Update plamo 2 configure (#6)
Browse files- update to pelmo2 (40f6c31dd07312035be5a4fdf210237e0140ddcb)
Co-authored-by: Tianqi Xu <[email protected]>
- config.json +47 -47
- modeling_plamo.py +103 -95
- tokenization_plamo.py +1 -1
- tokenizer_config.json +52 -52
config.json
CHANGED
|
@@ -1,49 +1,49 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Plamo2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_window_size": 2048,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "modeling_plamo.Plamo2Config",
|
| 8 |
+
"AutoModelForCausalLM": "modeling_plamo.Plamo2ForCausalLM"
|
| 9 |
+
},
|
| 10 |
+
"bos_token_id": 1,
|
| 11 |
+
"capacity_factor": 1.0,
|
| 12 |
+
"eos_token_id": 2,
|
| 13 |
+
"eval_attention_n_bit": null,
|
| 14 |
+
"eval_mlp_n_bit": null,
|
| 15 |
+
"expert_dropout": 0.0,
|
| 16 |
+
"fp8_accum_dtype": "bfloat16",
|
| 17 |
+
"group_size": 1024,
|
| 18 |
+
"hidden_size": 2048,
|
| 19 |
+
"hidden_size_per_head": 128,
|
| 20 |
+
"image_feature_size": null,
|
| 21 |
+
"image_proj_type": "linear",
|
| 22 |
+
"image_token_id": null,
|
| 23 |
+
"intermediate_size": 8192,
|
| 24 |
+
"k_expert": null,
|
| 25 |
+
"linear_type": "fp8",
|
| 26 |
+
"mamba_chunk_size": 256,
|
| 27 |
+
"mamba_d_conv": 4,
|
| 28 |
+
"mamba_d_state": 64,
|
| 29 |
+
"mamba_enabled": true,
|
| 30 |
+
"mamba_num_heads": 32,
|
| 31 |
+
"mamba_step": 2,
|
| 32 |
+
"max_position_embeddings": 10485760,
|
| 33 |
+
"model_type": "plamo2",
|
| 34 |
+
"n_expert": null,
|
| 35 |
+
"num_attention_heads": 16,
|
| 36 |
+
"num_hidden_layers": 16,
|
| 37 |
+
"num_key_value_heads": 1,
|
| 38 |
+
"rms_norm_eps": 1e-06,
|
| 39 |
+
"shared_intermediate_size": null,
|
| 40 |
+
"sliding_window": 2048,
|
| 41 |
+
"sparse_intermediate_size": null,
|
| 42 |
+
"sparse_step": null,
|
| 43 |
+
"tokenizer_class": "Plamo2Tokenizer",
|
| 44 |
+
"torch_dtype": "float32",
|
| 45 |
+
"transformers_version": "4.44.2",
|
| 46 |
+
"use_cache": true,
|
| 47 |
+
"use_predefined_initial_state": false,
|
| 48 |
+
"vocab_size": 100000
|
| 49 |
}
|
modeling_plamo.py
CHANGED
|
@@ -105,8 +105,8 @@ class LinearType(str, enum.Enum):
|
|
| 105 |
Fp8Retain = "fp8-retain"
|
| 106 |
|
| 107 |
|
| 108 |
-
class
|
| 109 |
-
model_type: str = "
|
| 110 |
|
| 111 |
def __init__(
|
| 112 |
self,
|
|
@@ -121,6 +121,8 @@ class PlamoConfig(PretrainedConfig): # type: ignore
|
|
| 121 |
max_position_embeddings: int = 2048,
|
| 122 |
attention_window_size: int = 2048,
|
| 123 |
full_attention_idx: list[int] | None = None,
|
|
|
|
|
|
|
| 124 |
# Mamba
|
| 125 |
mamba_d_state: int = 64,
|
| 126 |
mamba_d_conv: int = 4,
|
|
@@ -132,7 +134,7 @@ class PlamoConfig(PretrainedConfig): # type: ignore
|
|
| 132 |
intermediate_size: int = 13312,
|
| 133 |
# Tokenizer
|
| 134 |
vocab_size: int = 32000,
|
| 135 |
-
tokenizer_class: str = "
|
| 136 |
pad_token_id: Optional[int] = None,
|
| 137 |
bos_token_id: int = 1,
|
| 138 |
eos_token_id: int = 2,
|
|
@@ -161,6 +163,8 @@ class PlamoConfig(PretrainedConfig): # type: ignore
|
|
| 161 |
self.num_key_value_heads = num_key_value_heads
|
| 162 |
self.attention_window_size = attention_window_size
|
| 163 |
self.full_attention_idx = full_attention_idx if full_attention_idx is not None else []
|
|
|
|
|
|
|
| 164 |
|
| 165 |
self.mamba_d_state = mamba_d_state
|
| 166 |
self.mamba_d_conv = mamba_d_conv
|
|
@@ -196,8 +200,16 @@ class PlamoConfig(PretrainedConfig): # type: ignore
|
|
| 196 |
**kwargs,
|
| 197 |
)
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
|
|
|
|
| 201 |
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None:
|
| 202 |
super().__init__()
|
| 203 |
B, nh, L, c = key.shape
|
|
@@ -208,7 +220,7 @@ class PlamoAttentionCache(torch.nn.Module):
|
|
| 208 |
self.register_parameter("value", torch.nn.Parameter(value, requires_grad=False))
|
| 209 |
|
| 210 |
|
| 211 |
-
class
|
| 212 |
def __init__(self, conv_state: torch.Tensor, ssm_state: torch.Tensor) -> None:
|
| 213 |
super().__init__()
|
| 214 |
# conv_state: [B, C, d_conv]
|
|
@@ -220,10 +232,10 @@ class PlamoMambaCache(torch.nn.Module):
|
|
| 220 |
self.register_parameter("ssm_state", torch.nn.Parameter(ssm_state, requires_grad=False))
|
| 221 |
|
| 222 |
|
| 223 |
-
|
| 224 |
|
| 225 |
|
| 226 |
-
class
|
| 227 |
"""
|
| 228 |
stores states of the model for fast decoding.
|
| 229 |
`transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are
|
|
@@ -233,7 +245,7 @@ class PlamoCache(torch.nn.Module):
|
|
| 233 |
the state of Mamba properly.
