Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAnswer Mining from a Pool of Images: Towards Retrieval-Based Visual Question Answering
We study visual question answering in a setting where the answer has to be mined from a pool of relevant and irrelevant images given as a context. For such a setting, a model must first retrieve relevant images from the pool and answer the question from these retrieved images. We refer to this problem as retrieval-based visual question answering (or RETVQA in short). The RETVQA is distinctively different and more challenging than the traditionally-studied Visual Question Answering (VQA), where a given question has to be answered with a single relevant image in context. Towards solving the RETVQA task, we propose a unified Multi Image BART (MI-BART) that takes a question and retrieved images using our relevance encoder for free-form fluent answer generation. Further, we introduce the largest dataset in this space, namely RETVQA, which has the following salient features: multi-image and retrieval requirement for VQA, metadata-independent questions over a pool of heterogeneous images, expecting a mix of classification-oriented and open-ended generative answers. Our proposed framework achieves an accuracy of 76.5% and a fluency of 79.3% on the proposed dataset, namely RETVQA and also outperforms state-of-the-art methods by 4.9% and 11.8% on the image segment of the publicly available WebQA dataset on the accuracy and fluency metrics, respectively.
From Known to the Unknown: Transferring Knowledge to Answer Questions about Novel Visual and Semantic Concepts
Current Visual Question Answering (VQA) systems can answer intelligent questions about `Known' visual content. However, their performance drops significantly when questions about visually and linguistically `Unknown' concepts are presented during inference (`Open-world' scenario). A practical VQA system should be able to deal with novel concepts in real world settings. To address this problem, we propose an exemplar-based approach that transfers learning (i.e., knowledge) from previously `Known' concepts to answer questions about the `Unknown'. We learn a highly discriminative joint embedding space, where visual and semantic features are fused to give a unified representation. Once novel concepts are presented to the model, it looks for the closest match from an exemplar set in the joint embedding space. This auxiliary information is used alongside the given Image-Question pair to refine visual attention in a hierarchical fashion. Since handling the high dimensional exemplars on large datasets can be a significant challenge, we introduce an efficient matching scheme that uses a compact feature description for search and retrieval. To evaluate our model, we propose a new split for VQA, separating Unknown visual and semantic concepts from the training set. Our approach shows significant improvements over state-of-the-art VQA models on the proposed Open-World VQA dataset and standard VQA datasets.
OK-VQA: A Visual Question Answering Benchmark Requiring External Knowledge
Visual Question Answering (VQA) in its ideal form lets us study reasoning in the joint space of vision and language and serves as a proxy for the AI task of scene understanding. However, most VQA benchmarks to date are focused on questions such as simple counting, visual attributes, and object detection that do not require reasoning or knowledge beyond what is in the image. In this paper, we address the task of knowledge-based visual question answering and provide a benchmark, called OK-VQA, where the image content is not sufficient to answer the questions, encouraging methods that rely on external knowledge resources. Our new dataset includes more than 14,000 questions that require external knowledge to answer. We show that the performance of the state-of-the-art VQA models degrades drastically in this new setting. Our analysis shows that our knowledge-based VQA task is diverse, difficult, and large compared to previous knowledge-based VQA datasets. We hope that this dataset enables researchers to open up new avenues for research in this domain. See http://okvqa.allenai.org to download and browse the dataset.
A-OKVQA: A Benchmark for Visual Question Answering using World Knowledge
The Visual Question Answering (VQA) task aspires to provide a meaningful testbed for the development of AI models that can jointly reason over visual and natural language inputs. Despite a proliferation of VQA datasets, this goal is hindered by a set of common limitations. These include a reliance on relatively simplistic questions that are repetitive in both concepts and linguistic structure, little world knowledge needed outside of the paired image, and limited reasoning required to arrive at the correct answer. We introduce A-OKVQA, a crowdsourced dataset composed of a diverse set of about 25K questions requiring a broad base of commonsense and world knowledge to answer. In contrast to the existing knowledge-based VQA datasets, the questions generally cannot be answered by simply querying a knowledge base, and instead require some form of commonsense reasoning about the scene depicted in the image. We demonstrate the potential of this new dataset through a detailed analysis of its contents and baseline performance measurements over a variety of state-of-the-art vision-language models. Project page: http://a-okvqa.allenai.org/
VQA: Visual Question Answering
We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vqa).
Q&A Prompts: Discovering Rich Visual Clues through Mining Question-Answer Prompts for VQA requiring Diverse World Knowledge
With the breakthrough of multi-modal large language models, answering complex visual questions that demand advanced reasoning abilities and world knowledge has become a much more important testbed for developing AI models than ever. However, equipping AI models with robust cross-modality reasoning ability remains challenging since the cognition scheme of humans has not been understood systematically. In this paper, we believe that if we can collect visual clues in the given image as much as possible, we will recognize the image more accurately, understand the question better, recall relevant knowledge more easily, and finally reason out the answer. We discover these rich visual clues by mining question-answer pairs in images and sending them into multi-modal large language models as prompts. We call the proposed method Q&A Prompts. Specifically, we first use the image-answer pairs and the corresponding questions in the training set as inputs and outputs to train a visual question generation model. Then, we use an image tagging model to identify various instances and send packaged image-tag pairs into the visual question generation model to generate relevant questions with the extracted image tags as answers. Finally, we encode these generated question-answer pairs as prompts with a visual-aware prompting module and send them into pre-trained multi-modal large language models to reason out the final answers. Experimental results show that, compared with state-of-the-art methods, our Q&A Prompts achieves substantial improvements on the challenging visual question answering datasets requiring reasoning over diverse world knowledge, such as OK-VQA and A-OKVQA.
VoQA: Visual-only Question Answering
We propose Visual-only Question Answering (VoQA), a novel multimodal task in which questions are visually embedded within images, without any accompanying textual input. This requires models to locate, recognize, and reason over visually embedded textual questions, posing challenges for existing large vision-language models (LVLMs), which show notable performance drops even with carefully designed prompts. To bridge this gap, we introduce Guided Response Triggering Supervised Fine-tuning (GRT-SFT), a structured fine-tuning strategy that guides the model to perform step-by-step reasoning purely based on visual input, significantly improving model performance. Our work enhances models' capacity for human-like visual understanding in complex multimodal scenarios, where information, including language, is perceived visually.
Fully Authentic Visual Question Answering Dataset from Online Communities
Visual Question Answering (VQA) entails answering questions about images. We introduce the first VQA dataset in which all contents originate from an authentic use case. Sourced from online question answering community forums, we call it VQAonline. We then characterize our dataset and how it relates to eight other VQA datasets. Observing that answers in our dataset tend to be much longer (e.g., with a mean of 173 words) and thus incompatible with standard VQA evaluation metrics, we next analyze which of the six popular metrics for longer text evaluation align best with human judgments. We then use the best-suited metrics to evaluate six state-of-the-art vision and language foundation models on VQAonline and reveal where they struggle most. We will release the dataset soon to facilitate future extensions.
Exploring Advanced Techniques for Visual Question Answering: A Comprehensive Comparison
Visual Question Answering (VQA) has emerged as a pivotal task in the intersection of computer vision and natural language processing, requiring models to understand and reason about visual content in response to natural language questions. Analyzing VQA datasets is essential for developing robust models that can handle the complexities of multimodal reasoning. Several approaches have been developed to examine these datasets, each offering distinct perspectives on question diversity, answer distribution, and visual-textual correlations. Despite significant progress, existing VQA models face challenges related to dataset bias, limited model complexity, commonsense reasoning gaps, rigid evaluation methods, and generalization to real world scenarios. This paper offers a detailed study of the original VQA dataset, baseline models and methods along with a comparative study of five advanced VQA models, ABC-CNN, KICNLE, Masked Vision and Language Modeling, BLIP-2, and OFA, each employing distinct methods to address these ongoing challenges.
TGIF-QA: Toward Spatio-Temporal Reasoning in Visual Question Answering
Vision and language understanding has emerged as a subject undergoing intense study in Artificial Intelligence. Among many tasks in this line of research, visual question answering (VQA) has been one of the most successful ones, where the goal is to learn a model that understands visual content at region-level details and finds their associations with pairs of questions and answers in the natural language form. Despite the rapid progress in the past few years, most existing work in VQA have focused primarily on images. In this paper, we focus on extending VQA to the video domain and contribute to the literature in three important ways. First, we propose three new tasks designed specifically for video VQA, which require spatio-temporal reasoning from videos to answer questions correctly. Next, we introduce a new large-scale dataset for video VQA named TGIF-QA that extends existing VQA work with our new tasks. Finally, we propose a dual-LSTM based approach with both spatial and temporal attention, and show its effectiveness over conventional VQA techniques through empirical evaluations.
Probing Visual Language Priors in VLMs
Despite recent advances in Vision-Language Models (VLMs), many still over-rely on visual language priors present in their training data rather than true visual reasoning. To examine the situation, we introduce ViLP, a visual question answering (VQA) benchmark that pairs each question with three potential answers and three corresponding images: one image whose answer can be inferred from text alone, and two images that demand visual reasoning. By leveraging image generative models, we ensure significant variation in texture, shape, conceptual combinations, hallucinated elements, and proverb-based contexts, making our benchmark images distinctly out-of-distribution. While humans achieve near-perfect accuracy, modern VLMs falter; for instance, GPT-4 achieves only 66.17% on ViLP. To alleviate this, we propose a self-improving framework in which models generate new VQA pairs and images, then apply pixel-level and semantic corruptions to form "good-bad" image pairs for self-training. Our training objectives compel VLMs to focus more on actual visual inputs and have demonstrated their effectiveness in enhancing the performance of open-source VLMs, including LLaVA-v1.5 and Cambrian.
On the General Value of Evidence, and Bilingual Scene-Text Visual Question Answering
Visual Question Answering (VQA) methods have made incredible progress, but suffer from a failure to generalize. This is visible in the fact that they are vulnerable to learning coincidental correlations in the data rather than deeper relations between image content and ideas expressed in language. We present a dataset that takes a step towards addressing this problem in that it contains questions expressed in two languages, and an evaluation process that co-opts a well understood image-based metric to reflect the method's ability to reason. Measuring reasoning directly encourages generalization by penalizing answers that are coincidentally correct. The dataset reflects the scene-text version of the VQA problem, and the reasoning evaluation can be seen as a text-based version of a referring expression challenge. Experiments and analysis are provided that show the value of the dataset.
OpenViVQA: Task, Dataset, and Multimodal Fusion Models for Visual Question Answering in Vietnamese
In recent years, visual question answering (VQA) has attracted attention from the research community because of its highly potential applications (such as virtual assistance on intelligent cars, assistant devices for blind people, or information retrieval from document images using natural language as queries) and challenge. The VQA task requires methods that have the ability to fuse the information from questions and images to produce appropriate answers. Neural visual question answering models have achieved tremendous growth on large-scale datasets which are mostly for resource-rich languages such as English. However, available datasets narrow the VQA task as the answers selection task or answer classification task. We argue that this form of VQA is far from human ability and eliminates the challenge of the answering aspect in the VQA task by just selecting answers rather than generating them. In this paper, we introduce the OpenViVQA (Open-domain Vietnamese Visual Question Answering) dataset, the first large-scale dataset for VQA with open-ended answers in Vietnamese, consists of 11,000+ images associated with 37,000+ question-answer pairs (QAs). Moreover, we proposed FST, QuMLAG, and MLPAG which fuse information from images and answers, then use these fused features to construct answers as humans iteratively. Our proposed methods achieve results that are competitive with SOTA models such as SAAA, MCAN, LORA, and M4C. The dataset is available to encourage the research community to develop more generalized algorithms including transformers for low-resource languages such as Vietnamese.
VQA Therapy: Exploring Answer Differences by Visually Grounding Answers
Visual question answering is a task of predicting the answer to a question about an image. Given that different people can provide different answers to a visual question, we aim to better understand why with answer groundings. We introduce the first dataset that visually grounds each unique answer to each visual question, which we call VQAAnswerTherapy. We then propose two novel problems of predicting whether a visual question has a single answer grounding and localizing all answer groundings. We benchmark modern algorithms for these novel problems to show where they succeed and struggle. The dataset and evaluation server can be found publicly at https://vizwiz.org/tasks-and-datasets/vqa-answer-therapy/.
