whisper-wenetspeech-S / inference /inference-finetune-lid.py
pengyizhou's picture
update inference results
d8be796
#!/usr/bin/env python
# pip install transformers datasets torch soundfile jiwer
from datasets import load_dataset, Audio
from transformers import pipeline, WhisperProcessor
from torch.utils.data import DataLoader
import torch
from jiwer import wer as jiwer_wer
from jiwer import cer as jiwer_cer
import ipdb
import subprocess
import os
# 1. Load FLEURS Burmese test set, cast to 16 kHz audio
ws_test_net = load_dataset("wenet-e2e/wenetspeech", "TEST_NET", split="test", streaming=False)
ws_test_meeting = load_dataset("wenet-e2e/wenetspeech", "TEST_MEETING", split="test", streaming=False)
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "pengyizhou/whisper-wenetspeech-S"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)
whisper_model = "openai/whisper-large-v3"
processor = WhisperProcessor.from_pretrained(whisper_model, language="chinese")
asr = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
chunk_length_s=30,
batch_size=64,
max_new_tokens=225,
device=device,
num_beams=1, # Use beam search for better quality
)
generate_kwargs = {
"condition_on_prev_tokens": False,
"compression_ratio_threshold": 1.35, # zlib compression ratio threshold (in token space)
"temperature": (0.0, 0.2, 0.4, 0.6, 0.8, 1.0),
"logprob_threshold": -1.0,
"language": "chinese", # Set language to Chinese
}
# 3. Batch‐wise transcription function
def transcribe_batch(batch):
# `batch["audio"]` is a list of {"array": np.ndarray, ...}
inputs = [ ex["array"] for ex in batch["audio"] ]
outputs = asr(inputs, generate_kwargs=generate_kwargs) # returns a list of dicts with "text"
# lower-case and strip to normalize for CER
preds = [ out["text"].lower().strip() for out in outputs ]
return {"prediction": preds}
# 4. Map over the dataset in chunks of, say, 32 examples at a time
result_net = ws_test_net.map(
transcribe_batch,
batched=True,
batch_size=64, # feed 32 audios → pipeline will sub-batch into 8s
remove_columns=ws_test_net.column_names
)
result_meet = ws_test_meeting.map(
transcribe_batch,
batched=True,
batch_size=64, # feed 32 audios → pipeline will sub-batch into 8s
remove_columns=ws_test_meeting.column_names
)
for idx, (ds, result) in enumerate([(ws_test_net, result_net), (ws_test_meeting, result_meet)]):
ids = [key for key in ds["segment_id"]]
refs = [t.lower().strip() for t in ds["text"]]
preds = [t for t in result["prediction"]]
score_cer = jiwer_cer(refs, preds)
if idx == 0:
print(f"Zero-shot CER on wenet test_net: {score_cer*100:.2f}%")
with open("./wenet_net_finetune.pred", "w") as pred_results:
for key, pred in zip(ids, preds):
pred_results.write("{} {}\n".format(key, pred))
with open("./wenet_net.ref", "w") as ref_results:
for key, ref in zip(ids, refs):
ref_results.write("{} {}\n".format(key, ref))
if idx == 1:
print(f"Zero-shot CER on wenet test_meeting: {score_cer*100:.2f}%")
with open("./wenet_meeting_finetune.pred", "w") as pred_results:
for key, pred in zip(ids, preds):
pred_results.write("{} {}\n".format(key, pred))
pred_results.write("{}\n".format(pred))
with open("./wenet_meeting.ref", "w") as ref_results:
for key, ref in zip(ids, refs):
ref_results.write("{} {}\n".format(key, ref))
# Check if compute-wer.py exists
compute_wer_script = "./compute-wer.py"
if not os.path.exists(compute_wer_script):
# Try to find it in parent directories or common locations
possible_locations = [
"./compute-wer.py",
]
for location in possible_locations:
if os.path.exists(location):
compute_wer_script = location
break
else:
print(f"Warning: compute-wer.py not found. Tried: {[compute_wer_script] + possible_locations}")
print("Skipping detailed WER analysis.")
compute_wer_script = None
if compute_wer_script:
try:
# Run compute-wer.py with character-level analysis
ref_file = "./wenet_net.ref"
hyp_file = "./wenet_net_finetune.pred"
wer_file = "./wenet_net_finetune.wer"
cmd = [
"python", compute_wer_script,
"--char=1", # Character-level analysis
"--v=1", # Verbose output
ref_file,
hyp_file
]
print(f"Running: {' '.join(cmd)} > {wer_file}")
# Run the command and redirect output to wer file
with open(wer_file, "w") as wer_output:
result = subprocess.run(
cmd,
stdout=wer_output,
stderr=subprocess.PIPE,
text=True,
check=True
)
print(f"CER analysis saved to {wer_file}")
# Optionally, print the first few lines of the WER file
if os.path.exists(wer_file):
print("\nFirst few lines of WER analysis:")
with open(wer_file, "r") as f:
lines = f.readlines()
for i, line in enumerate(lines[:10]): # Show first 10 lines
print(f" {line.rstrip()}")
if len(lines) > 10:
print(f" ... ({len(lines) - 10} more lines)")
ref_file = "./wenet_meeting.ref"
hyp_file = "./wenet_meeting_finetune.pred"
wer_file = "./wenet_meeting_finetune.wer"
cmd = [
"python", compute_wer_script,
"--char=1", # Character-level analysis
"--v=1", # Verbose output
ref_file,
hyp_file
]
print(f"Running: {' '.join(cmd)} > {wer_file}")
# Run the command and redirect output to wer file
with open(wer_file, "w") as wer_output:
result = subprocess.run(
cmd,
stdout=wer_output,
stderr=subprocess.PIPE,
text=True,
check=True
)
print(f"CER analysis saved to {wer_file}")
# Optionally, print the first few lines of the WER file
if os.path.exists(wer_file):
print("\nFirst few lines of WER analysis:")
with open(wer_file, "r") as f:
lines = f.readlines()
for i, line in enumerate(lines[:10]): # Show first 10 lines
print(f" {line.rstrip()}")
if len(lines) > 10:
print(f" ... ({len(lines) - 10} more lines)")
except subprocess.CalledProcessError as e:
print(f"Error running compute-wer.py: {e}")
if e.stderr:
print(f"Error details: {e.stderr}")
except Exception as e:
print(f"Unexpected error: {e}")
print("Inference and CER analysis completed!")