pj-mathematician commited on
Commit
70af7bb
·
verified ·
1 Parent(s): 442d38f

Add files using upload-large-folder tool

Browse files
Files changed (43) hide show
  1. checkpoint-1600/1_Pooling/config.json +10 -0
  2. checkpoint-1600/config_sentence_transformers.json +10 -0
  3. checkpoint-1600/model.safetensors +3 -0
  4. checkpoint-1600/optimizer.pt +3 -0
  5. checkpoint-1600/rng_state.pth +3 -0
  6. checkpoint-1600/scaler.pt +3 -0
  7. checkpoint-1600/scheduler.pt +3 -0
  8. checkpoint-1600/sentence_bert_config.json +4 -0
  9. checkpoint-1600/special_tokens_map.json +37 -0
  10. checkpoint-1600/tokenizer.json +0 -0
  11. checkpoint-1600/trainer_state.json +0 -0
  12. checkpoint-1600/training_args.bin +3 -0
  13. checkpoint-1800/README.md +1414 -0
  14. checkpoint-1800/config_sentence_transformers.json +10 -0
  15. checkpoint-1800/model.safetensors +3 -0
  16. checkpoint-1800/optimizer.pt +3 -0
  17. checkpoint-1800/scaler.pt +3 -0
  18. checkpoint-1800/sentence_bert_config.json +4 -0
  19. checkpoint-1800/special_tokens_map.json +37 -0
  20. checkpoint-2000/model.safetensors +3 -0
  21. checkpoint-2000/optimizer.pt +3 -0
  22. checkpoint-2200/1_Pooling/config.json +10 -0
  23. checkpoint-2200/README.md +1418 -0
  24. checkpoint-2200/config.json +30 -0
  25. checkpoint-2200/config_sentence_transformers.json +10 -0
  26. checkpoint-2200/model.safetensors +3 -0
  27. checkpoint-2200/modules.json +20 -0
  28. checkpoint-2200/optimizer.pt +3 -0
  29. checkpoint-2200/rng_state.pth +3 -0
  30. checkpoint-2200/scaler.pt +3 -0
  31. checkpoint-2200/scheduler.pt +3 -0
  32. checkpoint-2200/sentence_bert_config.json +4 -0
  33. checkpoint-2200/special_tokens_map.json +37 -0
  34. checkpoint-2200/tokenizer.json +0 -0
  35. checkpoint-2200/trainer_state.json +0 -0
  36. checkpoint-2200/training_args.bin +3 -0
  37. checkpoint-2400/model.safetensors +3 -0
  38. checkpoint-2400/optimizer.pt +3 -0
  39. checkpoint-2400/rng_state.pth +3 -0
  40. checkpoint-2400/scaler.pt +3 -0
  41. checkpoint-2400/scheduler.pt +3 -0
  42. checkpoint-2400/training_args.bin +3 -0
  43. checkpoint-2400/vocab.txt +0 -0
checkpoint-1600/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-1600/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-1600/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45c69f68877b431b9a115a39027c88fb84f679ca8263c3fbc968a7a8f16de1af
3
+ size 133462128
checkpoint-1600/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e723eed048f14fc1c2189dd04ac0b17e0f071d669b1b95e63a2b6fe5c370f65d
3
+ size 265862650
checkpoint-1600/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ddc729a9da73d36c0d81ea219e00e7955f89e34cd7073a446aa0febdc49e8a2
3
+ size 14244
checkpoint-1600/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efba28face24ba5fa39906642e9e067e20230532c3646da6da07fa553b487348
3
+ size 988
checkpoint-1600/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5581e9cc5d6a4d33cd097e1234d56b76e140fff76fb2a5ac8b364ec78c9e26b
3
+ size 1064
checkpoint-1600/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
checkpoint-1600/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-1600/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1600/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1600/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
3
+ size 5624
checkpoint-1800/README.md ADDED
@@ -0,0 +1,1414 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5076190476190475
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.3089523809523809
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.1872380952380952
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.1321904761904762
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.1027142857142857
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0680237860830842
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.5459242543214992
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.728483344815942
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8382149119179341
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.8762032488748317
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9059964336434017
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.6895375515490911
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7060633068166344
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7619501692018719
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.778798440383198
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7899830993214225
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8098412698412698
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8098412698412698
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8098412698412698
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8098412698412698
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8098412698412698
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5464916843297755
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5351890636433139
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.5685440196941911
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5756567539581475
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5791635361565666
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5835322146366259
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.12432432432432433
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.12432432432432433
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.4924324324324324
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.31686486486486487
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.19843243243243244
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.14702702702702705
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.11762162162162161
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.003111544931768446
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.3235933309332048
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.4622883553307717
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.5424114301447981
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.5822792579944903
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.612586126212026
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.12432432432432433
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.5406828319866788
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.500776817925352
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.5143442473922782
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.5349751306205418
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.5498255219419508
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.12432432432432433
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5516816816816817
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5516816816816817
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5516816816816817
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5516816816816817
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5516816816816817
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.12432432432432433
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.4061591888137979
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.3426196432849601
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.3398108870028267
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.3482007813358776
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.3534583367060008
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.36353547903357536
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9211822660098522
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9605911330049262
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9753694581280788
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9852216748768473
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9852216748768473
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.4226600985221674
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.2775369458128079
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.1787192118226601
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.1349753694581281
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.10960591133004927
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.25787568646307335
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.378544115518205
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.4646991741198787
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.514077820298434
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.5479242719935129
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.4571806408684656
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.4186161244795668
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.43413691996468995
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.45936827865079527
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.4762742892652946
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.488501497777794
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.48978270334574775
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.4900376562912742
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.4901135143922775
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.4901135143922775
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.3211048669539684
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.261888445835493
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.2558901722323677
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.2649913870834412
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.27010541031599244
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.28106938786931224