Enhancing Visual Question Answering through Question-Driven Image Captions as Prompts
Visual question answering (VQA) is known as an AI-complete task as it requires understanding, reasoning, and inferring about the vision and the language content. Over the past few years, numerous neural architectures have been suggested for the VQA problem. However, achieving success in zero-shot VQA remains a challenge due to its requirement for advanced generalization and reasoning skills. This study explores the impact of incorporating image captioning as an intermediary process within the VQA pipeline. Specifically, we explore the efficacy of utilizing image captions instead of images and leveraging large language models (LLMs) to establish a zero-shot setting. Since image captioning is the most crucial step in this process, we compare the impact of state-of-the-art image captioning models on VQA performance across various question types in terms of structure and semantics. We propose a straightforward and efficient question-driven image captioning approach within this pipeline to transfer contextual information into the question-answering (QA) model. This method involves extracting keywords from the question, generating a caption for each image-question pair using the keywords, and incorporating the question-driven caption into the LLM prompt. We evaluate the efficacy of using general-purpose and question-driven image captions in the VQA pipeline. Our study highlights the potential of employing image captions and harnessing the capabilities of LLMs to achieve competitive performance on GQA under the zero-shot setting. Our code is available at https://github.com/ovguyo/captions-in-VQA.
InfographicVQA
Infographics are documents designed to effectively communicate information using a combination of textual, graphical and visual elements. In this work, we explore the automatic understanding of infographic images by using Visual Question Answering technique.To this end, we present InfographicVQA, a new dataset that comprises a diverse collection of infographics along with natural language questions and answers annotations. The collected questions require methods to jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with emphasis on questions that require elementary reasoning and basic arithmetic skills. Finally, we evaluate two strong baselines based on state of the art multi-modal VQA models, and establish baseline performance for the new task. The dataset, code and leaderboard will be made available at http://docvqa.org
Visual Haystacks: Answering Harder Questions About Sets of Images
Recent advancements in Large Multimodal Models (LMMs) have made significant progress in the field of single-image visual question answering. However, these models face substantial challenges when tasked with queries that span extensive collections of images, similar to real-world scenarios like searching through large photo albums, finding specific information across the internet, or monitoring environmental changes through satellite imagery. This paper explores the task of Multi-Image Visual Question Answering (MIQA): given a large set of images and a natural language query, the task is to generate a relevant and grounded response. We propose a new public benchmark, dubbed "Visual Haystacks (VHs)," specifically designed to evaluate LMMs' capabilities in visual retrieval and reasoning over sets of unrelated images, where we perform comprehensive evaluations demonstrating that even robust closed-source models struggle significantly. Towards addressing these shortcomings, we introduce MIRAGE (Multi-Image Retrieval Augmented Generation), a novel retrieval/QA framework tailored for LMMs that confronts the challenges of MIQA with marked efficiency and accuracy improvements over baseline methods. Our evaluation shows that MIRAGE surpasses closed-source GPT-4o models by up to 11% on the VHs benchmark and offers up to 3.4x improvements in efficiency over text-focused multi-stage approaches.
Scene Text Visual Question Answering
Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting high-level semantic information present in images as textual cues in the VQA process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research.
Investigating Prompting Techniques for Zero- and Few-Shot Visual Question Answering
Visual question answering (VQA) is a challenging task that requires the ability to comprehend and reason with visual information. While recent vision-language models have made strides, they continue to struggle with zero-shot VQA, particularly in handling complex compositional questions and adapting to new domains i.e. knowledge-based reasoning. This paper explores the use of various prompting strategies, focusing on the BLIP2 model, to enhance zero-shot VQA performance. We conduct a comprehensive investigation across several VQA datasets, examining the effectiveness of different question templates, the role of few-shot exemplars, the impact of chain-of-thought (CoT) reasoning, and the benefits of incorporating image captions as additional visual cues. Despite the varied outcomes, our findings demonstrate that carefully designed question templates and the integration of additional visual cues, like image captions, can contribute to improved VQA performance, especially when used in conjunction with few-shot examples. However, we also identify a limitation in the use of chain-of-thought rationalization, which negatively affects VQA accuracy. Our study thus provides critical insights into the potential of prompting for improving zero-shot VQA performance.
Encyclopedic VQA: Visual questions about detailed properties of fine-grained categories
We propose Encyclopedic-VQA, a large scale visual question answering (VQA) dataset featuring visual questions about detailed properties of fine-grained categories and instances. It contains 221k unique question+answer pairs each matched with (up to) 5 images, resulting in a total of 1M VQA samples. Moreover, our dataset comes with a controlled knowledge base derived from Wikipedia, marking the evidence to support each answer. Empirically, we show that our dataset poses a hard challenge for large vision+language models as they perform poorly on our dataset: PaLI [14] is state-of-the-art on OK-VQA [37], yet it only achieves 13.0% accuracy on our dataset. Moreover, we experimentally show that progress on answering our encyclopedic questions can be achieved by augmenting large models with a mechanism that retrieves relevant information from the knowledge base. An oracle experiment with perfect retrieval achieves 87.0% accuracy on the single-hop portion of our dataset, and an automatic retrieval-augmented prototype yields 48.8%. We believe that our dataset enables future research on retrieval-augmented vision+language models. It is available at https://github.com/google-research/google-research/tree/master/encyclopedic_vqa .
2nd Place Solution to the GQA Challenge 2019
We present a simple method that achieves unexpectedly superior performance for Complex Reasoning involved Visual Question Answering. Our solution collects statistical features from high-frequency words of all the questions asked about an image and use them as accurate knowledge for answering further questions of the same image. We are fully aware that this setting is not ubiquitously applicable, and in a more common setting one should assume the questions are asked separately and they cannot be gathered to obtain a knowledge base. Nonetheless, we use this method as an evidence to demonstrate our observation that the bottleneck effect is more severe on the feature extraction part than it is on the knowledge reasoning part. We show significant gaps when using the same reasoning model with 1) ground-truth features; 2) statistical features; 3) detected features from completely learned detectors, and analyze what these gaps mean to researches on visual reasoning topics. Our model with the statistical features achieves the 2nd place in the GQA Challenge 2019.
Generating Natural Questions About an Image
There has been an explosion of work in the vision & language community during the past few years from image captioning to video transcription, and answering questions about images. These tasks have focused on literal descriptions of the image. To move beyond the literal, we choose to explore how questions about an image are often directed at commonsense inference and the abstract events evoked by objects in the image. In this paper, we introduce the novel task of Visual Question Generation (VQG), where the system is tasked with asking a natural and engaging question when shown an image. We provide three datasets which cover a variety of images from object-centric to event-centric, with considerably more abstract training data than provided to state-of-the-art captioning systems thus far. We train and test several generative and retrieval models to tackle the task of VQG. Evaluation results show that while such models ask reasonable questions for a variety of images, there is still a wide gap with human performance which motivates further work on connecting images with commonsense knowledge and pragmatics. Our proposed task offers a new challenge to the community which we hope furthers interest in exploring deeper connections between vision & language.
Visual-RAG: Benchmarking Text-to-Image Retrieval Augmented Generation for Visual Knowledge Intensive Queries
Retrieval-Augmented Generation (RAG) is a popular approach for enhancing Large Language Models (LLMs) by addressing their limitations in verifying facts and answering knowledge-intensive questions. As the research in LLM extends their capability to handle input modality other than text, e.g. image, several multimodal RAG benchmarks are proposed. Nonetheless, they mainly use textual knowledge bases as the primary source of evidences for augmentation. There still lack benchmarks designed to evaluate images as augmentation in RAG systems and how they leverage visual knowledge. We propose Visual-RAG, a novel Question Answering benchmark that emphasizes visual knowledge intensive questions. Unlike prior works relying on text-based evidence, Visual-RAG necessitates text-to-image retrieval and integration of relevant clue images to extract visual knowledge as evidence. With Visual-RAG, we evaluate 5 open-sourced and 3 proprietary Multimodal LLMs (MLLMs), revealing that images can serve as good evidence in RAG; however, even the SoTA models struggle with effectively extracting and utilizing visual knowledge
Weakly Supervised Visual Question Answer Generation
Growing interest in conversational agents promote twoway human-computer communications involving asking and answering visual questions have become an active area of research in AI. Thus, generation of visual questionanswer pair(s) becomes an important and challenging task. To address this issue, we propose a weakly-supervised visual question answer generation method that generates a relevant question-answer pairs for a given input image and associated caption. Most of the prior works are supervised and depend on the annotated question-answer datasets. In our work, we present a weakly supervised method that synthetically generates question-answer pairs procedurally from visual information and captions. The proposed method initially extracts list of answer words, then does nearest question generation that uses the caption and answer word to generate synthetic question. Next, the relevant question generator converts the nearest question to relevant language question by dependency parsing and in-order tree traversal, finally, fine-tune a ViLBERT model with the question-answer pair(s) generated at end. We perform an exhaustive experimental analysis on VQA dataset and see that our model significantly outperform SOTA methods on BLEU scores. We also show the results wrt baseline models and ablation study.
Robust Visual Question Answering: Datasets, Methods, and Future Challenges
Visual question answering requires a system to provide an accurate natural language answer given an image and a natural language question. However, it is widely recognized that previous generic VQA methods often exhibit a tendency to memorize biases present in the training data rather than learning proper behaviors, such as grounding images before predicting answers. Therefore, these methods usually achieve high in-distribution but poor out-of-distribution performance. In recent years, various datasets and debiasing methods have been proposed to evaluate and enhance the VQA robustness, respectively. This paper provides the first comprehensive survey focused on this emerging fashion. Specifically, we first provide an overview of the development process of datasets from in-distribution and out-of-distribution perspectives. Then, we examine the evaluation metrics employed by these datasets. Thirdly, we propose a typology that presents the development process, similarities and differences, robustness comparison, and technical features of existing debiasing methods. Furthermore, we analyze and discuss the robustness of representative vision-and-language pre-training models on VQA. Finally, through a thorough review of the available literature and experimental analysis, we discuss the key areas for future research from various viewpoints.
VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Vision-Language Models have made significant progress on many perception-focused tasks, however, their progress on reasoning-focused tasks seem to be limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity issue of reasoning-focused multimodal datasets. We propose VisualWebInstruct - a novel approach that leverages search engine to create a diverse, and high-quality dataset spanning multiple disciplines like math, physics, finance, chemistry, etc. Starting with meticulously selected 30,000 seed images, we employ Google Image search to identify websites containing similar images. We collect and process the HTMLs from over 700K unique URL sources. Through a pipeline of content extraction, filtering and synthesis, we build a dataset of approximately 900K question-answer pairs, with 40% being visual QA pairs and the rest as text QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance gains: (1) training from Llava-OV-mid shows 10-20% absolute point gains across benchmarks, (2) training from MAmmoTH-VL shows 5% absoluate gain. Our best model MAmmoTH-VL2 shows state-of-the-art performance within the 10B parameter class on MMMU-Pro-std (40.7%), MathVerse (42.6%), and DynaMath (55.7%). These remarkable results highlight the effectiveness of our dataset in enhancing VLMs' reasoning capabilities for complex multimodal tasks.
