prithivMLmods commited on
Commit
322f234
·
verified ·
1 Parent(s): cc08fa6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -2
README.md CHANGED
@@ -15,7 +15,36 @@ tags:
15
  - tool_calling
16
  ---
17
 
18
- ## sample inference.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ```
21
  Solve 2**2
@@ -55,4 +84,60 @@ In an examination 80% of the candidates passed in Urdu and 85% in Hindi, while 7
55
  [{"name": "passing_percentage", "description": "Calculates the passing percentage for an exam given the percentage of students who passed each subject, and the intersection percentage of passing subjects.",
56
  "parameters": {"subject1_percent": {"description": "Percentage of students who passed the first subject (e.g., 85% if Hindi).", "type": "int"},
57
  "subject2_percent": {"description": "Percentage of students who passed the second subject (e.g., 80% if Urdu).", "type": "int"}, "passed_both_percent": {"description": "Percentage of students who passed both subjects.", "type": "int"}}}]
58
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  - tool_calling
16
  ---
17
 
18
+ # **Gliese-Query_Tool-0.6B**
19
+
20
+ > **Gliese-Query_Tool-0.6B** is a **function-calling and query-oriented reasoning model** fine-tuned from **Qwen3-0.6B** using **Salesforce/xlam-function-calling-60k**, designed for **tool orchestration**, **structured query resolution**, and **operation chaining** across diverse tasks.
21
+ > It excels in **dynamic function execution**, **structured reasoning pipelines**, and **multi-tool decision workflows**, making it a powerful lightweight solution for **developers**, **tooling platforms**, and **automation systems**.
22
+
23
+ > [!note]
24
+ > GGUF: [https://huggingface.co/prithivMLmods/Gliese-Query_Tool-0.6B-GGUF](https://huggingface.co/prithivMLmods/Gliese-Query_Tool-0.6B-GGUF)
25
+
26
+ ---
27
+
28
+ ## **Key Features**
29
+
30
+ 1. **Function-Calling Focused Reasoning**
31
+ Fine-tuned with **Salesforce/xlam-function-calling-60k**, enabling precise function selection, argument formatting, and multi-step tool invocation in complex workflows.
32
+
33
+ 2. **Query-Oriented Workflow Design**
34
+ Built to parse, interpret, and resolve complex queries by selecting and chaining the most relevant functions or tools for the task.
35
+
36
+ 3. **Tool-Orchestration & Automation**
37
+ Handles structured tool calls, dynamic function dispatch, and hybrid reasoning to power intelligent automation, API orchestration, and backend agent pipelines.
38
+
39
+ 4. **Structured Multi-Format Output**
40
+ Outputs formatted responses in **JSON**, **YAML**, **Markdown**, and **structured argument objects** — ideal for direct integration into software pipelines and agentic systems.
41
+
42
+ 5. **Lightweight, Deployment-Ready Core**
43
+ Compact **0.6B parameter** size optimized for **edge deployments**, **on-device inference**, and **fast cold-starts** while maintaining strong reasoning and function-call accuracy.
44
+
45
+ ---
46
+
47
+ ## **sample inference.**
48
 
49
  ```
50
  Solve 2**2
 
84
  [{"name": "passing_percentage", "description": "Calculates the passing percentage for an exam given the percentage of students who passed each subject, and the intersection percentage of passing subjects.",
85
  "parameters": {"subject1_percent": {"description": "Percentage of students who passed the first subject (e.g., 85% if Hindi).", "type": "int"},
86
  "subject2_percent": {"description": "Percentage of students who passed the second subject (e.g., 80% if Urdu).", "type": "int"}, "passed_both_percent": {"description": "Percentage of students who passed both subjects.", "type": "int"}}}]
87
+ ```
88
+
89
+ ## **Quickstart with Transformers**
90
+
91
+ ```python
92
+ from transformers import AutoModelForCausalLM, AutoTokenizer
93
+
94
+ model_name = "prithivMLmods/Gliese-Query_Tool-0.6B"
95
+
96
+ model = AutoModelForCausalLM.from_pretrained(
97
+ model_name,
98
+ torch_dtype="auto",
99
+ device_map="auto"
100
+ )
101
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
102
+
103
+ prompt = "Call the right function to fetch weather data for Paris and format the output as JSON."
104
+
105
+ messages = [
106
+ {"role": "system", "content": "You are a query tool model skilled in function-calling, API orchestration, and structured query resolution."},
107
+ {"role": "user", "content": prompt}
108
+ ]
109
+
110
+ text = tokenizer.apply_chat_template(
111
+ messages,
112
+ tokenize=False,
113
+ add_generation_prompt=True
114
+ )
115
+
116
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
117
+
118
+ generated_ids = model.generate(
119
+ **model_inputs,
120
+ max_new_tokens=512
121
+ )
122
+ generated_ids = [
123
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
124
+ ]
125
+
126
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
127
+ print(response)
128
+ ```
129
+
130
+ ## **Intended Use**
131
+
132
+ * Intelligent function-calling and multi-step query solving
133
+ * API orchestration, agent tool selection, and dynamic workflows
134
+ * Structured data generation and backend reasoning integration
135
+ * Lightweight agentic systems and on-device automation
136
+ * Developer-focused query resolution and toolchain automation
137
+
138
+ ## **Limitations**
139
+
140
+ * Focused on **function-calling and structured tasks** — not suited for open-ended dialogue or creative writing
141
+ * Small model size means very complex reasoning chains may require external planning agents
142
+ * Optimized for structured tool workflows — conversational tone and narrative depth are secondary
143
+ * Long-context multi-tool planning beyond several steps may reduce reliability