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.30097087378640774
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.7087378640776699
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.8252427184466019
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.8543689320388349
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.912621359223301
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.941747572815534
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.30097087378640774
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.16844660194174763
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.09436893203883494
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.05844660194174757
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.04601941747572815
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.038203883495145634
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.024446152054452382
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.17513112391433697
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.23948897590045773
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.2859906000645493
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.32910264724851107
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.36304017348331746
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.30097087378640774
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.23848199480652515
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.23417872356945213
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.2558557487315817
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.27344459654855646
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.28574499658549296
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.30097087378640774
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.4211010881954553
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.4249525777196882
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.42539460155740233
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.42587488715939736
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.4260266850474542
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.30097087378640774
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.14164601531439067
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.12333195286802508
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.12884550949445583
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.13149151347084506
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.1329204280861929
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.13684460640814028
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.40717628705148207
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.7581903276131046
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.8455538221528861
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9048361934477379
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9370774830993239
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9547581903276131
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.40717628705148207
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.08819552782111284
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.04139365574622985
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.022704108164326574
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.015822499566649332
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.012189287571502862
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.1547198078399326
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.652070178045217
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.7639576059232845
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.8390052744966942
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.877764158185375
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9016677809969541
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.40717628705148207
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.5052212563002627
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.5356805472279078
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.5521009256440798
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.5595924746165437
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.5639157869620031
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.40717628705148207
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.49319826751048873
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.49612329710657893
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.4969826860284758
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.49724671253026886
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.49734552981578295
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.40717628705148207
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.419614969499609
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.427088485280225
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.4292014145714
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.4298202694277485
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.4300980044671579
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.43055010151569684
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.29017160686427457
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.6484659386375455
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.7540301612064483
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.8419136765470618
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.8788351534061363
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9089963598543942
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.29017160686427457
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.07251690067602704
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.0355486219448778
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.02041601664066563
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.014505113537874847
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.01137545501820073
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.10890968972092217
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.5299011960478419
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.647191887675507
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.7442624371641533
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.7928583810019068
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.8289478245796498
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.29017160686427457
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.38598145754556046
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.41773491829410075
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.43906545567486005
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.4485955578737219
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.45520732213321263
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.29017160686427457
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.37232551415227233
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.375685507642469
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.3769348294784883
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.377239930826995
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.3774183771765249
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.29017160686427457
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.30311022602590254
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.31036427264538485
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.31304585670015317
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.3138396622777036
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.31426372512191
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.3150399864057635
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.09394572025052192
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 0.35281837160751567
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 0.48329853862212946
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 0.5918580375782881
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 0.6649269311064718
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 0.7004175365344467
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.09394572025052192
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.030897703549060546
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.018204592901878917
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.011362212943632568
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.008639526791927627
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.007019832985386221
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.03185455810716771
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 0.20592877025549258
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 0.30069837956059253
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 0.3754792557245584
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 0.4282591046160983
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 0.46372361401067036
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.09394572025052192
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.13433471892252347
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.16091824243484512
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.1780017996510726
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.1886875211403746
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.19541417908856412
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.09394572025052192