QLEVR: A Diagnostic Dataset for Quantificational Language and Elementary Visual Reasoning
Synthetic datasets have successfully been used to probe visual question-answering datasets for their reasoning abilities. CLEVR (johnson2017clevr), for example, tests a range of visual reasoning abilities. The questions in CLEVR focus on comparisons of shapes, colors, and sizes, numerical reasoning, and existence claims. This paper introduces a minimally biased, diagnostic visual question-answering dataset, QLEVR, that goes beyond existential and numerical quantification and focus on more complex quantifiers and their combinations, e.g., asking whether there are more than two red balls that are smaller than at least three blue balls in an image. We describe how the dataset was created and present a first evaluation of state-of-the-art visual question-answering models, showing that QLEVR presents a formidable challenge to our current models. Code and Dataset are available at https://github.com/zechenli03/QLEVR
Knowledge-based Visual Question Answer with Multimodal Processing, Retrieval and Filtering
Knowledge-based visual question answering (KB-VQA) requires visual language models (VLMs) to integrate visual understanding with external knowledge retrieval. Although retrieval-augmented generation (RAG) achieves significant advances in this task by combining knowledge-base querying, it still struggles with the quality of multimodal queries and the relevance of retrieved results. To overcome these challenges, we propose a novel three-stage method, termed Wiki-PRF, including Processing, Retrieval and Filtering stages. The processing stage dynamically invokes visual tools to extract precise multimodal information for retrieval. The retrieval stage integrates visual and text features to achieve multimodal knowledge retrieval. The filtering stage performs relevance filtering and concentration on retrieval results. To this end, we introduce a visual language model trained with answer accuracy and format consistency as reward signals via a reinforcement learning manner. This enhances the model's reasoning, tool invocation for accurate queries, and filtering of irrelevant content. Experiments on benchmark datasets (E-VQA and InfoSeek) show significant improvements~(36.0 and 42.8) in answer quality, achieving state-of-the-art performance. Code is available at https://github.com/cqu-student/Wiki-PRF
Wiki-LLaVA: Hierarchical Retrieval-Augmented Generation for Multimodal LLMs
Multimodal LLMs are the natural evolution of LLMs, and enlarge their capabilities so as to work beyond the pure textual modality. As research is being carried out to design novel architectures and vision-and-language adapters, in this paper we concentrate on endowing such models with the capability of answering questions that require external knowledge. Our approach, termed Wiki-LLaVA, aims at integrating an external knowledge source of multimodal documents, which is accessed through a hierarchical retrieval pipeline. Relevant passages, using this approach, are retrieved from the external knowledge source and employed as additional context for the LLM, augmenting the effectiveness and precision of generated dialogues. We conduct extensive experiments on datasets tailored for visual question answering with external data and demonstrate the appropriateness of our approach.
Visual Text Matters: Improving Text-KVQA with Visual Text Entity Knowledge-aware Large Multimodal Assistant
We revisit knowledge-aware text-based visual question answering, also known as Text-KVQA, in the light of modern advancements in large multimodal models (LMMs), and make the following contributions: (i) We propose VisTEL - a principled approach to perform visual text entity linking. The proposed VisTEL module harnesses a state-of-the-art visual text recognition engine and the power of a large multimodal model to jointly reason using textual and visual context obtained using surrounding cues in the image to link the visual text entity to the correct knowledge base entity. (ii) We present KaLMA - a knowledge-aware large multimodal assistant that augments an LMM with knowledge associated with visual text entity in the image to arrive at an accurate answer. Further, we provide a comprehensive experimental analysis and comparison of our approach with traditional visual question answering, pre-large multimodal models, and large multimodal models, as well as prior top-performing approaches. Averaging over three splits of Text-KVQA, our proposed approach surpasses the previous best approach by a substantial 23.3% on an absolute scale and establishes a new state of the art. We make our implementation publicly available.
FashionVQA: A Domain-Specific Visual Question Answering System
Humans apprehend the world through various sensory modalities, yet language is their predominant communication channel. Machine learning systems need to draw on the same multimodal richness to have informed discourses with humans in natural language; this is particularly true for systems specialized in visually-dense information, such as dialogue, recommendation, and search engines for clothing. To this end, we train a visual question answering (VQA) system to answer complex natural language questions about apparel in fashion photoshoot images. The key to the successful training of our VQA model is the automatic creation of a visual question-answering dataset with 168 million samples from item attributes of 207 thousand images using diverse templates. The sample generation employs a strategy that considers the difficulty of the question-answer pairs to emphasize challenging concepts. Contrary to the recent trends in using several datasets for pretraining the visual question answering models, we focused on keeping the dataset fixed while training various models from scratch to isolate the improvements from model architecture changes. We see that using the same transformer for encoding the question and decoding the answer, as in language models, achieves maximum accuracy, showing that visual language models (VLMs) make the best visual question answering systems for our dataset. The accuracy of the best model surpasses the human expert level, even when answering human-generated questions that are not confined to the template formats. Our approach for generating a large-scale multimodal domain-specific dataset provides a path for training specialized models capable of communicating in natural language. The training of such domain-expert models, e.g., our fashion VLM model, cannot rely solely on the large-scale general-purpose datasets collected from the web.
Guiding Vision-Language Model Selection for Visual Question-Answering Across Tasks, Domains, and Knowledge Types
Visual Question-Answering (VQA) has become a key use-case in several applications to aid user experience, particularly after Vision-Language Models (VLMs) achieving good results in zero-shot inference. But evaluating different VLMs for an application requirement using a standardized framework in practical settings is still challenging. This paper introduces a comprehensive framework for evaluating VLMs tailored to VQA tasks in practical settings. We present a novel dataset derived from established VQA benchmarks, annotated with task types, application domains, and knowledge types, three key practical aspects on which tasks can vary. We also introduce GoEval, a multimodal evaluation metric developed using GPT-4o, achieving a correlation factor of 56.71% with human judgments. Our experiments with ten state-of-the-art VLMs reveals that no single model excelling universally, making appropriate selection a key design decision. Proprietary models such as Gemini-1.5-Pro and GPT-4o-mini generally outperform others, though open-source models like InternVL-2-8B and CogVLM-2-Llama-3-19B demonstrate competitive strengths in specific contexts, while providing additional advantages. This study guides the selection of VLMs based on specific task requirements and resource constraints, and can also be extended to other vision-language tasks.
VISREAS: Complex Visual Reasoning with Unanswerable Questions
Verifying a question's validity before answering is crucial in real-world applications, where users may provide imperfect instructions. In this scenario, an ideal model should address the discrepancies in the query and convey them to the users rather than generating the best possible answer. Addressing this requirement, we introduce a new compositional visual question-answering dataset, VISREAS, that consists of answerable and unanswerable visual queries formulated by traversing and perturbing commonalities and differences among objects, attributes, and relations. VISREAS contains 2.07M semantically diverse queries generated automatically using Visual Genome scene graphs. The unique feature of this task, validating question answerability with respect to an image before answering, and the poor performance of state-of-the-art models inspired the design of a new modular baseline, LOGIC2VISION that reasons by producing and executing pseudocode without any external modules to generate the answer. LOGIC2VISION outperforms generative models in VISREAS (+4.82% over LLaVA-1.5; +12.23% over InstructBLIP) and achieves a significant gain in performance against the classification models.
DocVQA: A Dataset for VQA on Document Images
We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa.org
Dynamic Double Space Tower
The Visual Question Answering (VQA) task requires the simultaneous understanding of image content and question semantics. However, existing methods often have difficulty handling complex reasoning scenarios due to insufficient cross-modal interaction and capturing the entity spatial relationships in the image.huang2023adaptiveliu2021comparingguibas2021adaptivezhang2022vsaWe studied a brand-new approach to replace the attention mechanism in order to enhance the reasoning ability of the model and its understanding of spatial relationships.Specifically, we propose a dynamic bidirectional spatial tower, which is divided into four layers to observe the image according to the principle of human gestalt vision. This naturally provides a powerful structural prior for the spatial organization between entities, enabling the model to no longer blindly search for relationships between pixels but make judgments based on more meaningful perceptual units. Change from "seeing images" to "perceiving and organizing image content".A large number of experiments have shown that our module can be used in any other multimodal model and achieve advanced results, demonstrating its potential in spatial relationship processing.Meanwhile, the multimodal visual question-answering model July trained by our method has achieved state-of-the-art results with only 3B parameters, especially on the question-answering dataset of spatial relations.
Vision Search Assistant: Empower Vision-Language Models as Multimodal Search Engines
Search engines enable the retrieval of unknown information with texts. However, traditional methods fall short when it comes to understanding unfamiliar visual content, such as identifying an object that the model has never seen before. This challenge is particularly pronounced for large vision-language models (VLMs): if the model has not been exposed to the object depicted in an image, it struggles to generate reliable answers to the user's question regarding that image. Moreover, as new objects and events continuously emerge, frequently updating VLMs is impractical due to heavy computational burdens. To address this limitation, we propose Vision Search Assistant, a novel framework that facilitates collaboration between VLMs and web agents. This approach leverages VLMs' visual understanding capabilities and web agents' real-time information access to perform open-world Retrieval-Augmented Generation via the web. By integrating visual and textual representations through this collaboration, the model can provide informed responses even when the image is novel to the system. Extensive experiments conducted on both open-set and closed-set QA benchmarks demonstrate that the Vision Search Assistant significantly outperforms the other models and can be widely applied to existing VLMs.
Question Aware Vision Transformer for Multimodal Reasoning
Vision-Language (VL) models have gained significant research focus, enabling remarkable advances in multimodal reasoning. These architectures typically comprise a vision encoder, a Large Language Model (LLM), and a projection module that aligns visual features with the LLM's representation space. Despite their success, a critical limitation persists: the vision encoding process remains decoupled from user queries, often in the form of image-related questions. Consequently, the resulting visual features may not be optimally attuned to the query-specific elements of the image. To address this, we introduce QA-ViT, a Question Aware Vision Transformer approach for multimodal reasoning, which embeds question awareness directly within the vision encoder. This integration results in dynamic visual features focusing on relevant image aspects to the posed question. QA-ViT is model-agnostic and can be incorporated efficiently into any VL architecture. Extensive experiments demonstrate the effectiveness of applying our method to various multimodal architectures, leading to consistent improvement across diverse tasks and showcasing its potential for enhancing visual and scene-text understanding.
VGA: Vision GUI Assistant -- Minimizing Hallucinations through Image-Centric Fine-Tuning
Recent advances in Large Vision-Language Models (LVLMs) have significantly improve performance in image comprehension tasks, such as formatted charts and rich-content images. Yet, Graphical User Interface (GUI) pose a greater challenge due to their structured format and detailed textual information. Existing LVLMs often overly depend on internal knowledge and neglect image content, resulting in hallucinations and incorrect responses in GUI comprehension. To address these issues, we introduce VGA, a fine-tuned model designed for comprehensive GUI understanding. Our model aims to enhance the interpretation of visual data of GUI and reduce hallucinations. We first construct a Vision Question Answering (VQA) dataset of 63.8k high-quality examples with our propose Referent Method, which ensures the model's responses are highly depend on visual content within the image. We then design a two-stage fine-tuning method called Foundation and Advanced Comprehension (FAC) to enhance both the model's ability to extract information from image content and alignment with human intent. Experiments show that our approach enhances the model's ability to extract information from images and achieves state-of-the-art results in GUI understanding tasks. Our dataset and fine-tuning script will be released soon.
LiveVQA: Live Visual Knowledge Seeking
We introduce LiveVQA, an automatically collected dataset of latest visual knowledge from the Internet with synthesized VQA problems. LiveVQA consists of 3,602 single- and multi-hop visual questions from 6 news websites across 14 news categories, featuring high-quality image-text coherence and authentic information. Our evaluation across 15 MLLMs (e.g., GPT-4o, Gemma-3, and Qwen-2.5-VL family) demonstrates that stronger models perform better overall, with advanced visual reasoning capabilities proving crucial for complex multi-hop questions. Despite excellent performance on textual problems, models with tools like search engines still show significant gaps when addressing visual questions requiring latest visual knowledge, highlighting important areas for future research.
Open-ended VQA benchmarking of Vision-Language models by exploiting Classification datasets and their semantic hierarchy
The evaluation of text-generative vision-language models is a challenging yet crucial endeavor. By addressing the limitations of existing Visual Question Answering (VQA) benchmarks and proposing innovative evaluation methodologies, our research seeks to advance our understanding of these models' capabilities. We propose a novel VQA benchmark based on well-known visual classification datasets which allows a granular evaluation of text-generative vision-language models and their comparison with discriminative vision-language models. To improve the assessment of coarse answers on fine-grained classification tasks, we suggest using the semantic hierarchy of the label space to ask automatically generated follow-up questions about the ground-truth category. Finally, we compare traditional NLP and LLM-based metrics for the problem of evaluating model predictions given ground-truth answers. We perform a human evaluation study upon which we base our decision on the final metric. We apply our benchmark to a suite of vision-language models and show a detailed comparison of their abilities on object, action, and attribute classification. Our contributions aim to lay the foundation for more precise and meaningful assessments, facilitating targeted progress in the exciting field of vision-language modeling.
VisualMRC: Machine Reading Comprehension on Document Images
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a machine reads and comprehends texts in the image to answer the question in natural language. Compared with existing visual question answering (VQA) datasets that contain texts in images, VisualMRC focuses more on developing natural language understanding and generation abilities. It contains 30,000+ pairs of a question and an abstractive answer for 10,000+ document images sourced from multiple domains of webpages. We also introduce a new model that extends existing sequence-to-sequence models, pre-trained with large-scale text corpora, to take into account the visual layout and content of documents. Experiments with VisualMRC show that this model outperformed the base sequence-to-sequence models and a state-of-the-art VQA model. However, its performance is still below that of humans on most automatic evaluation metrics. The dataset will facilitate research aimed at connecting vision and language understanding.
