Add files using upload-large-folder tool
Browse files- checkpoint-1600/1_Pooling/config.json +10 -0
- checkpoint-1600/config_sentence_transformers.json +10 -0
- checkpoint-1600/model.safetensors +3 -0
- checkpoint-1600/optimizer.pt +3 -0
- checkpoint-1600/rng_state.pth +3 -0
- checkpoint-1600/scaler.pt +3 -0
- checkpoint-1600/scheduler.pt +3 -0
- checkpoint-1600/sentence_bert_config.json +4 -0
- checkpoint-1600/special_tokens_map.json +37 -0
- checkpoint-1600/tokenizer.json +0 -0
- checkpoint-1600/trainer_state.json +0 -0
- checkpoint-1600/training_args.bin +3 -0
- checkpoint-1800/README.md +1414 -0
- checkpoint-1800/config_sentence_transformers.json +10 -0
- checkpoint-1800/model.safetensors +3 -0
- checkpoint-1800/optimizer.pt +3 -0
- checkpoint-1800/scaler.pt +3 -0
- checkpoint-1800/sentence_bert_config.json +4 -0
- checkpoint-1800/special_tokens_map.json +37 -0
- checkpoint-2000/model.safetensors +3 -0
- checkpoint-2000/optimizer.pt +3 -0
- checkpoint-2200/1_Pooling/config.json +10 -0
- checkpoint-2200/README.md +1418 -0
- checkpoint-2200/config.json +30 -0
- checkpoint-2200/config_sentence_transformers.json +10 -0
- checkpoint-2200/model.safetensors +3 -0
- checkpoint-2200/modules.json +20 -0
- checkpoint-2200/optimizer.pt +3 -0
- checkpoint-2200/rng_state.pth +3 -0
- checkpoint-2200/scaler.pt +3 -0
- checkpoint-2200/scheduler.pt +3 -0
- checkpoint-2200/sentence_bert_config.json +4 -0
- checkpoint-2200/special_tokens_map.json +37 -0
- checkpoint-2200/tokenizer.json +0 -0
- checkpoint-2200/trainer_state.json +0 -0
- checkpoint-2200/training_args.bin +3 -0
- checkpoint-2400/model.safetensors +3 -0
- checkpoint-2400/optimizer.pt +3 -0
- checkpoint-2400/rng_state.pth +3 -0
- checkpoint-2400/scaler.pt +3 -0
- checkpoint-2400/scheduler.pt +3 -0
- checkpoint-2400/training_args.bin +3 -0
- checkpoint-2400/vocab.txt +0 -0
checkpoint-1600/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-1600/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-1600/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:45c69f68877b431b9a115a39027c88fb84f679ca8263c3fbc968a7a8f16de1af
|
| 3 |
+
size 133462128
|
checkpoint-1600/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e723eed048f14fc1c2189dd04ac0b17e0f071d669b1b95e63a2b6fe5c370f65d
|
| 3 |
+
size 265862650
|
checkpoint-1600/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ddc729a9da73d36c0d81ea219e00e7955f89e34cd7073a446aa0febdc49e8a2
|
| 3 |
+
size 14244
|
checkpoint-1600/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:efba28face24ba5fa39906642e9e067e20230532c3646da6da07fa553b487348
|
| 3 |
+
size 988
|
checkpoint-1600/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5581e9cc5d6a4d33cd097e1234d56b76e140fff76fb2a5ac8b364ec78c9e26b
|
| 3 |
+
size 1064
|
checkpoint-1600/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
checkpoint-1600/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
checkpoint-1600/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1600/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-1600/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
|
| 3 |
+
size 5624
|
checkpoint-1800/README.md
ADDED
|
@@ -0,0 +1,1414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5076190476190475
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.3089523809523809
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.1872380952380952
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.1321904761904762
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.1027142857142857
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0680237860830842
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.5459242543214992
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.728483344815942
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8382149119179341
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.8762032488748317
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9059964336434017
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.6895375515490911
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7060633068166344
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7619501692018719
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.778798440383198
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7899830993214225
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8098412698412698
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8098412698412698
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8098412698412698
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8098412698412698
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8098412698412698
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5464916843297755
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5351890636433139
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.5685440196941911
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5756567539581475
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5791635361565666
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5835322146366259
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.12432432432432433
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.12432432432432433
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.4924324324324324
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.31686486486486487
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.19843243243243244
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.14702702702702705
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.11762162162162161
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.003111544931768446
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.3235933309332048
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.4622883553307717
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.5424114301447981
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.5822792579944903
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.612586126212026
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.12432432432432433
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.5406828319866788
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.500776817925352
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.5143442473922782
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.5349751306205418
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.5498255219419508
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.12432432432432433
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5516816816816817
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5516816816816817
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5516816816816817
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5516816816816817
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5516816816816817
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.12432432432432433
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.4061591888137979
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.3426196432849601
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.3398108870028267
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.3482007813358776
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.3534583367060008
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.36353547903357536
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9211822660098522
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9605911330049262
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9753694581280788
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9852216748768473
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9852216748768473
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.4226600985221674
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.2775369458128079
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.1787192118226601
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.1349753694581281
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.10960591133004927
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.25787568646307335
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.378544115518205
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.4646991741198787
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.514077820298434
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.5479242719935129
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.4571806408684656
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.4186161244795668
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.43413691996468995
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.45936827865079527
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.4762742892652946
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.488501497777794
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.48978270334574775
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.4900376562912742
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.4901135143922775
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.4901135143922775
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.3211048669539684
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.261888445835493
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.2558901722323677
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.2649913870834412
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.27010541031599244
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.28106938786931224
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.30097087378640774
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.7087378640776699
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.8252427184466019
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.8543689320388349
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.912621359223301
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.941747572815534
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.30097087378640774
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.16844660194174763
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.09436893203883494
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.05844660194174757
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.04601941747572815