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.14710513443845905
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.15122849766144658
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.15275090014884107
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.1533445728241347
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.1535456563541225
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.09394572025052192
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.083759101073897
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.08908800548950695
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.09092612397080438
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.09168814149038751
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.09208168156532727
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.09301554391402207
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
908
+
909
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 384 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
939
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 384]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:---------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7087 | 0.7582 | 0.6485 | 0.3528 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9606 | 0.8252 | 0.8456 | 0.754 | 0.4833 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8544 | 0.9048 | 0.8419 | 0.5919 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9126 | 0.9371 | 0.8788 | 0.6649 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.9417 | 0.9548 | 0.909 | 0.7004 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
1018
+ | cosine_precision@20 | 0.5076 | 0.4924 | 0.4227 | 0.1684 | 0.0882 | 0.0725 | 0.0309 |
1019
+ | cosine_precision@50 | 0.309 | 0.3169 | 0.2775 | 0.0944 | 0.0414 | 0.0355 | 0.0182 |
1020
+ | cosine_precision@100 | 0.1872 | 0.1984 | 0.1787 | 0.0584 | 0.0227 | 0.0204 | 0.0114 |
1021
+ | cosine_precision@150 | 0.1322 | 0.147 | 0.135 | 0.046 | 0.0158 | 0.0145 | 0.0086 |
1022
+ | cosine_precision@200 | 0.1027 | 0.1176 | 0.1096 | 0.0382 | 0.0122 | 0.0114 | 0.007 |
1023
+ | cosine_recall@1 | 0.068 | 0.0031 | 0.0111 | 0.0244 | 0.1547 | 0.1089 | 0.0319 |
1024
+ | cosine_recall@20 | 0.5459 | 0.3236 | 0.2579 | 0.1751 | 0.6521 | 0.5299 | 0.2059 |
1025
+ | cosine_recall@50 | 0.7285 | 0.4623 | 0.3785 | 0.2395 | 0.764 | 0.6472 | 0.3007 |
1026
+ | cosine_recall@100 | 0.8382 | 0.5424 | 0.4647 | 0.286 | 0.839 | 0.7443 | 0.3755 |
1027
+ | cosine_recall@150 | 0.8762 | 0.5823 | 0.5141 | 0.3291 | 0.8778 | 0.7929 | 0.4283 |
1028
+ | cosine_recall@200 | 0.906 | 0.6126 | 0.5479 | 0.363 | 0.9017 | 0.8289 | 0.4637 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
1030
+ | cosine_ndcg@20 | 0.6895 | 0.5407 | 0.4572 | 0.2385 | 0.5052 | 0.386 | 0.1343 |
1031
+ | cosine_ndcg@50 | 0.7061 | 0.5008 | 0.4186 | 0.2342 | 0.5357 | 0.4177 | 0.1609 |
1032
+ | cosine_ndcg@100 | 0.762 | 0.5143 | 0.4341 | 0.2559 | 0.5521 | 0.4391 | 0.178 |
1033
+ | cosine_ndcg@150 | 0.7788 | 0.535 | 0.4594 | 0.2734 | 0.5596 | 0.4486 | 0.1887 |
1034
+ | **cosine_ndcg@200** | **0.79** | **0.5498** | **0.4763** | **0.2857** | **0.5639** | **0.4552** | **0.1954** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
1036
+ | cosine_mrr@20 | 0.8098 | 0.5517 | 0.4885 | 0.4211 | 0.4932 | 0.3723 | 0.1471 |
1037
+ | cosine_mrr@50 | 0.8098 | 0.5517 | 0.4898 | 0.425 | 0.4961 | 0.3757 | 0.1512 |
1038
+ | cosine_mrr@100 | 0.8098 | 0.5517 | 0.49 | 0.4254 | 0.497 | 0.3769 | 0.1528 |
1039
+ | cosine_mrr@150 | 0.8098 | 0.5517 | 0.4901 | 0.4259 | 0.4972 | 0.3772 | 0.1533 |
1040
+ | cosine_mrr@200 | 0.8098 | 0.5517 | 0.4901 | 0.426 | 0.4973 | 0.3774 | 0.1535 |
1041
+ | cosine_map@1 | 0.6571 | 0.1243 | 0.2956 | 0.301 | 0.4072 | 0.2902 | 0.0939 |
1042
+ | cosine_map@20 | 0.5465 | 0.4062 | 0.3211 | 0.1416 | 0.4196 | 0.3031 | 0.0838 |
1043
+ | cosine_map@50 | 0.5352 | 0.3426 | 0.2619 | 0.1233 | 0.4271 | 0.3104 | 0.0891 |
1044
+ | cosine_map@100 | 0.5685 | 0.3398 | 0.2559 | 0.1288 | 0.4292 | 0.313 | 0.0909 |
1045
+ | cosine_map@150 | 0.5757 | 0.3482 | 0.265 | 0.1315 | 0.4298 | 0.3138 | 0.0917 |
1046
+ | cosine_map@200 | 0.5792 | 0.3535 | 0.2701 | 0.1329 | 0.4301 | 0.3143 | 0.0921 |
1047
+ | cosine_map@500 | 0.5835 | 0.3635 | 0.2811 | 0.1368 | 0.4306 | 0.315 | 0.093 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 128
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 128
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
1339
+ | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
1340
+ | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
1341
+ | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
1342
+ | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
1343
+ | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1344
+ | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1345
+ | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1346
+ | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1347
+ | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1348
+ | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
1349
+ | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
1350
+ | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
1351
+ | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
1352
+ | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
1353
+ | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
1354
+ | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
1355
+ | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
1356
+ | 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
1357
+ | 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
1358
+
1359
+
1360
+ ### Framework Versions
1361
+ - Python: 3.11.11
1362
+ - Sentence Transformers: 4.1.0
1363
+ - Transformers: 4.51.3
1364
+ - PyTorch: 2.6.0+cu124
1365
+ - Accelerate: 1.6.0
1366
+ - Datasets: 3.5.0
1367
+ - Tokenizers: 0.21.1
1368
+
1369
+ ## Citation
1370
+
1371
+ ### BibTeX
1372
+
1373
+ #### Sentence Transformers
1374
+ ```bibtex
1375
+ @inproceedings{reimers-2019-sentence-bert,
1376
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1377
+ author = "Reimers, Nils and Gurevych, Iryna",
1378
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1379
+ month = "11",
1380
+ year = "2019",
1381
+ publisher = "Association for Computational Linguistics",
1382
+ url = "https://arxiv.org/abs/1908.10084",
1383
+ }
1384
+ ```
1385
+
1386
+ #### GISTEmbedLoss
1387
+ ```bibtex
1388
+ @misc{solatorio2024gistembed,
1389
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1390
+ author={Aivin V. Solatorio},
1391
+ year={2024},
1392
+ eprint={2402.16829},
1393
+ archivePrefix={arXiv},
1394
+ primaryClass={cs.LG}
1395
+ }
1396
+ ```
1397
+
1398
+ <!--
1399
+ ## Glossary
1400
+
1401
+ *Clearly define terms in order to be accessible across audiences.*
1402
+ -->
1403
+
1404
+ <!--
1405
+ ## Model Card Authors
1406
+
1407
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1408
+ -->
1409
+
1410
+ <!--
1411
+ ## Model Card Contact
1412
+
1413
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1414
+ -->
checkpoint-1800/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-1800/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edcda01bd016b952bc7b4f8d07baa636e2f6ba4b2408e93e104a4bf88ef6ada6
3
+ size 133462128
checkpoint-1800/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddd18e798d2a20004da555549c4737435609b9c67138ca0754f28b58623b15db
3
+ size 265862650
checkpoint-1800/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:badc2e3c770d79fd1df9a8fff5c7d44e78de48b6db72ebc51217d8a8c393d41e
3
+ size 988
checkpoint-1800/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
checkpoint-1800/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-2000/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adc4fec074c2dd44c27a7f08d7ea05a3c99717a4b9ec58fb0b43ad1d9d10f358
3
+ size 133462128
checkpoint-2000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa92f8ec87512a7d57aa6679342256bbcc11a6cb4bdf66754b445bb7b52373ce
3
+ size 265862650
checkpoint-2200/1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
checkpoint-2200/README.md ADDED
@@ -0,0 +1,1418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:124788
8
+ - loss:GISTEmbedLoss
9
+ base_model: BAAI/bge-small-en-v1.5
10
+ widget:
11
+ - source_sentence: 其他机械、设备和有形货物租赁服务代表
12
+ sentences:
13
+ - 其他机械和设备租赁服务工作人员
14
+ - 电子和电信设备及零部件物流经理
15
+ - 工业主厨
16
+ - source_sentence: 公交车司机
17
+ sentences:
18
+ - 表演灯光设计师
19
+ - 乙烯基地板安装工
20
+ - 国际巴士司机
21
+ - source_sentence: online communication manager
22
+ sentences:
23
+ - trades union official
24
+ - social media manager
25
+ - budget manager
26
+ - source_sentence: Projektmanagerin
27
+ sentences:
28
+ - Projektmanager/Projektmanagerin
29
+ - Category-Manager
30
+ - Infanterist
31
+ - source_sentence: Volksvertreter
32
+ sentences:
33
+ - Parlamentarier
34
+ - Oberbürgermeister
35
+ - Konsul
36
+ pipeline_tag: sentence-similarity
37
+ library_name: sentence-transformers
38
+ metrics:
39
+ - cosine_accuracy@1
40
+ - cosine_accuracy@20
41
+ - cosine_accuracy@50
42
+ - cosine_accuracy@100
43
+ - cosine_accuracy@150
44
+ - cosine_accuracy@200
45
+ - cosine_precision@1
46
+ - cosine_precision@20
47
+ - cosine_precision@50
48
+ - cosine_precision@100
49
+ - cosine_precision@150
50
+ - cosine_precision@200
51
+ - cosine_recall@1
52
+ - cosine_recall@20
53
+ - cosine_recall@50
54
+ - cosine_recall@100
55
+ - cosine_recall@150
56
+ - cosine_recall@200
57
+ - cosine_ndcg@1
58
+ - cosine_ndcg@20
59
+ - cosine_ndcg@50
60
+ - cosine_ndcg@100
61
+ - cosine_ndcg@150
62
+ - cosine_ndcg@200
63
+ - cosine_mrr@1
64
+ - cosine_mrr@20
65
+ - cosine_mrr@50
66
+ - cosine_mrr@100
67
+ - cosine_mrr@150
68
+ - cosine_mrr@200