Compact Trilinear Interaction for Visual Question Answering
In Visual Question Answering (VQA), answers have a great correlation with question meaning and visual contents. Thus, to selectively utilize image, question and answer information, we propose a novel trilinear interaction model which simultaneously learns high level associations between these three inputs. In addition, to overcome the interaction complexity, we introduce a multimodal tensor-based PARALIND decomposition which efficiently parameterizes trilinear interaction between the three inputs. Moreover, knowledge distillation is first time applied in Free-form Opened-ended VQA. It is not only for reducing the computational cost and required memory but also for transferring knowledge from trilinear interaction model to bilinear interaction model. The extensive experiments on benchmarking datasets TDIUC, VQA-2.0, and Visual7W show that the proposed compact trilinear interaction model achieves state-of-the-art results when using a single model on all three datasets.
Modular Visual Question Answering via Code Generation
We present a framework that formulates visual question answering as modular code generation. In contrast to prior work on modular approaches to VQA, our approach requires no additional training and relies on pre-trained language models (LMs), visual models pre-trained on image-caption pairs, and fifty VQA examples used for in-context learning. The generated Python programs invoke and compose the outputs of the visual models using arithmetic and conditional logic. Our approach improves accuracy on the COVR dataset by at least 3% and on the GQA dataset by roughly 2% compared to the few-shot baseline that does not employ code generation.
Toloka Visual Question Answering Benchmark
In this paper, we present Toloka Visual Question Answering, a new crowdsourced dataset allowing comparing performance of machine learning systems against human level of expertise in the grounding visual question answering task. In this task, given an image and a textual question, one has to draw the bounding box around the object correctly responding to that question. Every image-question pair contains the response, with only one correct response per image. Our dataset contains 45,199 pairs of images and questions in English, provided with ground truth bounding boxes, split into train and two test subsets. Besides describing the dataset and releasing it under a CC BY license, we conducted a series of experiments on open source zero-shot baseline models and organized a multi-phase competition at WSDM Cup that attracted 48 participants worldwide. However, by the time of paper submission, no machine learning model outperformed the non-expert crowdsourcing baseline according to the intersection over union evaluation score.
Track the Answer: Extending TextVQA from Image to Video with Spatio-Temporal Clues
Video text-based visual question answering (Video TextVQA) is a practical task that aims to answer questions by jointly reasoning textual and visual information in a given video. Inspired by the development of TextVQA in image domain, existing Video TextVQA approaches leverage a language model (e.g. T5) to process text-rich multiple frames and generate answers auto-regressively. Nevertheless, the spatio-temporal relationships among visual entities (including scene text and objects) will be disrupted and models are susceptible to interference from unrelated information, resulting in irrational reasoning and inaccurate answering. To tackle these challenges, we propose the TEA (stands for ``Track thE Answer'') method that better extends the generative TextVQA framework from image to video. TEA recovers the spatio-temporal relationships in a complementary way and incorporates OCR-aware clues to enhance the quality of reasoning questions. Extensive experiments on several public Video TextVQA datasets validate the effectiveness and generalization of our framework. TEA outperforms existing TextVQA methods, video-language pretraining methods and video large language models by great margins.
Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering
Problems at the intersection of vision and language are of significant importance both as challenging research questions and for the rich set of applications they enable. However, inherent structure in our world and bias in our language tend to be a simpler signal for learning than visual modalities, resulting in models that ignore visual information, leading to an inflated sense of their capability. We propose to counter these language priors for the task of Visual Question Answering (VQA) and make vision (the V in VQA) matter! Specifically, we balance the popular VQA dataset by collecting complementary images such that every question in our balanced dataset is associated with not just a single image, but rather a pair of similar images that result in two different answers to the question. Our dataset is by construction more balanced than the original VQA dataset and has approximately twice the number of image-question pairs. Our complete balanced dataset is publicly available at www.visualqa.org as part of the 2nd iteration of the Visual Question Answering Dataset and Challenge (VQA v2.0). We further benchmark a number of state-of-art VQA models on our balanced dataset. All models perform significantly worse on our balanced dataset, suggesting that these models have indeed learned to exploit language priors. This finding provides the first concrete empirical evidence for what seems to be a qualitative sense among practitioners. Finally, our data collection protocol for identifying complementary images enables us to develop a novel interpretable model, which in addition to providing an answer to the given (image, question) pair, also provides a counter-example based explanation. Specifically, it identifies an image that is similar to the original image, but it believes has a different answer to the same question. This can help in building trust for machines among their users.
REVIVE: Regional Visual Representation Matters in Knowledge-Based Visual Question Answering
This paper revisits visual representation in knowledge-based visual question answering (VQA) and demonstrates that using regional information in a better way can significantly improve the performance. While visual representation is extensively studied in traditional VQA, it is under-explored in knowledge-based VQA even though these two tasks share the common spirit, i.e., rely on visual input to answer the question. Specifically, we observe that in most state-of-the-art knowledge-based VQA methods: 1) visual features are extracted either from the whole image or in a sliding window manner for retrieving knowledge, and the important relationship within/among object regions is neglected; 2) visual features are not well utilized in the final answering model, which is counter-intuitive to some extent. Based on these observations, we propose a new knowledge-based VQA method REVIVE, which tries to utilize the explicit information of object regions not only in the knowledge retrieval stage but also in the answering model. The key motivation is that object regions and inherent relationship are important for knowledge-based VQA. We perform extensive experiments on the standard OK-VQA dataset and achieve new state-of-the-art performance, i.e., 58.0% accuracy, surpassing previous state-of-the-art method by a large margin (+3.6%). We also conduct detailed analysis and show the necessity of regional information in different framework components for knowledge-based VQA. Code is publicly available at https://github.com/yzleroy/REVIVE.
Learning to Locate Visual Answer in Video Corpus Using Question
We introduce a new task, named video corpus visual answer localization (VCVAL), which aims to locate the visual answer in a large collection of untrimmed instructional videos using a natural language question. This task requires a range of skills - the interaction between vision and language, video retrieval, passage comprehension, and visual answer localization. In this paper, we propose a cross-modal contrastive global-span (CCGS) method for the VCVAL, jointly training the video corpus retrieval and visual answer localization subtasks with the global-span matrix. We have reconstructed a dataset named MedVidCQA, on which the VCVAL task is benchmarked. Experimental results show that the proposed method outperforms other competitive methods both in the video corpus retrieval and visual answer localization subtasks. Most importantly, we perform detailed analyses on extensive experiments, paving a new path for understanding the instructional videos, which ushers in further research.
Can Pre-trained Vision and Language Models Answer Visual Information-Seeking Questions?
Large language models have demonstrated an emergent capability in answering knowledge intensive questions. With recent progress on web-scale visual and language pre-training, do these models also understand how to answer visual information seeking questions? To answer this question, we present InfoSeek, a Visual Question Answering dataset that focuses on asking information-seeking questions, where the information can not be answered by common sense knowledge. We perform a multi-stage human annotation to collect a natural distribution of high-quality visual information seeking question-answer pairs. We also construct a large-scale, automatically collected dataset by combining existing visual entity recognition datasets and Wikidata, which provides over one million examples for model fine-tuning and validation. Based on InfoSeek, we analyzed various pre-trained Visual QA systems to gain insights into the characteristics of different pre-trained models. Our analysis shows that it is challenging for the state-of-the-art multi-modal pre-trained models to answer visual information seeking questions, but this capability is improved through fine-tuning on the automated InfoSeek dataset. We hope our analysis paves the way to understand and develop the next generation of multi-modal pre-training.
PromptCap: Prompt-Guided Image Captioning for VQA with GPT-3
Knowledge-based visual question answering (VQA) involves questions that require world knowledge beyond the image to yield the correct answer. Large language models (LMs) like GPT-3 are particularly helpful for this task because of their strong knowledge retrieval and reasoning capabilities. To enable LM to understand images, prior work uses a captioning model to convert images into text. However, when summarizing an image in a single caption sentence, which visual entities to describe are often underspecified. Generic image captions often miss visual details essential for the LM to answer visual questions correctly. To address this challenge, we propose PromptCap (Prompt-guided image Captioning), a captioning model designed to serve as a better connector between images and black-box LMs. Different from generic captions, PromptCap takes a natural-language prompt to control the visual entities to describe in the generated caption. The prompt contains a question that the caption should aid in answering. To avoid extra annotation, PromptCap is trained by examples synthesized with GPT-3 and existing datasets. We demonstrate PromptCap's effectiveness on an existing pipeline in which GPT-3 is prompted with image captions to carry out VQA. PromptCap outperforms generic captions by a large margin and achieves state-of-the-art accuracy on knowledge-based VQA tasks (60.4% on OK-VQA and 59.6% on A-OKVQA). Zero-shot results on WebQA show that PromptCap generalizes well to unseen domains.
Is GPT-3 all you need for Visual Question Answering in Cultural Heritage?
The use of Deep Learning and Computer Vision in the Cultural Heritage domain is becoming highly relevant in the last few years with lots of applications about audio smart guides, interactive museums and augmented reality. All these technologies require lots of data to work effectively and be useful for the user. In the context of artworks, such data is annotated by experts in an expensive and time consuming process. In particular, for each artwork, an image of the artwork and a description sheet have to be collected in order to perform common tasks like Visual Question Answering. In this paper we propose a method for Visual Question Answering that allows to generate at runtime a description sheet that can be used for answering both visual and contextual questions about the artwork, avoiding completely the image and the annotation process. For this purpose, we investigate on the use of GPT-3 for generating descriptions for artworks analyzing the quality of generated descriptions through captioning metrics. Finally we evaluate the performance for Visual Question Answering and captioning tasks.
QACE: Asking Questions to Evaluate an Image Caption
In this paper, we propose QACE, a new metric based on Question Answering for Caption Evaluation. QACE generates questions on the evaluated caption and checks its content by asking the questions on either the reference caption or the source image. We first develop QACE-Ref that compares the answers of the evaluated caption to its reference, and report competitive results with the state-of-the-art metrics. To go further, we propose QACE-Img, which asks the questions directly on the image, instead of reference. A Visual-QA system is necessary for QACE-Img. Unfortunately, the standard VQA models are framed as a classification among only a few thousand categories. Instead, we propose Visual-T5, an abstractive VQA system. The resulting metric, QACE-Img is multi-modal, reference-less, and explainable. Our experiments show that QACE-Img compares favorably w.r.t. other reference-less metrics. We will release the pre-trained models to compute QACE.
MM-BrowseComp: A Comprehensive Benchmark for Multimodal Browsing Agents
AI agents with advanced reasoning and tool use capabilities have demonstrated impressive performance in web browsing for deep search. While existing benchmarks such as BrowseComp evaluate these browsing abilities, they primarily focus on textual information, overlooking the prevalence of multimodal content. To bridge this gap, we introduce MM-BrowseComp, a novel benchmark comprising 224 challenging, hand-crafted questions specifically designed to assess agents' multimodal retrieval and reasoning capabilities. These questions often incorporate images in prompts, and crucial information encountered during the search and reasoning process may also be embedded within images or videos on webpages. Consequently, methods relying solely on text prove insufficient for our benchmark. Additionally, we provide a verified checklist for each question, enabling fine-grained analysis of multimodal dependencies and reasoning paths. Our comprehensive evaluation of state-of-the-art models on MM-BrowseComp reveals that even top models like OpenAI o3 with tools achieve only 29.02\% accuracy, highlighting the suboptimal multimodal capabilities and lack of native multimodal reasoning in current models.