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.038203883495145634
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.024446152054452382
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.17513112391433697
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.23948897590045773
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.2859906000645493
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.32910264724851107
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.36304017348331746
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.30097087378640774
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.23848199480652515
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.23417872356945213
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.2558557487315817
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.27344459654855646
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.28574499658549296
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.30097087378640774
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.4211010881954553
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.4249525777196882
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.42539460155740233
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.42587488715939736
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.4260266850474542
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.30097087378640774
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.14164601531439067
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.12333195286802508
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.12884550949445583
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.13149151347084506
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.1329204280861929
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.13684460640814028
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.40717628705148207
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.7581903276131046
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.8455538221528861
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9048361934477379
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9370774830993239
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9547581903276131
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.40717628705148207
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.08819552782111284
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.04139365574622985
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.022704108164326574
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.015822499566649332
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.012189287571502862
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.1547198078399326
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.652070178045217
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.7639576059232845
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.8390052744966942
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.877764158185375
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9016677809969541
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.40717628705148207
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.5052212563002627
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.5356805472279078
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.5521009256440798
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.5595924746165437
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.5639157869620031
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.40717628705148207
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.49319826751048873
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.49612329710657893
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.4969826860284758
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.49724671253026886
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.49734552981578295
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.40717628705148207
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.419614969499609
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.427088485280225
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.4292014145714
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.4298202694277485
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.4300980044671579
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.43055010151569684
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.29017160686427457
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.6484659386375455
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.7540301612064483
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.8419136765470618
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.8788351534061363
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9089963598543942
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.29017160686427457
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.07251690067602704
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.0355486219448778
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.02041601664066563
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.014505113537874847
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.01137545501820073
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.10890968972092217
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.5299011960478419
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.647191887675507
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.7442624371641533
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.7928583810019068
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.8289478245796498
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.29017160686427457
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.38598145754556046
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.41773491829410075
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.43906545567486005
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.4485955578737219
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.45520732213321263
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.29017160686427457
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.37232551415227233
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.375685507642469
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.3769348294784883
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.377239930826995
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.3774183771765249
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.29017160686427457
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.30311022602590254
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.31036427264538485
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.31304585670015317
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.3138396622777036
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.31426372512191
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.3150399864057635
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.09394572025052192
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 0.35281837160751567
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 0.48329853862212946
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 0.5918580375782881
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 0.6649269311064718
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 0.7004175365344467
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.09394572025052192
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.030897703549060546
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.018204592901878917
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.011362212943632568
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.008639526791927627
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.007019832985386221
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.03185455810716771
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 0.20592877025549258
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 0.30069837956059253
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 0.3754792557245584
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 0.4282591046160983
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 0.46372361401067036
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.09394572025052192
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.13433471892252347
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.16091824243484512
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.1780017996510726
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.1886875211403746
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.19541417908856412
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.09394572025052192
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.14710513443845905
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.15122849766144658
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.15275090014884107
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.1533445728241347
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.1535456563541225
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.09394572025052192
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.083759101073897
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.08908800548950695
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.09092612397080438
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.09168814149038751
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.09208168156532727
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.09301554391402207
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 908 |
+
|
| 909 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 384 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 384]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:---------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7087 | 0.7582 | 0.6485 | 0.3528 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9606 | 0.8252 | 0.8456 | 0.754 | 0.4833 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9048 | 0.8419 | 0.5919 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9126 | 0.9371 | 0.8788 | 0.6649 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.909 | 0.7004 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
