Upload twin-tower VLM using push_to_hub
Browse files- README.md +54 -0
- config.json +106 -0
- model.safetensors +3 -0
README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
---
|
| 3 |
+
library_name: nanovlm
|
| 4 |
+
license: mit
|
| 5 |
+
pipeline_tag: image-text-to-text
|
| 6 |
+
tags:
|
| 7 |
+
- vision-language
|
| 8 |
+
- multimodal
|
| 9 |
+
- research
|
| 10 |
+
- twin-tower
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
**Twin-Tower VLM** is a vision-language model based on the twin-tower architecture. This model uses a separate vision tower to process images and generate per-layer contexts, which are then integrated with a frozen language tower for text generation.
|
| 14 |
+
|
| 15 |
+
## Architecture
|
| 16 |
+
|
| 17 |
+
The twin-tower architecture consists of:
|
| 18 |
+
|
| 19 |
+
1. **Vision Tower**: Processes images through vision encoder → modality projector → decoder layers to create per-layer contexts
|
| 20 |
+
2. **Language Tower**: Frozen language model that receives vision contexts and generates text
|
| 21 |
+
|
| 22 |
+
## Key Features
|
| 23 |
+
|
| 24 |
+
- **Twin-Tower Design**: Separate processing of vision and language with per-layer context integration
|
| 25 |
+
- **Frozen Language Tower**: Language model parameters are frozen, gradients flow through vision contexts
|
| 26 |
+
- **Per-Layer Contexts**: Vision tower generates contexts for each language model layer
|
| 27 |
+
- **Efficient Training**: Only vision tower components are trainable
|
| 28 |
+
|
| 29 |
+
## Usage
|
| 30 |
+
|
| 31 |
+
```python
|
| 32 |
+
from twin_tower import VisionLanguageTwinTowerModel
|
| 33 |
+
from config import VLMConfig
|
| 34 |
+
|
| 35 |
+
# Load the model
|
| 36 |
+
cfg = VLMConfig()
|
| 37 |
+
model = VisionLanguageTwinTowerModel.from_pretrained(cfg)
|
| 38 |
+
|
| 39 |
+
# Generate text from image
|
| 40 |
+
from PIL import Image
|
| 41 |
+
image = Image.open("your_image.jpg")
|
| 42 |
+
result = model.generate_from_text("What is in this image?", image)
|
| 43 |
+
print(result)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Model Details
|
| 47 |
+
|
| 48 |
+
- **Base Model**: patrickamadeus/nanoVLM-230M-8k-twin-maxxing-3000
|
| 49 |
+
- **Architecture**: Twin-Tower VLM
|
| 50 |
+
- **Vision Encoder**: SigLIP-based
|
| 51 |
+
- **Language Model**: SmolLM2-based
|
| 52 |
+
- **Parameters**: ~230M total (vision tower trainable, language tower frozen)
|
| 53 |
+
|
| 54 |
+
For more information, check out the base nanoVLM model: https://huggingface.co/lusxvr/nanoVLM-222M.
|
config.json
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"vit_hidden_dim": 768,
|
| 3 |
+
"vit_inter_dim": 3072,
|
| 4 |
+
"vit_patch_size": 16,
|
| 5 |
+
"vit_img_size": 512,
|
| 6 |
+
"vit_n_heads": 12,
|
| 7 |
+
"vit_dropout": 0.0,
|
| 8 |
+
"vit_n_blocks": 12,
|
| 9 |
+
"vit_ln_eps": 1e-06,
|
| 10 |
+
"vit_cls_flag": false,
|
| 11 |
+
"vit_model_type": "google/siglip2-base-patch16-512",
|
| 12 |
+
"lm_hidden_dim": 576,
|
| 13 |
+
"lm_inter_dim": 1536,
|
| 14 |
+
"lm_rms_eps": 1e-05,
|
| 15 |
+
"lm_re_base": 100000,
|
| 16 |
+
"lm_max_position_embeddings": 8192,
|
| 17 |
+
"lm_base_vocab_size": 49152,
|
| 18 |
+
"extra_token_amount": 66,
|
| 19 |
+
"lm_vocab_size": 49218,
|
| 20 |
+
"lm_n_heads": 9,
|
| 21 |
+
"lm_n_kv_heads": 3,