|
| 234 |
"""
|
| 235 |
|
| 236 |
-
def __init__(self, config:
|
| 237 |
super().__init__()
|
| 238 |
self.config = config
|
| 239 |
self.cache = torch.nn.ModuleList([None for _ in range(config.num_hidden_layers)]) # type: ignore
|
|
@@ -242,7 +254,7 @@ class PlamoCache(torch.nn.Module):
|
|
| 242 |
c = self.cache[layer_idx]
|
| 243 |
if c is None:
|
| 244 |
return key, value
|
| 245 |
-
assert isinstance(c,
|
| 246 |
|
| 247 |
def _validate(cache: torch.Tensor, new_tensor: torch.Tensor) -> None:
|
| 248 |
assert len(cache.shape) == 4
|
|
@@ -258,20 +270,20 @@ class PlamoCache(torch.nn.Module):
|
|
| 258 |
|
| 259 |
def update_attention(
|
| 260 |
self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int
|
| 261 |
-
) ->
|
| 262 |
full_attn = layer_idx in self.config.full_attention_idx
|
| 263 |
window_size = self.config.attention_window_size
|
| 264 |
|
| 265 |
if self.cache[layer_idx] is None:
|
| 266 |
if full_attn:
|
| 267 |
-
self.cache[layer_idx] =
|
| 268 |
else:
|
| 269 |
-
self.cache[layer_idx] =
|
| 270 |
key_states[:, :, -window_size:, :], value_states[:, :, -window_size:, :]
|
| 271 |
)
|
| 272 |
else:
|
| 273 |
c = self.cache[layer_idx]
|
| 274 |
-
assert isinstance(c,
|
| 275 |
k, v = self.append_kv(key_states, value_states, layer_idx)
|
| 276 |
if full_attn:
|
| 277 |
c.key.data = k
|
|
@@ -281,19 +293,19 @@ class PlamoCache(torch.nn.Module):
|
|
| 281 |
c.value.data = v[:, :, -window_size:, :]
|
| 282 |
return self.cache[layer_idx] # type: ignore
|
| 283 |
|
| 284 |
-
def update_mamba(self, conv_state: torch.Tensor, ssm_state: torch.Tensor, layer_idx: int) ->
|
| 285 |
if self.cache[layer_idx] is None:
|
| 286 |
-
self.cache[layer_idx] =
|
| 287 |
else:
|
| 288 |
c = self.cache[layer_idx]
|
| 289 |
-
assert isinstance(c,
|
| 290 |
assert c.conv_state.shape == conv_state.shape
|
| 291 |
assert c.ssm_state.shape == ssm_state.shape
|
| 292 |
c.conv_state.data = conv_state
|
| 293 |
c.ssm_state.data = ssm_state
|
| 294 |
return self.cache[layer_idx] # type: ignore
|
| 295 |
|
| 296 |
-
def __getitem__(self, layer_idx: int) ->
|
| 297 |
assert layer_idx < len(self.cache)
|
| 298 |
layer_cache = self.cache[layer_idx]
|
| 299 |
return layer_cache # type: ignore
|
|
@@ -304,12 +316,12 @@ class PlamoCache(torch.nn.Module):
|
|
| 304 |
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
|
| 305 |
if layer_idx is not None:
|
| 306 |
c = self.cache[layer_idx]
|
| 307 |
-
assert isinstance(c,
|
| 308 |
return c.key.shape[2] # type: ignore
|
| 309 |
|
| 310 |
sequence_length: int | None = None
|
| 311 |
for layer_cache in self.cache:
|
| 312 |
-
if isinstance(layer_cache,
|
| 313 |
sequence_length = (
|
| 314 |
max(layer_cache.key.shape[2], sequence_length)
|
| 315 |
if sequence_length is not None
|
|
@@ -333,14 +345,14 @@ class PlamoCache(torch.nn.Module):
|
|
| 333 |
return previous_seq_length
|
| 334 |
|
| 335 |
def reorder_cache(self, beam_idx: torch.Tensor) -> None:
|
| 336 |
-
def _mamba(cache:
|
| 337 |
-
return
|
| 338 |
conv_state=cache.conv_state.index_select(0, beam_idx),
|
| 339 |
ssm_state=cache.ssm_state.index_select(0, beam_idx),
|
| 340 |
)
|
| 341 |
|
| 342 |
-
def _attention(cache:
|
| 343 |
-
return
|
| 344 |
key=cache.key.index_select(0, beam_idx),
|
| 345 |
value=cache.value.index_select(0, beam_idx),
|
| 346 |
)
|
|
@@ -349,10 +361,10 @@ class PlamoCache(torch.nn.Module):
|
|
| 349 |
if self.cache[i] is None:
|
| 350 |
continue
|
| 351 |
layer_cache = self.cache[i]
|
| 352 |
-
if isinstance(layer_cache,
|
| 353 |
self.cache[i] = _mamba(layer_cache)
|
| 354 |
else:
|
| 355 |
-
assert isinstance(layer_cache,
|
| 356 |
self.cache[i] = _attention(layer_cache)
|
| 357 |
|
| 358 |
@property
|
|
@@ -363,7 +375,7 @@ class PlamoCache(torch.nn.Module):
|
|
| 363 |
class DecoderInput(NamedTuple):
|
| 364 |
hidden_states: torch.Tensor
|
| 365 |
attention_mask: Optional[torch.Tensor] = None
|
| 366 |
-
past_states: Optional[
|
| 367 |
output_hidden_states: Optional[bool] = False
|
| 368 |
output_attentions: Optional[bool] = False
|
| 369 |
gradient_checkpointing: bool = False
|
|
@@ -810,7 +822,7 @@ def _causal_conv1d(
|
|
| 810 |
|
| 811 |
|
| 812 |
class Mamba(torch.nn.Module):
|
| 813 |
-
def __init__(self, config:
|
| 814 |
super().__init__()
|
| 815 |
self.config = config
|
| 816 |
self.layer_idx = layer_idx
|
|
@@ -862,8 +874,8 @@ class Mamba(torch.nn.Module):
|
|
| 862 |
self,
|
| 863 |
hidden_states: torch.Tensor,
|
| 864 |
attention_mask: Optional[torch.Tensor] = None,
|
| 865 |
-
past_states: Optional[
|
| 866 |
-
) -> Tuple[torch.Tensor, Optional[
|
| 867 |
bsize, length, _ = hidden_states.shape
|
| 868 |
is_update = length == 1 and past_states is not None
|
| 869 |
|
|
@@ -905,7 +917,7 @@ class Mamba(torch.nn.Module):
|
|
| 905 |
)
|
| 906 |
else:
|
| 907 |
c = past_states[self.layer_idx]
|
| 908 |
-
assert isinstance(c,
|
| 909 |
conv_state = c.conv_state
|
| 910 |
ssm_state = c.ssm_state
|
| 911 |
|
|
@@ -1022,7 +1034,7 @@ def swa_mask(q_len: int, kv_len: int, device: torch.device, window_size: int) ->
|
|
| 1022 |
|
| 1023 |
|
| 1024 |
class Attention(torch.nn.Module):
|
| 1025 |
-
def __init__(self, config:
|
| 1026 |
super().__init__()
|
| 1027 |