|
| 1018 |
+
| cosine_precision@20 | 0.5076 | 0.4924 | 0.4227 | 0.1684 | 0.0882 | 0.0725 | 0.0309 |
|
| 1019 |
+
| cosine_precision@50 | 0.309 | 0.3169 | 0.2775 | 0.0944 | 0.0414 | 0.0355 | 0.0182 |
|
| 1020 |
+
| cosine_precision@100 | 0.1872 | 0.1984 | 0.1787 | 0.0584 | 0.0227 | 0.0204 | 0.0114 |
|
| 1021 |
+
| cosine_precision@150 | 0.1322 | 0.147 | 0.135 | 0.046 | 0.0158 | 0.0145 | 0.0086 |
|
| 1022 |
+
| cosine_precision@200 | 0.1027 | 0.1176 | 0.1096 | 0.0382 | 0.0122 | 0.0114 | 0.007 |
|
| 1023 |
+
| cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0244 | 0.1547 | 0.1089 | 0.0319 |
|
| 1024 |
+
| cosine_recall@20 | 0.5459 | 0.3236 | 0.2579 | 0.1751 | 0.6521 | 0.5299 | 0.2059 |
|
| 1025 |
+
| cosine_recall@50 | 0.7285 | 0.4623 | 0.3785 | 0.2395 | 0.764 | 0.6472 | 0.3007 |
|
| 1026 |
+
| cosine_recall@100 | 0.8382 | 0.5424 | 0.4647 | 0.286 | 0.839 | 0.7443 | 0.3755 |
|
| 1027 |
+
| cosine_recall@150 | 0.8762 | 0.5823 | 0.5141 | 0.3291 | 0.8778 | 0.7929 | 0.4283 |
|
| 1028 |
+
| cosine_recall@200 | 0.906 | 0.6126 | 0.5479 | 0.363 | 0.9017 | 0.8289 | 0.4637 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6895 | 0.5407 | 0.4572 | 0.2385 | 0.5052 | 0.386 | 0.1343 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.7061 | 0.5008 | 0.4186 | 0.2342 | 0.5357 | 0.4177 | 0.1609 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.762 | 0.5143 | 0.4341 | 0.2559 | 0.5521 | 0.4391 | 0.178 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7788 | 0.535 | 0.4594 | 0.2734 | 0.5596 | 0.4486 | 0.1887 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.79** | **0.5498** | **0.4763** | **0.2857** | **0.5639** | **0.4552** | **0.1954** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8098 | 0.5517 | 0.4885 | 0.4211 | 0.4932 | 0.3723 | 0.1471 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8098 | 0.5517 | 0.4898 | 0.425 | 0.4961 | 0.3757 | 0.1512 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8098 | 0.5517 | 0.49 | 0.4254 | 0.497 | 0.3769 | 0.1528 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8098 | 0.5517 | 0.4901 | 0.4259 | 0.4972 | 0.3772 | 0.1533 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8098 | 0.5517 | 0.4901 | 0.426 | 0.4973 | 0.3774 | 0.1535 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
|
| 1042 |
+
| cosine_map@20 | 0.5465 | 0.4062 | 0.3211 | 0.1416 | 0.4196 | 0.3031 | 0.0838 |
|
| 1043 |
+
| cosine_map@50 | 0.5352 | 0.3426 | 0.2619 | 0.1233 | 0.4271 | 0.3104 | 0.0891 |
|
| 1044 |
+
| cosine_map@100 | 0.5685 | 0.3398 | 0.2559 | 0.1288 | 0.4292 | 0.313 | 0.0909 |
|
| 1045 |
+
| cosine_map@150 | 0.5757 | 0.3482 | 0.265 | 0.1315 | 0.4298 | 0.3138 | 0.0917 |
|
| 1046 |
+
| cosine_map@200 | 0.5792 | 0.3535 | 0.2701 | 0.1329 | 0.4301 | 0.3143 | 0.0921 |
|
| 1047 |
+
| cosine_map@500 | 0.5835 | 0.3635 | 0.2811 | 0.1368 | 0.4306 | 0.315 | 0.093 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 128
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 128
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
|
| 1339 |
+
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
|
| 1342 |
+
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
|
| 1344 |
+
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
|
| 1346 |
+
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
|
| 1348 |
+
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
|
| 1350 |
+
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
|
| 1352 |
+
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
|
| 1354 |
+
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
|
| 1356 |
+
| 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
|
| 1358 |
+
|
| 1359 |
+
|
| 1360 |
+
### Framework Versions
|
| 1361 |
+
- Python: 3.11.11
|
| 1362 |
+
- Sentence Transformers: 4.1.0
|
| 1363 |
+
- Transformers: 4.51.3
|
| 1364 |
+
- PyTorch: 2.6.0+cu124
|
| 1365 |
+
- Accelerate: 1.6.0
|
| 1366 |
+
- Datasets: 3.5.0
|
| 1367 |
+
- Tokenizers: 0.21.1
|
| 1368 |
+
|
| 1369 |
+
## Citation
|
| 1370 |
+
|
| 1371 |
+
### BibTeX
|
| 1372 |
+
|
| 1373 |
+
#### Sentence Transformers
|
| 1374 |
+
```bibtex
|
| 1375 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1376 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1377 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1378 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1379 |
+
month = "11",
|
| 1380 |
+
year = "2019",
|
| 1381 |
+
publisher = "Association for Computational Linguistics",
|
| 1382 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1383 |
+
}
|
| 1384 |
+
```
|
| 1385 |
+
|
| 1386 |
+
#### GISTEmbedLoss
|
| 1387 |
+
```bibtex
|
| 1388 |
+
@misc{solatorio2024gistembed,
|
| 1389 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1390 |
+
author={Aivin V. Solatorio},
|
| 1391 |
+
year={2024},
|
| 1392 |
+
eprint={2402.16829},
|
| 1393 |
+
archivePrefix={arXiv},
|
| 1394 |
+
primaryClass={cs.LG}
|
| 1395 |
+
}
|
| 1396 |
+
```
|
| 1397 |
+
|
| 1398 |
+
<!--
|
| 1399 |
+
## Glossary
|
| 1400 |
+
|
| 1401 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1402 |
+
-->
|
| 1403 |
+
|
| 1404 |
+
<!--
|
| 1405 |
+
## Model Card Authors
|
| 1406 |
+
|
| 1407 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1408 |
+
-->
|
| 1409 |
+
|
| 1410 |
+
<!--
|
| 1411 |
+
## Model Card Contact
|
| 1412 |
+
|
| 1413 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1414 |
+
-->
|
checkpoint-1800/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-1800/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:edcda01bd016b952bc7b4f8d07baa636e2f6ba4b2408e93e104a4bf88ef6ada6
|
| 3 |
+
size 133462128
|
checkpoint-1800/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ddd18e798d2a20004da555549c4737435609b9c67138ca0754f28b58623b15db
|
| 3 |
+
size 265862650
|
checkpoint-1800/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:badc2e3c770d79fd1df9a8fff5c7d44e78de48b6db72ebc51217d8a8c393d41e
|
| 3 |
+
size 988
|
checkpoint-1800/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
checkpoint-1800/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
checkpoint-2000/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:adc4fec074c2dd44c27a7f08d7ea05a3c99717a4b9ec58fb0b43ad1d9d10f358
|
| 3 |
+
size 133462128
|
checkpoint-2000/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa92f8ec87512a7d57aa6679342256bbcc11a6cb4bdf66754b445bb7b52373ce
|
| 3 |
+
size 265862650
|
checkpoint-2200/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": true,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-2200/README.md
ADDED
|
@@ -0,0 +1,1418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:124788
|
| 8 |
+
- loss:GISTEmbedLoss
|
| 9 |
+
base_model: BAAI/bge-small-en-v1.5
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: 其他机械、设备和有形货物租赁服务代表
|
| 12 |
+
sentences:
|
| 13 |
+
- 其他机械和设备租赁服务工作人员
|
| 14 |
+
- 电子和电信设备及零部件物流经理
|
| 15 |
+
- 工业主厨
|
| 16 |
+
- source_sentence: 公交车司机
|
| 17 |
+
sentences:
|
| 18 |
+
- 表演灯光设计师
|
| 19 |
+
- 乙烯基地板安装工
|
| 20 |
+
- 国际巴士司机
|
| 21 |
+
- source_sentence: online communication manager
|
| 22 |
+
sentences:
|
| 23 |
+
- trades union official
|
| 24 |
+
- social media manager
|
| 25 |
+
- budget manager
|
| 26 |
+
- source_sentence: Projektmanagerin
|
| 27 |
+
sentences:
|
| 28 |
+
- Projektmanager/Projektmanagerin
|
| 29 |
+
- Category-Manager
|
| 30 |
+
- Infanterist
|
| 31 |
+
- source_sentence: Volksvertreter
|
| 32 |
+
sentences:
|
| 33 |
+
- Parlamentarier
|
| 34 |
+
- Oberbürgermeister
|
| 35 |
+
- Konsul
|
| 36 |
+
pipeline_tag: sentence-similarity
|
| 37 |
+
library_name: sentence-transformers
|
| 38 |
+
metrics:
|
| 39 |
+
- cosine_accuracy@1
|
| 40 |
+
- cosine_accuracy@20
|
| 41 |
+
- cosine_accuracy@50
|
| 42 |
+
- cosine_accuracy@100
|
| 43 |
+
- cosine_accuracy@150
|
| 44 |
+
- cosine_accuracy@200
|
| 45 |
+
- cosine_precision@1
|
| 46 |
+
- cosine_precision@20
|
| 47 |
+
- cosine_precision@50
|
| 48 |
+
- cosine_precision@100
|
| 49 |
+
- cosine_precision@150
|
| 50 |
+
- cosine_precision@200
|
| 51 |
+
- cosine_recall@1
|
| 52 |
+
- cosine_recall@20
|
| 53 |
+
- cosine_recall@50
|
| 54 |
+
- cosine_recall@100
|
| 55 |
+
- cosine_recall@150
|
| 56 |
+
- cosine_recall@200
|
| 57 |
+
- cosine_ndcg@1
|
| 58 |
+
- cosine_ndcg@20
|
| 59 |
+
- cosine_ndcg@50
|
| 60 |
+
- cosine_ndcg@100
|
| 61 |
+
- cosine_ndcg@150
|
| 62 |
+
- cosine_ndcg@200
|
| 63 |
+
- cosine_mrr@1
|
| 64 |
+
- cosine_mrr@20
|
| 65 |
+
- cosine_mrr@50
|
| 66 |
+
- cosine_mrr@100
|
| 67 |
+
- cosine_mrr@150
|
| 68 |
+
- cosine_mrr@200
|
| 69 |
+
- cosine_map@1
|
| 70 |
+
- cosine_map@20
|
| 71 |
+
- cosine_map@50
|
| 72 |
+
- cosine_map@100
|
| 73 |
+
- cosine_map@150
|
| 74 |
+
- cosine_map@200
|
| 75 |
+
- cosine_map@500
|
| 76 |
+
model-index:
|
| 77 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 78 |
+
results:
|
| 79 |
+
- task:
|
| 80 |
+
type: information-retrieval
|
| 81 |
+
name: Information Retrieval
|
| 82 |
+
dataset:
|
| 83 |
+
name: full en
|
| 84 |
+
type: full_en
|
| 85 |
+
metrics:
|
| 86 |
+
- type: cosine_accuracy@1
|
| 87 |
+
value: 0.6571428571428571
|
| 88 |
+
name: Cosine Accuracy@1
|
| 89 |
+
- type: cosine_accuracy@20
|
| 90 |
+
value: 0.9904761904761905
|
| 91 |
+
name: Cosine Accuracy@20
|
| 92 |
+
- type: cosine_accuracy@50
|
| 93 |
+
value: 0.9904761904761905
|
| 94 |
+
name: Cosine Accuracy@50
|
| 95 |
+
- type: cosine_accuracy@100
|
| 96 |
+
value: 0.9904761904761905
|
| 97 |
+
name: Cosine Accuracy@100
|
| 98 |
+
- type: cosine_accuracy@150
|
| 99 |
+
value: 0.9904761904761905
|
| 100 |
+
name: Cosine Accuracy@150
|
| 101 |
+
- type: cosine_accuracy@200
|
| 102 |
+
value: 0.9904761904761905
|
| 103 |
+
name: Cosine Accuracy@200
|
| 104 |
+
- type: cosine_precision@1
|
| 105 |
+
value: 0.6571428571428571
|
| 106 |
+
name: Cosine Precision@1
|
| 107 |
+
- type: cosine_precision@20
|
| 108 |
+
value: 0.5047619047619047
|
| 109 |
+
name: Cosine Precision@20
|
| 110 |
+
- type: cosine_precision@50
|
| 111 |
+
value: 0.30857142857142855
|
| 112 |
+
name: Cosine Precision@50
|
| 113 |
+
- type: cosine_precision@100
|
| 114 |
+
value: 0.18666666666666668
|
| 115 |
+
name: Cosine Precision@100
|
| 116 |
+
- type: cosine_precision@150
|
| 117 |
+