69
+ - cosine_map@1
70
+ - cosine_map@20
71
+ - cosine_map@50
72
+ - cosine_map@100
73
+ - cosine_map@150
74
+ - cosine_map@200
75
+ - cosine_map@500
76
+ model-index:
77
+ - name: SentenceTransformer based on BAAI/bge-small-en-v1.5
78
+ results:
79
+ - task:
80
+ type: information-retrieval
81
+ name: Information Retrieval
82
+ dataset:
83
+ name: full en
84
+ type: full_en
85
+ metrics:
86
+ - type: cosine_accuracy@1
87
+ value: 0.6571428571428571
88
+ name: Cosine Accuracy@1
89
+ - type: cosine_accuracy@20
90
+ value: 0.9904761904761905
91
+ name: Cosine Accuracy@20
92
+ - type: cosine_accuracy@50
93
+ value: 0.9904761904761905
94
+ name: Cosine Accuracy@50
95
+ - type: cosine_accuracy@100
96
+ value: 0.9904761904761905
97
+ name: Cosine Accuracy@100
98
+ - type: cosine_accuracy@150
99
+ value: 0.9904761904761905
100
+ name: Cosine Accuracy@150
101
+ - type: cosine_accuracy@200
102
+ value: 0.9904761904761905
103
+ name: Cosine Accuracy@200
104
+ - type: cosine_precision@1
105
+ value: 0.6571428571428571
106
+ name: Cosine Precision@1
107
+ - type: cosine_precision@20
108
+ value: 0.5047619047619047
109
+ name: Cosine Precision@20
110
+ - type: cosine_precision@50
111
+ value: 0.30857142857142855
112
+ name: Cosine Precision@50
113
+ - type: cosine_precision@100
114
+ value: 0.18666666666666668
115
+ name: Cosine Precision@100
116
+ - type: cosine_precision@150
117
+ value: 0.13269841269841268
118
+ name: Cosine Precision@150
119
+ - type: cosine_precision@200
120
+ value: 0.1029047619047619
121
+ name: Cosine Precision@200
122
+ - type: cosine_recall@1
123
+ value: 0.0680237860830842
124
+ name: Cosine Recall@1
125
+ - type: cosine_recall@20
126
+ value: 0.539060339827615
127
+ name: Cosine Recall@20
128
+ - type: cosine_recall@50
129
+ value: 0.7269844521994231
130
+ name: Cosine Recall@50
131
+ - type: cosine_recall@100
132
+ value: 0.8337131628681403
133
+ name: Cosine Recall@100
134
+ - type: cosine_recall@150
135
+ value: 0.879935375805825
136
+ name: Cosine Recall@150
137
+ - type: cosine_recall@200
138
+ value: 0.9050529457831012
139
+ name: Cosine Recall@200
140
+ - type: cosine_ndcg@1
141
+ value: 0.6571428571428571
142
+ name: Cosine Ndcg@1
143
+ - type: cosine_ndcg@20
144
+ value: 0.686462471196106
145
+ name: Cosine Ndcg@20
146
+ - type: cosine_ndcg@50
147
+ value: 0.7052824081502371
148
+ name: Cosine Ndcg@50
149
+ - type: cosine_ndcg@100
150
+ value: 0.7601614355798527
151
+ name: Cosine Ndcg@100
152
+ - type: cosine_ndcg@150
153
+ value: 0.7798476891938094
154
+ name: Cosine Ndcg@150
155
+ - type: cosine_ndcg@200
156
+ value: 0.7898871141566125
157
+ name: Cosine Ndcg@200
158
+ - type: cosine_mrr@1
159
+ value: 0.6571428571428571
160
+ name: Cosine Mrr@1
161
+ - type: cosine_mrr@20
162
+ value: 0.8095238095238095
163
+ name: Cosine Mrr@20
164
+ - type: cosine_mrr@50
165
+ value: 0.8095238095238095
166
+ name: Cosine Mrr@50
167
+ - type: cosine_mrr@100
168
+ value: 0.8095238095238095
169
+ name: Cosine Mrr@100
170
+ - type: cosine_mrr@150
171
+ value: 0.8095238095238095
172
+ name: Cosine Mrr@150
173
+ - type: cosine_mrr@200
174
+ value: 0.8095238095238095
175
+ name: Cosine Mrr@200
176
+ - type: cosine_map@1
177
+ value: 0.6571428571428571
178
+ name: Cosine Map@1
179
+ - type: cosine_map@20
180
+ value: 0.5451065538458748
181
+ name: Cosine Map@20
182
+ - type: cosine_map@50
183
+ value: 0.5347802076206865
184
+ name: Cosine Map@50
185
+ - type: cosine_map@100
186
+ value: 0.567702602098158
187
+ name: Cosine Map@100
188
+ - type: cosine_map@150
189
+ value: 0.5756725358487015
190
+ name: Cosine Map@150
191
+ - type: cosine_map@200
192
+ value: 0.5789669196636947
193
+ name: Cosine Map@200
194
+ - type: cosine_map@500
195
+ value: 0.5832808543489026
196
+ name: Cosine Map@500
197
+ - task:
198
+ type: information-retrieval
199
+ name: Information Retrieval
200
+ dataset:
201
+ name: full es
202
+ type: full_es
203
+ metrics:
204
+ - type: cosine_accuracy@1
205
+ value: 0.11351351351351352
206
+ name: Cosine Accuracy@1
207
+ - type: cosine_accuracy@20
208
+ value: 1.0
209
+ name: Cosine Accuracy@20
210
+ - type: cosine_accuracy@50
211
+ value: 1.0
212
+ name: Cosine Accuracy@50
213
+ - type: cosine_accuracy@100
214
+ value: 1.0
215
+ name: Cosine Accuracy@100
216
+ - type: cosine_accuracy@150
217
+ value: 1.0
218
+ name: Cosine Accuracy@150
219
+ - type: cosine_accuracy@200
220
+ value: 1.0
221
+ name: Cosine Accuracy@200
222
+ - type: cosine_precision@1
223
+ value: 0.11351351351351352
224
+ name: Cosine Precision@1
225
+ - type: cosine_precision@20
226
+ value: 0.4913513513513514
227
+ name: Cosine Precision@20
228
+ - type: cosine_precision@50
229
+ value: 0.316972972972973
230
+ name: Cosine Precision@50
231
+ - type: cosine_precision@100
232
+ value: 0.19843243243243244
233
+ name: Cosine Precision@100
234
+ - type: cosine_precision@150
235
+ value: 0.146990990990991
236
+ name: Cosine Precision@150
237
+ - type: cosine_precision@200
238
+ value: 0.11778378378378378
239
+ name: Cosine Precision@200
240
+ - type: cosine_recall@1
241
+ value: 0.002992884071419607
242
+ name: Cosine Recall@1
243
+ - type: cosine_recall@20
244
+ value: 0.32341666838263944
245
+ name: Cosine Recall@20
246
+ - type: cosine_recall@50
247
+ value: 0.4630260221149236
248
+ name: Cosine Recall@50
249
+ - type: cosine_recall@100
250
+ value: 0.5419804526017848
251
+ name: Cosine Recall@100
252
+ - type: cosine_recall@150
253
+ value: 0.5826718468403144
254
+ name: Cosine Recall@150
255
+ - type: cosine_recall@200
256
+ value: 0.6149262657286421
257
+ name: Cosine Recall@200
258
+ - type: cosine_ndcg@1
259
+ value: 0.11351351351351352
260
+ name: Cosine Ndcg@1
261
+ - type: cosine_ndcg@20
262
+ value: 0.5389058089458943
263
+ name: Cosine Ndcg@20
264
+ - type: cosine_ndcg@50
265
+ value: 0.5002442028172164
266
+ name: Cosine Ndcg@50
267
+ - type: cosine_ndcg@100
268
+ value: 0.5138591255215345
269
+ name: Cosine Ndcg@100
270
+ - type: cosine_ndcg@150
271
+ value: 0.5346372349516221
272
+ name: Cosine Ndcg@150
273
+ - type: cosine_ndcg@200
274
+ value: 0.5502474315848075
275
+ name: Cosine Ndcg@200
276
+ - type: cosine_mrr@1
277
+ value: 0.11351351351351352
278
+ name: Cosine Mrr@1
279
+ - type: cosine_mrr@20
280
+ value: 0.5444744744744745
281
+ name: Cosine Mrr@20
282
+ - type: cosine_mrr@50
283
+ value: 0.5444744744744745
284
+ name: Cosine Mrr@50
285
+ - type: cosine_mrr@100
286
+ value: 0.5444744744744745
287
+ name: Cosine Mrr@100
288
+ - type: cosine_mrr@150
289
+ value: 0.5444744744744745
290
+ name: Cosine Mrr@150
291
+ - type: cosine_mrr@200
292
+ value: 0.5444744744744745
293
+ name: Cosine Mrr@200
294
+ - type: cosine_map@1
295
+ value: 0.11351351351351352
296
+ name: Cosine Map@1
297
+ - type: cosine_map@20
298
+ value: 0.40352984921129137
299
+ name: Cosine Map@20
300
+ - type: cosine_map@50
301
+ value: 0.3418539578142162
302
+ name: Cosine Map@50
303
+ - type: cosine_map@100
304
+ value: 0.339373689987275
305
+ name: Cosine Map@100
306
+ - type: cosine_map@150
307
+ value: 0.3478760829213016
308
+ name: Cosine Map@150
309
+ - type: cosine_map@200
310
+ value: 0.3533435915341769
311
+ name: Cosine Map@200
312
+ - type: cosine_map@500
313
+ value: 0.363222785830563
314
+ name: Cosine Map@500
315
+ - task:
316
+ type: information-retrieval
317
+ name: Information Retrieval
318
+ dataset:
319
+ name: full de
320
+ type: full_de
321
+ metrics:
322
+ - type: cosine_accuracy@1
323
+ value: 0.2955665024630542
324
+ name: Cosine Accuracy@1
325
+ - type: cosine_accuracy@20
326
+ value: 0.9211822660098522
327
+ name: Cosine Accuracy@20
328
+ - type: cosine_accuracy@50
329
+ value: 0.9655172413793104
330
+ name: Cosine Accuracy@50
331
+ - type: cosine_accuracy@100
332
+ value: 0.9753694581280788
333
+ name: Cosine Accuracy@100
334
+ - type: cosine_accuracy@150
335
+ value: 0.9852216748768473
336
+ name: Cosine Accuracy@150
337
+ - type: cosine_accuracy@200
338
+ value: 0.9852216748768473
339
+ name: Cosine Accuracy@200
340
+ - type: cosine_precision@1
341
+ value: 0.2955665024630542
342
+ name: Cosine Precision@1
343
+ - type: cosine_precision@20
344
+ value: 0.424384236453202
345
+ name: Cosine Precision@20
346
+ - type: cosine_precision@50
347
+ value: 0.28167487684729065
348
+ name: Cosine Precision@50
349
+ - type: cosine_precision@100
350
+ value: 0.17995073891625615
351
+ name: Cosine Precision@100
352
+ - type: cosine_precision@150
353
+ value: 0.13589490968801315
354
+ name: Cosine Precision@150
355
+ - type: cosine_precision@200
356
+ value: 0.1108128078817734
357
+ name: Cosine Precision@200
358
+ - type: cosine_recall@1
359
+ value: 0.01108543831680986
360
+ name: Cosine Recall@1
361
+ - type: cosine_recall@20
362
+ value: 0.2600945586038909
363
+ name: Cosine Recall@20
364
+ - type: cosine_recall@50
365
+ value: 0.3844030994839744
366
+ name: Cosine Recall@50
367
+ - type: cosine_recall@100
368
+ value: 0.4672649807153451
369
+ name: Cosine Recall@100
370
+ - type: cosine_recall@150
371
+ value: 0.5171228717670064
372
+ name: Cosine Recall@150
373
+ - type: cosine_recall@200
374
+ value: 0.5533299912627624
375
+ name: Cosine Recall@200
376
+ - type: cosine_ndcg@1
377
+ value: 0.2955665024630542
378
+ name: Cosine Ndcg@1
379
+ - type: cosine_ndcg@20
380
+ value: 0.4593107411252075
381
+ name: Cosine Ndcg@20
382
+ - type: cosine_ndcg@50
383
+ value: 0.42313178566078624
384
+ name: Cosine Ndcg@50
385
+ - type: cosine_ndcg@100
386
+ value: 0.4367043857530601
387
+ name: Cosine Ndcg@100
388
+ - type: cosine_ndcg@150
389
+ value: 0.4621847371016286
390
+ name: Cosine Ndcg@150
391
+ - type: cosine_ndcg@200
392
+ value: 0.48019099347834654
393
+ name: Cosine Ndcg@200
394
+ - type: cosine_mrr@1
395
+ value: 0.2955665024630542
396