Understanding the World's Museums through Vision-Language Reasoning
Museums serve as vital repositories of cultural heritage and historical artifacts spanning diverse epochs, civilizations, and regions, preserving well-documented collections. Data reveal key attributes such as age, origin, material, and cultural significance. Understanding museum exhibits from their images requires reasoning beyond visual features. In this work, we facilitate such reasoning by (a) collecting and curating a large-scale dataset of 65M images and 200M question-answer pairs in the standard museum catalog format for exhibits from all around the world; (b) training large vision-language models on the collected dataset; (c) benchmarking their ability on five visual question answering tasks. The complete dataset is labeled by museum experts, ensuring the quality as well as the practical significance of the labels. We train two VLMs from different categories: the BLIP model, with vision-language aligned embeddings, but lacking the expressive power of large language models, and the LLaVA model, a powerful instruction-tuned LLM enriched with vision-language reasoning capabilities. Through exhaustive experiments, we provide several insights on the complex and fine-grained understanding of museum exhibits. In particular, we show that some questions whose answers can often be derived directly from visual features are well answered by both types of models. On the other hand, questions that require the grounding of the visual features in repositories of human knowledge are better answered by the large vision-language models, thus demonstrating their superior capacity to perform the desired reasoning. Find our dataset, benchmarks, and source code at: https://github.com/insait-institute/Museum-65
Less Is More: Linear Layers on CLIP Features as Powerful VizWiz Model
Current architectures for multi-modality tasks such as visual question answering suffer from their high complexity. As a result, these architectures are difficult to train and require high computational resources. To address these problems we present a CLIP-based architecture that does not require any fine-tuning of the feature extractors. A simple linear classifier is used on the concatenated features of the image and text encoder. During training an auxiliary loss is added which operates on the answer types. The resulting classification is then used as an attention gate on the answer class selection. On the VizWiz 2022 Visual Question Answering Challenge we achieve 60.15 % accuracy on Task 1: Predict Answer to a Visual Question and AP score of 83.78 % on Task 2: Predict Answerability of a Visual Question.
VLR-Bench: Multilingual Benchmark Dataset for Vision-Language Retrieval Augmented Generation
We propose the VLR-Bench, a visual question answering (VQA) benchmark for evaluating vision language models (VLMs) based on retrieval augmented generation (RAG). Unlike existing evaluation datasets for external knowledge-based VQA, the proposed VLR-Bench includes five input passages. This allows testing of the ability to determine which passage is useful for answering a given query, a capability lacking in previous research. In this context, we constructed a dataset of 32,000 automatically generated instruction-following examples, which we denote as VLR-IF. This dataset is specifically designed to enhance the RAG capabilities of VLMs by enabling them to learn how to generate appropriate answers based on input passages. We evaluated the validity of the proposed benchmark and training data and verified its performance using the state-of-the-art Llama3-based VLM, the Llava-Llama-3 model. The proposed VLR-Bench and VLR-IF datasets are publicly available online.
SparrowVQE: Visual Question Explanation for Course Content Understanding
Visual Question Answering (VQA) research seeks to create AI systems to answer natural language questions in images, yet VQA methods often yield overly simplistic and short answers. This paper aims to advance the field by introducing Visual Question Explanation (VQE), which enhances the ability of VQA to provide detailed explanations rather than brief responses and address the need for more complex interaction with visual content. We first created an MLVQE dataset from a 14-week streamed video machine learning course, including 885 slide images, 110,407 words of transcripts, and 9,416 designed question-answer (QA) pairs. Next, we proposed a novel SparrowVQE, a small 3 billion parameters multimodal model. We trained our model with a three-stage training mechanism consisting of multimodal pre-training (slide images and transcripts feature alignment), instruction tuning (tuning the pre-trained model with transcripts and QA pairs), and domain fine-tuning (fine-tuning slide image and QA pairs). Eventually, our SparrowVQE can understand and connect visual information using the SigLIP model with transcripts using the Phi-2 language model with an MLP adapter. Experimental results demonstrate that our SparrowVQE achieves better performance in our developed MLVQE dataset and outperforms state-of-the-art methods in the other five benchmark VQA datasets. The source code is available at https://github.com/YoushanZhang/SparrowVQE.
Zero-shot Visual Question Answering using Knowledge Graph
Incorporating external knowledge to Visual Question Answering (VQA) has become a vital practical need. Existing methods mostly adopt pipeline approaches with different components for knowledge matching and extraction, feature learning, etc.However, such pipeline approaches suffer when some component does not perform well, which leads to error propagation and poor overall performance. Furthermore, the majority of existing approaches ignore the answer bias issue -- many answers may have never appeared during training (i.e., unseen answers) in real-word application. To bridge these gaps, in this paper, we propose a Zero-shot VQA algorithm using knowledge graphs and a mask-based learning mechanism for better incorporating external knowledge, and present new answer-based Zero-shot VQA splits for the F-VQA dataset. Experiments show that our method can achieve state-of-the-art performance in Zero-shot VQA with unseen answers, meanwhile dramatically augment existing end-to-end models on the normal F-VQA task.
Stacked Attention Networks for Image Question Answering
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
MDETR -- Modulated Detection for End-to-End Multi-Modal Understanding
Multi-modal reasoning systems rely on a pre-trained object detector to extract regions of interest from the image. However, this crucial module is typically used as a black box, trained independently of the downstream task and on a fixed vocabulary of objects and attributes. This makes it challenging for such systems to capture the long tail of visual concepts expressed in free form text. In this paper we propose MDETR, an end-to-end modulated detector that detects objects in an image conditioned on a raw text query, like a caption or a question. We use a transformer-based architecture to reason jointly over text and image by fusing the two modalities at an early stage of the model. We pre-train the network on 1.3M text-image pairs, mined from pre-existing multi-modal datasets having explicit alignment between phrases in text and objects in the image. We then fine-tune on several downstream tasks such as phrase grounding, referring expression comprehension and segmentation, achieving state-of-the-art results on popular benchmarks. We also investigate the utility of our model as an object detector on a given label set when fine-tuned in a few-shot setting. We show that our pre-training approach provides a way to handle the long tail of object categories which have very few labelled instances. Our approach can be easily extended for visual question answering, achieving competitive performance on GQA and CLEVR. The code and models are available at https://github.com/ashkamath/mdetr.
Re-ranking Reasoning Context with Tree Search Makes Large Vision-Language Models Stronger
Recent advancements in Large Vision Language Models (LVLMs) have significantly improved performance in Visual Question Answering (VQA) tasks through multimodal Retrieval-Augmented Generation (RAG). However, existing methods still face challenges, such as the scarcity of knowledge with reasoning examples and erratic responses from retrieved knowledge. To address these issues, in this study, we propose a multimodal RAG framework, termed RCTS, which enhances LVLMs by constructing a Reasoning Context-enriched knowledge base and a Tree Search re-ranking method. Specifically, we introduce a self-consistent evaluation mechanism to enrich the knowledge base with intrinsic reasoning patterns. We further propose a Monte Carlo Tree Search with Heuristic Rewards (MCTS-HR) to prioritize the most relevant examples. This ensures that LVLMs can leverage high-quality contextual reasoning for better and more consistent responses. Extensive experiments demonstrate that our framework achieves state-of-the-art performance on multiple VQA datasets, significantly outperforming In-Context Learning (ICL) and Vanilla-RAG methods. It highlights the effectiveness of our knowledge base and re-ranking method in improving LVLMs. Our code is available at https://github.com/yannqi/RCTS-RAG.
VisualOverload: Probing Visual Understanding of VLMs in Really Dense Scenes
Is basic visual understanding really solved in state-of-the-art VLMs? We present VisualOverload, a slightly different visual question answering (VQA) benchmark comprising 2,720 question-answer pairs, with privately held ground-truth responses. Unlike prior VQA datasets that typically focus on near global image understanding, VisualOverload challenges models to perform simple, knowledge-free vision tasks in densely populated (or, overloaded) scenes. Our dataset consists of high-resolution scans of public-domain paintings that are populated with multiple figures, actions, and unfolding subplots set against elaborately detailed backdrops. We manually annotated these images with questions across six task categories to probe for a thorough understanding of the scene. We hypothesize that current benchmarks overestimate the performance of VLMs, and encoding and reasoning over details is still a challenging task for them, especially if they are confronted with densely populated scenes. Indeed, we observe that even the best model (o3) out of 37 tested models only achieves 19.6% accuracy on our hardest test split and overall 69.5% accuracy on all questions. Beyond a thorough evaluation, we complement our benchmark with an error analysis that reveals multiple failure modes, including a lack of counting skills, failure in OCR, and striking logical inconsistencies under complex tasks. Altogether, VisualOverload exposes a critical gap in current vision models and offers a crucial resource for the community to develop better models. Benchmark: http://paulgavrikov.github.io/visualoverload
VDocRAG: Retrieval-Augmented Generation over Visually-Rich Documents
We aim to develop a retrieval-augmented generation (RAG) framework that answers questions over a corpus of visually-rich documents presented in mixed modalities (e.g., charts, tables) and diverse formats (e.g., PDF, PPTX). In this paper, we introduce a new RAG framework, VDocRAG, which can directly understand varied documents and modalities in a unified image format to prevent missing information that occurs by parsing documents to obtain text. To improve the performance, we propose novel self-supervised pre-training tasks that adapt large vision-language models for retrieval by compressing visual information into dense token representations while aligning them with textual content in documents. Furthermore, we introduce OpenDocVQA, the first unified collection of open-domain document visual question answering datasets, encompassing diverse document types and formats. OpenDocVQA provides a comprehensive resource for training and evaluating retrieval and question answering models on visually-rich documents in an open-domain setting. Experiments show that VDocRAG substantially outperforms conventional text-based RAG and has strong generalization capability, highlighting the potential of an effective RAG paradigm for real-world documents.
SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant
Recent advances in vision-language models have shown notable generalization in broad tasks through visual instruction tuning. However, bridging the gap between the pre-trained vision encoder and the large language models (LLMs) becomes the whole network's bottleneck. To improve cross-modality alignment, existing works usually consider more visual instruction data covering a broader range of vision tasks to fine-tune the model for question-answering, which, however, is costly to obtain and has not thoroughly explored the rich contextual information contained in images. This paper first attempts to harness the overlooked context within visual instruction data, training the model to self-supervised "learning" how to ask high-quality questions. In this way, we introduce a novel framework named SQ-LLaVA: Self-Questioning for Large Vision-Language Assistant. SQ-LLaVA exhibits proficiency in generating flexible and meaningful image-related questions while analyzing the visual clue and prior language knowledge, signifying an advanced level of generalized visual understanding. Moreover, fine-tuning SQ-LLaVA on higher-quality instruction data shows a performance improvement compared with traditional visual-instruction tuning methods. This improvement highlights the efficacy of self-questioning techniques in achieving a deeper and more nuanced comprehension of visual content across various contexts.
Right this way: Can VLMs Guide Us to See More to Answer Questions?
In question-answering scenarios, humans can assess whether the available information is sufficient and seek additional information if necessary, rather than providing a forced answer. In contrast, Vision Language Models (VLMs) typically generate direct, one-shot responses without evaluating the sufficiency of the information. To investigate this gap, we identify a critical and challenging task in the Visual Question Answering (VQA) scenario: can VLMs indicate how to adjust an image when the visual information is insufficient to answer a question? This capability is especially valuable for assisting visually impaired individuals who often need guidance to capture images correctly. To evaluate this capability of current VLMs, we introduce a human-labeled dataset as a benchmark for this task. Additionally, we present an automated framework that generates synthetic training data by simulating ``where to know'' scenarios. Our empirical results show significant performance improvements in mainstream VLMs when fine-tuned with this synthetic data. This study demonstrates the potential to narrow the gap between information assessment and acquisition in VLMs, bringing their performance closer to humans.
LPF: A Language-Prior Feedback Objective Function for De-biased Visual Question Answering
Most existing Visual Question Answering (VQA) systems tend to overly rely on language bias and hence fail to reason from the visual clue. To address this issue, we propose a novel Language-Prior Feedback (LPF) objective function, to re-balance the proportion of each answer's loss value in the total VQA loss. The LPF firstly calculates a modulating factor to determine the language bias using a question-only branch. Then, the LPF assigns a self-adaptive weight to each training sample in the training process. With this reweighting mechanism, the LPF ensures that the total VQA loss can be reshaped to a more balanced form. By this means, the samples that require certain visual information to predict will be efficiently used during training. Our method is simple to implement, model-agnostic, and end-to-end trainable. We conduct extensive experiments and the results show that the LPF (1) brings a significant improvement over various VQA models, (2) achieves competitive performance on the bias-sensitive VQA-CP v2 benchmark.