value: 0.13269841269841268
|
| 118 |
+
name: Cosine Precision@150
|
| 119 |
+
- type: cosine_precision@200
|
| 120 |
+
value: 0.1029047619047619
|
| 121 |
+
name: Cosine Precision@200
|
| 122 |
+
- type: cosine_recall@1
|
| 123 |
+
value: 0.0680237860830842
|
| 124 |
+
name: Cosine Recall@1
|
| 125 |
+
- type: cosine_recall@20
|
| 126 |
+
value: 0.539060339827615
|
| 127 |
+
name: Cosine Recall@20
|
| 128 |
+
- type: cosine_recall@50
|
| 129 |
+
value: 0.7269844521994231
|
| 130 |
+
name: Cosine Recall@50
|
| 131 |
+
- type: cosine_recall@100
|
| 132 |
+
value: 0.8337131628681403
|
| 133 |
+
name: Cosine Recall@100
|
| 134 |
+
- type: cosine_recall@150
|
| 135 |
+
value: 0.879935375805825
|
| 136 |
+
name: Cosine Recall@150
|
| 137 |
+
- type: cosine_recall@200
|
| 138 |
+
value: 0.9050529457831012
|
| 139 |
+
name: Cosine Recall@200
|
| 140 |
+
- type: cosine_ndcg@1
|
| 141 |
+
value: 0.6571428571428571
|
| 142 |
+
name: Cosine Ndcg@1
|
| 143 |
+
- type: cosine_ndcg@20
|
| 144 |
+
value: 0.686462471196106
|
| 145 |
+
name: Cosine Ndcg@20
|
| 146 |
+
- type: cosine_ndcg@50
|
| 147 |
+
value: 0.7052824081502371
|
| 148 |
+
name: Cosine Ndcg@50
|
| 149 |
+
- type: cosine_ndcg@100
|
| 150 |
+
value: 0.7601614355798527
|
| 151 |
+
name: Cosine Ndcg@100
|
| 152 |
+
- type: cosine_ndcg@150
|
| 153 |
+
value: 0.7798476891938094
|
| 154 |
+
name: Cosine Ndcg@150
|
| 155 |
+
- type: cosine_ndcg@200
|
| 156 |
+
value: 0.7898871141566125
|
| 157 |
+
name: Cosine Ndcg@200
|
| 158 |
+
- type: cosine_mrr@1
|
| 159 |
+
value: 0.6571428571428571
|
| 160 |
+
name: Cosine Mrr@1
|
| 161 |
+
- type: cosine_mrr@20
|
| 162 |
+
value: 0.8095238095238095
|
| 163 |
+
name: Cosine Mrr@20
|
| 164 |
+
- type: cosine_mrr@50
|
| 165 |
+
value: 0.8095238095238095
|
| 166 |
+
name: Cosine Mrr@50
|
| 167 |
+
- type: cosine_mrr@100
|
| 168 |
+
value: 0.8095238095238095
|
| 169 |
+
name: Cosine Mrr@100
|
| 170 |
+
- type: cosine_mrr@150
|
| 171 |
+
value: 0.8095238095238095
|
| 172 |
+
name: Cosine Mrr@150
|
| 173 |
+
- type: cosine_mrr@200
|
| 174 |
+
value: 0.8095238095238095
|
| 175 |
+
name: Cosine Mrr@200
|
| 176 |
+
- type: cosine_map@1
|
| 177 |
+
value: 0.6571428571428571
|
| 178 |
+
name: Cosine Map@1
|
| 179 |
+
- type: cosine_map@20
|
| 180 |
+
value: 0.5451065538458748
|
| 181 |
+
name: Cosine Map@20
|
| 182 |
+
- type: cosine_map@50
|
| 183 |
+
value: 0.5347802076206865
|
| 184 |
+
name: Cosine Map@50
|
| 185 |
+
- type: cosine_map@100
|
| 186 |
+
value: 0.567702602098158
|
| 187 |
+
name: Cosine Map@100
|
| 188 |
+
- type: cosine_map@150
|
| 189 |
+
value: 0.5756725358487015
|
| 190 |
+
name: Cosine Map@150
|
| 191 |
+
- type: cosine_map@200
|
| 192 |
+
value: 0.5789669196636947
|
| 193 |
+
name: Cosine Map@200
|
| 194 |
+
- type: cosine_map@500
|
| 195 |
+
value: 0.5832808543489026
|
| 196 |
+
name: Cosine Map@500
|
| 197 |
+
- task:
|
| 198 |
+
type: information-retrieval
|
| 199 |
+
name: Information Retrieval
|
| 200 |
+
dataset:
|
| 201 |
+
name: full es
|
| 202 |
+
type: full_es
|
| 203 |
+
metrics:
|
| 204 |
+
- type: cosine_accuracy@1
|
| 205 |
+
value: 0.11351351351351352
|
| 206 |
+
name: Cosine Accuracy@1
|
| 207 |
+
- type: cosine_accuracy@20
|
| 208 |
+
value: 1.0
|
| 209 |
+
name: Cosine Accuracy@20
|
| 210 |
+
- type: cosine_accuracy@50
|
| 211 |
+
value: 1.0
|
| 212 |
+
name: Cosine Accuracy@50
|
| 213 |
+
- type: cosine_accuracy@100
|
| 214 |
+
value: 1.0
|
| 215 |
+
name: Cosine Accuracy@100
|
| 216 |
+
- type: cosine_accuracy@150
|
| 217 |
+
value: 1.0
|
| 218 |
+
name: Cosine Accuracy@150
|
| 219 |
+
- type: cosine_accuracy@200
|
| 220 |
+
value: 1.0
|
| 221 |
+
name: Cosine Accuracy@200
|
| 222 |
+
- type: cosine_precision@1
|
| 223 |
+
value: 0.11351351351351352
|
| 224 |
+
name: Cosine Precision@1
|
| 225 |
+
- type: cosine_precision@20
|
| 226 |
+
value: 0.4913513513513514
|
| 227 |
+
name: Cosine Precision@20
|
| 228 |
+
- type: cosine_precision@50
|
| 229 |
+
value: 0.316972972972973
|
| 230 |
+
name: Cosine Precision@50
|
| 231 |
+
- type: cosine_precision@100
|
| 232 |
+
value: 0.19843243243243244
|
| 233 |
+
name: Cosine Precision@100
|
| 234 |
+
- type: cosine_precision@150
|
| 235 |
+
value: 0.146990990990991
|
| 236 |
+
name: Cosine Precision@150
|
| 237 |
+
- type: cosine_precision@200
|
| 238 |
+
value: 0.11778378378378378
|
| 239 |
+
name: Cosine Precision@200
|
| 240 |
+
- type: cosine_recall@1
|
| 241 |
+
value: 0.002992884071419607
|
| 242 |
+
name: Cosine Recall@1
|
| 243 |
+
- type: cosine_recall@20
|
| 244 |
+
value: 0.32341666838263944
|
| 245 |
+
name: Cosine Recall@20
|
| 246 |
+
- type: cosine_recall@50
|
| 247 |
+
value: 0.4630260221149236
|
| 248 |
+
name: Cosine Recall@50
|
| 249 |
+
- type: cosine_recall@100
|
| 250 |
+
value: 0.5419804526017848
|
| 251 |
+
name: Cosine Recall@100
|
| 252 |
+
- type: cosine_recall@150
|
| 253 |
+
value: 0.5826718468403144
|
| 254 |
+
name: Cosine Recall@150
|
| 255 |
+
- type: cosine_recall@200
|
| 256 |
+
value: 0.6149262657286421
|
| 257 |
+
name: Cosine Recall@200
|
| 258 |
+
- type: cosine_ndcg@1
|
| 259 |
+
value: 0.11351351351351352
|
| 260 |
+
name: Cosine Ndcg@1
|
| 261 |
+
- type: cosine_ndcg@20
|
| 262 |
+
value: 0.5389058089458943
|
| 263 |
+
name: Cosine Ndcg@20
|
| 264 |
+
- type: cosine_ndcg@50
|
| 265 |
+
value: 0.5002442028172164
|
| 266 |
+
name: Cosine Ndcg@50
|
| 267 |
+
- type: cosine_ndcg@100
|
| 268 |
+
value: 0.5138591255215345
|
| 269 |
+
name: Cosine Ndcg@100
|
| 270 |
+
- type: cosine_ndcg@150
|
| 271 |
+
value: 0.5346372349516221
|
| 272 |
+
name: Cosine Ndcg@150
|
| 273 |
+
- type: cosine_ndcg@200
|
| 274 |
+
value: 0.5502474315848075
|
| 275 |
+
name: Cosine Ndcg@200
|
| 276 |
+
- type: cosine_mrr@1
|
| 277 |
+
value: 0.11351351351351352
|
| 278 |
+
name: Cosine Mrr@1
|
| 279 |
+
- type: cosine_mrr@20
|
| 280 |
+
value: 0.5444744744744745
|
| 281 |
+
name: Cosine Mrr@20
|
| 282 |
+
- type: cosine_mrr@50
|
| 283 |
+
value: 0.5444744744744745
|
| 284 |
+
name: Cosine Mrr@50
|
| 285 |
+
- type: cosine_mrr@100
|
| 286 |
+
value: 0.5444744744744745
|
| 287 |
+
name: Cosine Mrr@100
|
| 288 |
+
- type: cosine_mrr@150
|
| 289 |
+
value: 0.5444744744744745
|
| 290 |
+
name: Cosine Mrr@150
|
| 291 |
+
- type: cosine_mrr@200
|
| 292 |
+
value: 0.5444744744744745
|
| 293 |
+
name: Cosine Mrr@200
|
| 294 |
+
- type: cosine_map@1
|
| 295 |
+
value: 0.11351351351351352
|
| 296 |
+
name: Cosine Map@1
|
| 297 |
+
- type: cosine_map@20
|
| 298 |
+
value: 0.40352984921129137
|
| 299 |
+
name: Cosine Map@20
|
| 300 |
+
- type: cosine_map@50
|
| 301 |
+
value: 0.3418539578142162
|
| 302 |
+
name: Cosine Map@50
|
| 303 |
+
- type: cosine_map@100
|
| 304 |
+
value: 0.339373689987275
|
| 305 |
+
name: Cosine Map@100
|
| 306 |
+
- type: cosine_map@150
|
| 307 |
+
value: 0.3478760829213016
|
| 308 |
+
name: Cosine Map@150
|
| 309 |
+
- type: cosine_map@200
|
| 310 |
+
value: 0.3533435915341769
|
| 311 |
+
name: Cosine Map@200
|
| 312 |
+
- type: cosine_map@500
|
| 313 |
+
value: 0.363222785830563
|
| 314 |
+
name: Cosine Map@500
|
| 315 |
+
- task:
|
| 316 |
+
type: information-retrieval
|
| 317 |
+
name: Information Retrieval
|
| 318 |
+
dataset:
|
| 319 |
+
name: full de
|
| 320 |
+
type: full_de
|
| 321 |
+
metrics:
|
| 322 |
+
- type: cosine_accuracy@1
|
| 323 |
+
value: 0.2955665024630542
|
| 324 |
+
name: Cosine Accuracy@1
|
| 325 |
+
- type: cosine_accuracy@20
|
| 326 |
+
value: 0.9211822660098522
|
| 327 |
+
name: Cosine Accuracy@20
|
| 328 |
+
- type: cosine_accuracy@50
|
| 329 |
+
value: 0.9655172413793104
|
| 330 |
+
name: Cosine Accuracy@50
|
| 331 |
+
- type: cosine_accuracy@100
|
| 332 |
+
value: 0.9753694581280788
|
| 333 |
+
name: Cosine Accuracy@100
|
| 334 |
+
- type: cosine_accuracy@150
|
| 335 |
+
value: 0.9852216748768473
|
| 336 |
+
name: Cosine Accuracy@150
|
| 337 |
+
- type: cosine_accuracy@200
|
| 338 |
+
value: 0.9852216748768473
|
| 339 |
+
name: Cosine Accuracy@200
|
| 340 |
+
- type: cosine_precision@1
|
| 341 |
+
value: 0.2955665024630542
|
| 342 |
+
name: Cosine Precision@1
|
| 343 |
+
- type: cosine_precision@20
|
| 344 |
+
value: 0.424384236453202
|
| 345 |
+
name: Cosine Precision@20
|
| 346 |
+
- type: cosine_precision@50
|
| 347 |
+
value: 0.28167487684729065
|
| 348 |
+
name: Cosine Precision@50
|
| 349 |
+
- type: cosine_precision@100
|
| 350 |
+
value: 0.17995073891625615
|
| 351 |
+
name: Cosine Precision@100
|
| 352 |
+
- type: cosine_precision@150
|
| 353 |
+
value: 0.13589490968801315
|
| 354 |
+
name: Cosine Precision@150
|
| 355 |
+
- type: cosine_precision@200
|
| 356 |
+
value: 0.1108128078817734
|
| 357 |
+
name: Cosine Precision@200
|
| 358 |
+
- type: cosine_recall@1
|
| 359 |
+
value: 0.01108543831680986
|
| 360 |
+
name: Cosine Recall@1
|
| 361 |
+
- type: cosine_recall@20
|
| 362 |
+
value: 0.2600945586038909
|
| 363 |
+
name: Cosine Recall@20
|
| 364 |
+
- type: cosine_recall@50
|
| 365 |
+
value: 0.3844030994839744
|
| 366 |
+
name: Cosine Recall@50
|
| 367 |
+
- type: cosine_recall@100
|
| 368 |
+
value: 0.4672649807153451
|
| 369 |
+
name: Cosine Recall@100
|
| 370 |
+
- type: cosine_recall@150
|
| 371 |
+
value: 0.5171228717670064
|
| 372 |
+
name: Cosine Recall@150
|
| 373 |
+
- type: cosine_recall@200
|
| 374 |
+
value: 0.5533299912627624
|
| 375 |
+
name: Cosine Recall@200
|
| 376 |
+
- type: cosine_ndcg@1
|
| 377 |
+
value: 0.2955665024630542
|
| 378 |
+
name: Cosine Ndcg@1
|
| 379 |
+
- type: cosine_ndcg@20
|
| 380 |
+
value: 0.4593107411252075
|
| 381 |
+
name: Cosine Ndcg@20
|
| 382 |
+
- type: cosine_ndcg@50
|
| 383 |
+
value: 0.42313178566078624
|
| 384 |
+
name: Cosine Ndcg@50
|
| 385 |
+
- type: cosine_ndcg@100
|
| 386 |
+
value: 0.4367043857530601
|
| 387 |
+
name: Cosine Ndcg@100
|
| 388 |
+
- type: cosine_ndcg@150
|
| 389 |
+
value: 0.4621847371016286
|
| 390 |
+
name: Cosine Ndcg@150
|
| 391 |
+
- type: cosine_ndcg@200
|
| 392 |
+
value: 0.48019099347834654
|
| 393 |
+
name: Cosine Ndcg@200
|
| 394 |
+
- type: cosine_mrr@1
|
| 395 |
+
value: 0.2955665024630542
|
| 396 |
+
name: Cosine Mrr@1
|
| 397 |
+
- type: cosine_mrr@20
|
| 398 |
+
value: 0.4892678749821603
|
| 399 |
+
name: Cosine Mrr@20
|
| 400 |
+
- type: cosine_mrr@50
|
| 401 |
+
value: 0.49065090899064223
|
| 402 |
+
name: Cosine Mrr@50
|
| 403 |
+
- type: cosine_mrr@100
|
| 404 |
+
value: 0.49080251743966435
|
| 405 |
+
name: Cosine Mrr@100
