-en-da/", device="auto")
74
+
75
+ # Translate - set beam size to 1 for faster speed (but lower quality)
76
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
77
+
78
+ t(sample_text, beam_size=5)
79
+ ```
80
+
81
+ > 'Dr. Ehud Ur, professor i medicin ved Dalhousie University i Halifax, Nova Scotia og formand for den kliniske og videnskabelige afdeling af Canadian Diabetes Association advarede om, at forskningen stadig er i sine tidlige dage.'
82
+
83
+ ```python
84
+ # Get alternative translations by sampling
85
+ # You can pass any cTranslate2 `translate_batch` arguments
86
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
87
+ ```
88
+
89
+ > 'Dr. Ehud Ur, professor i medicin på Dalhousie University i Halifax, Nova Scotia og formand for det kliniske og videnskabelige afdeling af Canadian Diabetes Association advarede om, at forskningen stadig er i sin tidlige dage.'
90
+
91
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
92
+
93
+
94
+ ## Metrics
95
+
96
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"dan_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
97
+
98
+
99
+ | | bleu | chrf2 | comet22 | Time (s) |
100
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
101
+ | quickmt/quickmt-en-da | 46.61 | 70.07 | 89.49 | 1.19 |
102
+ | facebook/nllb-200-distilled-600M | 41.8 | 66.79 | 89.44 | 22.24 |
103
+ | facebook/nllb-200-distilled-1.3B | 44.02 | 68.52 | 90.73 | 39.32 |
104
+ | facebook/m2m100_418M | 36.81 | 62.93 | 85.35 | 18.97 |
105
+ | facebook/m2m100_1.2B | 44.54 | 68.46 | 89.43 | 37.42 |
.ipynb_checkpoints/eole-config-checkpoint.yaml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: da.eole.vocab
13
+ src_vocab_size: 32000
14
+ tgt_vocab_size: 32000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.da-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.da-en/da
23
+ path_sco: hf://quickmt/quickmt-train.da-en/sco
24
+
25
+ valid:
26
+ path_src: valid.en
27
+ path_tgt: valid.da
28
+
29
+ transforms: [sentencepiece, filtertoolong]
30
+ transforms_configs:
31
+ sentencepiece:
32
+ src_subword_model: "en.spm.model"
33
+ tgt_subword_model: "da.spm.model"
34
+ filtertoolong:
35
+ src_seq_length: 256
36
+ tgt_seq_length: 256
37
+
38
+ training:
39
+ # Run configuration
40
+ model_path: quickmt-en-da-eole-model
41
+ #train_from: model
42
+ keep_checkpoint: 4
43
+ train_steps: 100000
44
+ save_checkpoint_steps: 5000
45
+ valid_steps: 5000
46
+
47
+ # Train on a single GPU
48
+ world_size: 1
49
+ gpu_ranks: [0]
50
+
51
+ # Batching 10240
52
+ batch_type: "tokens"
53
+ batch_size: 6000
54
+ valid_batch_size: 2048
55
+ batch_size_multiple: 8
56
+ accum_count: [20]
57
+ accum_steps: [0]
58
+
59
+ # Optimizer & Compute
60
+ compute_dtype: "fp16"
61
+ optim: "adamw"
62
+ #use_amp: False
63
+ learning_rate: 3.0
64
+ warmup_steps: 5000
65
+ decay_method: "noam"
66
+ adam_beta2: 0.998
67
+
68
+ # Data loading
69
+ bucket_size: 128000
70
+ num_workers: 4
71
+ prefetch_factor: 32
72
+
73
+ # Hyperparams
74
+ dropout_steps: [0]
75
+ dropout: [0.1]
76
+ attention_dropout: [0.1]
77
+ max_grad_norm: 0
78
+ label_smoothing: 0.1
79
+ average_decay: 0.0001
80
+ param_init_method: xavier_uniform
81
+ normalization: "tokens"
82
+
83
+ model:
84
+ architecture: "transformer"
85
+ share_embeddings: false
86
+ share_decoder_embeddings: true
87
+ hidden_size: 1024
88
+ encoder:
89
+ layers: 8
90
+ decoder:
91
+ layers: 2
92
+ heads: 8
93
+ transformer_ff: 4096
94
+ embeddings:
95
+ word_vec_size: 1024
96
+ position_encoding_type: "SinusoidalInterleaved"
97
+
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: cc-by-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - da
5
+ tags:
6
+ - translation
7
+ license: cc-by-4.0
8
+ datasets:
9
+ - quickmt/quickmt-train.da-en
10
+ model-index:
11
+ - name: quickmt-en-da
12
+ results:
13
+ - task:
14
+ name: Translation eng-dan
15
+ type: translation
16
+ args: eng-dan
17
+ dataset:
18
+ name: flores101-devtest
19
+ type: flores_101
20
+ args: eng_Latn dan_Latn devtest
21
+ metrics:
22
+ - name: BLEU
23
+ type: bleu
24
+ value: 46.61
25
+ - name: CHRF
26
+ type: chrf
27
+ value: 70.07
28
+ - name: COMET
29
+ type: comet
30
+ value: 89.49
31
+ ---
32
+
33
+
34
+ # `quickmt-en-da` Neural Machine Translation Model
35
+
36
+ `quickmt-en-da` is a reasonably fast and reasonably accurate neural machine translation model for translation from `en` into `da`.