+ name: Cosine Mrr@1
397
+ - type: cosine_mrr@20
398
+ value: 0.4892678749821603
399
+ name: Cosine Mrr@20
400
+ - type: cosine_mrr@50
401
+ value: 0.49065090899064223
402
+ name: Cosine Mrr@50
403
+ - type: cosine_mrr@100
404
+ value: 0.49080251743966435
405
+ name: Cosine Mrr@100
406
+ - type: cosine_mrr@150
407
+ value: 0.4908799208299932
408
+ name: Cosine Mrr@150
409
+ - type: cosine_mrr@200
410
+ value: 0.4908799208299932
411
+ name: Cosine Mrr@200
412
+ - type: cosine_map@1
413
+ value: 0.2955665024630542
414
+ name: Cosine Map@1
415
+ - type: cosine_map@20
416
+ value: 0.3228620941051522
417
+ name: Cosine Map@20
418
+ - type: cosine_map@50
419
+ value: 0.2644260812747752
420
+ name: Cosine Map@50
421
+ - type: cosine_map@100
422
+ value: 0.2576011230547815
423
+ name: Cosine Map@100
424
+ - type: cosine_map@150
425
+ value: 0.2666548881846307
426
+ name: Cosine Map@150
427
+ - type: cosine_map@200
428
+ value: 0.27224102651692533
429
+ name: Cosine Map@200
430
+ - type: cosine_map@500
431
+ value: 0.28312561300678324
432
+ name: Cosine Map@500
433
+ - task:
434
+ type: information-retrieval
435
+ name: Information Retrieval
436
+ dataset:
437
+ name: full zh
438
+ type: full_zh
439
+ metrics:
440
+ - type: cosine_accuracy@1
441
+ value: 0.3300970873786408
442
+ name: Cosine Accuracy@1
443
+ - type: cosine_accuracy@20
444
+ value: 0.7184466019417476
445
+ name: Cosine Accuracy@20
446
+ - type: cosine_accuracy@50
447
+ value: 0.8155339805825242
448
+ name: Cosine Accuracy@50
449
+ - type: cosine_accuracy@100
450
+ value: 0.8932038834951457
451
+ name: Cosine Accuracy@100
452
+ - type: cosine_accuracy@150
453
+ value: 0.9223300970873787
454
+ name: Cosine Accuracy@150
455
+ - type: cosine_accuracy@200
456
+ value: 0.9320388349514563
457
+ name: Cosine Accuracy@200
458
+ - type: cosine_precision@1
459
+ value: 0.3300970873786408
460
+ name: Cosine Precision@1
461
+ - type: cosine_precision@20
462
+ value: 0.16796116504854372
463
+ name: Cosine Precision@20
464
+ - type: cosine_precision@50
465
+ value: 0.09262135922330093
466
+ name: Cosine Precision@50
467
+ - type: cosine_precision@100
468
+ value: 0.05815533980582525
469
+ name: Cosine Precision@100
470
+ - type: cosine_precision@150
471
+ value: 0.04563106796116505
472
+ name: Cosine Precision@150
473
+ - type: cosine_precision@200
474
+ value: 0.03771844660194174
475
+ name: Cosine Precision@200
476
+ - type: cosine_recall@1
477
+ value: 0.02573649124630195
478
+ name: Cosine Recall@1
479
+ - type: cosine_recall@20
480
+ value: 0.17402459309945448
481
+ name: Cosine Recall@20
482
+ - type: cosine_recall@50
483
+ value: 0.23816219248808224
484
+ name: Cosine Recall@50
485
+ - type: cosine_recall@100
486
+ value: 0.28291725637657983
487
+ name: Cosine Recall@100
488
+ - type: cosine_recall@150
489
+ value: 0.32619122038725784
490
+ name: Cosine Recall@150
491
+ - type: cosine_recall@200
492
+ value: 0.3543394793587958
493
+ name: Cosine Recall@200
494
+ - type: cosine_ndcg@1
495
+ value: 0.3300970873786408
496
+ name: Cosine Ndcg@1
497
+ - type: cosine_ndcg@20
498
+ value: 0.23956118764265208
499
+ name: Cosine Ndcg@20
500
+ - type: cosine_ndcg@50
501
+ value: 0.2341910409667355
502
+ name: Cosine Ndcg@50
503
+ - type: cosine_ndcg@100
504
+ value: 0.2559822552765659
505
+ name: Cosine Ndcg@100
506
+ - type: cosine_ndcg@150
507
+ value: 0.27344655996496936
508
+ name: Cosine Ndcg@150
509
+ - type: cosine_ndcg@200
510
+ value: 0.28432223965649855
511
+ name: Cosine Ndcg@200
512
+ - type: cosine_mrr@1
513
+ value: 0.3300970873786408
514
+ name: Cosine Mrr@1
515
+ - type: cosine_mrr@20
516
+ value: 0.43064643766798927
517
+ name: Cosine Mrr@20
518
+ - type: cosine_mrr@50
519
+ value: 0.43374387043765733
520
+ name: Cosine Mrr@50
521
+ - type: cosine_mrr@100
522
+ value: 0.4348781442268605
523
+ name: Cosine Mrr@100
524
+ - type: cosine_mrr@150
525
+ value: 0.4351279925655956
526
+ name: Cosine Mrr@150
527
+ - type: cosine_mrr@200
528
+ value: 0.4351822313246128
529
+ name: Cosine Mrr@200
530
+ - type: cosine_map@1
531
+ value: 0.3300970873786408
532
+ name: Cosine Map@1
533
+ - type: cosine_map@20
534
+ value: 0.14301006319225865
535
+ name: Cosine Map@20
536
+ - type: cosine_map@50
537
+ value: 0.12425793473074002
538
+ name: Cosine Map@50
539
+ - type: cosine_map@100
540
+ value: 0.12962575663735706
541
+ name: Cosine Map@100
542
+ - type: cosine_map@150
543
+ value: 0.13242860022521366
544
+ name: Cosine Map@150
545
+ - type: cosine_map@200
546
+ value: 0.13374255185989983
547
+ name: Cosine Map@200
548
+ - type: cosine_map@500
549
+ value: 0.13779434547799502
550
+ name: Cosine Map@500
551
+ - task:
552
+ type: information-retrieval
553
+ name: Information Retrieval
554
+ dataset:
555
+ name: mix es
556
+ type: mix_es
557
+ metrics:
558
+ - type: cosine_accuracy@1
559
+ value: 0.40977639105564223
560
+ name: Cosine Accuracy@1
561
+ - type: cosine_accuracy@20
562
+ value: 0.7618304732189287
563
+ name: Cosine Accuracy@20
564
+ - type: cosine_accuracy@50
565
+ value: 0.8512740509620385
566
+ name: Cosine Accuracy@50
567
+ - type: cosine_accuracy@100
568
+ value: 0.9105564222568903
569
+ name: Cosine Accuracy@100
570
+ - type: cosine_accuracy@150
571
+ value: 0.9381175247009881
572
+ name: Cosine Accuracy@150
573
+ - type: cosine_accuracy@200
574
+ value: 0.9542381695267811
575
+ name: Cosine Accuracy@200
576
+ - type: cosine_precision@1
577
+ value: 0.40977639105564223
578
+ name: Cosine Precision@1
579
+ - type: cosine_precision@20
580
+ value: 0.0890015600624025
581
+ name: Cosine Precision@20
582
+ - type: cosine_precision@50
583
+ value: 0.04168486739469579
584
+ name: Cosine Precision@50
585
+ - type: cosine_precision@100
586
+ value: 0.022854914196567863
587
+ name: Cosine Precision@100
588
+ - type: cosine_precision@150
589
+ value: 0.01585370081469925
590
+ name: Cosine Precision@150
591
+ - type: cosine_precision@200
592
+ value: 0.012220488819552783
593
+ name: Cosine Precision@200
594
+ - type: cosine_recall@1
595
+ value: 0.15567317930812472
596
+ name: Cosine Recall@1
597
+ - type: cosine_recall@20
598
+ value: 0.6574783943738703
599
+ name: Cosine Recall@20
600
+ - type: cosine_recall@50
601
+ value: 0.7691404799049105
602
+ name: Cosine Recall@50
603
+ - type: cosine_recall@100
604
+ value: 0.8454015303469281
605
+ name: Cosine Recall@100
606
+ - type: cosine_recall@150
607
+ value: 0.8795148948815096
608
+ name: Cosine Recall@150
609
+ - type: cosine_recall@200
610
+ value: 0.9035051878265606
611
+ name: Cosine Recall@200
612
+ - type: cosine_ndcg@1
613
+ value: 0.40977639105564223
614
+ name: Cosine Ndcg@1
615
+ - type: cosine_ndcg@20
616
+ value: 0.5094055696124096
617
+ name: Cosine Ndcg@20
618
+ - type: cosine_ndcg@50
619
+ value: 0.5398029704628499
620
+ name: Cosine Ndcg@50
621
+ - type: cosine_ndcg@100
622
+ value: 0.5563939454831869
623
+ name: Cosine Ndcg@100
624
+ - type: cosine_ndcg@150
625
+ value: 0.5630335952477792
626
+ name: Cosine Ndcg@150
627
+ - type: cosine_ndcg@200
628
+ value: 0.5674217099859529
629
+ name: Cosine Ndcg@200
630
+ - type: cosine_mrr@1
631
+ value: 0.40977639105564223
632
+ name: Cosine Mrr@1
633
+ - type: cosine_mrr@20
634
+ value: 0.4963374711503733
635
+ name: Cosine Mrr@20
636
+ - type: cosine_mrr@50
637
+ value: 0.49930745416180927
638
+ name: Cosine Mrr@50
639
+ - type: cosine_mrr@100
640
+ value: 0.5001571935146001
641
+ name: Cosine Mrr@100
642
+ - type: cosine_mrr@150
643
+ value: 0.5003842041203103
644
+ name: Cosine Mrr@150
645
+ - type: cosine_mrr@200
646
+ value: 0.5004783417497985
647
+ name: Cosine Mrr@200
648
+ - type: cosine_map@1
649
+ value: 0.40977639105564223
650
+ name: Cosine Map@1
651
+ - type: cosine_map@20
652
+ value: 0.4236549905504724
653
+ name: Cosine Map@20
654
+ - type: cosine_map@50
655
+ value: 0.4311498037279026
656
+ name: Cosine Map@50
657
+ - type: cosine_map@100
658
+ value: 0.43327838927965695
659
+ name: Cosine Map@100
660
+ - type: cosine_map@150
661
+ value: 0.4338451382952763
662
+ name: Cosine Map@150
663
+ - type: cosine_map@200
664
+ value: 0.4341307997461715
665
+ name: Cosine Map@200
666
+ - type: cosine_map@500
667
+ value: 0.4345995592976099
668
+ name: Cosine Map@500
669
+ - task:
670
+ type: information-retrieval
671
+ name: Information Retrieval
672
+ dataset:
673
+ name: mix de
674
+ type: mix_de
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.2912116484659386
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@20
680
+ value: 0.6526261050442018
681
+ name: Cosine Accuracy@20
682
+ - type: cosine_accuracy@50
683
+ value: 0.7550702028081123
684
+ name: Cosine Accuracy@50
685
+ - type: cosine_accuracy@100
686
+ value: 0.8460738429537181
687
+ name: Cosine Accuracy@100
688
+ - type: cosine_accuracy@150
689
+ value: 0.8876755070202809
690
+ name: Cosine Accuracy@150
691
+ - type: cosine_accuracy@200
692
+ value: 0.9173166926677067
693
+ name: Cosine Accuracy@200
694
+ - type: cosine_precision@1
695
+ value: 0.2912116484659386
696
+ name: Cosine Precision@1
697
+ - type: cosine_precision@20
698
+ value: 0.07308892355694228
699
+ name: Cosine Precision@20
700
+ - type: cosine_precision@50
701
+ value: 0.03583983359334374
702
+ name: Cosine Precision@50
703
+ - type: cosine_precision@100
704
+ value: 0.02058242329693188
705
+ name: Cosine Precision@100
706
+ - type: cosine_precision@150
707
+ value: 0.014609117698041255
708
+ name: Cosine Precision@150
709
+ - type: cosine_precision@200
710
+ value: 0.011515860634425378
711
+ name: Cosine Precision@200
712
+ - type: cosine_recall@1
713
+ value: 0.10977639105564223
714
+ name: Cosine Recall@1
715
+ - type: cosine_recall@20
716
+ value: 0.5342520367481365
717
+ name: Cosine Recall@20
718
+ - type: cosine_recall@50
719
+ value: 0.6529207834980065