|
| 406 |
+
- type: cosine_mrr@150
|
| 407 |
+
value: 0.4908799208299932
|
| 408 |
+
name: Cosine Mrr@150
|
| 409 |
+
- type: cosine_mrr@200
|
| 410 |
+
value: 0.4908799208299932
|
| 411 |
+
name: Cosine Mrr@200
|
| 412 |
+
- type: cosine_map@1
|
| 413 |
+
value: 0.2955665024630542
|
| 414 |
+
name: Cosine Map@1
|
| 415 |
+
- type: cosine_map@20
|
| 416 |
+
value: 0.3228620941051522
|
| 417 |
+
name: Cosine Map@20
|
| 418 |
+
- type: cosine_map@50
|
| 419 |
+
value: 0.2644260812747752
|
| 420 |
+
name: Cosine Map@50
|
| 421 |
+
- type: cosine_map@100
|
| 422 |
+
value: 0.2576011230547815
|
| 423 |
+
name: Cosine Map@100
|
| 424 |
+
- type: cosine_map@150
|
| 425 |
+
value: 0.2666548881846307
|
| 426 |
+
name: Cosine Map@150
|
| 427 |
+
- type: cosine_map@200
|
| 428 |
+
value: 0.27224102651692533
|
| 429 |
+
name: Cosine Map@200
|
| 430 |
+
- type: cosine_map@500
|
| 431 |
+
value: 0.28312561300678324
|
| 432 |
+
name: Cosine Map@500
|
| 433 |
+
- task:
|
| 434 |
+
type: information-retrieval
|
| 435 |
+
name: Information Retrieval
|
| 436 |
+
dataset:
|
| 437 |
+
name: full zh
|
| 438 |
+
type: full_zh
|
| 439 |
+
metrics:
|
| 440 |
+
- type: cosine_accuracy@1
|
| 441 |
+
value: 0.3300970873786408
|
| 442 |
+
name: Cosine Accuracy@1
|
| 443 |
+
- type: cosine_accuracy@20
|
| 444 |
+
value: 0.7184466019417476
|
| 445 |
+
name: Cosine Accuracy@20
|
| 446 |
+
- type: cosine_accuracy@50
|
| 447 |
+
value: 0.8155339805825242
|
| 448 |
+
name: Cosine Accuracy@50
|
| 449 |
+
- type: cosine_accuracy@100
|
| 450 |
+
value: 0.8932038834951457
|
| 451 |
+
name: Cosine Accuracy@100
|
| 452 |
+
- type: cosine_accuracy@150
|
| 453 |
+
value: 0.9223300970873787
|
| 454 |
+
name: Cosine Accuracy@150
|
| 455 |
+
- type: cosine_accuracy@200
|
| 456 |
+
value: 0.9320388349514563
|
| 457 |
+
name: Cosine Accuracy@200
|
| 458 |
+
- type: cosine_precision@1
|
| 459 |
+
value: 0.3300970873786408
|
| 460 |
+
name: Cosine Precision@1
|
| 461 |
+
- type: cosine_precision@20
|
| 462 |
+
value: 0.16796116504854372
|
| 463 |
+
name: Cosine Precision@20
|
| 464 |
+
- type: cosine_precision@50
|
| 465 |
+
value: 0.09262135922330093
|
| 466 |
+
name: Cosine Precision@50
|
| 467 |
+
- type: cosine_precision@100
|
| 468 |
+
value: 0.05815533980582525
|
| 469 |
+
name: Cosine Precision@100
|
| 470 |
+
- type: cosine_precision@150
|
| 471 |
+
value: 0.04563106796116505
|
| 472 |
+
name: Cosine Precision@150
|
| 473 |
+
- type: cosine_precision@200
|
| 474 |
+
value: 0.03771844660194174
|
| 475 |
+
name: Cosine Precision@200
|
| 476 |
+
- type: cosine_recall@1
|
| 477 |
+
value: 0.02573649124630195
|
| 478 |
+
name: Cosine Recall@1
|
| 479 |
+
- type: cosine_recall@20
|
| 480 |
+
value: 0.17402459309945448
|
| 481 |
+
name: Cosine Recall@20
|
| 482 |
+
- type: cosine_recall@50
|
| 483 |
+
value: 0.23816219248808224
|
| 484 |
+
name: Cosine Recall@50
|
| 485 |
+
- type: cosine_recall@100
|
| 486 |
+
value: 0.28291725637657983
|
| 487 |
+
name: Cosine Recall@100
|
| 488 |
+
- type: cosine_recall@150
|
| 489 |
+
value: 0.32619122038725784
|
| 490 |
+
name: Cosine Recall@150
|
| 491 |
+
- type: cosine_recall@200
|
| 492 |
+
value: 0.3543394793587958
|
| 493 |
+
name: Cosine Recall@200
|
| 494 |
+
- type: cosine_ndcg@1
|
| 495 |
+
value: 0.3300970873786408
|
| 496 |
+
name: Cosine Ndcg@1
|
| 497 |
+
- type: cosine_ndcg@20
|
| 498 |
+
value: 0.23956118764265208
|
| 499 |
+
name: Cosine Ndcg@20
|
| 500 |
+
- type: cosine_ndcg@50
|
| 501 |
+
value: 0.2341910409667355
|
| 502 |
+
name: Cosine Ndcg@50
|
| 503 |
+
- type: cosine_ndcg@100
|
| 504 |
+
value: 0.2559822552765659
|
| 505 |
+
name: Cosine Ndcg@100
|
| 506 |
+
- type: cosine_ndcg@150
|
| 507 |
+
value: 0.27344655996496936
|
| 508 |
+
name: Cosine Ndcg@150
|
| 509 |
+
- type: cosine_ndcg@200
|
| 510 |
+
value: 0.28432223965649855
|
| 511 |
+
name: Cosine Ndcg@200
|
| 512 |
+
- type: cosine_mrr@1
|
| 513 |
+
value: 0.3300970873786408
|
| 514 |
+
name: Cosine Mrr@1
|
| 515 |
+
- type: cosine_mrr@20
|
| 516 |
+
value: 0.43064643766798927
|
| 517 |
+
name: Cosine Mrr@20
|
| 518 |
+
- type: cosine_mrr@50
|
| 519 |
+
value: 0.43374387043765733
|
| 520 |
+
name: Cosine Mrr@50
|
| 521 |
+
- type: cosine_mrr@100
|
| 522 |
+
value: 0.4348781442268605
|
| 523 |
+
name: Cosine Mrr@100
|
| 524 |
+
- type: cosine_mrr@150
|
| 525 |
+
value: 0.4351279925655956
|
| 526 |
+
name: Cosine Mrr@150
|
| 527 |
+
- type: cosine_mrr@200
|
| 528 |
+
value: 0.4351822313246128
|
| 529 |
+
name: Cosine Mrr@200
|
| 530 |
+
- type: cosine_map@1
|
| 531 |
+
value: 0.3300970873786408
|
| 532 |
+
name: Cosine Map@1
|
| 533 |
+
- type: cosine_map@20
|
| 534 |
+
value: 0.14301006319225865
|
| 535 |
+
name: Cosine Map@20
|
| 536 |
+
- type: cosine_map@50
|
| 537 |
+
value: 0.12425793473074002
|
| 538 |
+
name: Cosine Map@50
|
| 539 |
+
- type: cosine_map@100
|
| 540 |
+
value: 0.12962575663735706
|
| 541 |
+
name: Cosine Map@100
|
| 542 |
+
- type: cosine_map@150
|
| 543 |
+
value: 0.13242860022521366
|
| 544 |
+
name: Cosine Map@150
|
| 545 |
+
- type: cosine_map@200
|
| 546 |
+
value: 0.13374255185989983
|
| 547 |
+
name: Cosine Map@200
|
| 548 |
+
- type: cosine_map@500
|
| 549 |
+
value: 0.13779434547799502
|
| 550 |
+
name: Cosine Map@500
|
| 551 |
+
- task:
|
| 552 |
+
type: information-retrieval
|
| 553 |
+
name: Information Retrieval
|
| 554 |
+
dataset:
|
| 555 |
+
name: mix es
|
| 556 |
+
type: mix_es
|
| 557 |
+
metrics:
|
| 558 |
+
- type: cosine_accuracy@1
|
| 559 |
+
value: 0.40977639105564223
|
| 560 |
+
name: Cosine Accuracy@1
|
| 561 |
+
- type: cosine_accuracy@20
|
| 562 |
+
value: 0.7618304732189287
|
| 563 |
+
name: Cosine Accuracy@20
|
| 564 |
+
- type: cosine_accuracy@50
|
| 565 |
+
value: 0.8512740509620385
|
| 566 |
+
name: Cosine Accuracy@50
|
| 567 |
+
- type: cosine_accuracy@100
|
| 568 |
+
value: 0.9105564222568903
|
| 569 |
+
name: Cosine Accuracy@100
|
| 570 |
+
- type: cosine_accuracy@150
|
| 571 |
+
value: 0.9381175247009881
|
| 572 |
+
name: Cosine Accuracy@150
|
| 573 |
+
- type: cosine_accuracy@200
|
| 574 |
+
value: 0.9542381695267811
|
| 575 |
+
name: Cosine Accuracy@200
|
| 576 |
+
- type: cosine_precision@1
|
| 577 |
+
value: 0.40977639105564223
|
| 578 |
+
name: Cosine Precision@1
|
| 579 |
+
- type: cosine_precision@20
|
| 580 |
+
value: 0.0890015600624025
|
| 581 |
+
name: Cosine Precision@20
|
| 582 |
+
- type: cosine_precision@50
|
| 583 |
+
value: 0.04168486739469579
|
| 584 |
+
name: Cosine Precision@50
|
| 585 |
+
- type: cosine_precision@100
|
| 586 |
+
value: 0.022854914196567863
|
| 587 |
+
name: Cosine Precision@100
|
| 588 |
+
- type: cosine_precision@150
|
| 589 |
+
value: 0.01585370081469925
|
| 590 |
+
name: Cosine Precision@150
|
| 591 |
+
- type: cosine_precision@200
|
| 592 |
+
value: 0.012220488819552783
|
| 593 |
+
name: Cosine Precision@200
|
| 594 |
+
- type: cosine_recall@1
|
| 595 |
+
value: 0.15567317930812472
|
| 596 |
+
name: Cosine Recall@1
|
| 597 |
+
- type: cosine_recall@20
|
| 598 |
+
value: 0.6574783943738703
|
| 599 |
+
name: Cosine Recall@20
|
| 600 |
+
- type: cosine_recall@50
|
| 601 |
+
value: 0.7691404799049105
|
| 602 |
+
name: Cosine Recall@50
|
| 603 |
+
- type: cosine_recall@100
|
| 604 |
+
value: 0.8454015303469281
|
| 605 |
+
name: Cosine Recall@100
|
| 606 |
+
- type: cosine_recall@150
|
| 607 |
+
value: 0.8795148948815096
|
| 608 |
+
name: Cosine Recall@150
|
| 609 |
+
- type: cosine_recall@200
|
| 610 |
+
value: 0.9035051878265606
|
| 611 |
+
name: Cosine Recall@200
|
| 612 |
+
- type: cosine_ndcg@1
|
| 613 |
+
value: 0.40977639105564223
|
| 614 |
+
name: Cosine Ndcg@1
|
| 615 |
+
- type: cosine_ndcg@20
|
| 616 |
+
value: 0.5094055696124096
|
| 617 |
+
name: Cosine Ndcg@20
|
| 618 |
+
- type: cosine_ndcg@50
|
| 619 |
+
value: 0.5398029704628499
|
| 620 |
+
name: Cosine Ndcg@50
|
| 621 |
+
- type: cosine_ndcg@100
|
| 622 |
+
value: 0.5563939454831869
|
| 623 |
+
name: Cosine Ndcg@100
|
| 624 |
+
- type: cosine_ndcg@150
|
| 625 |
+
value: 0.5630335952477792
|
| 626 |
+
name: Cosine Ndcg@150
|
| 627 |
+
- type: cosine_ndcg@200
|
| 628 |
+
value: 0.5674217099859529
|
| 629 |
+
name: Cosine Ndcg@200
|
| 630 |
+
- type: cosine_mrr@1
|
| 631 |
+
value: 0.40977639105564223
|
| 632 |
+
name: Cosine Mrr@1
|
| 633 |
+
- type: cosine_mrr@20
|
| 634 |
+
value: 0.4963374711503733
|
| 635 |
+
name: Cosine Mrr@20
|
| 636 |
+
- type: cosine_mrr@50
|
| 637 |
+
value: 0.49930745416180927
|
| 638 |
+
name: Cosine Mrr@50
|
| 639 |
+
- type: cosine_mrr@100
|
| 640 |
+
value: 0.5001571935146001
|
| 641 |
+
name: Cosine Mrr@100
|
| 642 |
+
- type: cosine_mrr@150
|
| 643 |
+
value: 0.5003842041203103
|
| 644 |
+
name: Cosine Mrr@150
|
| 645 |
+
- type: cosine_mrr@200
|
| 646 |
+
value: 0.5004783417497985
|
| 647 |
+
name: Cosine Mrr@200
|
| 648 |
+
- type: cosine_map@1
|
| 649 |
+
value: 0.40977639105564223
|
| 650 |
+
name: Cosine Map@1
|
| 651 |
+
- type: cosine_map@20
|
| 652 |
+
value: 0.4236549905504724
|
| 653 |
+
name: Cosine Map@20
|
| 654 |
+
- type: cosine_map@50
|
| 655 |
+
value: 0.4311498037279026
|
| 656 |
+
name: Cosine Map@50
|
| 657 |
+
- type: cosine_map@100
|
| 658 |
+
value: 0.43327838927965695
|
| 659 |
+
name: Cosine Map@100
|
| 660 |
+
- type: cosine_map@150
|
| 661 |
+
value: 0.4338451382952763
|
| 662 |
+
name: Cosine Map@150
|
| 663 |
+
- type: cosine_map@200
|
| 664 |
+
value: 0.4341307997461715
|
| 665 |
+
name: Cosine Map@200
|
| 666 |
+
- type: cosine_map@500
|
| 667 |
+
value: 0.4345995592976099
|
| 668 |
+
name: Cosine Map@500
|
| 669 |
+
- task:
|
| 670 |
+
type: information-retrieval
|
| 671 |
+
name: Information Retrieval
|
| 672 |
+
dataset:
|
| 673 |
+
name: mix de
|
| 674 |
+
type: mix_de
|
| 675 |
+
metrics:
|
| 676 |
+
- type: cosine_accuracy@1
|
| 677 |
+
value: 0.2912116484659386
|
| 678 |
+
name: Cosine Accuracy@1
|
| 679 |
+
- type: cosine_accuracy@20
|
| 680 |
+
value: 0.6526261050442018
|
| 681 |
+
name: Cosine Accuracy@20
|
| 682 |
+
- type: cosine_accuracy@50
|
| 683 |
+
value: 0.7550702028081123
|
| 684 |
+
name: Cosine Accuracy@50
|
| 685 |
+
- type: cosine_accuracy@100
|
| 686 |
+
value: 0.8460738429537181
|
| 687 |
+
name: Cosine Accuracy@100
|
| 688 |
+
- type: cosine_accuracy@150
|
| 689 |
+
value: 0.8876755070202809
|
| 690 |
+
name: Cosine Accuracy@150
|
| 691 |
+
- type: cosine_accuracy@200
|
| 692 |
+
value: 0.9173166926677067
|
| 693 |