self.config = config
|
| 1028 |
self.layer_idx = layer_idx
|
|
@@ -1045,15 +1057,19 @@ class Attention(torch.nn.Module):
|
|
| 1045 |
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim)))
|
| 1046 |
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim)))
|
| 1047 |
|
| 1048 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1049 |
|
| 1050 |
def forward(
|
| 1051 |
self,
|
| 1052 |
hidden_states: torch.Tensor,
|
| 1053 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1054 |
-
past_states: Optional[
|
| 1055 |
output_attentions: bool = False,
|
| 1056 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[
|
| 1057 |
bsz, q_len, _ = hidden_states.size()
|
| 1058 |
|
| 1059 |
qkv = self.qkv_proj(hidden_states)
|
|
@@ -1094,15 +1110,13 @@ class Attention(torch.nn.Module):
|
|
| 1094 |
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads)
|
| 1095 |
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads)
|
| 1096 |
|
| 1097 |
-
full_attn = self.layer_idx in self.config.full_attention_idx
|
| 1098 |
-
|
| 1099 |
query_states = query_states.to(attn_dtype)
|
| 1100 |
key_states = key_states.to(attn_dtype)
|
| 1101 |
value_states = value_states.to(attn_dtype)
|
| 1102 |
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
| 1103 |
attention_mask = attention_mask.to(attn_dtype)
|
| 1104 |
if attention_mask is None:
|
| 1105 |
-
if not full_attn:
|
| 1106 |
assert key_states.shape[2] <= self.config.attention_window_size + 1
|
| 1107 |
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=True)
|
| 1108 |
else:
|
|
@@ -1112,7 +1126,7 @@ class Attention(torch.nn.Module):
|
|
| 1112 |
attention_mask = attention_mask[None, None]
|
| 1113 |
assert len(attention_mask.shape) == 4
|
| 1114 |
|
| 1115 |
-
if not full_attn:
|
| 1116 |
m_swa = swa_mask(
|
| 1117 |
query_states.shape[2], key_states.shape[2], query_states.device, self.config.attention_window_size
|
| 1118 |
)
|
|
@@ -1142,7 +1156,7 @@ class Attention(torch.nn.Module):
|
|
| 1142 |
|
| 1143 |
|
| 1144 |
class MLP(nn.Module):
|
| 1145 |
-
def __init__(self, config:
|
| 1146 |
super().__init__()
|
| 1147 |
self.config = config
|
| 1148 |
self.hidden_size = config.hidden_size
|
|
@@ -1156,14 +1170,14 @@ class MLP(nn.Module):
|
|
| 1156 |
return self.down_proj(h) # type: ignore
|
| 1157 |
|
| 1158 |
|
| 1159 |
-
class
|
| 1160 |
-
def __init__(self, config:
|
| 1161 |
super().__init__()
|
| 1162 |
self.config = config
|
| 1163 |
self.hidden_size = config.hidden_size
|
| 1164 |
-
self.is_mamba =
|
| 1165 |
self.mixer: torch.nn.Module
|
| 1166 |
-
if is_mamba:
|
| 1167 |
self.mixer = Mamba(config, layer_idx)
|
| 1168 |
else:
|
| 1169 |
self.mixer = Attention(config, layer_idx)
|
|
@@ -1180,7 +1194,7 @@ class PlamoDecoderLayer(torch.nn.Module):
|
|
| 1180 |
self,
|
| 1181 |
hidden_states: torch.Tensor,
|
| 1182 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1183 |
-
past_state: Optional[
|
| 1184 |
output_attentions: Optional[bool] = False,
|
| 1185 |
) -> Tuple[Any, ...]:
|
| 1186 |
# from LlamaDecoder
|
|
@@ -1224,7 +1238,7 @@ class PlamoDecoderLayer(torch.nn.Module):
|
|
| 1224 |
return outputs # type: ignore
|
| 1225 |
|
| 1226 |
|
| 1227 |
-
def is_mamba(config:
|
| 1228 |
if not config.mamba_enabled:
|
| 1229 |
return False
|
| 1230 |
assert config.mamba_step > 1
|
|
@@ -1236,15 +1250,12 @@ def is_mamba(config: PlamoConfig, i: int) -> bool:
|
|
| 1236 |
return (i % config.mamba_step) != (config.mamba_step // 2)
|
| 1237 |
|
| 1238 |
|
| 1239 |
-
class
|
| 1240 |
-
def __init__(self, config:
|
| 1241 |
super().__init__()
|
| 1242 |
|
| 1243 |
self.layers = torch.nn.ModuleList(
|
| 1244 |
-
[
|
| 1245 |
-
PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i)
|
| 1246 |
-
for i in range(config.num_hidden_layers)
|
| 1247 |
-
]
|
| 1248 |
)
|
| 1249 |
self.gradient_checkpointing = False
|
| 1250 |
|
|
@@ -1283,8 +1294,8 @@ class PlamoDecoder(torch.nn.Module):
|
|
| 1283 |
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns)
|
| 1284 |
|
| 1285 |
|
| 1286 |
-
class
|
| 1287 |
-
config_class =
|
| 1288 |
_no_split_modules: List[str]
|
| 1289 |
base_model_prefix = "model"
|
| 1290 |
supports_gradient_checkpointing = True
|
|
@@ -1304,8 +1315,8 @@ class PlamoPreTrainedModel(PreTrainedModel): # type: ignore
|
|
| 1304 |
module.weight.data[module.padding_idx].zero_()
|
| 1305 |
|
| 1306 |
|
| 1307 |
-
class
|
| 1308 |
-
def __init__(self, config:
|
| 1309 |
super().__init__(config)
|
| 1310 |
assert config.eval_attention_n_bit is None
|
| 1311 |
assert config.eval_mlp_n_bit is None
|
|
@@ -1321,7 +1332,7 @@ class PlamoModel(PlamoPreTrainedModel):
|
|
| 1321 |
self.image_proj = nn.Linear(config.image_feature_size, config.hidden_size, bias=False) # type: ignore
|
| 1322 |
else:
|
| 1323 |
raise ValueError(f"Unknown image_proj_type: {config.image_proj_type}")
|
| 1324 |
-
self.layers =
|
| 1325 |
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1326 |
|
| 1327 |
self.gradient_checkpointing = False
|
|
@@ -1376,15 +1387,16 @@ class PlamoModel(PlamoPreTrainedModel):
|
|
| 1376 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1377 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1378 |
position_ids: Optional[torch.Tensor] = None,
