--- license: mit datasets: - jacktol/ATC-ASR-Dataset language: - en metrics: - wer base_model: - nvidia/parakeet-tdt-0.6b-v3 pipeline_tag: automatic-speech-recognition library_name: nemo tags: - parakeet - atc - nemo --- # Parakeet-TDT-0.6B-v3 Fine-Tuned on ATC-ASR Dataset ## Overview This repository contains a fine-tuned version of **[NVIDIA Parakeet-TDT-0.6B-v3](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3)**, optimized for automatic speech recognition (ASR) in air traffic control (ATC) communications. The model was fine-tuned using **NVIDIA NeMo** on the **[Jacktol ATC-ASR Dataset](https://huggingface.co/datasets/jacktol/ATC-ASR-Dataset)** to improve recognition accuracy in noisy, domain-specific ATC environments. Following fine-tuning, the model achieves a **state-of-the-art word error rate (WER) of 0.0599** on the dataset’s official test split. --- ## Results | Metric | Value | | ------------------------------------ | ------------------------------------------ | | **Validation Word Error Rate (WER)** | **0.0558** | | **Test Word Error Rate (WER)** | **0.0599** | | **Training Time** | < 1 hour on NVIDIA H200 | | **Framework** | NVIDIA NeMo | | **Checkpoint Size** | 2.34 GB | --- ## Model Details | Attribute | Description | |------------|--------------| | **Base Model** | `nvidia/parakeet-tdt-0.6b-v3` | | **Dataset** | [`jacktol/ATC-ASR-Dataset`](https://huggingface.co/datasets/jacktol/ATC-ASR-Dataset) | | **Framework** | [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) | | **Epochs** | 16 | | **Batch Size** | 16 | | **Learning Rate** | 1e-4 | | **Optimizer** | AdamW (weight decay 1e-3) | | **Scheduler** | CosineAnnealing | | **Warmup Steps** | 5000 | | **Min LR** | 5e-6 | | **Precision** | Mixed precision (FP16) | | **Tokenizer** | Parakeet default subword tokenizer | --- ## Dataset - **Name:** [Jacktol ATC-ASR Dataset](https://huggingface.co/datasets/jacktol/ATC-ASR-Dataset) - **Domain:** Air Traffic Control communications - **Language:** English - **Sampling Rate:** 16 kHz - **Format:** WAV + JSON transcripts --- ## Citation If you use this model, please cite both the base model and dataset authors: ```bibtex @misc{nvidia2024parakeet, title={Parakeet-TDT-0.6B-v3}, author={NVIDIA}, year={2024}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3}} } @dataset{jacktol_atc_asr, title={ATC-ASR Dataset}, author={Jacktol}, year={2023}, howpublished={\url{https://huggingface.co/datasets/jacktol/ATC-ASR-Dataset}} } ```