--- license: apache-2.0 library_name: transformers base_model: google/gemma-3-270m-it tags: - gemma - finance - lora - unsloth - text-generation - instruction-following datasets: - gbharti/finance-alpaca - Balaji173/finance_news_sentiment - winddude/reddit_finance_43_250k - causal-lm/finance pipeline_tag: text-generation language: - en --- # Gemma-3 Finance Mix A lightweight **Gemma-3 270M** model fine-tuned for *financial Q&A, causal-lm/finance, news-headline sentiment and retail-investor discourse*. --- ## Overview | Item | Details | |---|---| | **Base checkpoint** | `google/gemma-3-270m-it` | | **Fine-tune method** | LoRA (PEFT) with Unsloth| | **Training run** | 1 epoch • 325,528 blended examples • 100 steps | | **Trainable params** | 30.4 M / 298 M (10.18 %) | | **Loss** | 4.11 → **2.74** | | **Hardware** | 2 × T4-16GB (Collab Free Tier) | | **License** | Apache-2.0 | | **Intended use** | Educational & research --- ## Datasets | Dataset | Size | Focus | |---|---|---| | `gbharti/finance-alpaca` | 52 k | Instruction Q-A on corporate finance & investing | | `Balaji173/finance_news_sentiment` | 217 k | Bullish/bearish labels for news headlines | | `winddude/reddit_finance_43_250k` | 250 k | Reddit finance post–comment pairs | | `causal-lm/finance` | 31 k | Analytical prompts & causal reasoning in economics/markets | All shards were concatenated and wrapped with the **Gemma chat template** before training. --- ## Responsible use Disclose AI assistance, double-check outputs, and do **not** rely on this model for trading decisions. The author and base-model creators accept no liability for financial losses. ---