|
| 1379 |
-
past_key_values: Optional[
|
| 1380 |
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1381 |
image_features: Optional[torch.Tensor] = None,
|
| 1382 |
use_cache: Optional[bool] = None,
|
| 1383 |
output_attentions: Optional[bool] = None,
|
| 1384 |
output_hidden_states: Optional[bool] = None,
|
| 1385 |
return_dict: Optional[bool] = None,
|
|
|
|
|
|
|
| 1386 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 1387 |
-
assert input_ids is not None
|
| 1388 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1389 |
output_hidden_states = (
|
| 1390 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -1394,22 +1406,22 @@ class PlamoModel(PlamoPreTrainedModel):
|
|
| 1394 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1395 |
|
| 1396 |
# retrieve input_ids and inputs_embeds
|
| 1397 |
-
if input_ids is
|
| 1398 |
-
raise ValueError("You
|
| 1399 |
-
|
| 1400 |
-
|
| 1401 |
-
|
| 1402 |
-
|
|
|
|
|
|
|
|
|
|
| 1403 |
|
| 1404 |
seq_length_with_past = seq_length
|
| 1405 |
past_key_values_length = 0
|
| 1406 |
-
|
| 1407 |
if past_key_values is not None:
|
| 1408 |
past_key_values_length = past_key_values.get_seq_length()
|
| 1409 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 1410 |
-
|
| 1411 |
-
if inputs_embeds is None:
|
| 1412 |
-
inputs_embeds = self.embed_tokens(input_ids)
|
| 1413 |
|
| 1414 |
if image_features is not None:
|
| 1415 |
assert self.config.image_token_id is not None
|
|
@@ -1435,12 +1447,8 @@ class PlamoModel(PlamoPreTrainedModel):
|
|
| 1435 |
|
| 1436 |
hidden_states = inputs_embeds
|
| 1437 |
|
| 1438 |
-
if self.gradient_checkpointing and self.training:
|
| 1439 |
-
if use_cache:
|
| 1440 |
-
use_cache = False
|
| 1441 |
-
|
| 1442 |
if use_cache and past_key_values is None:
|
| 1443 |
-
past_key_values =
|
| 1444 |
|
| 1445 |
# decoder layers
|
| 1446 |
out = self.layers(
|
|
@@ -1477,7 +1485,7 @@ class PlamoModel(PlamoPreTrainedModel):
|
|
| 1477 |
)
|
| 1478 |
|
| 1479 |
|
| 1480 |
-
class
|
| 1481 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1482 |
|
| 1483 |
# Without this, the model cannot be loaded into a meta device.
|
|
@@ -1487,9 +1495,9 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1487 |
# https://github.com/pytorch/pytorch/blob/v2.4.1/torch/nn/modules/module.py#L2068
|
| 1488 |
_supports_param_buffer_assignment = False
|
| 1489 |
|
| 1490 |
-
def __init__(self, config:
|
| 1491 |
super().__init__(config)
|
| 1492 |
-
self.model =
|
| 1493 |
|
| 1494 |
self.vocab_size = config.vocab_size
|
| 1495 |
vocab_size = ((self.vocab_size + 15) // 16) * 16
|
|
@@ -1510,10 +1518,10 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1510 |
def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None:
|
| 1511 |
self.lm_head = new_embeddings
|
| 1512 |
|
| 1513 |
-
def set_decoder(self, decoder:
|
| 1514 |
self.model = decoder
|
| 1515 |
|
| 1516 |
-
def get_decoder(self) ->
|
| 1517 |
return self.model
|
| 1518 |
|
| 1519 |
def forward( # type: ignore
|
|
@@ -1521,7 +1529,7 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1521 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1522 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1523 |
position_ids: Optional[torch.Tensor] = None,
|
| 1524 |
-
past_key_values: Optional[
|
| 1525 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1526 |
image_features: Optional[torch.Tensor] = None,
|
| 1527 |
labels: Optional[torch.LongTensor] = None,
|
|
@@ -1529,6 +1537,9 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1529 |
output_attentions: Optional[bool] = None,
|
| 1530 |
output_hidden_states: Optional[bool] = None,
|
| 1531 |
return_dict: Optional[bool] = None,
|
|
|
|
|
|
|
|
|
|
| 1532 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1533 |
r"""
|
| 1534 |
Args:
|
|
@@ -1555,8 +1566,6 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1555 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1556 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
| 1557 |
```"""
|
| 1558 |
-
assert input_ids is not None
|
| 1559 |
-
|
| 1560 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1561 |
output_hidden_states = (
|
| 1562 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
@@ -1575,24 +1584,23 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1575 |
output_attentions=output_attentions,
|
| 1576 |
output_hidden_states=output_hidden_states,
|
| 1577 |
return_dict=return_dict,
|
|
|
|
|
|
|
| 1578 |
)
|
| 1579 |
|
| 1580 |
hidden_states = outputs[0]
|
| 1581 |
logits = self.lm_head(hidden_states)
|
| 1582 |
-
|
|
|
|
| 1583 |
|
| 1584 |
loss = None
|
| 1585 |
if labels is not None:
|
| 1586 |
-
|
| 1587 |
-
|
| 1588 |
-
|
| 1589 |
-
|
| 1590 |
-
|
| 1591 |
-
|
| 1592 |
-
shift_labels = shift_labels.view(-1)
|
| 1593 |
-
# Enable model parallelism
|
| 1594 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
| 1595 |
-
loss = loss_fct(shift_logits, shift_labels)
|
| 1596 |
|
| 1597 |
if not return_dict:
|
| 1598 |
output = (logits,) + outputs[1:]
|
|
@@ -1609,7 +1617,7 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1609 |
def prepare_inputs_for_generation(
|
| 1610 |
self,
|
| 1611 |
input_ids: torch.Tensor,
|
| 1612 |
-