37
+
38
+
39
+ ## Try it on our Huggingface Space
40
+
41
+ Give it a try before downloading here: https://huggingface.co/spaces/quickmt/QuickMT-Demo
42
+
43
+
44
+ ## Model Information
45
+
46
+ * Trained using [`eole`](https://github.com/eole-nlp/eole)
47
+ * 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
48
+ * 32k separate Sentencepiece vocabs
49
+ * Exported for fast inference to [CTranslate2](https://github.com/OpenNMT/CTranslate2) format
50
+
51
+ See the `eole` model configuration in this repository for further details and the `eole-model` for the raw `eole` (pytorch) model.
52
+
53
+
54
+ ## Usage with `quickmt`
55
+
56
+ You must install the Nvidia cuda toolkit first, if you want to do GPU inference.
57
+
58
+ Next, install the `quickmt` python library and download the model:
59
+
60
+ ```bash
61
+ git clone https://github.com/quickmt/quickmt.git
62
+ pip install ./quickmt/
63
+
64
+ quickmt-model-download quickmt/quickmt-en-da ./quickmt-en-da
65
+ ```
66
+
67
+ Finally use the model in python:
68
+
69
+ ```python
70
+ from quickmt import Translator
71
+
72
+ # Auto-detects GPU, set to "cpu" to force CPU inference
73
+ t = Translator("./quickmt-en-da/", device="auto")
74
+
75
+ # Translate - set beam size to 1 for faster speed (but lower quality)
76
+ sample_text = 'Dr. Ehud Ur, professor of medicine at Dalhousie University in Halifax, Nova Scotia and chair of the clinical and scientific division of the Canadian Diabetes Association cautioned that the research is still in its early days.'
77
+
78
+ t(sample_text, beam_size=5)
79
+ ```
80
+
81
+ > 'Dr. Ehud Ur, professor i medicin ved Dalhousie University i Halifax, Nova Scotia og formand for den kliniske og videnskabelige afdeling af Canadian Diabetes Association advarede om, at forskningen stadig er i sine tidlige dage.'
82
+
83
+ ```python
84
+ # Get alternative translations by sampling
85
+ # You can pass any cTranslate2 `translate_batch` arguments
86
+ t([sample_text], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
87
+ ```
88
+
89
+ > 'Dr. Ehud Ur, professor i medicin på Dalhousie University i Halifax, Nova Scotia og formand for det kliniske og videnskabelige afdeling af Canadian Diabetes Association advarede om, at forskningen stadig er i sin tidlige dage.'
90
+
91
+ The model is in `ctranslate2` format, and the tokenizers are `sentencepiece`, so you can use `ctranslate2` directly instead of through `quickmt`. It is also possible to get this model to work with e.g. [LibreTranslate](https://libretranslate.com/) which also uses `ctranslate2` and `sentencepiece`. A model in safetensors format to be used with `eole` is also provided.
92
+
93
+
94
+ ## Metrics
95
+
96
+ `bleu` and `chrf2` are calculated with [sacrebleu](https://github.com/mjpost/sacrebleu) on the [Flores200 `devtest` test set](https://huggingface.co/datasets/facebook/flores) ("eng_Latn"->"dan_Latn"). `comet22` with the [`comet`](https://github.com/Unbabel/COMET) library and the [default model](https://huggingface.co/Unbabel/wmt22-comet-da). "Time (s)" is the time in seconds to translate the flores-devtest dataset (1012 sentences) on an Nvidia RTX 4070s GPU with batch size 32.