+
name: Cosine Accuracy@200
|
| 694 |
+
- type: cosine_precision@1
|
| 695 |
+
value: 0.2912116484659386
|
| 696 |
+
name: Cosine Precision@1
|
| 697 |
+
- type: cosine_precision@20
|
| 698 |
+
value: 0.07308892355694228
|
| 699 |
+
name: Cosine Precision@20
|
| 700 |
+
- type: cosine_precision@50
|
| 701 |
+
value: 0.03583983359334374
|
| 702 |
+
name: Cosine Precision@50
|
| 703 |
+
- type: cosine_precision@100
|
| 704 |
+
value: 0.02058242329693188
|
| 705 |
+
name: Cosine Precision@100
|
| 706 |
+
- type: cosine_precision@150
|
| 707 |
+
value: 0.014609117698041255
|
| 708 |
+
name: Cosine Precision@150
|
| 709 |
+
- type: cosine_precision@200
|
| 710 |
+
value: 0.011515860634425378
|
| 711 |
+
name: Cosine Precision@200
|
| 712 |
+
- type: cosine_recall@1
|
| 713 |
+
value: 0.10977639105564223
|
| 714 |
+
name: Cosine Recall@1
|
| 715 |
+
- type: cosine_recall@20
|
| 716 |
+
value: 0.5342520367481365
|
| 717 |
+
name: Cosine Recall@20
|
| 718 |
+
- type: cosine_recall@50
|
| 719 |
+
value: 0.6529207834980065
|
| 720 |
+
name: Cosine Recall@50
|
| 721 |
+
- type: cosine_recall@100
|
| 722 |
+
value: 0.7505633558675681
|
| 723 |
+
name: Cosine Recall@100
|
| 724 |
+
- type: cosine_recall@150
|
| 725 |
+
value: 0.7989166233315999
|
| 726 |
+
name: Cosine Recall@150
|
| 727 |
+
- type: cosine_recall@200
|
| 728 |
+
value: 0.8393482405962905
|
| 729 |
+
name: Cosine Recall@200
|
| 730 |
+
- type: cosine_ndcg@1
|
| 731 |
+
value: 0.2912116484659386
|
| 732 |
+
name: Cosine Ndcg@1
|
| 733 |
+
- type: cosine_ndcg@20
|
| 734 |
+
value: 0.39027078330836906
|
| 735 |
+
name: Cosine Ndcg@20
|
| 736 |
+
- type: cosine_ndcg@50
|
| 737 |
+
value: 0.4224011615840446
|
| 738 |
+
name: Cosine Ndcg@50
|
| 739 |
+
- type: cosine_ndcg@100
|
| 740 |
+
value: 0.4438393956774872
|
| 741 |
+
name: Cosine Ndcg@100
|
| 742 |
+
- type: cosine_ndcg@150
|
| 743 |
+
value: 0.45327900259303716
|
| 744 |
+
name: Cosine Ndcg@150
|
| 745 |
+
- type: cosine_ndcg@200
|
| 746 |
+
value: 0.4606831999024183
|
| 747 |
+
name: Cosine Ndcg@200
|
| 748 |
+
- type: cosine_mrr@1
|
| 749 |
+
value: 0.2912116484659386
|
| 750 |
+
name: Cosine Mrr@1
|
| 751 |
+
- type: cosine_mrr@20
|
| 752 |
+
value: 0.37544207546115405
|
| 753 |
+
name: Cosine Mrr@20
|
| 754 |
+
- type: cosine_mrr@50
|
| 755 |
+
value: 0.37870409367323543
|
| 756 |
+
name: Cosine Mrr@50
|
| 757 |
+
- type: cosine_mrr@100
|
| 758 |
+
value: 0.37999194359776256
|
| 759 |
+
name: Cosine Mrr@100
|
| 760 |
+
- type: cosine_mrr@150
|
| 761 |
+
value: 0.3803335431113417
|
| 762 |
+
name: Cosine Mrr@150
|
| 763 |
+
- type: cosine_mrr@200
|
| 764 |
+
value: 0.3805079454038972
|
| 765 |
+
name: Cosine Mrr@200
|
| 766 |
+
- type: cosine_map@1
|
| 767 |
+
value: 0.2912116484659386
|
| 768 |
+
name: Cosine Map@1
|
| 769 |
+
- type: cosine_map@20
|
| 770 |
+
value: 0.3075927383942124
|
| 771 |
+
name: Cosine Map@20
|
| 772 |
+
- type: cosine_map@50
|
| 773 |
+
value: 0.31502827814698436
|
| 774 |
+
name: Cosine Map@50
|
| 775 |
+
- type: cosine_map@100
|
| 776 |
+
value: 0.31767149302992986
|
| 777 |
+
name: Cosine Map@100
|
| 778 |
+
- type: cosine_map@150
|
| 779 |
+
value: 0.31842095656425334
|
| 780 |
+
name: Cosine Map@150
|
| 781 |
+
- type: cosine_map@200
|
| 782 |
+
value: 0.3189017921904424
|
| 783 |
+
name: Cosine Map@200
|
| 784 |
+
- type: cosine_map@500
|
| 785 |
+
value: 0.31963709557315734
|
| 786 |
+
name: Cosine Map@500
|
| 787 |
+
- task:
|
| 788 |
+
type: information-retrieval
|
| 789 |
+
name: Information Retrieval
|
| 790 |
+
dataset:
|
| 791 |
+
name: mix zh
|
| 792 |
+
type: mix_zh
|
| 793 |
+
metrics:
|
| 794 |
+
- type: cosine_accuracy@1
|
| 795 |
+
value: 0.09498956158663883
|
| 796 |
+
name: Cosine Accuracy@1
|
| 797 |
+
- type: cosine_accuracy@20
|
| 798 |
+
value: 0.35281837160751567
|
| 799 |
+
name: Cosine Accuracy@20
|
| 800 |
+
- type: cosine_accuracy@50
|
| 801 |
+
value: 0.48851774530271397
|
| 802 |
+
name: Cosine Accuracy@50
|
| 803 |
+
- type: cosine_accuracy@100
|
| 804 |
+
value: 0.5960334029227558
|
| 805 |
+
name: Cosine Accuracy@100
|
| 806 |
+
- type: cosine_accuracy@150
|
| 807 |
+
value: 0.657098121085595
|
| 808 |
+
name: Cosine Accuracy@150
|
| 809 |
+
- type: cosine_accuracy@200
|
| 810 |
+
value: 0.7025052192066806
|
| 811 |
+
name: Cosine Accuracy@200
|
| 812 |
+
- type: cosine_precision@1
|
| 813 |
+
value: 0.09498956158663883
|
| 814 |
+
name: Cosine Precision@1
|
| 815 |
+
- type: cosine_precision@20
|
| 816 |
+
value: 0.03102818371607516
|
| 817 |
+
name: Cosine Precision@20
|
| 818 |
+
- type: cosine_precision@50
|
| 819 |
+
value: 0.018528183716075158
|
| 820 |
+
name: Cosine Precision@50
|
| 821 |
+
- type: cosine_precision@100
|
| 822 |
+
value: 0.011550104384133612
|
| 823 |
+
name: Cosine Precision@100
|
| 824 |
+
- type: cosine_precision@150
|
| 825 |
+
value: 0.008601252609603338
|
| 826 |
+
name: Cosine Precision@150
|
| 827 |
+
- type: cosine_precision@200
|
| 828 |
+
value: 0.007074634655532359
|
| 829 |
+
name: Cosine Precision@200
|
| 830 |
+
- type: cosine_recall@1
|
| 831 |
+
value: 0.03218510786360473
|
| 832 |
+
name: Cosine Recall@1
|
| 833 |
+
- type: cosine_recall@20
|
| 834 |
+
value: 0.20682473406899293
|
| 835 |
+
name: Cosine Recall@20
|
| 836 |
+
- type: cosine_recall@50
|
| 837 |
+
value: 0.30616239188786165
|
| 838 |
+
name: Cosine Recall@50
|
| 839 |
+
- type: cosine_recall@100
|
| 840 |
+
value: 0.38175970109686186
|
| 841 |
+
name: Cosine Recall@100
|
| 842 |
+
- type: cosine_recall@150
|
| 843 |
+
value: 0.4266063558339132
|
| 844 |
+
name: Cosine Recall@150
|
| 845 |
+
- type: cosine_recall@200
|
| 846 |
+
value: 0.4677598005103224
|
| 847 |
+
name: Cosine Recall@200
|
| 848 |
+
- type: cosine_ndcg@1
|
| 849 |
+
value: 0.09498956158663883
|
| 850 |
+
name: Cosine Ndcg@1
|
| 851 |
+
- type: cosine_ndcg@20
|
| 852 |
+
value: 0.13726194438538974
|
| 853 |
+
name: Cosine Ndcg@20
|
| 854 |
+
- type: cosine_ndcg@50
|
| 855 |
+
value: 0.16515347653846224
|
| 856 |
+
name: Cosine Ndcg@50
|
| 857 |
+
- type: cosine_ndcg@100
|
| 858 |
+
value: 0.18245718935168395
|
| 859 |
+
name: Cosine Ndcg@100
|
| 860 |
+
- type: cosine_ndcg@150
|
| 861 |
+
value: 0.1915123607890909
|
| 862 |
+
name: Cosine Ndcg@150
|
| 863 |
+
- type: cosine_ndcg@200
|
| 864 |
+
value: 0.1993072789458329
|
| 865 |
+
name: Cosine Ndcg@200
|
| 866 |
+
- type: cosine_mrr@1
|
| 867 |
+
value: 0.09498956158663883
|
| 868 |
+
name: Cosine Mrr@1
|
| 869 |
+
- type: cosine_mrr@20
|
| 870 |
+
value: 0.15082760305134044
|
| 871 |
+
name: Cosine Mrr@20
|
| 872 |
+
- type: cosine_mrr@50
|
| 873 |
+
value: 0.1552139914541245
|
| 874 |
+
name: Cosine Mrr@50
|
| 875 |
+
- type: cosine_mrr@100
|
| 876 |
+
value: 0.1567682757261486
|
| 877 |
+
name: Cosine Mrr@100
|
| 878 |
+
- type: cosine_mrr@150
|
| 879 |
+
value: 0.1572599746321091
|
| 880 |
+
name: Cosine Mrr@150
|
| 881 |
+
- type: cosine_mrr@200
|
| 882 |
+
value: 0.15752063728764779
|
| 883 |
+
name: Cosine Mrr@200
|
| 884 |
+
- type: cosine_map@1
|
| 885 |
+
value: 0.09498956158663883
|
| 886 |
+
name: Cosine Map@1
|
| 887 |
+
- type: cosine_map@20
|
| 888 |
+
value: 0.08696228866764828
|
| 889 |
+
name: Cosine Map@20
|
| 890 |
+
- type: cosine_map@50
|
| 891 |
+
value: 0.0925585898977933
|
| 892 |
+
name: Cosine Map@50
|
| 893 |
+
- type: cosine_map@100
|
| 894 |
+
value: 0.09443690504503688
|
| 895 |
+
name: Cosine Map@100
|
| 896 |
+
- type: cosine_map@150
|
| 897 |
+
value: 0.09508196706389692
|
| 898 |
+
name: Cosine Map@150
|
| 899 |
+
- type: cosine_map@200
|
| 900 |
+
value: 0.09552658777692054
|
| 901 |
+
name: Cosine Map@200
|
| 902 |
+
- type: cosine_map@500
|
| 903 |
+
value: 0.09647934265199021
|
| 904 |
+
name: Cosine Map@500
|
| 905 |
+
---
|
| 906 |
+
|
| 907 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
| 908 |
+
|
| 909 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 910 |
+
|
| 911 |
+
## Model Details
|
| 912 |
+
|
| 913 |
+
### Model Description
|
| 914 |
+
- **Model Type:** Sentence Transformer
|
| 915 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
| 916 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 917 |
+
- **Output Dimensionality:** 384 dimensions
|
| 918 |
+
- **Similarity Function:** Cosine Similarity
|
| 919 |
+
- **Training Datasets:**
|
| 920 |
+
- full_en
|
| 921 |
+
- full_de
|
| 922 |
+
- full_es
|
| 923 |
+
- full_zh
|
| 924 |
+
- mix
|
| 925 |
+
<!-- - **Language:** Unknown -->
|
| 926 |
+
<!-- - **License:** Unknown -->
|
| 927 |
+
|
| 928 |
+
### Model Sources
|
| 929 |
+
|
| 930 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 931 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 932 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 933 |
+
|
| 934 |
+
### Full Model Architecture
|
| 935 |
+
|
| 936 |
+
```
|
| 937 |
+
SentenceTransformer(
|
| 938 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
| 939 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 940 |
+
(2): Normalize()
|
| 941 |
+
)
|
| 942 |
+
```
|
| 943 |
+
|
| 944 |
+
## Usage
|
| 945 |
+
|
| 946 |
+
### Direct Usage (Sentence Transformers)
|
| 947 |
+
|
| 948 |
+
First install the Sentence Transformers library:
|
| 949 |
+
|
| 950 |
+
```bash
|
| 951 |
+
pip install -U sentence-transformers
|
| 952 |
+
```
|
| 953 |
+
|
| 954 |
+
Then you can load this model and run inference.
|
| 955 |
+
```python
|
| 956 |
+
from sentence_transformers import SentenceTransformer
|
| 957 |
+
|
| 958 |
+
# Download from the 🤗 Hub
|
| 959 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 960 |
+
# Run inference
|
| 961 |
+
sentences = [
|
| 962 |
+
'Volksvertreter',
|
| 963 |
+
'Parlamentarier',
|
| 964 |
+
'Oberbürgermeister',
|
| 965 |
+
]
|
| 966 |
+
embeddings = model.encode(sentences)
|
| 967 |
+
print(embeddings.shape)
|
| 968 |
+
# [3, 384]
|
| 969 |
+
|
| 970 |
+
# Get the similarity scores for the embeddings
|
| 971 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 972 |
+
print(similarities.shape)
|
| 973 |
+
# [3, 3]
|
| 974 |
+
```
|
| 975 |
+
|
| 976 |
+
<!--
|
| 977 |
+
### Direct Usage (Transformers)
|
| 978 |
+
|
| 979 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 980 |
+
|
| 981 |
+
</details>
|
| 982 |
+
-->
|
| 983 |
+
|
| 984 |
+
<!--
|
| 985 |
+
### Downstream Usage (Sentence Transformers)
|
| 986 |
+
|
| 987 |
+
You can finetune this model on your own dataset.