past_key_values: Optional[
|
| 1613 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1614 |
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1615 |
image_features: Optional[torch.Tensor] = None,
|
|
@@ -1646,13 +1654,13 @@ class PlamoForCausalLM(PlamoPreTrainedModel):
|
|
| 1646 |
return model_inputs
|
| 1647 |
|
| 1648 |
@staticmethod
|
| 1649 |
-
def _reorder_cache(past_key_values:
|
| 1650 |
past_key_values.reorder_cache(beam_idx)
|
| 1651 |
return past_key_values
|
| 1652 |
|
| 1653 |
|
| 1654 |
class MLPImageProjector(nn.Module):
|
| 1655 |
-
def __init__(self, config:
|
| 1656 |
super().__init__()
|
| 1657 |
self.config = config
|
| 1658 |
|
|
|
|
| 105 |
Fp8Retain = "fp8-retain"
|
| 106 |
|
| 107 |
|
| 108 |
+
class Plamo2Config(PretrainedConfig): # type: ignore
|
| 109 |
+
model_type: str = "plamo2"
|
| 110 |
|
| 111 |
def __init__(
|
| 112 |
self,
|
|
|
|
| 121 |
max_position_embeddings: int = 2048,
|
| 122 |
attention_window_size: int = 2048,
|
| 123 |
full_attention_idx: list[int] | None = None,
|
| 124 |
+
rope_theta: int = 10000,
|
| 125 |
+
rope_local_theta: int = 10000,
|
| 126 |
# Mamba
|
| 127 |
mamba_d_state: int = 64,
|
| 128 |
mamba_d_conv: int = 4,
|
|
|
|
| 134 |
intermediate_size: int = 13312,
|
| 135 |
# Tokenizer
|
| 136 |
vocab_size: int = 32000,
|
| 137 |
+
tokenizer_class: str = "Plamo2Tokenizer",
|
| 138 |
pad_token_id: Optional[int] = None,
|
| 139 |
bos_token_id: int = 1,
|
| 140 |
eos_token_id: int = 2,
|
|
|
|
| 163 |
self.num_key_value_heads = num_key_value_heads
|
| 164 |
self.attention_window_size = attention_window_size
|
| 165 |
self.full_attention_idx = full_attention_idx if full_attention_idx is not None else []
|
| 166 |
+
self.rope_theta = rope_theta
|
| 167 |
+
self.rope_local_theta = rope_local_theta
|
| 168 |
|
| 169 |
self.mamba_d_state = mamba_d_state
|
| 170 |
self.mamba_d_conv = mamba_d_conv
|
|
|
|
| 200 |
**kwargs,
|
| 201 |
)
|
| 202 |
|
| 203 |
+
@property
|
| 204 |
+
def layers_block_type(self) -> list[str]:
|
| 205 |
+
return ["mamba" if is_mamba(self, i) else "attention" for i in range(self.num_hidden_layers)]
|
| 206 |
+
|
| 207 |
+
@property
|
| 208 |
+
def rope_local_base_freq(self) -> int:
|
| 209 |
+
return self.rope_local_theta
|
| 210 |
|
| 211 |
+
|
| 212 |
+
class Plamo2AttentionCache(torch.nn.Module):
|
| 213 |
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None:
|
| 214 |
super().__init__()
|
| 215 |
B, nh, L, c = key.shape
|
|
|
|
| 220 |
self.register_parameter("value", torch.nn.Parameter(value, requires_grad=False))
|
| 221 |
|
| 222 |
|
| 223 |
+
class Plamo2MambaCache(torch.nn.Module):
|
| 224 |
def __init__(self, conv_state: torch.Tensor, ssm_state: torch.Tensor) -> None:
|
| 225 |
super().__init__()
|
| 226 |
# conv_state: [B, C, d_conv]
|
|
|
|
| 232 |
self.register_parameter("ssm_state", torch.nn.Parameter(ssm_state, requires_grad=False))
|
| 233 |
|
| 234 |
|
| 235 |
+
Plamo2LayerCache = Plamo2AttentionCache | Plamo2MambaCache
|
| 236 |
|
| 237 |
|
| 238 |
+
class Plamo2Cache(torch.nn.Module):
|
| 239 |
"""
|
| 240 |
stores states of the model for fast decoding.
|
| 241 |
`transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are
|
|
|
|
| 245 |
the state of Mamba properly.
|
| 246 |
"""
|
| 247 |
|
| 248 |
+
def __init__(self, config: Plamo2Config) -> None:
|
| 249 |
super().__init__()
|
| 250 |
self.config = config
|
| 251 |
self.cache = torch.nn.ModuleList([None for _ in range(config.num_hidden_layers)]) # type: ignore
|
|
|
|
| 254 |
c = self.cache[layer_idx]
|
| 255 |
if c is None:
|
| 256 |
return key, value
|
| 257 |
+
assert isinstance(c, Plamo2AttentionCache)
|
| 258 |
|
| 259 |
def _validate(cache: torch.Tensor, new_tensor: torch.Tensor) -> None:
|
| 260 |
assert len(cache.shape) == 4
|
|
|
|
| 270 |
|
| 271 |
def update_attention(
|
| 272 |
self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int
|
| 273 |
+
) -> Plamo2AttentionCache:
|
| 274 |
full_attn = layer_idx in self.config.full_attention_idx
|
| 275 |
window_size = self.config.attention_window_size
|
| 276 |
|
| 277 |
if self.cache[layer_idx] is None:
|
| 278 |
if full_attn:
|
| 279 |
+
self.cache[layer_idx] = Plamo2AttentionCache(key_states, value_states)
|
| 280 |
else:
|
| 281 |
+
self.cache[layer_idx] = Plamo2AttentionCache(
|
| 282 |
key_states[:, :, -window_size:, :], value_states[:, :, -window_size:, :]
|
| 283 |
)
|
| 284 |
else:
|
| 285 |
c = self.cache[layer_idx]
|
| 286 |
+
assert isinstance(c, Plamo2AttentionCache)
|
| 287 |
k, v = self.append_kv(key_states, value_states, layer_idx)
|
| 288 |
if full_attn:
|
| 289 |
c.key.data = k
|
|
|
|
| 293 |
c.value.data = v[:, :, -window_size:, :]
|
| 294 |
return self.cache[layer_idx] # type: ignore
|
| 295 |
|
| 296 |
+
def update_mamba(self, conv_state: torch.Tensor, ssm_state: torch.Tensor, layer_idx: int) -> Plamo2MambaCache:
|
| 297 |
if self.cache[layer_idx] is None:
|
| 298 |
+
self.cache[layer_idx] = Plamo2MambaCache(conv_state, ssm_state)
|
| 299 |
else:
|
| 300 |
c = self.cache[layer_idx]
|
| 301 |
+
assert isinstance(c, Plamo2MambaCache)
|
| 302 |
assert c.conv_state.shape == conv_state.shape
|
| 303 |
assert c.ssm_state.shape == ssm_state.shape
|
| 304 |