720
+ name: Cosine Recall@50
721
+ - type: cosine_recall@100
722
+ value: 0.7505633558675681
723
+ name: Cosine Recall@100
724
+ - type: cosine_recall@150
725
+ value: 0.7989166233315999
726
+ name: Cosine Recall@150
727
+ - type: cosine_recall@200
728
+ value: 0.8393482405962905
729
+ name: Cosine Recall@200
730
+ - type: cosine_ndcg@1
731
+ value: 0.2912116484659386
732
+ name: Cosine Ndcg@1
733
+ - type: cosine_ndcg@20
734
+ value: 0.39027078330836906
735
+ name: Cosine Ndcg@20
736
+ - type: cosine_ndcg@50
737
+ value: 0.4224011615840446
738
+ name: Cosine Ndcg@50
739
+ - type: cosine_ndcg@100
740
+ value: 0.4438393956774872
741
+ name: Cosine Ndcg@100
742
+ - type: cosine_ndcg@150
743
+ value: 0.45327900259303716
744
+ name: Cosine Ndcg@150
745
+ - type: cosine_ndcg@200
746
+ value: 0.4606831999024183
747
+ name: Cosine Ndcg@200
748
+ - type: cosine_mrr@1
749
+ value: 0.2912116484659386
750
+ name: Cosine Mrr@1
751
+ - type: cosine_mrr@20
752
+ value: 0.37544207546115405
753
+ name: Cosine Mrr@20
754
+ - type: cosine_mrr@50
755
+ value: 0.37870409367323543
756
+ name: Cosine Mrr@50
757
+ - type: cosine_mrr@100
758
+ value: 0.37999194359776256
759
+ name: Cosine Mrr@100
760
+ - type: cosine_mrr@150
761
+ value: 0.3803335431113417
762
+ name: Cosine Mrr@150
763
+ - type: cosine_mrr@200
764
+ value: 0.3805079454038972
765
+ name: Cosine Mrr@200
766
+ - type: cosine_map@1
767
+ value: 0.2912116484659386
768
+ name: Cosine Map@1
769
+ - type: cosine_map@20
770
+ value: 0.3075927383942124
771
+ name: Cosine Map@20
772
+ - type: cosine_map@50
773
+ value: 0.31502827814698436
774
+ name: Cosine Map@50
775
+ - type: cosine_map@100
776
+ value: 0.31767149302992986
777
+ name: Cosine Map@100
778
+ - type: cosine_map@150
779
+ value: 0.31842095656425334
780
+ name: Cosine Map@150
781
+ - type: cosine_map@200
782
+ value: 0.3189017921904424
783
+ name: Cosine Map@200
784
+ - type: cosine_map@500
785
+ value: 0.31963709557315734
786
+ name: Cosine Map@500
787
+ - task:
788
+ type: information-retrieval
789
+ name: Information Retrieval
790
+ dataset:
791
+ name: mix zh
792
+ type: mix_zh
793
+ metrics:
794
+ - type: cosine_accuracy@1
795
+ value: 0.09498956158663883
796
+ name: Cosine Accuracy@1
797
+ - type: cosine_accuracy@20
798
+ value: 0.35281837160751567
799
+ name: Cosine Accuracy@20
800
+ - type: cosine_accuracy@50
801
+ value: 0.48851774530271397
802
+ name: Cosine Accuracy@50
803
+ - type: cosine_accuracy@100
804
+ value: 0.5960334029227558
805
+ name: Cosine Accuracy@100
806
+ - type: cosine_accuracy@150
807
+ value: 0.657098121085595
808
+ name: Cosine Accuracy@150
809
+ - type: cosine_accuracy@200
810
+ value: 0.7025052192066806
811
+ name: Cosine Accuracy@200
812
+ - type: cosine_precision@1
813
+ value: 0.09498956158663883
814
+ name: Cosine Precision@1
815
+ - type: cosine_precision@20
816
+ value: 0.03102818371607516
817
+ name: Cosine Precision@20
818
+ - type: cosine_precision@50
819
+ value: 0.018528183716075158
820
+ name: Cosine Precision@50
821
+ - type: cosine_precision@100
822
+ value: 0.011550104384133612
823
+ name: Cosine Precision@100
824
+ - type: cosine_precision@150
825
+ value: 0.008601252609603338
826
+ name: Cosine Precision@150
827
+ - type: cosine_precision@200
828
+ value: 0.007074634655532359
829
+ name: Cosine Precision@200
830
+ - type: cosine_recall@1
831
+ value: 0.03218510786360473
832
+ name: Cosine Recall@1
833
+ - type: cosine_recall@20
834
+ value: 0.20682473406899293
835
+ name: Cosine Recall@20
836
+ - type: cosine_recall@50
837
+ value: 0.30616239188786165
838
+ name: Cosine Recall@50
839
+ - type: cosine_recall@100
840
+ value: 0.38175970109686186
841
+ name: Cosine Recall@100
842
+ - type: cosine_recall@150
843
+ value: 0.4266063558339132
844
+ name: Cosine Recall@150
845
+ - type: cosine_recall@200
846
+ value: 0.4677598005103224
847
+ name: Cosine Recall@200
848
+ - type: cosine_ndcg@1
849
+ value: 0.09498956158663883
850
+ name: Cosine Ndcg@1
851
+ - type: cosine_ndcg@20
852
+ value: 0.13726194438538974
853
+ name: Cosine Ndcg@20
854
+ - type: cosine_ndcg@50
855
+ value: 0.16515347653846224
856
+ name: Cosine Ndcg@50
857
+ - type: cosine_ndcg@100
858
+ value: 0.18245718935168395
859
+ name: Cosine Ndcg@100
860
+ - type: cosine_ndcg@150
861
+ value: 0.1915123607890909
862
+ name: Cosine Ndcg@150
863
+ - type: cosine_ndcg@200
864
+ value: 0.1993072789458329
865
+ name: Cosine Ndcg@200
866
+ - type: cosine_mrr@1
867
+ value: 0.09498956158663883
868
+ name: Cosine Mrr@1
869
+ - type: cosine_mrr@20
870
+ value: 0.15082760305134044
871
+ name: Cosine Mrr@20
872
+ - type: cosine_mrr@50
873
+ value: 0.1552139914541245
874
+ name: Cosine Mrr@50
875
+ - type: cosine_mrr@100
876
+ value: 0.1567682757261486
877
+ name: Cosine Mrr@100
878
+ - type: cosine_mrr@150
879
+ value: 0.1572599746321091
880
+ name: Cosine Mrr@150
881
+ - type: cosine_mrr@200
882
+ value: 0.15752063728764779
883
+ name: Cosine Mrr@200
884
+ - type: cosine_map@1
885
+ value: 0.09498956158663883
886
+ name: Cosine Map@1
887
+ - type: cosine_map@20
888
+ value: 0.08696228866764828
889
+ name: Cosine Map@20
890
+ - type: cosine_map@50
891
+ value: 0.0925585898977933
892
+ name: Cosine Map@50
893
+ - type: cosine_map@100
894
+ value: 0.09443690504503688
895
+ name: Cosine Map@100
896
+ - type: cosine_map@150
897
+ value: 0.09508196706389692
898
+ name: Cosine Map@150
899
+ - type: cosine_map@200
900
+ value: 0.09552658777692054
901
+ name: Cosine Map@200
902
+ - type: cosine_map@500
903
+ value: 0.09647934265199021
904
+ name: Cosine Map@500
905
+ ---
906
+
907
+ # SentenceTransformer based on BAAI/bge-small-en-v1.5
908
+
909
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the full_en, full_de, full_es, full_zh and mix datasets. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
910
+
911
+ ## Model Details
912
+
913
+ ### Model Description
914
+ - **Model Type:** Sentence Transformer
915
+ - **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
916
+ - **Maximum Sequence Length:** 512 tokens
917
+ - **Output Dimensionality:** 384 dimensions
918
+ - **Similarity Function:** Cosine Similarity
919
+ - **Training Datasets:**
920
+ - full_en
921
+ - full_de
922
+ - full_es
923
+ - full_zh
924
+ - mix
925
+ <!-- - **Language:** Unknown -->
926
+ <!-- - **License:** Unknown -->
927
+
928
+ ### Model Sources
929
+
930
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
931
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
932
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
933
+
934
+ ### Full Model Architecture
935
+
936
+ ```
937
+ SentenceTransformer(
938
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
939
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
940
+ (2): Normalize()
941
+ )
942
+ ```
943
+
944
+ ## Usage
945
+
946
+ ### Direct Usage (Sentence Transformers)
947
+
948
+ First install the Sentence Transformers library:
949
+
950
+ ```bash
951
+ pip install -U sentence-transformers
952
+ ```
953
+
954
+ Then you can load this model and run inference.
955
+ ```python
956
+ from sentence_transformers import SentenceTransformer
957
+
958
+ # Download from the 🤗 Hub
959
+ model = SentenceTransformer("sentence_transformers_model_id")
960
+ # Run inference
961
+ sentences = [
962
+ 'Volksvertreter',
963
+ 'Parlamentarier',
964
+ 'Oberbürgermeister',
965
+ ]
966
+ embeddings = model.encode(sentences)
967
+ print(embeddings.shape)
968
+ # [3, 384]
969
+
970
+ # Get the similarity scores for the embeddings
971
+ similarities = model.similarity(embeddings, embeddings)
972
+ print(similarities.shape)
973
+ # [3, 3]
974
+ ```
975
+
976
+ <!--
977
+ ### Direct Usage (Transformers)
978
+
979
+ <details><summary>Click to see the direct usage in Transformers</summary>
980
+
981
+ </details>
982
+ -->
983
+
984
+ <!--
985
+ ### Downstream Usage (Sentence Transformers)
986
+
987
+ You can finetune this model on your own dataset.
988
+
989
+ <details><summary>Click to expand</summary>
990
+
991
+ </details>
992
+ -->
993
+
994
+ <!--
995
+ ### Out-of-Scope Use
996
+
997
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
998
+ -->
999
+
1000
+ ## Evaluation
1001
+
1002
+ ### Metrics
1003
+
1004
+ #### Information Retrieval
1005
+
1006
+ * Datasets: `full_en`, `full_es`, `full_de`, `full_zh`, `mix_es`, `mix_de` and `mix_zh`
1007
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
1008
+
1009
+ | Metric | full_en | full_es | full_de | full_zh | mix_es | mix_de | mix_zh |
1010
+ |:---------------------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|:-----------|
1011
+ | cosine_accuracy@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
1012
+ | cosine_accuracy@20 | 0.9905 | 1.0 | 0.9212 | 0.7184 | 0.7618 | 0.6526 | 0.3528 |
1013
+ | cosine_accuracy@50 | 0.9905 | 1.0 | 0.9655 | 0.8155 | 0.8513 | 0.7551 | 0.4885 |
1014
+ | cosine_accuracy@100 | 0.9905 | 1.0 | 0.9754 | 0.8932 | 0.9106 | 0.8461 | 0.596 |
1015
+ | cosine_accuracy@150 | 0.9905 | 1.0 | 0.9852 | 0.9223 | 0.9381 | 0.8877 | 0.6571 |
1016
+ | cosine_accuracy@200 | 0.9905 | 1.0 | 0.9852 | 0.932 | 0.9542 | 0.9173 | 0.7025 |
1017
+ | cosine_precision@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
1018
+ | cosine_precision@20 | 0.5048 | 0.4914 | 0.4244 | 0.168 | 0.089 | 0.0731 | 0.031 |
1019
+ | cosine_precision@50 | 0.3086 | 0.317 | 0.2817 | 0.0926 | 0.0417 | 0.0358 | 0.0185 |
1020
+ | cosine_precision@100 | 0.1867 | 0.1984 | 0.18 | 0.0582 | 0.0229 | 0.0206 | 0.0116 |
1021
+ | cosine_precision@150 | 0.1327 | 0.147 | 0.1359 | 0.0456 | 0.0159 | 0.0146 | 0.0086 |
1022
+ | cosine_precision@200 | 0.1029 | 0.1178 | 0.1108 | 0.0377 | 0.0122 | 0.0115 | 0.0071 |
1023
+ | cosine_recall@1 | 0.068 | 0.003 | 0.0111 | 0.0257 | 0.1557 | 0.1098 | 0.0322 |