|
| 988 |
+
|
| 989 |
+
<details><summary>Click to expand</summary>
|
| 990 |
+
|
| 991 |
+
</details>
|
| 992 |
+
-->
|
| 993 |
+
|
| 994 |
+
<!--
|
| 995 |
+
### Out-of-Scope Use
|
| 996 |
+
|
| 997 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 998 |
+
-->
|
| 999 |
+
|
| 1000 |
+
## Evaluation
|
| 1001 |
+
|
| 1002 |
+
### Metrics
|
| 1003 |
+
|
| 1004 |
+
#### Information Retrieval
|
| 1005 |
+
|
| 1006 |
+
* Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
|
| 1007 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 1008 |
+
|
| 1009 |
+
| Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
|
| 1010 |
+
|:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
|
| 1011 |
+
| cosine_accuracy@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
|
| 1012 |
+
| cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7184 | 0.7618 | 0.6526 | 0.3528 |
|
| 1013 |
+
| cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8155 | 0.8513 | 0.7551 | 0.4885 |
|
| 1014 |
+
| cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8932 | 0.9106 | 0.8461 | 0.596 |
|
| 1015 |
+
| cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9223 | 0.9381 | 0.8877 | 0.6571 |
|
| 1016 |
+
| cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.932 | 0.9542 | 0.9173 | 0.7025 |
|
| 1017 |
+
| cosine_precision@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
|
| 1018 |
+
| cosine_precision@20 | 0.5048 | 0.4914 | 0.4244 | 0.168 | 0.089 | 0.0731 | 0.031 |
|
| 1019 |
+
| cosine_precision@50 | 0.3086 | 0.317 | 0.2817 | 0.0926 | 0.0417 | 0.0358 | 0.0185 |
|
| 1020 |
+
| cosine_precision@100 | 0.1867 | 0.1984 | 0.18 | 0.0582 | 0.0229 | 0.0206 | 0.0116 |
|
| 1021 |
+
| cosine_precision@150 | 0.1327 | 0.147 | 0.1359 | 0.0456 | 0.0159 | 0.0146 | 0.0086 |
|
| 1022 |
+
| cosine_precision@200 | 0.1029 | 0.1178 | 0.1108 | 0.0377 | 0.0122 | 0.0115 | 0.0071 |
|
| 1023 |
+
| cosine_recall@1 | 0.068 | 0.003 | 0.0111 | 0.0257 | 0.1557 | 0.1098 | 0.0322 |
|
| 1024 |
+
| cosine_recall@20 | 0.5391 | 0.3234 | 0.2601 | 0.174 | 0.6575 | 0.5343 | 0.2068 |
|
| 1025 |
+
| cosine_recall@50 | 0.727 | 0.463 | 0.3844 | 0.2382 | 0.7691 | 0.6529 | 0.3062 |
|
| 1026 |
+
| cosine_recall@100 | 0.8337 | 0.542 | 0.4673 | 0.2829 | 0.8454 | 0.7506 | 0.3818 |
|
| 1027 |
+
| cosine_recall@150 | 0.8799 | 0.5827 | 0.5171 | 0.3262 | 0.8795 | 0.7989 | 0.4266 |
|
| 1028 |
+
| cosine_recall@200 | 0.9051 | 0.6149 | 0.5533 | 0.3543 | 0.9035 | 0.8393 | 0.4678 |
|
| 1029 |
+
| cosine_ndcg@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
|
| 1030 |
+
| cosine_ndcg@20 | 0.6865 | 0.5389 | 0.4593 | 0.2396 | 0.5094 | 0.3903 | 0.1373 |
|
| 1031 |
+
| cosine_ndcg@50 | 0.7053 | 0.5002 | 0.4231 | 0.2342 | 0.5398 | 0.4224 | 0.1652 |
|
| 1032 |
+
| cosine_ndcg@100 | 0.7602 | 0.5139 | 0.4367 | 0.256 | 0.5564 | 0.4438 | 0.1825 |
|
| 1033 |
+
| cosine_ndcg@150 | 0.7798 | 0.5346 | 0.4622 | 0.2734 | 0.563 | 0.4533 | 0.1915 |
|
| 1034 |
+
| **cosine_ndcg@200** | **0.7899** | **0.5502** | **0.4802** | **0.2843** | **0.5674** | **0.4607** | **0.1993** |
|
| 1035 |
+
| cosine_mrr@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
|
| 1036 |
+
| cosine_mrr@20 | 0.8095 | 0.5445 | 0.4893 | 0.4306 | 0.4963 | 0.3754 | 0.1508 |
|
| 1037 |
+
| cosine_mrr@50 | 0.8095 | 0.5445 | 0.4907 | 0.4337 | 0.4993 | 0.3787 | 0.1552 |
|
| 1038 |
+
| cosine_mrr@100 | 0.8095 | 0.5445 | 0.4908 | 0.4349 | 0.5002 | 0.38 | 0.1568 |
|
| 1039 |
+
| cosine_mrr@150 | 0.8095 | 0.5445 | 0.4909 | 0.4351 | 0.5004 | 0.3803 | 0.1573 |
|
| 1040 |
+
| cosine_mrr@200 | 0.8095 | 0.5445 | 0.4909 | 0.4352 | 0.5005 | 0.3805 | 0.1575 |
|
| 1041 |
+
| cosine_map@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
|
| 1042 |
+
| cosine_map@20 | 0.5451 | 0.4035 | 0.3229 | 0.143 | 0.4237 | 0.3076 | 0.087 |
|
| 1043 |
+
| cosine_map@50 | 0.5348 | 0.3419 | 0.2644 | 0.1243 | 0.4311 | 0.315 | 0.0926 |
|
| 1044 |
+
| cosine_map@100 | 0.5677 | 0.3394 | 0.2576 | 0.1296 | 0.4333 | 0.3177 | 0.0944 |
|
| 1045 |
+
| cosine_map@150 | 0.5757 | 0.3479 | 0.2667 | 0.1324 | 0.4338 | 0.3184 | 0.0951 |
|
| 1046 |
+
| cosine_map@200 | 0.579 | 0.3533 | 0.2722 | 0.1337 | 0.4341 | 0.3189 | 0.0955 |
|
| 1047 |
+
| cosine_map@500 | 0.5833 | 0.3632 | 0.2831 | 0.1378 | 0.4346 | 0.3196 | 0.0965 |
|
| 1048 |
+
|
| 1049 |
+
<!--
|
| 1050 |
+
## Bias, Risks and Limitations
|
| 1051 |
+
|
| 1052 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 1053 |
+
-->
|
| 1054 |
+
|
| 1055 |
+
<!--
|
| 1056 |
+
### Recommendations
|
| 1057 |
+
|
| 1058 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 1059 |
+
-->
|
| 1060 |
+
|
| 1061 |
+
## Training Details
|
| 1062 |
+
|
| 1063 |
+
### Training Datasets
|
| 1064 |
+
<details><summary>full_en</summary>
|
| 1065 |
+
|
| 1066 |
+
#### full_en
|
| 1067 |
+
|
| 1068 |
+
* Dataset: full_en
|
| 1069 |
+
* Size: 28,880 training samples
|
| 1070 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1071 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1072 |
+
| | anchor | positive |
|
| 1073 |
+
|:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1074 |
+
| type | string | string |
|
| 1075 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
|
| 1076 |
+
* Samples:
|
| 1077 |
+
| anchor | positive |
|
| 1078 |
+
|:-----------------------------------------|:-----------------------------------------|
|
| 1079 |
+
| <code>air commodore</code> | <code>flight lieutenant</code> |
|
| 1080 |
+
| <code>command and control officer</code> | <code>flight officer</code> |
|
| 1081 |
+
| <code>air commodore</code> | <code>command and control officer</code> |
|
| 1082 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1083 |
+
```json
|
| 1084 |
+
{'guide': SentenceTransformer(
|
| 1085 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1086 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1087 |
+
(2): Normalize()
|
| 1088 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1089 |
+
```
|
| 1090 |
+
</details>
|
| 1091 |
+
<details><summary>full_de</summary>
|
| 1092 |
+
|
| 1093 |
+
#### full_de
|
| 1094 |
+
|
| 1095 |
+
* Dataset: full_de
|
| 1096 |
+
* Size: 23,023 training samples
|
| 1097 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1098 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1099 |
+
| | anchor | positive |
|
| 1100 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1101 |
+
| type | string | string |
|
| 1102 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
|
| 1103 |
+
* Samples:
|
| 1104 |
+
| anchor | positive |
|
| 1105 |
+
|:----------------------------------|:-----------------------------------------------------|
|
| 1106 |
+
| <code>Staffelkommandantin</code> | <code>Kommodore</code> |
|
| 1107 |
+
| <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
|
| 1108 |
+
| <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
|
| 1109 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1110 |
+
```json
|
| 1111 |
+
{'guide': SentenceTransformer(
|
| 1112 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1113 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1114 |
+
(2): Normalize()
|
| 1115 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1116 |
+
```
|
| 1117 |
+
</details>
|
| 1118 |
+
<details><summary>full_es</summary>
|
| 1119 |
+
|
| 1120 |
+
#### full_es
|
| 1121 |
+
|
| 1122 |
+
* Dataset: full_es
|
| 1123 |
+
* Size: 20,724 training samples
|
| 1124 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1125 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1126 |
+
| | anchor | positive |
|
| 1127 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1128 |
+
| type | string | string |
|
| 1129 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
|
| 1130 |
+
* Samples:
|
| 1131 |
+
| anchor | positive |
|
| 1132 |
+
|:------------------------------------|:-------------------------------------------|
|
| 1133 |
+
| <code>jefe de escuadrón</code> | <code>instructor</code> |
|
| 1134 |
+
| <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
|
| 1135 |
+
| <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
|
| 1136 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1137 |
+
```json
|
| 1138 |
+
{'guide': SentenceTransformer(
|
| 1139 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1140 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1141 |
+
(2): Normalize()
|
| 1142 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1143 |
+
```
|
| 1144 |
+
</details>
|
| 1145 |
+
<details><summary>full_zh</summary>
|
| 1146 |
+
|
| 1147 |
+
#### full_zh
|
| 1148 |
+
|
| 1149 |
+
* Dataset: full_zh
|
| 1150 |
+
* Size: 30,401 training samples
|
| 1151 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1152 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1153 |
+
| | anchor | positive |
|
| 1154 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 1155 |
+
| type | string | string |
|
| 1156 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
|
| 1157 |
+
* Samples:
|
| 1158 |
+
| anchor | positive |
|
| 1159 |
+
|:------------------|:---------------------|
|
| 1160 |
+
| <code>技术总监</code> | <code>技术和运营总监</code> |
|
| 1161 |
+
| <code>技术总监</code> | <code>技术主管</code> |
|
| 1162 |
+
| <code>技术总监</code> | <code>技术艺术总监</code> |
|
| 1163 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1164 |
+
```json
|
| 1165 |
+
{'guide': SentenceTransformer(
|
| 1166 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1167 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1168 |
+
(2): Normalize()
|
| 1169 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1170 |
+
```
|
| 1171 |
+
</details>
|
| 1172 |
+
<details><summary>mix</summary>
|
| 1173 |
+
|
| 1174 |
+
#### mix
|
| 1175 |
+
|
| 1176 |
+
* Dataset: mix
|
| 1177 |
+
* Size: 21,760 training samples
|
| 1178 |
+
* Columns: <code>anchor</code> and <code>positive</code>
|
| 1179 |
+
* Approximate statistics based on the first 1000 samples:
|
| 1180 |
+
| | anchor | positive |
|
| 1181 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 1182 |
+
| type | string | string |
|
| 1183 |
+
| details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
|
| 1184 |
+
* Samples:
|
| 1185 |
+
| anchor | positive |
|
| 1186 |
+
|:------------------------------------------|:----------------------------------------------------------------|
|
| 1187 |
+
| <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
|
| 1188 |
+
| <code>head of technical</code> | <code>directora técnica</code> |
|
| 1189 |
+
| <code>head of technical department</code> | <code>技术艺术总监</code> |
|
| 1190 |
+
* Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
|
| 1191 |
+
```json
|
| 1192 |
+
{'guide': SentenceTransformer(
|
| 1193 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 1194 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 1195 |
+
(2): Normalize()
|
| 1196 |
+
), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
|
| 1197 |
+
```
|
| 1198 |
+
</details>
|
| 1199 |
+
|
| 1200 |
+
### Training Hyperparameters
|
| 1201 |
+
#### Non-Default Hyperparameters
|
| 1202 |
+
|
| 1203 |
+
- `eval_strategy`: steps
|
| 1204 |
+
- `per_device_train_batch_size`: 128
|
| 1205 |
+
- `per_device_eval_batch_size`: 128
|
| 1206 |
+
- `gradient_accumulation_steps`: 2
|
| 1207 |
+
- `num_train_epochs`: 5
|
| 1208 |
+
- `warmup_ratio`: 0.05
|
| 1209 |
+
- `log_on_each_node`: False
|
| 1210 |
+
- `fp16`: True
|
| 1211 |
+
- `dataloader_num_workers`: 4
|
| 1212 |
+
- `ddp_find_unused_parameters`: True
|
| 1213 |
+
- `batch_sampler`: no_duplicates
|
| 1214 |
+
|
| 1215 |
+
#### All Hyperparameters
|
| 1216 |
+
<details><summary>Click to expand</summary>
|
| 1217 |
+
|
| 1218 |
+