c.conv_state.data = conv_state
|
| 305 |
c.ssm_state.data = ssm_state
|
| 306 |
return self.cache[layer_idx] # type: ignore
|
| 307 |
|
| 308 |
+
def __getitem__(self, layer_idx: int) -> Plamo2LayerCache | None:
|
| 309 |
assert layer_idx < len(self.cache)
|
| 310 |
layer_cache = self.cache[layer_idx]
|
| 311 |
return layer_cache # type: ignore
|
|
|
|
| 316 |
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
|
| 317 |
if layer_idx is not None:
|
| 318 |
c = self.cache[layer_idx]
|
| 319 |
+
assert isinstance(c, Plamo2AttentionCache)
|
| 320 |
return c.key.shape[2] # type: ignore
|
| 321 |
|
| 322 |
sequence_length: int | None = None
|
| 323 |
for layer_cache in self.cache:
|
| 324 |
+
if isinstance(layer_cache, Plamo2AttentionCache):
|
| 325 |
sequence_length = (
|
| 326 |
max(layer_cache.key.shape[2], sequence_length)
|
| 327 |
if sequence_length is not None
|
|
|
|
| 345 |
return previous_seq_length
|
| 346 |
|
| 347 |
def reorder_cache(self, beam_idx: torch.Tensor) -> None:
|
| 348 |
+
def _mamba(cache: Plamo2MambaCache) -> Plamo2MambaCache:
|
| 349 |
+
return Plamo2MambaCache(
|
| 350 |
conv_state=cache.conv_state.index_select(0, beam_idx),
|
| 351 |
ssm_state=cache.ssm_state.index_select(0, beam_idx),
|
| 352 |
)
|
| 353 |
|
| 354 |
+
def _attention(cache: Plamo2AttentionCache) -> Plamo2AttentionCache:
|
| 355 |
+
return Plamo2AttentionCache(
|
| 356 |
key=cache.key.index_select(0, beam_idx),
|
| 357 |
value=cache.value.index_select(0, beam_idx),
|
| 358 |
)
|
|
|
|
| 361 |
if self.cache[i] is None:
|
| 362 |
continue
|
| 363 |
layer_cache = self.cache[i]
|
| 364 |
+
if isinstance(layer_cache, Plamo2MambaCache):
|
| 365 |
self.cache[i] = _mamba(layer_cache)
|
| 366 |
else:
|
| 367 |
+
assert isinstance(layer_cache, Plamo2AttentionCache)
|
| 368 |
self.cache[i] = _attention(layer_cache)
|
| 369 |
|
| 370 |
@property
|
|
|
|
| 375 |
class DecoderInput(NamedTuple):
|
| 376 |
hidden_states: torch.Tensor
|
| 377 |
attention_mask: Optional[torch.Tensor] = None
|
| 378 |
+
past_states: Optional[Plamo2Cache] = None
|
| 379 |
output_hidden_states: Optional[bool] = False
|
| 380 |
output_attentions: Optional[bool] = False
|
| 381 |
gradient_checkpointing: bool = False
|
|
|
|
| 822 |
|
| 823 |
|
| 824 |
class Mamba(torch.nn.Module):
|
| 825 |
+
def __init__(self, config: Plamo2Config, layer_idx: int) -> None:
|
| 826 |
super().__init__()
|
| 827 |
self.config = config
|
| 828 |
self.layer_idx = layer_idx
|
|
|
|
| 874 |
self,
|
| 875 |
hidden_states: torch.Tensor,
|
| 876 |
attention_mask: Optional[torch.Tensor] = None,
|
| 877 |
+
past_states: Optional[Plamo2Cache] = None,
|
| 878 |
+
) -> Tuple[torch.Tensor, Optional[Plamo2Cache]]:
|
| 879 |
bsize, length, _ = hidden_states.shape
|
| 880 |
is_update = length == 1 and past_states is not None
|
| 881 |
|
|
|
|
| 917 |
)
|
| 918 |
else:
|
| 919 |
c = past_states[self.layer_idx]
|
| 920 |
+
assert isinstance(c, Plamo2MambaCache)
|
| 921 |
conv_state = c.conv_state
|
| 922 |
ssm_state = c.ssm_state
|
| 923 |
|
|
|
|
| 1034 |
|
| 1035 |
|
| 1036 |
class Attention(torch.nn.Module):
|
| 1037 |
+
def __init__(self, config: Plamo2Config, layer_idx: int) -> None:
|
| 1038 |
super().__init__()
|
| 1039 |
self.config = config
|
| 1040 |
self.layer_idx = layer_idx
|
|
|
|
| 1057 |
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim)))
|
| 1058 |
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim)))
|
| 1059 |
|
| 1060 |
+
self.full_attn = self.layer_idx in self.config.full_attention_idx
|
| 1061 |
+
base = self.config.rope_theta if self.full_attn else self.config.rope_local_theta
|
| 1062 |
+
self.rotary_emb = RotaryEmbedding(
|
| 1063 |
+
self.qk_dim, max_position_embeddings=self.config.attention_window_size, base=base
|
| 1064 |
+
)
|
| 1065 |
|
| 1066 |
def forward(
|
| 1067 |
self,
|
| 1068 |
hidden_states: torch.Tensor,
|
| 1069 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1070 |
+
past_states: Optional[Plamo2Cache] = None,
|
| 1071 |
output_attentions: bool = False,
|
| 1072 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Plamo2Cache]]:
|
| 1073 |
bsz, q_len, _ = hidden_states.size()
|
| 1074 |
|
| 1075 |
qkv = self.qkv_proj(hidden_states)
|
|
|
|
| 1110 |
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads)
|
| 1111 |
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads)
|
| 1112 |
|
|
|
|
|
|
|
| 1113 |
query_states = query_states.to(attn_dtype)
|
| 1114 |
key_states = key_states.to(attn_dtype)
|
| 1115 |
value_states = value_states.to(attn_dtype)
|
| 1116 |
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
| 1117 |
attention_mask = attention_mask.to(attn_dtype)
|
| 1118 |
if attention_mask is None:
|
| 1119 |
+
if not self.full_attn:
|
| 1120 |
assert key_states.shape[2] <= self.config.attention_window_size + 1
|
| 1121 |
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=True)
|
| 1122 |
else:
|
|
|
|
| 1126 |
attention_mask = attention_mask[None, None]
|
| 1127 |
assert len(attention_mask.shape) == 4
|
| 1128 |
|
| 1129 |
+
if not self.full_attn:
|
| 1130 |
m_swa = swa_mask(
|
| 1131 |
query_states.shape[2], key_states.shape[2], query_states.device, self.config.attention_window_size
|
| 1132 |
)
|
|
|
|
| 1156 |