97
+
98
+
99
+ | | bleu | chrf2 | comet22 | Time (s) |
100
+ |:---------------------------------|-------:|--------:|----------:|-----------:|
101
+ | quickmt/quickmt-en-da | 46.61 | 70.07 | 89.49 | 1.19 |
102
+ | facebook/nllb-200-distilled-600M | 41.8 | 66.79 | 89.44 | 22.24 |
103
+ | facebook/nllb-200-distilled-1.3B | 44.02 | 68.52 | 90.73 | 39.32 |
104
+ | facebook/m2m100_418M | 36.81 | 62.93 | 85.35 | 18.97 |
105
+ | facebook/m2m100_1.2B | 44.54 | 68.46 | 89.43 | 37.42 |
config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_source_bos": false,
3
+ "add_source_eos": false,
4
+ "bos_token": "<s>",
5
+ "decoder_start_token": "<s>",
6
+ "eos_token": "</s>",
7
+ "layer_norm_epsilon": 1e-06,
8
+ "multi_query_attention": false,
9
+ "unk_token": "<unk>"
10
+ }
eole-config.yaml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## IO
2
+ save_data: data
3
+ overwrite: True
4
+ seed: 1234
5
+ report_every: 100
6
+ valid_metrics: ["BLEU"]
7
+ tensorboard: true
8
+ tensorboard_log_dir: tensorboard
9
+
10
+ ### Vocab
11
+ src_vocab: en.eole.vocab
12
+ tgt_vocab: da.eole.vocab
13
+ src_vocab_size: 32000
14
+ tgt_vocab_size: 32000
15
+ vocab_size_multiple: 8
16
+ share_vocab: false
17
+ n_sample: 0
18
+
19
+ data:
20
+ corpus_1:
21
+ path_src: hf://quickmt/quickmt-train.da-en/en
22
+ path_tgt: hf://quickmt/quickmt-train.da-en/da
23
+ path_sco: hf://quickmt/quickmt-train.da-en/sco
24
+
25
+ valid:
26
+ path_src: valid.en
27
+ path_tgt: valid.da
28
+
29
+ transforms: [sentencepiece, filtertoolong]
30
+ transforms_configs:
31
+ sentencepiece:
32
+ src_subword_model: "en.spm.model"
33
+ tgt_subword_model: "da.spm.model"
34
+ filtertoolong:
35
+ src_seq_length: 256
36
+ tgt_seq_length: 256
37
+
38
+ training:
39
+ # Run configuration
40
+ model_path: quickmt-en-da-eole-model
41
+ #train_from: model
42
+ keep_checkpoint: 4
43
+ train_steps: 100000
44
+ save_checkpoint_steps: 5000
45
+ valid_steps: 5000
46
+
47
+ # Train on a single GPU
48
+ world_size: 1
49
+ gpu_ranks: [0]
50
+
51
+ # Batching 10240
52
+ batch_type: "tokens"
53
+ batch_size: 6000
54
+ valid_batch_size: 2048
55
+ batch_size_multiple: 8
56
+ accum_count: [20]
57
+ accum_steps: [0]
58
+
59
+ # Optimizer & Compute
60
+ compute_dtype: "fp16"
61
+ optim: "adamw"
62
+ #use_amp: False
63
+ learning_rate: 3.0
64
+ warmup_steps: 5000
65
+ decay_method: "noam"
66
+ adam_beta2: 0.998
67
+
68
+ # Data loading
69
+ bucket_size: 128000
70
+ num_workers: 4
71
+ prefetch_factor: 32
72
+
73
+ # Hyperparams
74
+ dropout_steps: [0]
75
+ dropout: [0.1]
76
+ attention_dropout: [0.1]
77
+ max_grad_norm: 0
78
+ label_smoothing: 0.1
79
+ average_decay: 0.0001
80
+ param_init_method: xavier_uniform
81
+ normalization: "tokens"
82
+
83
+ model:
84
+ architecture: "transformer"
85
+ share_embeddings: false
86
+ share_decoder_embeddings: true
87
+ hidden_size: 1024
88
+ encoder:
89
+ layers: 8
90
+ decoder:
91
+ layers: 2
92
+ heads: 8
93
+ transformer_ff: 4096
94
+ embeddings:
95
+ word_vec_size: 1024
96
+ position_encoding_type: "SinusoidalInterleaved"
97
+
eole-model/config.json ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "src_vocab_size": 32000,
3
+ "tgt_vocab": "da.eole.vocab",
4
+ "report_every": 100,
5
+ "seed": 1234,
6
+ "tensorboard_log_dir_dated": "tensorboard/Nov-02_18-34-56",
7
+ "tgt_vocab_size": 32000,
8
+ "transforms": [
9
+ "sentencepiece",
10
+ "filtertoolong"
11
+ ],
12
+ "n_sample": 0,
13
+ "save_data": "data",
14
+ "vocab_size_multiple": 8,
15
+ "share_vocab": false,
16
+ "tensorboard_log_dir": "tensorboard",
17
+ "valid_metrics": [
18
+ "BLEU"
19
+ ],
20
+ "src_vocab": "en.eole.vocab",
21
+ "overwrite": true,
22
+ "tensorboard": true,