- `overwrite_output_dir`: False
|
| 1219 |
+
- `do_predict`: False
|
| 1220 |
+
- `eval_strategy`: steps
|
| 1221 |
+
- `prediction_loss_only`: True
|
| 1222 |
+
- `per_device_train_batch_size`: 128
|
| 1223 |
+
- `per_device_eval_batch_size`: 128
|
| 1224 |
+
- `per_gpu_train_batch_size`: None
|
| 1225 |
+
- `per_gpu_eval_batch_size`: None
|
| 1226 |
+
- `gradient_accumulation_steps`: 2
|
| 1227 |
+
- `eval_accumulation_steps`: None
|
| 1228 |
+
- `torch_empty_cache_steps`: None
|
| 1229 |
+
- `learning_rate`: 5e-05
|
| 1230 |
+
- `weight_decay`: 0.0
|
| 1231 |
+
- `adam_beta1`: 0.9
|
| 1232 |
+
- `adam_beta2`: 0.999
|
| 1233 |
+
- `adam_epsilon`: 1e-08
|
| 1234 |
+
- `max_grad_norm`: 1.0
|
| 1235 |
+
- `num_train_epochs`: 5
|
| 1236 |
+
- `max_steps`: -1
|
| 1237 |
+
- `lr_scheduler_type`: linear
|
| 1238 |
+
- `lr_scheduler_kwargs`: {}
|
| 1239 |
+
- `warmup_ratio`: 0.05
|
| 1240 |
+
- `warmup_steps`: 0
|
| 1241 |
+
- `log_level`: passive
|
| 1242 |
+
- `log_level_replica`: warning
|
| 1243 |
+
- `log_on_each_node`: False
|
| 1244 |
+
- `logging_nan_inf_filter`: True
|
| 1245 |
+
- `save_safetensors`: True
|
| 1246 |
+
- `save_on_each_node`: False
|
| 1247 |
+
- `save_only_model`: False
|
| 1248 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 1249 |
+
- `no_cuda`: False
|
| 1250 |
+
- `use_cpu`: False
|
| 1251 |
+
- `use_mps_device`: False
|
| 1252 |
+
- `seed`: 42
|
| 1253 |
+
- `data_seed`: None
|
| 1254 |
+
- `jit_mode_eval`: False
|
| 1255 |
+
- `use_ipex`: False
|
| 1256 |
+
- `bf16`: False
|
| 1257 |
+
- `fp16`: True
|
| 1258 |
+
- `fp16_opt_level`: O1
|
| 1259 |
+
- `half_precision_backend`: auto
|
| 1260 |
+
- `bf16_full_eval`: False
|
| 1261 |
+
- `fp16_full_eval`: False
|
| 1262 |
+
- `tf32`: None
|
| 1263 |
+
- `local_rank`: 0
|
| 1264 |
+
- `ddp_backend`: None
|
| 1265 |
+
- `tpu_num_cores`: None
|
| 1266 |
+
- `tpu_metrics_debug`: False
|
| 1267 |
+
- `debug`: []
|
| 1268 |
+
- `dataloader_drop_last`: True
|
| 1269 |
+
- `dataloader_num_workers`: 4
|
| 1270 |
+
- `dataloader_prefetch_factor`: None
|
| 1271 |
+
- `past_index`: -1
|
| 1272 |
+
- `disable_tqdm`: False
|
| 1273 |
+
- `remove_unused_columns`: True
|
| 1274 |
+
- `label_names`: None
|
| 1275 |
+
- `load_best_model_at_end`: False
|
| 1276 |
+
- `ignore_data_skip`: False
|
| 1277 |
+
- `fsdp`: []
|
| 1278 |
+
- `fsdp_min_num_params`: 0
|
| 1279 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 1280 |
+
- `tp_size`: 0
|
| 1281 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 1282 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 1283 |
+
- `deepspeed`: None
|
| 1284 |
+
- `label_smoothing_factor`: 0.0
|
| 1285 |
+
- `optim`: adamw_torch
|
| 1286 |
+
- `optim_args`: None
|
| 1287 |
+
- `adafactor`: False
|
| 1288 |
+
- `group_by_length`: False
|
| 1289 |
+
- `length_column_name`: length
|
| 1290 |
+
- `ddp_find_unused_parameters`: True
|
| 1291 |
+
- `ddp_bucket_cap_mb`: None
|
| 1292 |
+
- `ddp_broadcast_buffers`: False
|
| 1293 |
+
- `dataloader_pin_memory`: True
|
| 1294 |
+
- `dataloader_persistent_workers`: False
|
| 1295 |
+
- `skip_memory_metrics`: True
|
| 1296 |
+
- `use_legacy_prediction_loop`: False
|
| 1297 |
+
- `push_to_hub`: False
|
| 1298 |
+
- `resume_from_checkpoint`: None
|
| 1299 |
+
- `hub_model_id`: None
|
| 1300 |
+
- `hub_strategy`: every_save
|
| 1301 |
+
- `hub_private_repo`: None
|
| 1302 |
+
- `hub_always_push`: False
|
| 1303 |
+
- `gradient_checkpointing`: False
|
| 1304 |
+
- `gradient_checkpointing_kwargs`: None
|
| 1305 |
+
- `include_inputs_for_metrics`: False
|
| 1306 |
+
- `include_for_metrics`: []
|
| 1307 |
+
- `eval_do_concat_batches`: True
|
| 1308 |
+
- `fp16_backend`: auto
|
| 1309 |
+
- `push_to_hub_model_id`: None
|
| 1310 |
+
- `push_to_hub_organization`: None
|
| 1311 |
+
- `mp_parameters`:
|
| 1312 |
+
- `auto_find_batch_size`: False
|
| 1313 |
+
- `full_determinism`: False
|
| 1314 |
+
- `torchdynamo`: None
|
| 1315 |
+
- `ray_scope`: last
|
| 1316 |
+
- `ddp_timeout`: 1800
|
| 1317 |
+
- `torch_compile`: False
|
| 1318 |
+
- `torch_compile_backend`: None
|
| 1319 |
+
- `torch_compile_mode`: None
|
| 1320 |
+
- `include_tokens_per_second`: False
|
| 1321 |
+
- `include_num_input_tokens_seen`: False
|
| 1322 |
+
- `neftune_noise_alpha`: None
|
| 1323 |
+
- `optim_target_modules`: None
|
| 1324 |
+
- `batch_eval_metrics`: False
|
| 1325 |
+
- `eval_on_start`: False
|
| 1326 |
+
- `use_liger_kernel`: False
|
| 1327 |
+
- `eval_use_gather_object`: False
|
| 1328 |
+
- `average_tokens_across_devices`: False
|
| 1329 |
+
- `prompts`: None
|
| 1330 |
+
- `batch_sampler`: no_duplicates
|
| 1331 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 1332 |
+
|
| 1333 |
+
</details>
|
| 1334 |
+
|
| 1335 |
+
### Training Logs
|
| 1336 |
+
| Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
|
| 1337 |
+
|:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
|
| 1338 |
+
| -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
|
| 1339 |
+
| 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
|
| 1340 |
+
| 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
|
| 1341 |
+
| 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
|
| 1342 |
+
| 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
|
| 1343 |
+
| 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
|
| 1344 |
+
| 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
|
| 1345 |
+
| 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
|
| 1346 |
+
| 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
|
| 1347 |
+
| 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
|
| 1348 |
+
| 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
|
| 1349 |
+
| 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
|
| 1350 |
+
| 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
|
| 1351 |
+
| 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
|
| 1352 |
+
| 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
|
| 1353 |
+
| 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
|
| 1354 |
+
| 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
|
| 1355 |
+
| 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
|
| 1356 |
+
| 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
|
| 1357 |
+
| 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
|
| 1358 |
+
| 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
|
| 1359 |
+
| 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
|
| 1360 |
+
| 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
|
| 1361 |
+
| 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
|
| 1362 |
+
|
| 1363 |
+
|
| 1364 |
+
### Framework Versions
|
| 1365 |
+
- Python: 3.11.11
|
| 1366 |
+
- Sentence Transformers: 4.1.0
|
| 1367 |
+
- Transformers: 4.51.3
|
| 1368 |
+
- PyTorch: 2.6.0+cu124
|
| 1369 |
+
- Accelerate: 1.6.0
|
| 1370 |
+
- Datasets: 3.5.0
|
| 1371 |
+
- Tokenizers: 0.21.1
|
| 1372 |
+
|
| 1373 |
+
## Citation
|
| 1374 |
+
|
| 1375 |
+
### BibTeX
|
| 1376 |
+
|
| 1377 |
+
#### Sentence Transformers
|
| 1378 |
+
```bibtex
|
| 1379 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 1380 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 1381 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 1382 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 1383 |
+
month = "11",
|
| 1384 |
+
year = "2019",
|
| 1385 |
+
publisher = "Association for Computational Linguistics",
|
| 1386 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 1387 |
+
}
|
| 1388 |
+
```
|
| 1389 |
+
|
| 1390 |
+
#### GISTEmbedLoss
|
| 1391 |
+
```bibtex
|
| 1392 |
+
@misc{solatorio2024gistembed,
|
| 1393 |
+
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
|
| 1394 |
+
author={Aivin V. Solatorio},
|
| 1395 |
+
year={2024},
|
| 1396 |
+
eprint={2402.16829},
|
| 1397 |
+
archivePrefix={arXiv},
|
| 1398 |
+
primaryClass={cs.LG}
|
| 1399 |
+
}
|
| 1400 |
+
```
|
| 1401 |
+
|
| 1402 |
+
<!--
|
| 1403 |
+
## Glossary
|
| 1404 |
+
|
| 1405 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 1406 |
+
-->
|
| 1407 |
+
|
| 1408 |
+
<!--
|
| 1409 |
+
## Model Card Authors
|
| 1410 |
+
|
| 1411 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 1412 |
+
-->
|
| 1413 |
+
|
| 1414 |
+
<!--
|
| 1415 |
+
## Model Card Contact
|
| 1416 |
+
|
| 1417 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 1418 |
+
-->
|
checkpoint-2200/config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"BertModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"classifier_dropout": null,
|
| 7 |
+
"hidden_act": "gelu",
|
| 8 |
+
"hidden_dropout_prob": 0.1,
|
| 9 |
+
"hidden_size": 384,
|
| 10 |
+
"id2label": {
|
| 11 |
+
"0": "LABEL_0"
|
| 12 |
+
},
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 1536,
|
| 15 |
+
"label2id": {
|
| 16 |
+
"LABEL_0": 0
|
| 17 |
+
},
|
| 18 |
+
"layer_norm_eps": 1e-12,
|
| 19 |
+
"max_position_embeddings": 512,
|
| 20 |
+
"model_type": "bert",
|
| 21 |
+
"num_attention_heads": 12,
|
| 22 |
+
"num_hidden_layers": 12,
|
| 23 |
+
"pad_token_id": 0,
|
| 24 |
+
"position_embedding_type": "absolute",
|
| 25 |
+
"torch_dtype": "float32",
|
| 26 |
+
"transformers_version": "4.51.3",
|
| 27 |
+
"type_vocab_size": 2,
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 30522
|
| 30 |
+
}
|
checkpoint-2200/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "4.1.0",
|
| 4 |
+
"transformers": "4.51.3",
|
| 5 |
+
"pytorch": "2.6.0+cu124"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-2200/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b846c258910a2cf11166c8db85b17b94fdfe283cbbb91895aceb69607ad895be
|
| 3 |
+
size 133462128
|
checkpoint-2200/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-2200/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3accc1a56cb916b8adda1d5ac903ab0bfea3416220a036491f94bcef8a40f5f0
|
| 3 |
+
size 265862650
|
checkpoint-2200/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:755493f55804a61b93104e3cd28e7aaa8558d92d8c5c001c3b7a44dd7f4a240f
|
| 3 |
+
size 14244
|
checkpoint-2200/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d823e237265f597b2d3b86427928c40d0d237ef3d51af851d938b60a8f6dcb54
|
| 3 |
+
size 988
|
checkpoint-2200/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b461a7b7dc0ad8c1bce2bb308dc9304dbb10e88ee1dc77d55274e2110f8334fe
|
| 3 |
+
size 1064
|
checkpoint-2200/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": true
|
| 4 |
+
}
|
checkpoint-2200/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
checkpoint-2200/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2200/trainer_state.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
checkpoint-2200/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
|
| 3 |
+
size 5624
|
checkpoint-2400/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:001894d4d49fcb67b19eb00748a8ffecef7bfa77ab10552ce23e2fd14bd9a957
|
| 3 |
+
size 133462128
|
checkpoint-2400/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9705e03203928295b6cfa72e543444d1c75d311c1bc78f3243811906f3991c7
|
| 3 |
+
size 265862650
|
checkpoint-2400/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:604cb380a32fa0ca281efbdc1077a2abd4b522fd943f7286da4dbca5eb604b30
|
| 3 |
+
size 14244
|
checkpoint-2400/scaler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88f3c5f8aa86b9ec8524f704b11149ad92b5fdad2a9b43ef033e50c0b8846dc4
|
| 3 |
+
size 988
|
checkpoint-2400/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed97fe2699cb0f23526c4e1e89625695a5db09a6706d145dd43161f69dffc22d
|
| 3 |
+
size 1064
|
checkpoint-2400/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
|
| 3 |
+
size 5624
|
checkpoint-2400/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|