|
| 1157 |
|
| 1158 |
class MLP(nn.Module):
|
| 1159 |
+
def __init__(self, config: Plamo2Config) -> None:
|
| 1160 |
super().__init__()
|
| 1161 |
self.config = config
|
| 1162 |
self.hidden_size = config.hidden_size
|
|
|
|
| 1170 |
return self.down_proj(h) # type: ignore
|
| 1171 |
|
| 1172 |
|
| 1173 |
+
class Plamo2DecoderLayer(torch.nn.Module):
|
| 1174 |
+
def __init__(self, config: Plamo2Config, layer_idx: int) -> None:
|
| 1175 |
super().__init__()
|
| 1176 |
self.config = config
|
| 1177 |
self.hidden_size = config.hidden_size
|
| 1178 |
+
self.is_mamba = config.layers_block_type[layer_idx] == "mamba"
|
| 1179 |
self.mixer: torch.nn.Module
|
| 1180 |
+
if self.is_mamba:
|
| 1181 |
self.mixer = Mamba(config, layer_idx)
|
| 1182 |
else:
|
| 1183 |
self.mixer = Attention(config, layer_idx)
|
|
|
|
| 1194 |
self,
|
| 1195 |
hidden_states: torch.Tensor,
|
| 1196 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1197 |
+
past_state: Optional[Plamo2Cache] = None,
|
| 1198 |
output_attentions: Optional[bool] = False,
|
| 1199 |
) -> Tuple[Any, ...]:
|
| 1200 |
# from LlamaDecoder
|
|
|
|
| 1238 |
return outputs # type: ignore
|
| 1239 |
|
| 1240 |
|
| 1241 |
+
def is_mamba(config: Plamo2Config, i: int) -> bool:
|
| 1242 |
if not config.mamba_enabled:
|
| 1243 |
return False
|
| 1244 |
assert config.mamba_step > 1
|
|
|
|
| 1250 |
return (i % config.mamba_step) != (config.mamba_step // 2)
|
| 1251 |
|
| 1252 |
|
| 1253 |
+
class Plamo2Decoder(torch.nn.Module):
|
| 1254 |
+
def __init__(self, config: Plamo2Config) -> None:
|
| 1255 |
super().__init__()
|
| 1256 |
|
| 1257 |
self.layers = torch.nn.ModuleList(
|
| 1258 |
+
[Plamo2DecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)]
|
|
|
|
|
|
|
|
|
|
| 1259 |
)
|
| 1260 |
self.gradient_checkpointing = False
|
| 1261 |
|
|
|
|
| 1294 |
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns)
|
| 1295 |
|
| 1296 |
|
| 1297 |
+
class Plamo2PreTrainedModel(PreTrainedModel): # type: ignore
|
| 1298 |
+
config_class = Plamo2Config
|
| 1299 |
_no_split_modules: List[str]
|
| 1300 |
base_model_prefix = "model"
|
| 1301 |
supports_gradient_checkpointing = True
|
|
|
|
| 1315 |
module.weight.data[module.padding_idx].zero_()
|
| 1316 |
|
| 1317 |
|
| 1318 |
+
class Plamo2Model(Plamo2PreTrainedModel):
|
| 1319 |
+
def __init__(self, config: Plamo2Config):
|
| 1320 |
super().__init__(config)
|
| 1321 |
assert config.eval_attention_n_bit is None
|
| 1322 |
assert config.eval_mlp_n_bit is None
|
|
|
|
| 1332 |
self.image_proj = nn.Linear(config.image_feature_size, config.hidden_size, bias=False) # type: ignore
|
| 1333 |
else:
|
| 1334 |
raise ValueError(f"Unknown image_proj_type: {config.image_proj_type}")
|
| 1335 |
+
self.layers = Plamo2Decoder(config) # type: ignore
|
| 1336 |
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 1337 |
|
| 1338 |
self.gradient_checkpointing = False
|
|
|
|
| 1387 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1388 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1389 |
position_ids: Optional[torch.Tensor] = None,
|
| 1390 |
+
past_key_values: Optional[Plamo2Cache] = None,
|
| 1391 |
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1392 |
image_features: Optional[torch.Tensor] = None,
|
| 1393 |
use_cache: Optional[bool] = None,
|
| 1394 |
output_attentions: Optional[bool] = None,
|
| 1395 |
output_hidden_states: Optional[bool] = None,
|
| 1396 |
return_dict: Optional[bool] = None,
|
| 1397 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1398 |
+
**kwargs: Any,
|
| 1399 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
|
|
| 1400 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1401 |
output_hidden_states = (
|
| 1402 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
| 1406 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1407 |
|
| 1408 |
# retrieve input_ids and inputs_embeds
|
| 1409 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 1410 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 1411 |
+
|
| 1412 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 1413 |
+
use_cache = False
|
| 1414 |
+
|
| 1415 |
+
if inputs_embeds is None:
|
| 1416 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 1417 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
| 1418 |
|
| 1419 |
seq_length_with_past = seq_length
|
| 1420 |
past_key_values_length = 0
|
|
|
|
| 1421 |
if past_key_values is not None:
|
| 1422 |
past_key_values_length = past_key_values.get_seq_length()
|
| 1423 |
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 1424 |
+
assert cache_position is None, "cache_position is not supported yet"
|
|
|
|
|
|
|
| 1425 |
|
| 1426 |
if image_features is not None:
|
| 1427 |
assert self.config.image_token_id is not None
|
|
|
|
| 1447 |
|
| 1448 |
hidden_states = inputs_embeds
|
| 1449 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1450 |
if use_cache and past_key_values is None:
|
| 1451 |
+
past_key_values = Plamo2Cache(self.config)
|
| 1452 |
|
| 1453 |
# decoder layers
|
| 1454 |
out = self.layers(
|
|
|
|
| 1485 |
)
|
| 1486 |
|
| 1487 |
|
| 1488 |
+
class Plamo2ForCausalLM(Plamo2PreTrainedModel):
|
| 1489 |
_tied_weights_keys = ["lm_head.weight"]