23
+ "training": {
24
+ "compute_dtype": "torch.float16",
25
+ "prefetch_factor": 32,
26
+ "batch_size": 6000,
27
+ "num_workers": 0,
28
+ "adam_beta2": 0.998,
29
+ "model_path": "quickmt-en-da-eole-model",
30
+ "label_smoothing": 0.1,
31
+ "learning_rate": 3.0,
32
+ "param_init_method": "xavier_uniform",
33
+ "bucket_size": 128000,
34
+ "world_size": 1,
35
+ "accum_count": [
36
+ 20
37
+ ],
38
+ "batch_size_multiple": 8,
39
+ "dropout_steps": [
40
+ 0
41
+ ],
42
+ "accum_steps": [
43
+ 0
44
+ ],
45
+ "decay_method": "noam",
46
+ "batch_type": "tokens",
47
+ "average_decay": 0.0001,
48
+ "normalization": "tokens",
49
+ "max_grad_norm": 0.0,
50
+ "train_steps": 100000,
51
+ "dropout": [
52
+ 0.1
53
+ ],
54
+ "gpu_ranks": [
55
+ 0
56
+ ],
57
+ "keep_checkpoint": 4,
58
+ "attention_dropout": [
59
+ 0.1
60
+ ],
61
+ "optim": "adamw",
62
+ "warmup_steps": 5000,
63
+ "save_checkpoint_steps": 5000,
64
+ "valid_batch_size": 2048,
65
+ "valid_steps": 5000
66
+ },
67
+ "model": {
68
+ "architecture": "transformer",
69
+ "position_encoding_type": "SinusoidalInterleaved",
70
+ "share_decoder_embeddings": true,
71
+ "transformer_ff": 4096,
72
+ "share_embeddings": false,
73
+ "heads": 8,
74
+ "hidden_size": 1024,
75
+ "decoder": {
76
+ "decoder_type": "transformer",
77
+ "position_encoding_type": "SinusoidalInterleaved",
78
+ "n_positions": null,
79
+ "transformer_ff": 4096,
80
+ "heads": 8,
81
+ "tgt_word_vec_size": 1024,
82
+ "layers": 2,
83
+ "hidden_size": 1024
84
+ },
85
+ "encoder": {
86
+ "position_encoding_type": "SinusoidalInterleaved",
87
+ "n_positions": null,
88
+ "transformer_ff": 4096,
89
+ "heads": 8,
90
+ "src_word_vec_size": 1024,
91
+ "encoder_type": "transformer",
92
+ "layers": 8,
93
+ "hidden_size": 1024
94
+ },
95
+ "embeddings": {
96
+ "src_word_vec_size": 1024,
97
+ "position_encoding_type": "SinusoidalInterleaved",
98
+ "tgt_word_vec_size": 1024,
99
+ "word_vec_size": 1024
100
+ }
101
+ },
102
+ "data": {
103
+ "corpus_1": {
104
+ "path_tgt": "train.da",
105
+ "path_src": "train.en",
106
+ "path_align": null,
107
+ "transforms": [
108
+ "sentencepiece",
109
+ "filtertoolong"
110
+ ]
111
+ },
112
+ "valid": {
113
+ "path_tgt": "valid.da",
114
+ "path_src": "valid.en",
115
+ "path_align": null,
116
+ "transforms": [
117
+ "sentencepiece",
118
+ "filtertoolong"
119
+ ]
120
+ }
121
+ },
122
+ "transforms_configs": {
123
+ "filtertoolong": {
124
+ "tgt_seq_length": 256,
125
+ "src_seq_length": 256
126
+ },
127
+ "sentencepiece": {
128
+ "tgt_subword_model": "${MODEL_PATH}/da.spm.model",
129
+ "src_subword_model": "${MODEL_PATH}/en.spm.model"
130
+ }
131
+ }
132
+ }
eole-model/da.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:688ecf3cf51d2cf7497720ba36e5f3c6bdfea75630c2c2c8afcf8a0de3580d06
3
+ size 814697
eole-model/en.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eda8069d07624408f632a155bbfb6db9794b8bb7bdbc9040c8ec16d499b6ef2
3
+ size 800426
eole-model/model.00.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0efd749a46f05b8062f4a8d3535449b90a373e3b64d60b9240a2c541870c6dbb
3
+ size 840314816
eole-model/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfdd52ec90e4661131251f5a8a15882c2774df6a7a9970c3298b1c938f5b9681
3
+ size 409915789
source_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
src.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eda8069d07624408f632a155bbfb6db9794b8bb7bdbc9040c8ec16d499b6ef2
3
+ size 800426
target_vocabulary.json ADDED
The diff for this file is too large to render. See raw diff
 
tgt.spm.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:688ecf3cf51d2cf7497720ba36e5f3c6bdfea75630c2c2c8afcf8a0de3580d06
3
+ size 814697