|
| 22 |
+
"lm_dropout": 0.0,
|
| 23 |
+
"lm_n_blocks": 30,
|
| 24 |
+
"lm_attn_scaling": 1.0,
|
| 25 |
+
"lm_max_length": 256,
|
| 26 |
+
"lm_use_tokens": false,
|
| 27 |
+
"lm_tie_weights": true,
|
| 28 |
+
"lm_model_type": "HuggingFaceTB/SmolLM2-135M-Instruct",
|
| 29 |
+
"lm_tokenizer": "HuggingFaceTB/SmolLM2-360M-Instruct",
|
| 30 |
+
"lm_chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
| 31 |
+
"mp_pixel_shuffle_factor": 4,
|
| 32 |
+
"mp_image_token_length": 64,
|
| 33 |
+
"max_img_size": 512,
|
| 34 |
+
"resize_to_max_side_len": false,
|
| 35 |
+
"vlm_extra_tokens": {
|
| 36 |
+
"image_token": "<|image|>",
|
| 37 |
+
"global_image_token": "<|global_image|>",
|
| 38 |
+
"r1c1": "<row_1_col_1>",
|
| 39 |
+
"r1c2": "<row_1_col_2>",
|
| 40 |
+
"r1c3": "<row_1_col_3>",
|
| 41 |
+
"r1c4": "<row_1_col_4>",
|
| 42 |
+
"r1c5": "<row_1_col_5>",
|
| 43 |
+
"r1c6": "<row_1_col_6>",
|
| 44 |
+
"r1c7": "<row_1_col_7>",
|
| 45 |
+
"r1c8": "<row_1_col_8>",
|
| 46 |
+
"r2c1": "<row_2_col_1>",
|
| 47 |
+
"r2c2": "<row_2_col_2>",
|
| 48 |
+
"r2c3": "<row_2_col_3>",
|
| 49 |
+
"r2c4": "<row_2_col_4>",
|
| 50 |
+
"r2c5": "<row_2_col_5>",
|
| 51 |
+
"r2c6": "<row_2_col_6>",
|
| 52 |
+
"r2c7": "<row_2_col_7>",
|
| 53 |
+
"r2c8": "<row_2_col_8>",
|
| 54 |
+
"r3c1": "<row_3_col_1>",
|
| 55 |
+
"r3c2": "<row_3_col_2>",
|
| 56 |
+
"r3c3": "<row_3_col_3>",
|
| 57 |
+
"r3c4": "<row_3_col_4>",
|
| 58 |
+
"r3c5": "<row_3_col_5>",
|
| 59 |
+
"r3c6": "<row_3_col_6>",
|
| 60 |
+
"r3c7": "<row_3_col_7>",
|
| 61 |
+
"r3c8": "<row_3_col_8>",
|
| 62 |
+
"r4c1": "<row_4_col_1>",
|
| 63 |
+
"r4c2": "<row_4_col_2>",
|
| 64 |
+
"r4c3": "<row_4_col_3>",
|
| 65 |
+
"r4c4": "<row_4_col_4>",
|
| 66 |
+
"r4c5": "<row_4_col_5>",
|
| 67 |
+
"r4c6": "<row_4_col_6>",
|
| 68 |
+
"r4c7": "<row_4_col_7>",
|
| 69 |
+
"r4c8": "<row_4_col_8>",
|
| 70 |
+
"r5c1": "<row_5_col_1>",
|
| 71 |
+
"r5c2": "<row_5_col_2>",
|
| 72 |
+
"r5c3": "<row_5_col_3>",
|
| 73 |
+
"r5c4": "<row_5_col_4>",
|
| 74 |
+
"r5c5": "<row_5_col_5>",
|
| 75 |
+
"r5c6": "<row_5_col_6>",
|
| 76 |
+
"r5c7": "<row_5_col_7>",
|
| 77 |
+
"r5c8": "<row_5_col_8>",
|
| 78 |
+
"r6c1": "<row_6_col_1>",
|
| 79 |
+
"r6c2": "<row_6_col_2>",
|
| 80 |
+
"r6c3": "<row_6_col_3>",
|
| 81 |
+
"r6c4": "<row_6_col_4>",
|
| 82 |
+
"r6c5": "<row_6_col_5>",
|
| 83 |
+
"r6c6": "<row_6_col_6>",
|
| 84 |
+
"r6c7": "<row_6_col_7>",
|
| 85 |
+
"r6c8": "<row_6_col_8>",
|
| 86 |
+
"r7c1": "<row_7_col_1>",
|
| 87 |
+
"r7c2": "<row_7_col_2>",
|
| 88 |
+
"r7c3": "<row_7_col_3>",
|
| 89 |
+
"r7c4": "<row_7_col_4>",
|
| 90 |
+
"r7c5": "<row_7_col_5>",
|
| 91 |
+
"r7c6": "<row_7_col_6>",
|
| 92 |
+
"r7c7": "<row_7_col_7>",
|
| 93 |
+
"r7c8": "<row_7_col_8>",
|
| 94 |
+
"r8c1": "<row_8_col_1>",
|
| 95 |
+
"r8c2": "<row_8_col_2>",
|
| 96 |
+
"r8c3": "<row_8_col_3>",
|
| 97 |
+
"r8c4": "<row_8_col_4>",
|
| 98 |
+
"r8c5": "<row_8_col_5>",
|
| 99 |
+
"r8c6": "<row_8_col_6>",
|
| 100 |
+
"r8c7": "<row_8_col_7>",
|
| 101 |
+
"r8c8": "<row_8_col_8>"
|
| 102 |
+
},
|
| 103 |
+
"vlm_load_backbone_weights": true,
|
| 104 |
+
"vlm_checkpoint_path": "lusxvr/nanoVLM-230M-8k",
|
| 105 |
+
"hf_repo_name": "nanoVLM"
|
| 106 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d9ffe689bdf230a1b510499dc847ae155bf0ac0392a9f1916828ee94b1a4de2f
|
| 3 |
+
size 1450549888
|