|
| 1490 |
|
| 1491 |
# Without this, the model cannot be loaded into a meta device.
|
|
|
|
| 1495 |
# https://github.com/pytorch/pytorch/blob/v2.4.1/torch/nn/modules/module.py#L2068
|
| 1496 |
_supports_param_buffer_assignment = False
|
| 1497 |
|
| 1498 |
+
def __init__(self, config: Plamo2Config) -> None:
|
| 1499 |
super().__init__(config)
|
| 1500 |
+
self.model = Plamo2Model(config)
|
| 1501 |
|
| 1502 |
self.vocab_size = config.vocab_size
|
| 1503 |
vocab_size = ((self.vocab_size + 15) // 16) * 16
|
|
|
|
| 1518 |
def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None:
|
| 1519 |
self.lm_head = new_embeddings
|
| 1520 |
|
| 1521 |
+
def set_decoder(self, decoder: Plamo2Model) -> None:
|
| 1522 |
self.model = decoder
|
| 1523 |
|
| 1524 |
+
def get_decoder(self) -> Plamo2Model:
|
| 1525 |
return self.model
|
| 1526 |
|
| 1527 |
def forward( # type: ignore
|
|
|
|
| 1529 |
input_ids: Optional[torch.LongTensor] = None,
|
| 1530 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1531 |
position_ids: Optional[torch.Tensor] = None,
|
| 1532 |
+
past_key_values: Optional[Plamo2Cache] = None,
|
| 1533 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1534 |
image_features: Optional[torch.Tensor] = None,
|
| 1535 |
labels: Optional[torch.LongTensor] = None,
|
|
|
|
| 1537 |
output_attentions: Optional[bool] = None,
|
| 1538 |
output_hidden_states: Optional[bool] = None,
|
| 1539 |
return_dict: Optional[bool] = None,
|
| 1540 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1541 |
+
logits_to_keep: int | torch.Tensor = 0,
|
| 1542 |
+
**kwargs: Any,
|
| 1543 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1544 |
r"""
|
| 1545 |
Args:
|
|
|
|
| 1566 |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 1567 |
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
| 1568 |
```"""
|
|
|
|
|
|
|
| 1569 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1570 |
output_hidden_states = (
|
| 1571 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
|
| 1584 |
output_attentions=output_attentions,
|
| 1585 |
output_hidden_states=output_hidden_states,
|
| 1586 |
return_dict=return_dict,
|
| 1587 |
+
cache_position=cache_position,
|
| 1588 |
+
**kwargs,
|
| 1589 |
)
|
| 1590 |
|
| 1591 |
hidden_states = outputs[0]
|
| 1592 |
logits = self.lm_head(hidden_states)
|
| 1593 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 1594 |
+
logits = logits[:, slice_indices, : self.vocab_size]
|
| 1595 |
|
| 1596 |
loss = None
|
| 1597 |
if labels is not None:
|
| 1598 |
+
if len(kwargs) > 0 and set(kwargs.keys()) != set(["ignore_index"]):
|
| 1599 |
+
warnings.warn(
|
| 1600 |
+
f"The following kwargs may not be supported: {', '.join(kwargs.keys())}. ",
|
| 1601 |
+
stacklevel=2,
|
| 1602 |
+
)
|
| 1603 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1604 |
|
| 1605 |
if not return_dict:
|
| 1606 |
output = (logits,) + outputs[1:]
|
|
|
|
| 1617 |
def prepare_inputs_for_generation(
|
| 1618 |
self,
|
| 1619 |
input_ids: torch.Tensor,
|
| 1620 |
+
past_key_values: Optional[Plamo2Cache] = None,
|
| 1621 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1622 |
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1623 |
image_features: Optional[torch.Tensor] = None,
|
|
|
|
| 1654 |
return model_inputs
|
| 1655 |
|
| 1656 |
@staticmethod
|
| 1657 |
+
def _reorder_cache(past_key_values: Plamo2Cache, beam_idx: torch.Tensor) -> Plamo2Cache:
|
| 1658 |
past_key_values.reorder_cache(beam_idx)
|
| 1659 |
return past_key_values
|
| 1660 |
|
| 1661 |
|
| 1662 |
class MLPImageProjector(nn.Module):
|
| 1663 |
+
def __init__(self, config: Plamo2Config) -> None:
|
| 1664 |
super().__init__()
|
| 1665 |
self.config = config
|
| 1666 |
|
tokenization_plamo.py
CHANGED
|
@@ -237,7 +237,7 @@ class AhoCorasick:
|
|
| 237 |
return [self._tokens[token_id] for token_id in self.encode(data)]
|
| 238 |
|
| 239 |
|
| 240 |
-
class
|
| 241 |
vocab_files_names = VOCAB_FILES_NAMES
|
| 242 |
model_input_names = ["input_ids", "attention_mask"]
|
| 243 |
|
|
|
|
| 237 |
return [self._tokens[token_id] for token_id in self.encode(data)]
|
| 238 |
|
| 239 |
|
| 240 |
+
class Plamo2Tokenizer(PreTrainedTokenizer): # type: ignore
|
| 241 |
vocab_files_names = VOCAB_FILES_NAMES
|
| 242 |
model_input_names = ["input_ids", "attention_mask"]
|
| 243 |
|
tokenizer_config.json
CHANGED
|
@@ -1,55 +1,55 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
},
|
| 13 |
-
"1": {
|
| 14 |
-
"content": "<|plamo:bos|>",
|
| 15 |
-
"lstrip": false,
|
| 16 |
-
"normalized": false,
|
| 17 |
-
"rstrip": false,
|
| 18 |
-
"single_word": false,
|
| 19 |
-
"special": true
|
| 20 |
-
},
|
| 21 |
-
"2": {
|
| 22 |
-
"content": "<|plamo:eos|>",
|
| 23 |
-
"lstrip": false,
|
| 24 |
-
"normalized": false,
|
| 25 |
-
"rstrip": false,
|
| 26 |
-
"single_word": false,
|
| 27 |
-
"special": true
|
| 28 |
-
},
|
| 29 |
-
"3": {
|
| 30 |
-
"content": "<|plamo:pad|>",
|
| 31 |
-
"lstrip": false,
|
| 32 |
-
"normalized": false,
|
| 33 |
-
"rstrip": false,
|
| 34 |
-
"single_word": false,
|
| 35 |
-
"special": true
|
| 36 |
-
}
|
| 37 |
},
|
| 38 |
-
"
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
},
|
| 44 |
-
"
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
"
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<|plamo:unk|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<|plamo:bos|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<|plamo:eos|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<|plamo:pad|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
}
|
| 37 |
+
},
|
| 38 |
+
"auto_map": {
|
| 39 |
+
"AutoTokenizer": [
|
| 40 |
+
"tokenization_plamo.Plamo2Tokenizer",
|
| 41 |
+
null
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<|plamo:bos|>",
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"cls_token": null,
|
| 47 |
+
"eos_token": "<|plamo:eos|>",
|
| 48 |
+
"local_file_only": true,
|
| 49 |
+
"mask_token": null,
|
| 50 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 51 |
+
"pad_token": "<|plamo:pad|>",
|
| 52 |
+
"sep_token": null,
|
| 53 |
+
"tokenizer_class": "Plamo2Tokenizer",
|
| 54 |
+
"unk_token": "<|plamo:unk|>"
|
| 55 |
+
}
|