ViTextVQA: A Large-Scale Visual Question Answering Dataset for Evaluating Vietnamese Text Comprehension in Images
Visual Question Answering (VQA) is a complicated task that requires the capability of simultaneously processing natural language and images. Initially, this task was researched, focusing on methods to help machines understand objects and scene contexts in images. However, some text appearing in the image that carries explicit information about the full content of the image is not mentioned. Along with the continuous development of the AI era, there have been many studies on the reading comprehension ability of VQA models in the world. As a developing country, conditions are still limited, and this task is still open in Vietnam. Therefore, we introduce the first large-scale dataset in Vietnamese specializing in the ability to understand text appearing in images, we call it ViTextVQA (Vietnamese Text-based Visual Question Answering dataset) which contains over 16,000 images and over 50,000 questions with answers. Through meticulous experiments with various state-of-the-art models, we uncover the significance of the order in which tokens in OCR text are processed and selected to formulate answers. This finding helped us significantly improve the performance of the baseline models on the ViTextVQA dataset. Our dataset is available at this https://github.com/minhquan6203/ViTextVQA-Dataset{link} for research purposes.
Towards VQA Models That Can Read
Studies have shown that a dominant class of questions asked by visually impaired users on images of their surroundings involves reading text in the image. But today's VQA models can not read! Our paper takes a first step towards addressing this problem. First, we introduce a new "TextVQA" dataset to facilitate progress on this important problem. Existing datasets either have a small proportion of questions about text (e.g., the VQA dataset) or are too small (e.g., the VizWiz dataset). TextVQA contains 45,336 questions on 28,408 images that require reasoning about text to answer. Second, we introduce a novel model architecture that reads text in the image, reasons about it in the context of the image and the question, and predicts an answer which might be a deduction based on the text and the image or composed of the strings found in the image. Consequently, we call our approach Look, Read, Reason & Answer (LoRRA). We show that LoRRA outperforms existing state-of-the-art VQA models on our TextVQA dataset. We find that the gap between human performance and machine performance is significantly larger on TextVQA than on VQA 2.0, suggesting that TextVQA is well-suited to benchmark progress along directions complementary to VQA 2.0.
Unanswerable Visual Question Answering
Teaching Visual Question Answering (VQA) models to abstain from unanswerable questions is indispensable for building a trustworthy AI system. Existing studies, though have explored various aspects of VQA, yet marginally ignored this particular attribute. This paper aims to bridge the research gap by contributing a comprehensive dataset, called UNK-VQA. The dataset is specifically designed to address the challenge of questions that can be unanswerable. To this end, we first augment the existing data via deliberate perturbations on either the image or question. In specific, we carefully ensure that the question-image semantics remain close to the original unperturbed distribution. By means of this, the identification of unanswerable questions becomes challenging, setting our dataset apart from others that involve mere image replacement. We then extensively evaluate the zero- and few-shot performance of several emerging multi-modal large models and discover significant limitations of them when applied to our dataset. Additionally, we also propose a straightforward method to tackle these unanswerable questions. This dataset, we believe, will serve as a valuable benchmark for enhancing the abstention capability of VQA models, thereby leading to increased trustworthiness of AI systems.
VLSP2022-EVJVQA Challenge: Multilingual Visual Question Answering
Visual Question Answering (VQA) is a challenging task of natural language processing (NLP) and computer vision (CV), attracting significant attention from researchers. English is a resource-rich language that has witnessed various developments in datasets and models for visual question answering. Visual question answering in other languages also would be developed for resources and models. In addition, there is no multilingual dataset targeting the visual content of a particular country with its own objects and cultural characteristics. To address the weakness, we provide the research community with a benchmark dataset named EVJVQA, including 33,000+ pairs of question-answer over three languages: Vietnamese, English, and Japanese, on approximately 5,000 images taken from Vietnam for evaluating multilingual VQA systems or models. EVJVQA is used as a benchmark dataset for the challenge of multilingual visual question answering at the 9th Workshop on Vietnamese Language and Speech Processing (VLSP 2022). This task attracted 62 participant teams from various universities and organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 0.4392 in F1-score and 0.4009 in BLUE on the private test set. The multilingual QA systems proposed by the top 2 teams use ViT for the pre-trained vision model and mT5 for the pre-trained language model, a powerful pre-trained language model based on the transformer architecture. EVJVQA is a challenging dataset that motivates NLP and CV researchers to further explore the multilingual models or systems for visual question answering systems. We released the challenge on the Codalab evaluation system for further research.
AVIS: Autonomous Visual Information Seeking with Large Language Models
In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.
An Empirical Study of GPT-3 for Few-Shot Knowledge-Based VQA
Knowledge-based visual question answering (VQA) involves answering questions that require external knowledge not present in the image. Existing methods first retrieve knowledge from external resources, then reason over the selected knowledge, the input image, and question for answer prediction. However, this two-step approach could lead to mismatches that potentially limit the VQA performance. For example, the retrieved knowledge might be noisy and irrelevant to the question, and the re-embedded knowledge features during reasoning might deviate from their original meanings in the knowledge base (KB). To address this challenge, we propose PICa, a simple yet effective method that Prompts GPT3 via the use of Image Captions, for knowledge-based VQA. Inspired by GPT-3's power in knowledge retrieval and question answering, instead of using structured KBs as in previous work, we treat GPT-3 as an implicit and unstructured KB that can jointly acquire and process relevant knowledge. Specifically, we first convert the image into captions (or tags) that GPT-3 can understand, then adapt GPT-3 to solve the VQA task in a few-shot manner by just providing a few in-context VQA examples. We further boost performance by carefully investigating: (i) what text formats best describe the image content, and (ii) how in-context examples can be better selected and used. PICa unlocks the first use of GPT-3 for multimodal tasks. By using only 16 examples, PICa surpasses the supervised state of the art by an absolute +8.6 points on the OK-VQA dataset. We also benchmark PICa on VQAv2, where PICa also shows a decent few-shot performance.
MUST-VQA: MUltilingual Scene-text VQA
In this paper, we present a framework for Multilingual Scene Text Visual Question Answering that deals with new languages in a zero-shot fashion. Specifically, we consider the task of Scene Text Visual Question Answering (STVQA) in which the question can be asked in different languages and it is not necessarily aligned to the scene text language. Thus, we first introduce a natural step towards a more generalized version of STVQA: MUST-VQA. Accounting for this, we discuss two evaluation scenarios in the constrained setting, namely IID and zero-shot and we demonstrate that the models can perform on a par on a zero-shot setting. We further provide extensive experimentation and show the effectiveness of adapting multilingual language models into STVQA tasks.
Vision LLMs Are Bad at Hierarchical Visual Understanding, and LLMs Are the Bottleneck
This paper reveals that many state-of-the-art large language models (LLMs) lack hierarchical knowledge about our visual world, unaware of even well-established biology taxonomies. This shortcoming makes LLMs a bottleneck for vision LLMs' hierarchical visual understanding (e.g., recognizing Anemone Fish but not Vertebrate). We arrive at these findings using about one million four-choice visual question answering (VQA) tasks constructed from six taxonomies and four image datasets. Interestingly, finetuning a vision LLM using our VQA tasks reaffirms LLMs' bottleneck effect to some extent because the VQA tasks improve the LLM's hierarchical consistency more than the vision LLM's. We conjecture that one cannot make vision LLMs understand visual concepts fully hierarchical until LLMs possess corresponding taxonomy knowledge.
MyVLM: Personalizing VLMs for User-Specific Queries
Recent large-scale vision-language models (VLMs) have demonstrated remarkable capabilities in understanding and generating textual descriptions for visual content. However, these models lack an understanding of user-specific concepts. In this work, we take a first step toward the personalization of VLMs, enabling them to learn and reason over user-provided concepts. For example, we explore whether these models can learn to recognize you in an image and communicate what you are doing, tailoring the model to reflect your personal experiences and relationships. To effectively recognize a variety of user-specific concepts, we augment the VLM with external concept heads that function as toggles for the model, enabling the VLM to identify the presence of specific target concepts in a given image. Having recognized the concept, we learn a new concept embedding in the intermediate feature space of the VLM. This embedding is tasked with guiding the language model to naturally integrate the target concept in its generated response. We apply our technique to BLIP-2 and LLaVA for personalized image captioning and further show its applicability for personalized visual question-answering. Our experiments demonstrate our ability to generalize to unseen images of learned concepts while preserving the model behavior on unrelated inputs.
WebVLN: Vision-and-Language Navigation on Websites
Vision-and-Language Navigation (VLN) task aims to enable AI agents to accurately understand and follow natural language instructions to navigate through real-world environments, ultimately reaching specific target locations. We recognise a promising opportunity to extend VLN to a comparable navigation task that holds substantial significance in our daily lives, albeit within the virtual realm: navigating websites on the Internet. This paper proposes a new task named Vision-and-Language Navigation on Websites (WebVLN), where we use question-based instructions to train an agent, emulating how users naturally browse websites. Unlike the existing VLN task that only pays attention to vision and instruction (language), the WebVLN agent further considers underlying web-specific content like HTML, which could not be seen on the rendered web pages yet contains rich visual and textual information. Toward this goal, we contribute a dataset, WebVLN-v1, and introduce a novel approach called Website-aware VLN Network (WebVLN-Net), which is built upon the foundation of state-of-the-art VLN techniques. Experimental results show that WebVLN-Net outperforms current VLN and web-related navigation methods. We believe that the introduction of the new WebVLN task and its dataset will establish a new dimension within the VLN domain and contribute to the broader vision-and-language research community. The code is available at: https://github.com/WebVLN/WebVLN.
Analyzing the Efficacy of an LLM-Only Approach for Image-based Document Question Answering
Recent document question answering models consist of two key components: the vision encoder, which captures layout and visual elements in images, and a Large Language Model (LLM) that helps contextualize questions to the image and supplements them with external world knowledge to generate accurate answers. However, the relative contributions of the vision encoder and the language model in these tasks remain unclear. This is especially interesting given the effectiveness of instruction-tuned LLMs, which exhibit remarkable adaptability to new tasks. To this end, we explore the following aspects in this work: (1) The efficacy of an LLM-only approach on document question answering tasks (2) strategies for serializing textual information within document images and feeding it directly to an instruction-tuned LLM, thus bypassing the need for an explicit vision encoder (3) thorough quantitative analysis on the feasibility of such an approach. Our comprehensive analysis encompasses six diverse benchmark datasets, utilizing LLMs of varying scales. Our findings reveal that a strategy exclusively reliant on the LLM yields results that are on par with or closely approach state-of-the-art performance across a range of datasets. We posit that this evaluation framework will serve as a guiding resource for selecting appropriate datasets for future research endeavors that emphasize the fundamental importance of layout and image content information.
ViDoRAG: Visual Document Retrieval-Augmented Generation via Dynamic Iterative Reasoning Agents
Understanding information from visually rich documents remains a significant challenge for traditional Retrieval-Augmented Generation (RAG) methods. Existing benchmarks predominantly focus on image-based question answering (QA), overlooking the fundamental challenges of efficient retrieval, comprehension, and reasoning within dense visual documents. To bridge this gap, we introduce ViDoSeek, a novel dataset designed to evaluate RAG performance on visually rich documents requiring complex reasoning. Based on it, we identify key limitations in current RAG approaches: (i) purely visual retrieval methods struggle to effectively integrate both textual and visual features, and (ii) previous approaches often allocate insufficient reasoning tokens, limiting their effectiveness. To address these challenges, we propose ViDoRAG, a novel multi-agent RAG framework tailored for complex reasoning across visual documents. ViDoRAG employs a Gaussian Mixture Model (GMM)-based hybrid strategy to effectively handle multi-modal retrieval. To further elicit the model's reasoning capabilities, we introduce an iterative agent workflow incorporating exploration, summarization, and reflection, providing a framework for investigating test-time scaling in RAG domains. Extensive experiments on ViDoSeek validate the effectiveness and generalization of our approach. Notably, ViDoRAG outperforms existing methods by over 10% on the competitive ViDoSeek benchmark.
TVQA: Localized, Compositional Video Question Answering
Recent years have witnessed an increasing interest in image-based question-answering (QA) tasks. However, due to data limitations, there has been much less work on video-based QA. In this paper, we present TVQA, a large-scale video QA dataset based on 6 popular TV shows. TVQA consists of 152,545 QA pairs from 21,793 clips, spanning over 460 hours of video. Questions are designed to be compositional in nature, requiring systems to jointly localize relevant moments within a clip, comprehend subtitle-based dialogue, and recognize relevant visual concepts. We provide analyses of this new dataset as well as several baselines and a multi-stream end-to-end trainable neural network framework for the TVQA task. The dataset is publicly available at http://tvqa.cs.unc.edu.