1024
+ | cosine_recall@20 | 0.5391 | 0.3234 | 0.2601 | 0.174 | 0.6575 | 0.5343 | 0.2068 |
1025
+ | cosine_recall@50 | 0.727 | 0.463 | 0.3844 | 0.2382 | 0.7691 | 0.6529 | 0.3062 |
1026
+ | cosine_recall@100 | 0.8337 | 0.542 | 0.4673 | 0.2829 | 0.8454 | 0.7506 | 0.3818 |
1027
+ | cosine_recall@150 | 0.8799 | 0.5827 | 0.5171 | 0.3262 | 0.8795 | 0.7989 | 0.4266 |
1028
+ | cosine_recall@200 | 0.9051 | 0.6149 | 0.5533 | 0.3543 | 0.9035 | 0.8393 | 0.4678 |
1029
+ | cosine_ndcg@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
1030
+ | cosine_ndcg@20 | 0.6865 | 0.5389 | 0.4593 | 0.2396 | 0.5094 | 0.3903 | 0.1373 |
1031
+ | cosine_ndcg@50 | 0.7053 | 0.5002 | 0.4231 | 0.2342 | 0.5398 | 0.4224 | 0.1652 |
1032
+ | cosine_ndcg@100 | 0.7602 | 0.5139 | 0.4367 | 0.256 | 0.5564 | 0.4438 | 0.1825 |
1033
+ | cosine_ndcg@150 | 0.7798 | 0.5346 | 0.4622 | 0.2734 | 0.563 | 0.4533 | 0.1915 |
1034
+ | **cosine_ndcg@200** | **0.7899** | **0.5502** | **0.4802** | **0.2843** | **0.5674** | **0.4607** | **0.1993** |
1035
+ | cosine_mrr@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
1036
+ | cosine_mrr@20 | 0.8095 | 0.5445 | 0.4893 | 0.4306 | 0.4963 | 0.3754 | 0.1508 |
1037
+ | cosine_mrr@50 | 0.8095 | 0.5445 | 0.4907 | 0.4337 | 0.4993 | 0.3787 | 0.1552 |
1038
+ | cosine_mrr@100 | 0.8095 | 0.5445 | 0.4908 | 0.4349 | 0.5002 | 0.38 | 0.1568 |
1039
+ | cosine_mrr@150 | 0.8095 | 0.5445 | 0.4909 | 0.4351 | 0.5004 | 0.3803 | 0.1573 |
1040
+ | cosine_mrr@200 | 0.8095 | 0.5445 | 0.4909 | 0.4352 | 0.5005 | 0.3805 | 0.1575 |
1041
+ | cosine_map@1 | 0.6571 | 0.1135 | 0.2956 | 0.3301 | 0.4098 | 0.2912 | 0.095 |
1042
+ | cosine_map@20 | 0.5451 | 0.4035 | 0.3229 | 0.143 | 0.4237 | 0.3076 | 0.087 |
1043
+ | cosine_map@50 | 0.5348 | 0.3419 | 0.2644 | 0.1243 | 0.4311 | 0.315 | 0.0926 |
1044
+ | cosine_map@100 | 0.5677 | 0.3394 | 0.2576 | 0.1296 | 0.4333 | 0.3177 | 0.0944 |
1045
+ | cosine_map@150 | 0.5757 | 0.3479 | 0.2667 | 0.1324 | 0.4338 | 0.3184 | 0.0951 |
1046
+ | cosine_map@200 | 0.579 | 0.3533 | 0.2722 | 0.1337 | 0.4341 | 0.3189 | 0.0955 |
1047
+ | cosine_map@500 | 0.5833 | 0.3632 | 0.2831 | 0.1378 | 0.4346 | 0.3196 | 0.0965 |
1048
+
1049
+ <!--
1050
+ ## Bias, Risks and Limitations
1051
+
1052
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1053
+ -->
1054
+
1055
+ <!--
1056
+ ### Recommendations
1057
+
1058
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1059
+ -->
1060
+
1061
+ ## Training Details
1062
+
1063
+ ### Training Datasets
1064
+ <details><summary>full_en</summary>
1065
+
1066
+ #### full_en
1067
+
1068
+ * Dataset: full_en
1069
+ * Size: 28,880 training samples
1070
+ * Columns: <code>anchor</code> and <code>positive</code>
1071
+ * Approximate statistics based on the first 1000 samples:
1072
+ | | anchor | positive |
1073
+ |:--------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1074
+ | type | string | string |
1075
+ | details | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 10 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.01 tokens</li><li>max: 13 tokens</li></ul> |
1076
+ * Samples:
1077
+ | anchor | positive |
1078
+ |:-----------------------------------------|:-----------------------------------------|
1079
+ | <code>air commodore</code> | <code>flight lieutenant</code> |
1080
+ | <code>command and control officer</code> | <code>flight officer</code> |
1081
+ | <code>air commodore</code> | <code>command and control officer</code> |
1082
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1083
+ ```json
1084
+ {'guide': SentenceTransformer(
1085
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1086
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1087
+ (2): Normalize()
1088
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1089
+ ```
1090
+ </details>
1091
+ <details><summary>full_de</summary>
1092
+
1093
+ #### full_de
1094
+
1095
+ * Dataset: full_de
1096
+ * Size: 23,023 training samples
1097
+ * Columns: <code>anchor</code> and <code>positive</code>
1098
+ * Approximate statistics based on the first 1000 samples:
1099
+ | | anchor | positive |
1100
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1101
+ | type | string | string |
1102
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.05 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 11.43 tokens</li><li>max: 45 tokens</li></ul> |
1103
+ * Samples:
1104
+ | anchor | positive |
1105
+ |:----------------------------------|:-----------------------------------------------------|
1106
+ | <code>Staffelkommandantin</code> | <code>Kommodore</code> |
1107
+ | <code>Luftwaffenoffizierin</code> | <code>Luftwaffenoffizier/Luftwaffenoffizierin</code> |
1108
+ | <code>Staffelkommandantin</code> | <code>Luftwaffenoffizierin</code> |
1109
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1110
+ ```json
1111
+ {'guide': SentenceTransformer(
1112
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1113
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1114
+ (2): Normalize()
1115
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1116
+ ```
1117
+ </details>
1118
+ <details><summary>full_es</summary>
1119
+
1120
+ #### full_es
1121
+
1122
+ * Dataset: full_es
1123
+ * Size: 20,724 training samples
1124
+ * Columns: <code>anchor</code> and <code>positive</code>
1125
+ * Approximate statistics based on the first 1000 samples:
1126
+ | | anchor | positive |
1127
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1128
+ | type | string | string |
1129
+ | details | <ul><li>min: 3 tokens</li><li>mean: 12.95 tokens</li><li>max: 50 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 12.57 tokens</li><li>max: 50 tokens</li></ul> |
1130
+ * Samples:
1131
+ | anchor | positive |
1132
+ |:------------------------------------|:-------------------------------------------|
1133
+ | <code>jefe de escuadrón</code> | <code>instructor</code> |
1134
+ | <code>comandante de aeronave</code> | <code>instructor de simulador</code> |
1135
+ | <code>instructor</code> | <code>oficial del Ejército del Aire</code> |
1136
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1137
+ ```json
1138
+ {'guide': SentenceTransformer(
1139
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1140
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1141
+ (2): Normalize()
1142
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1143
+ ```
1144
+ </details>
1145
+ <details><summary>full_zh</summary>
1146
+
1147
+ #### full_zh
1148
+
1149
+ * Dataset: full_zh
1150
+ * Size: 30,401 training samples
1151
+ * Columns: <code>anchor</code> and <code>positive</code>
1152
+ * Approximate statistics based on the first 1000 samples:
1153
+ | | anchor | positive |
1154
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
1155
+ | type | string | string |
1156
+ | details | <ul><li>min: 4 tokens</li><li>mean: 8.36 tokens</li><li>max: 20 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 8.95 tokens</li><li>max: 27 tokens</li></ul> |
1157
+ * Samples:
1158
+ | anchor | positive |
1159
+ |:------------------|:---------------------|
1160
+ | <code>技术总监</code> | <code>技术和运营总监</code> |
1161
+ | <code>技术总监</code> | <code>技术主管</code> |
1162
+ | <code>技术总监</code> | <code>技术艺术总监</code> |
1163
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1164
+ ```json
1165
+ {'guide': SentenceTransformer(
1166
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1167
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1168
+ (2): Normalize()
1169
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1170
+ ```
1171
+ </details>
1172
+ <details><summary>mix</summary>
1173
+
1174
+ #### mix
1175
+
1176
+ * Dataset: mix
1177
+ * Size: 21,760 training samples
1178
+ * Columns: <code>anchor</code> and <code>positive</code>
1179
+ * Approximate statistics based on the first 1000 samples:
1180
+ | | anchor | positive |
1181
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
1182
+ | type | string | string |
1183
+ | details | <ul><li>min: 2 tokens</li><li>mean: 5.65 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 10.08 tokens</li><li>max: 30 tokens</li></ul> |
1184
+ * Samples:
1185
+ | anchor | positive |
1186
+ |:------------------------------------------|:----------------------------------------------------------------|
1187
+ | <code>technical manager</code> | <code>Technischer Direktor für Bühne, Film und Fernsehen</code> |
1188
+ | <code>head of technical</code> | <code>directora técnica</code> |
1189
+ | <code>head of technical department</code> | <code>技术艺术总监</code> |
1190
+ * Loss: [<code>GISTEmbedLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#gistembedloss) with these parameters:
1191
+ ```json
1192
+ {'guide': SentenceTransformer(
1193
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
1194
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1195
+ (2): Normalize()
1196
+ ), 'temperature': 0.01, 'margin_strategy': 'absolute', 'margin': 0.0}
1197
+ ```
1198
+ </details>
1199
+
1200
+ ### Training Hyperparameters
1201
+ #### Non-Default Hyperparameters
1202
+
1203
+ - `eval_strategy`: steps
1204
+ - `per_device_train_batch_size`: 128
1205
+ - `per_device_eval_batch_size`: 128
1206
+ - `gradient_accumulation_steps`: 2
1207
+ - `num_train_epochs`: 5
1208
+ - `warmup_ratio`: 0.05
1209
+ - `log_on_each_node`: False
1210
+ - `fp16`: True
1211
+ - `dataloader_num_workers`: 4
1212
+ - `ddp_find_unused_parameters`: True
1213
+ - `batch_sampler`: no_duplicates
1214
+
1215
+ #### All Hyperparameters
1216
+ <details><summary>Click to expand</summary>
1217
+
1218
+ - `overwrite_output_dir`: False
1219
+ - `do_predict`: False
1220
+ - `eval_strategy`: steps
1221
+ - `prediction_loss_only`: True
1222
+ - `per_device_train_batch_size`: 128
1223
+ - `per_device_eval_batch_size`: 128
1224