ChitroJera: A Regionally Relevant Visual Question Answering Dataset for Bangla
Visual Question Answer (VQA) poses the problem of answering a natural language question about a visual context. Bangla, despite being a widely spoken language, is considered low-resource in the realm of VQA due to the lack of proper benchmarks, challenging models known to be performant in other languages. Furthermore, existing Bangla VQA datasets offer little regional relevance and are largely adapted from their foreign counterparts. To address these challenges, we introduce a large-scale Bangla VQA dataset, ChitroJera, totaling over 15k samples from diverse and locally relevant data sources. We assess the performance of text encoders, image encoders, multimodal models, and our novel dual-encoder models. The experiments reveal that the pre-trained dual-encoders outperform other models of their scale. We also evaluate the performance of current large vision language models (LVLMs) using prompt-based techniques, achieving the overall best performance. Given the underdeveloped state of existing datasets, we envision ChitroJera expanding the scope of Vision-Language tasks in Bangla.
Enhancing Vietnamese VQA through Curriculum Learning on Raw and Augmented Text Representations
Visual Question Answering (VQA) is a multimodal task requiring reasoning across textual and visual inputs, which becomes particularly challenging in low-resource languages like Vietnamese due to linguistic variability and the lack of high-quality datasets. Traditional methods often rely heavily on extensive annotated datasets, computationally expensive pipelines, and large pre-trained models, specifically in the domain of Vietnamese VQA, limiting their applicability in such scenarios. To address these limitations, we propose a training framework that combines a paraphrase-based feature augmentation module with a dynamic curriculum learning strategy. Explicitly, augmented samples are considered "easy" while raw samples are regarded as "hard". The framework then utilizes a mechanism that dynamically adjusts the ratio of easy to hard samples during training, progressively modifying the same dataset to increase its difficulty level. By enabling gradual adaptation to task complexity, this approach helps the Vietnamese VQA model generalize well, thus improving overall performance. Experimental results show consistent improvements on the OpenViVQA dataset and mixed outcomes on the ViVQA dataset, highlighting both the potential and challenges of our approach in advancing VQA for Vietnamese language.
GQA: A New Dataset for Real-World Visual Reasoning and Compositional Question Answering
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
Understand, Think, and Answer: Advancing Visual Reasoning with Large Multimodal Models
Large Multimodal Models (LMMs) have recently demonstrated remarkable visual understanding performance on both vision-language and vision-centric tasks. However, they often fall short in integrating advanced, task-specific capabilities for compositional reasoning, which hinders their progress toward truly competent general vision models. To address this, we present a unified visual reasoning mechanism that enables LMMs to solve complicated compositional problems by leveraging their intrinsic capabilities (e.g. grounding and visual understanding capabilities). Different from the previous shortcut learning mechanism, our approach introduces a human-like understanding-thinking-answering process, allowing the model to complete all steps in a single pass forwarding without the need for multiple inferences or external tools. This design bridges the gap between foundational visual capabilities and general question answering, encouraging LMMs to generate faithful and traceable responses for complex visual reasoning. Meanwhile, we curate 334K visual instruction samples covering both general scenes and text-rich scenes and involving multiple foundational visual capabilities. Our trained model, Griffon-R, has the ability of end-to-end automatic understanding, self-thinking, and reasoning answers. Comprehensive experiments show that Griffon-R not only achieves advancing performance on complex visual reasoning benchmarks including VSR and CLEVR, but also enhances multimodal capabilities across various benchmarks like MMBench and ScienceQA. Data, models, and codes will be release at https://github.com/jefferyZhan/Griffon/tree/master/Griffon-R soon.
Are Language Models Puzzle Prodigies? Algorithmic Puzzles Unveil Serious Challenges in Multimodal Reasoning
This paper introduces the novel task of multimodal puzzle solving, framed within the context of visual question-answering. We present a new dataset, AlgoPuzzleVQA designed to challenge and evaluate the capabilities of multimodal language models in solving algorithmic puzzles that necessitate both visual understanding, language understanding, and complex algorithmic reasoning. We create the puzzles to encompass a diverse array of mathematical and algorithmic topics such as boolean logic, combinatorics, graph theory, optimization, search, etc., aiming to evaluate the gap between visual data interpretation and algorithmic problem-solving skills. The dataset is generated automatically from code authored by humans. All our puzzles have exact solutions that can be found from the algorithm without tedious human calculations. It ensures that our dataset can be scaled up arbitrarily in terms of reasoning complexity and dataset size. Our investigation reveals that large language models (LLMs) such as GPT4V and Gemini exhibit limited performance in puzzle-solving tasks. We find that their performance is near random in a multi-choice question-answering setup for a significant number of puzzles. The findings emphasize the challenges of integrating visual, language, and algorithmic knowledge for solving complex reasoning problems.
CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark
Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
TVQA+: Spatio-Temporal Grounding for Video Question Answering
We present the task of Spatio-Temporal Video Question Answering, which requires intelligent systems to simultaneously retrieve relevant moments and detect referenced visual concepts (people and objects) to answer natural language questions about videos. We first augment the TVQA dataset with 310.8K bounding boxes, linking depicted objects to visual concepts in questions and answers. We name this augmented version as TVQA+. We then propose Spatio-Temporal Answerer with Grounded Evidence (STAGE), a unified framework that grounds evidence in both spatial and temporal domains to answer questions about videos. Comprehensive experiments and analyses demonstrate the effectiveness of our framework and how the rich annotations in our TVQA+ dataset can contribute to the question answering task. Moreover, by performing this joint task, our model is able to produce insightful and interpretable spatio-temporal attention visualizations. Dataset and code are publicly available at: http: //tvqa.cs.unc.edu, https://github.com/jayleicn/TVQAplus
Sentence Attention Blocks for Answer Grounding
Answer grounding is the task of locating relevant visual evidence for the Visual Question Answering task. While a wide variety of attention methods have been introduced for this task, they suffer from the following three problems: designs that do not allow the usage of pre-trained networks and do not benefit from large data pre-training, custom designs that are not based on well-grounded previous designs, therefore limiting the learning power of the network, or complicated designs that make it challenging to re-implement or improve them. In this paper, we propose a novel architectural block, which we term Sentence Attention Block, to solve these problems. The proposed block re-calibrates channel-wise image feature-maps by explicitly modeling inter-dependencies between the image feature-maps and sentence embedding. We visually demonstrate how this block filters out irrelevant feature-maps channels based on sentence embedding. We start our design with a well-known attention method, and by making minor modifications, we improve the results to achieve state-of-the-art accuracy. The flexibility of our method makes it easy to use different pre-trained backbone networks, and its simplicity makes it easy to understand and be re-implemented. We demonstrate the effectiveness of our method on the TextVQA-X, VQS, VQA-X, and VizWiz-VQA-Grounding datasets. We perform multiple ablation studies to show the effectiveness of our design choices.
WebQuest: A Benchmark for Multimodal QA on Web Page Sequences
The rise of powerful multimodal LLMs has enhanced the viability of building web agents which can, with increasing levels of autonomy, assist users to retrieve information and complete tasks on various human-computer interfaces. It is hence necessary to build challenging benchmarks that span a wide-variety of use cases reflecting real-world usage. In this work, we present WebQuest, a multi-page question-answering dataset that requires reasoning across multiple related web pages. In contrast to existing UI benchmarks that focus on multi-step web navigation and task completion, our dataset evaluates information extraction, multimodal retrieval and composition of information from many web pages. WebQuest includes three question categories: single-screen QA, multi-screen QA, and QA based on navigation traces. We evaluate leading proprietary multimodal models like GPT-4V, Gemini Flash, Claude 3, and open source models like InstructBLIP, PaliGemma on our dataset, revealing a significant gap between single-screen and multi-screen reasoning. Finally, we investigate inference time techniques like Chain-of-Thought prompting to improve model capabilities on multi-screen reasoning.
Benchmarking Retrieval-Augmented Multimomal Generation for Document Question Answering
Document Visual Question Answering (DocVQA) faces dual challenges in processing lengthy multimodal documents (text, images, tables) and performing cross-modal reasoning. Current document retrieval-augmented generation (DocRAG) methods remain limited by their text-centric approaches, frequently missing critical visual information. The field also lacks robust benchmarks for assessing multimodal evidence selection and integration. We introduce MMDocRAG, a comprehensive benchmark featuring 4,055 expert-annotated QA pairs with multi-page, cross-modal evidence chains. Our framework introduces innovative metrics for evaluating multimodal quote selection and enables answers that interleave text with relevant visual elements. Through large-scale experiments with 60 VLM/LLM models and 14 retrieval systems, we identify persistent challenges in multimodal evidence retrieval, selection, and integration.Key findings reveal advanced proprietary LVMs show superior performance than open-sourced alternatives. Also, they show moderate advantages using multimodal inputs over text-only inputs, while open-source alternatives show significant performance degradation. Notably, fine-tuned LLMs achieve substantial improvements when using detailed image descriptions. MMDocRAG establishes a rigorous testing ground and provides actionable insights for developing more robust multimodal DocVQA systems. Our benchmark and code are available at https://mmdocrag.github.io/MMDocRAG/.
VQA^2: Visual Question Answering for Video Quality Assessment
The advent and proliferation of large multi-modal models (LMMs) have introduced new paradigms to computer vision, transforming various tasks into a unified visual question answering framework. Video Quality Assessment (VQA), a classic field in low-level visual perception, focused initially on quantitative video quality scoring. However, driven by advances in LMMs, it is now progressing toward more holistic visual quality understanding tasks. Recent studies in the image domain have demonstrated that Visual Question Answering (VQA) can markedly enhance low-level visual quality evaluation. Nevertheless, related work has not been explored in the video domain, leaving substantial room for improvement. To address this gap, we introduce the VQA2 Instruction Dataset - the first visual question answering instruction dataset that focuses on video quality assessment. This dataset consists of 3 subsets and covers various video types, containing 157,755 instruction question-answer pairs. Then, leveraging this foundation, we present the VQA2 series models. The VQA2 series models interleave visual and motion tokens to enhance the perception of spatial-temporal quality details in videos. We conduct extensive experiments on video quality scoring and understanding tasks, and results demonstrate that the VQA2series models achieve excellent performance in both tasks. Notably, our final model, the VQA2-Assistant, exceeds the renowned GPT-4o in visual quality understanding tasks while maintaining strong competitiveness in quality scoring tasks. Our work provides a foundation and feasible approach for integrating low-level video quality assessment and understanding with LMMs.
FigureQA: An Annotated Figure Dataset for Visual Reasoning
We introduce FigureQA, a visual reasoning corpus of over one million question-answer pairs grounded in over 100,000 images. The images are synthetic, scientific-style figures from five classes: line plots, dot-line plots, vertical and horizontal bar graphs, and pie charts. We formulate our reasoning task by generating questions from 15 templates; questions concern various relationships between plot elements and examine characteristics like the maximum, the minimum, area-under-the-curve, smoothness, and intersection. To resolve, such questions often require reference to multiple plot elements and synthesis of information distributed spatially throughout a figure. To facilitate the training of machine learning systems, the corpus also includes side data that can be used to formulate auxiliary objectives. In particular, we provide the numerical data used to generate each figure as well as bounding-box annotations for all plot elements. We study the proposed visual reasoning task by training several models, including the recently proposed Relation Network as a strong baseline. Preliminary results indicate that the task poses a significant machine learning challenge. We envision FigureQA as a first step towards developing models that can intuitively recognize patterns from visual representations of data.
MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models
Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we systematically identify and categorize scenarios where visually augmented knowledge is better than textual knowledge, for instance, more images from varying viewpoints. MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions across 9 distinct scenarios. With MRAG-Bench, we conduct an evaluation of 10 open-source and 4 proprietary large vision-language models (LVLMs). Our results show that all LVLMs exhibit greater improvements when augmented with images compared to textual knowledge, confirming that MRAG-Bench is vision-centric. Additionally, we conduct extensive analysis with MRAG-Bench, which offers valuable insights into retrieval-augmented LVLMs. Notably, the top-performing model, GPT-4o, faces challenges in effectively leveraging retrieved knowledge, achieving only a 5.82% improvement with ground-truth information, in contrast to a 33.16% improvement observed in human participants. These findings highlight the importance of MRAG-Bench in encouraging the community to enhance LVLMs' ability to utilize retrieved visual knowledge more effectively.