+ - `per_gpu_train_batch_size`: None
1225
+ - `per_gpu_eval_batch_size`: None
1226
+ - `gradient_accumulation_steps`: 2
1227
+ - `eval_accumulation_steps`: None
1228
+ - `torch_empty_cache_steps`: None
1229
+ - `learning_rate`: 5e-05
1230
+ - `weight_decay`: 0.0
1231
+ - `adam_beta1`: 0.9
1232
+ - `adam_beta2`: 0.999
1233
+ - `adam_epsilon`: 1e-08
1234
+ - `max_grad_norm`: 1.0
1235
+ - `num_train_epochs`: 5
1236
+ - `max_steps`: -1
1237
+ - `lr_scheduler_type`: linear
1238
+ - `lr_scheduler_kwargs`: {}
1239
+ - `warmup_ratio`: 0.05
1240
+ - `warmup_steps`: 0
1241
+ - `log_level`: passive
1242
+ - `log_level_replica`: warning
1243
+ - `log_on_each_node`: False
1244
+ - `logging_nan_inf_filter`: True
1245
+ - `save_safetensors`: True
1246
+ - `save_on_each_node`: False
1247
+ - `save_only_model`: False
1248
+ - `restore_callback_states_from_checkpoint`: False
1249
+ - `no_cuda`: False
1250
+ - `use_cpu`: False
1251
+ - `use_mps_device`: False
1252
+ - `seed`: 42
1253
+ - `data_seed`: None
1254
+ - `jit_mode_eval`: False
1255
+ - `use_ipex`: False
1256
+ - `bf16`: False
1257
+ - `fp16`: True
1258
+ - `fp16_opt_level`: O1
1259
+ - `half_precision_backend`: auto
1260
+ - `bf16_full_eval`: False
1261
+ - `fp16_full_eval`: False
1262
+ - `tf32`: None
1263
+ - `local_rank`: 0
1264
+ - `ddp_backend`: None
1265
+ - `tpu_num_cores`: None
1266
+ - `tpu_metrics_debug`: False
1267
+ - `debug`: []
1268
+ - `dataloader_drop_last`: True
1269
+ - `dataloader_num_workers`: 4
1270
+ - `dataloader_prefetch_factor`: None
1271
+ - `past_index`: -1
1272
+ - `disable_tqdm`: False
1273
+ - `remove_unused_columns`: True
1274
+ - `label_names`: None
1275
+ - `load_best_model_at_end`: False
1276
+ - `ignore_data_skip`: False
1277
+ - `fsdp`: []
1278
+ - `fsdp_min_num_params`: 0
1279
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1280
+ - `tp_size`: 0
1281
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1282
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1283
+ - `deepspeed`: None
1284
+ - `label_smoothing_factor`: 0.0
1285
+ - `optim`: adamw_torch
1286
+ - `optim_args`: None
1287
+ - `adafactor`: False
1288
+ - `group_by_length`: False
1289
+ - `length_column_name`: length
1290
+ - `ddp_find_unused_parameters`: True
1291
+ - `ddp_bucket_cap_mb`: None
1292
+ - `ddp_broadcast_buffers`: False
1293
+ - `dataloader_pin_memory`: True
1294
+ - `dataloader_persistent_workers`: False
1295
+ - `skip_memory_metrics`: True
1296
+ - `use_legacy_prediction_loop`: False
1297
+ - `push_to_hub`: False
1298
+ - `resume_from_checkpoint`: None
1299
+ - `hub_model_id`: None
1300
+ - `hub_strategy`: every_save
1301
+ - `hub_private_repo`: None
1302
+ - `hub_always_push`: False
1303
+ - `gradient_checkpointing`: False
1304
+ - `gradient_checkpointing_kwargs`: None
1305
+ - `include_inputs_for_metrics`: False
1306
+ - `include_for_metrics`: []
1307
+ - `eval_do_concat_batches`: True
1308
+ - `fp16_backend`: auto
1309
+ - `push_to_hub_model_id`: None
1310
+ - `push_to_hub_organization`: None
1311
+ - `mp_parameters`:
1312
+ - `auto_find_batch_size`: False
1313
+ - `full_determinism`: False
1314
+ - `torchdynamo`: None
1315
+ - `ray_scope`: last
1316
+ - `ddp_timeout`: 1800
1317
+ - `torch_compile`: False
1318
+ - `torch_compile_backend`: None
1319
+ - `torch_compile_mode`: None
1320
+ - `include_tokens_per_second`: False
1321
+ - `include_num_input_tokens_seen`: False
1322
+ - `neftune_noise_alpha`: None
1323
+ - `optim_target_modules`: None
1324
+ - `batch_eval_metrics`: False
1325
+ - `eval_on_start`: False
1326
+ - `use_liger_kernel`: False
1327
+ - `eval_use_gather_object`: False
1328
+ - `average_tokens_across_devices`: False
1329
+ - `prompts`: None
1330
+ - `batch_sampler`: no_duplicates
1331
+ - `multi_dataset_batch_sampler`: proportional
1332
+
1333
+ </details>
1334
+
1335
+ ### Training Logs
1336
+ | Epoch | Step | Training Loss | full_en_cosine_ndcg@200 | full_es_cosine_ndcg@200 | full_de_cosine_ndcg@200 | full_zh_cosine_ndcg@200 | mix_es_cosine_ndcg@200 | mix_de_cosine_ndcg@200 | mix_zh_cosine_ndcg@200 |
1337
+ |:------:|:----:|:-------------:|:-----------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
1338
+ | -1 | -1 | - | 0.7322 | 0.4690 | 0.3853 | 0.2723 | 0.3209 | 0.2244 | 0.0919 |
1339
+ | 0.0021 | 1 | 23.8878 | - | - | - | - | - | - | - |
1340
+ | 0.2058 | 100 | 7.2098 | - | - | - | - | - | - | - |
1341
+ | 0.4115 | 200 | 4.2635 | 0.7800 | 0.5132 | 0.4268 | 0.2798 | 0.4372 | 0.2996 | 0.1447 |
1342
+ | 0.6173 | 300 | 4.1931 | - | - | - | - | - | - | - |
1343
+ | 0.8230 | 400 | 3.73 | 0.7863 | 0.5274 | 0.4451 | 0.2805 | 0.4762 | 0.3455 | 0.1648 |
1344
+ | 1.0309 | 500 | 3.3569 | - | - | - | - | - | - | - |
1345
+ | 1.2366 | 600 | 3.6464 | 0.7868 | 0.5372 | 0.4540 | 0.2813 | 0.5063 | 0.3794 | 0.1755 |
1346
+ | 1.4424 | 700 | 3.0772 | - | - | - | - | - | - | - |
1347
+ | 1.6481 | 800 | 3.114 | 0.7906 | 0.5391 | 0.4576 | 0.2832 | 0.5221 | 0.4047 | 0.1779 |
1348
+ | 1.8539 | 900 | 2.9246 | - | - | - | - | - | - | - |
1349
+ | 2.0617 | 1000 | 2.7479 | 0.7873 | 0.5423 | 0.4631 | 0.2871 | 0.5323 | 0.4143 | 0.1843 |
1350
+ | 2.2675 | 1100 | 3.049 | - | - | - | - | - | - | - |
1351
+ | 2.4733 | 1200 | 2.6137 | 0.7878 | 0.5418 | 0.4685 | 0.2870 | 0.5470 | 0.4339 | 0.1932 |
1352
+ | 2.6790 | 1300 | 2.8607 | - | - | - | - | - | - | - |
1353
+ | 2.8848 | 1400 | 2.7071 | 0.7889 | 0.5465 | 0.4714 | 0.2891 | 0.5504 | 0.4362 | 0.1944 |
1354
+ | 3.0926 | 1500 | 2.7012 | - | - | - | - | - | - | - |
1355
+ | 3.2984 | 1600 | 2.7423 | 0.7882 | 0.5471 | 0.4748 | 0.2868 | 0.5542 | 0.4454 | 0.1976 |
1356
+ | 3.5041 | 1700 | 2.5316 | - | - | - | - | - | - | - |
1357
+ | 3.7099 | 1800 | 2.6344 | 0.7900 | 0.5498 | 0.4763 | 0.2857 | 0.5639 | 0.4552 | 0.1954 |
1358
+ | 3.9156 | 1900 | 2.4983 | - | - | - | - | - | - | - |
1359
+ | 4.1235 | 2000 | 2.5423 | 0.7894 | 0.5499 | 0.4786 | 0.2870 | 0.5644 | 0.4576 | 0.1974 |
1360
+ | 4.3292 | 2100 | 2.5674 | - | - | - | - | - | - | - |
1361
+ | 4.5350 | 2200 | 2.6237 | 0.7899 | 0.5502 | 0.4802 | 0.2843 | 0.5674 | 0.4607 | 0.1993 |
1362
+
1363
+
1364
+ ### Framework Versions
1365
+ - Python: 3.11.11
1366
+ - Sentence Transformers: 4.1.0
1367
+ - Transformers: 4.51.3
1368
+ - PyTorch: 2.6.0+cu124
1369
+ - Accelerate: 1.6.0
1370
+ - Datasets: 3.5.0
1371
+ - Tokenizers: 0.21.1
1372
+
1373
+ ## Citation
1374
+
1375
+ ### BibTeX
1376
+
1377
+ #### Sentence Transformers
1378
+ ```bibtex
1379
+ @inproceedings{reimers-2019-sentence-bert,
1380
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1381
+ author = "Reimers, Nils and Gurevych, Iryna",
1382
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1383
+ month = "11",
1384
+ year = "2019",
1385
+ publisher = "Association for Computational Linguistics",
1386
+ url = "https://arxiv.org/abs/1908.10084",
1387
+ }
1388
+ ```
1389
+
1390
+ #### GISTEmbedLoss
1391
+ ```bibtex
1392
+ @misc{solatorio2024gistembed,
1393
+ title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
1394
+ author={Aivin V. Solatorio},
1395
+ year={2024},
1396
+ eprint={2402.16829},
1397
+ archivePrefix={arXiv},
1398
+ primaryClass={cs.LG}
1399
+ }
1400
+ ```
1401
+
1402
+ <!--
1403
+ ## Glossary
1404
+
1405
+ *Clearly define terms in order to be accessible across audiences.*
1406
+ -->
1407
+
1408
+ <!--
1409
+ ## Model Card Authors
1410
+
1411
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1412
+ -->
1413
+
1414
+ <!--
1415
+ ## Model Card Contact
1416
+
1417
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1418
+ -->
checkpoint-2200/config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
checkpoint-2200/config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
checkpoint-2200/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b846c258910a2cf11166c8db85b17b94fdfe283cbbb91895aceb69607ad895be
3
+ size 133462128
checkpoint-2200/modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
checkpoint-2200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3accc1a56cb916b8adda1d5ac903ab0bfea3416220a036491f94bcef8a40f5f0
3
+ size 265862650
checkpoint-2200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755493f55804a61b93104e3cd28e7aaa8558d92d8c5c001c3b7a44dd7f4a240f
3
+ size 14244
checkpoint-2200/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d823e237265f597b2d3b86427928c40d0d237ef3d51af851d938b60a8f6dcb54
3
+ size 988
checkpoint-2200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b461a7b7dc0ad8c1bce2bb308dc9304dbb10e88ee1dc77d55274e2110f8334fe
3
+ size 1064
checkpoint-2200/sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
checkpoint-2200/special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
checkpoint-2200/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2200/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
3
+ size 5624
checkpoint-2400/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:001894d4d49fcb67b19eb00748a8ffecef7bfa77ab10552ce23e2fd14bd9a957
3
+ size 133462128
checkpoint-2400/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9705e03203928295b6cfa72e543444d1c75d311c1bc78f3243811906f3991c7
3
+ size 265862650
checkpoint-2400/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:604cb380a32fa0ca281efbdc1077a2abd4b522fd943f7286da4dbca5eb604b30
3
+ size 14244
checkpoint-2400/scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88f3c5f8aa86b9ec8524f704b11149ad92b5fdad2a9b43ef033e50c0b8846dc4
3
+ size 988
checkpoint-2400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed97fe2699cb0f23526c4e1e89625695a5db09a6706d145dd43161f69dffc22d
3
+ size 1064
checkpoint-2400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:760a4b48c96df095158050a3998b912dc701e81df23c2f6256e0e65915c7301a
3
+ size 5624
checkpoint-2400/vocab.txt ADDED
The diff for this file is too large to render. See raw diff