Look, Remember and Reason: Visual Reasoning with Grounded Rationales
Large language models have recently shown human level performance on a variety of reasoning tasks. However, the ability of these models to perform complex visual reasoning has not been studied in detail yet. A key challenge in many visual reasoning tasks is that the visual information needs to be tightly integrated in the reasoning process. We propose to address this challenge by drawing inspiration from human visual problem solving which depends on a variety of low-level visual capabilities. It can often be cast as the three step-process of ``Look, Remember, Reason'': visual information is incrementally extracted using low-level visual routines in a step-by-step fashion until a final answer is reached. We follow the same paradigm to enable existing large language models, with minimal changes to the architecture, to solve visual reasoning problems. To this end, we introduce rationales over the visual input that allow us to integrate low-level visual capabilities, such as object recognition and tracking, as surrogate tasks. We show competitive performance on diverse visual reasoning tasks from the CLEVR, CATER, and ACRE datasets over state-of-the-art models designed specifically for these tasks.
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning
When building artificial intelligence systems that can reason and answer questions about visual data, we need diagnostic tests to analyze our progress and discover shortcomings. Existing benchmarks for visual question answering can help, but have strong biases that models can exploit to correctly answer questions without reasoning. They also conflate multiple sources of error, making it hard to pinpoint model weaknesses. We present a diagnostic dataset that tests a range of visual reasoning abilities. It contains minimal biases and has detailed annotations describing the kind of reasoning each question requires. We use this dataset to analyze a variety of modern visual reasoning systems, providing novel insights into their abilities and limitations.
Where do Large Vision-Language Models Look at when Answering Questions?
Large Vision-Language Models (LVLMs) have shown promising performance in vision-language understanding and reasoning tasks. However, their visual understanding behaviors remain underexplored. A fundamental question arises: to what extent do LVLMs rely on visual input, and which image regions contribute to their responses? It is non-trivial to interpret the free-form generation of LVLMs due to their complicated visual architecture (e.g., multiple encoders and multi-resolution) and variable-length outputs. In this paper, we extend existing heatmap visualization methods (e.g., iGOS++) to support LVLMs for open-ended visual question answering. We propose a method to select visually relevant tokens that reflect the relevance between generated answers and input image. Furthermore, we conduct a comprehensive analysis of state-of-the-art LVLMs on benchmarks designed to require visual information to answer. Our findings offer several insights into LVLM behavior, including the relationship between focus region and answer correctness, differences in visual attention across architectures, and the impact of LLM scale on visual understanding. The code and data are available at https://github.com/bytedance/LVLM_Interpretation.
Weakly Supervised Gaussian Contrastive Grounding with Large Multimodal Models for Video Question Answering
Video Question Answering (VideoQA) aims to answer natural language questions based on the information observed in videos. Despite the recent success of Large Multimodal Models (LMMs) in image-language understanding and reasoning, they deal with VideoQA insufficiently by simply taking uniformly sampled frames as visual inputs, which ignores question-relevant visual clues. Moreover, there are no human annotations for question-critical timestamps in existing VideoQA datasets. In light of this, we propose a novel weakly supervised framework to enforce the LMMs to reason out the answers with question-critical moments as visual inputs. Specifically, we fuse the question and answer pairs as event descriptions to find multiple keyframes as target moments, which will be pseudo-labels. With these pseudo-labels as additionally weak supervision, we devise a lightweight Gaussian-based Contrastive Grounding (GCG) module. GCG learns multiple Gaussian functions to characterize the temporal structure of the video, and sample question-critical frames as positive moments to be the visual inputs of LMMs. Extensive experiments on several VideoQA benchmarks verify the effectiveness of our framework, and we achieve substantial improvements compared to previous state-of-the-art methods.
TVBench: Redesigning Video-Language Evaluation
Large language models have demonstrated impressive performance when integrated with vision models even enabling video understanding. However, evaluating these video models presents its own unique challenges, for which several benchmarks have been proposed. In this paper, we show that the currently most used video-language benchmarks can be solved without requiring much temporal reasoning. We identified three main issues in existing datasets: (i) static information from single frames is often sufficient to solve the tasks (ii) the text of the questions and candidate answers is overly informative, allowing models to answer correctly without relying on any visual input (iii) world knowledge alone can answer many of the questions, making the benchmarks a test of knowledge replication rather than visual reasoning. In addition, we found that open-ended question-answering benchmarks for video understanding suffer from similar issues while the automatic evaluation process with LLMs is unreliable, making it an unsuitable alternative. As a solution, we propose TVBench, a novel open-source video multiple-choice question-answering benchmark, and demonstrate through extensive evaluations that it requires a high level of temporal understanding. Surprisingly, we find that most recent state-of-the-art video-language models perform similarly to random performance on TVBench, with only Gemini-Pro and Tarsier clearly surpassing this baseline.
NLKI: A lightweight Natural Language Knowledge Integration Framework for Improving Small VLMs in Commonsense VQA Tasks
Commonsense visual-question answering often hinges on knowledge that is missing from the image or the question. Small vision-language models (sVLMs) such as ViLT, VisualBERT and FLAVA therefore lag behind their larger generative counterparts. To study the effect of careful commonsense knowledge integration on sVLMs, we present an end-to-end framework (NLKI) that (i) retrieves natural language facts, (ii) prompts an LLM to craft natural language explanations, and (iii) feeds both signals to sVLMs respectively across two commonsense VQA datasets (CRIC, AOKVQA) and a visual-entailment dataset (e-SNLI-VE). Facts retrieved using a fine-tuned ColBERTv2 and an object information-enriched prompt yield explanations that largely cut down hallucinations, while lifting the end-to-end answer accuracy by up to 7% (across 3 datasets), making FLAVA and other models in NLKI match or exceed medium-sized VLMs such as Qwen-2 VL-2B and SmolVLM-2.5B. As these benchmarks contain 10-25% label noise, additional finetuning using noise-robust losses (such as symmetric cross entropy and generalised cross entropy) adds another 2.5% in CRIC, and 5.5% in AOKVQA. Our findings expose when LLM-based commonsense knowledge beats retrieval from commonsense knowledge bases, how noise-aware training stabilises small models in the context of external knowledge augmentation, and why parameter-efficient commonsense reasoning is now within reach for 250M models.
A Comprehensive Evaluation of GPT-4V on Knowledge-Intensive Visual Question Answering
The emergence of multimodal large models (MLMs) has significantly advanced the field of visual understanding, offering remarkable capabilities in the realm of visual question answering (VQA). Yet, the true challenge lies in the domain of knowledge-intensive VQA tasks, which necessitate not just recognition of visual elements, but also a deep comprehension of the visual information in conjunction with a vast repository of learned knowledge. To uncover such capabilities of MLMs, particularly the newly introduced GPT-4V and Gemini, we provide an in-depth evaluation from three perspectives: 1) Commonsense Knowledge, which assesses how well models can understand visual cues and connect to general knowledge; 2) Fine-grained World Knowledge, which tests the model's skill in reasoning out specific knowledge from images, showcasing their proficiency across various specialized fields; 3) Comprehensive Knowledge with Decision-making Rationales, which examines model's capability to provide logical explanations for its inference, facilitating a deeper analysis from the interpretability perspective. Additionally, we utilize a visual knowledge-enhanced training strategy and multimodal retrieval-augmented generation approach to enhance MLMs, highlighting the future need for advancements in this research direction. Extensive experiments indicate that: a) GPT-4V demonstrates enhanced explanation generation when using composite images as few-shots; b) GPT-4V and other MLMs produce severe hallucinations when dealing with world knowledge; c) Visual knowledge enhanced training and prompting technicals present potential to improve performance. Codes: https://github.com/HITsz-TMG/Cognitive-Visual-Language-Mapper
FlexCap: Generating Rich, Localized, and Flexible Captions in Images
We introduce a versatile flexible-captioning vision-language model (VLM) capable of generating region-specific descriptions of varying lengths. The model, FlexCap, is trained to produce length-conditioned captions for input bounding boxes, and this allows control over the information density of its output, with descriptions ranging from concise object labels to detailed captions. To achieve this we create large-scale training datasets of image region descriptions of varying length, starting from captioned images. This flexible-captioning capability has several valuable applications. First, FlexCap demonstrates superior performance in dense captioning tasks on the Visual Genome dataset. Second, a visual question answering (VQA) system can be built by employing FlexCap to generate localized descriptions as inputs to a large language model. The resulting system achieves state-of-the-art zero-shot performance on a number of VQA datasets. We also demonstrate a localize-then-describe approach with FlexCap can be better at open-ended object detection than a describe-then-localize approach with other VLMs. We highlight a novel characteristic of FlexCap, which is its ability to extract diverse visual information through prefix conditioning. Finally, we qualitatively demonstrate FlexCap's broad applicability in tasks such as image labeling, object attribute recognition, and visual dialog. Project webpage: https://flex-cap.github.io .
SlideVQA: A Dataset for Document Visual Question Answering on Multiple Images
Visual question answering on document images that contain textual, visual, and layout information, called document VQA, has received much attention recently. Although many datasets have been proposed for developing document VQA systems, most of the existing datasets focus on understanding the content relationships within a single image and not across multiple images. In this study, we propose a new multi-image document VQA dataset, SlideVQA, containing 2.6k+ slide decks composed of 52k+ slide images and 14.5k questions about a slide deck. SlideVQA requires complex reasoning, including single-hop, multi-hop, and numerical reasoning, and also provides annotated arithmetic expressions of numerical answers for enhancing the ability of numerical reasoning. Moreover, we developed a new end-to-end document VQA model that treats evidence selection and question answering in a unified sequence-to-sequence format. Experiments on SlideVQA show that our model outperformed existing state-of-the-art QA models, but that it still has a large gap behind human performance. We believe that our dataset will facilitate research on document VQA.
Prompting Large Language Models with Answer Heuristics for Knowledge-based Visual Question Answering
Knowledge-based visual question answering (VQA) requires external knowledge beyond the image to answer the question. Early studies retrieve required knowledge from explicit knowledge bases (KBs), which often introduces irrelevant information to the question, hence restricting the performance of their models. Recent works have sought to use a large language model (i.e., GPT-3) as an implicit knowledge engine to acquire the necessary knowledge for answering. Despite the encouraging results achieved by these methods, we argue that they have not fully activated the capacity of GPT-3 as the provided input information is insufficient. In this paper, we present Prophet -- a conceptually simple framework designed to prompt GPT-3 with answer heuristics for knowledge-based VQA. Specifically, we first train a vanilla VQA model on a specific knowledge-based VQA dataset without external knowledge. After that, we extract two types of complementary answer heuristics from the model: answer candidates and answer-aware examples. Finally, the two types of answer heuristics are encoded into the prompts to enable GPT-3 to better comprehend the task thus enhancing its capacity. Prophet significantly outperforms all existing state-of-the-art methods on two challenging knowledge-based VQA datasets, OK-VQA and A-OKVQA, delivering 61.1% and 55.7% accuracies on their testing sets, respectively.
Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning
Visual Question Answering (VQA) models often perform poorly on out-of-distribution data and struggle on domain generalization. Due to the multi-modal nature of this task, multiple factors of variation are intertwined, making generalization difficult to analyze. This motivates us to introduce a virtual benchmark, Super-CLEVR, where different factors in VQA domain shifts can be isolated in order that their effects can be studied independently. Four factors are considered: visual complexity, question redundancy, concept distribution and concept compositionality. With controllably generated data, Super-CLEVR enables us to test VQA methods in situations where the test data differs from the training data along each of these axes. We study four existing methods, including two neural symbolic methods NSCL and NSVQA, and two non-symbolic methods FiLM and mDETR; and our proposed method, probabilistic NSVQA (P-NSVQA), which extends NSVQA with uncertainty reasoning. P-NSVQA outperforms other methods on three of the four domain shift factors. Our results suggest that disentangling reasoning and perception, combined with probabilistic uncertainty, form a strong VQA model that is more robust to domain shifts. The dataset and code are released at https://github.com/Lizw14/Super-CLEVR.
VRAG-RL: Empower Vision-Perception-Based RAG for Visually Rich Information Understanding via Iterative Reasoning with Reinforcement Learning
Effectively retrieving, reasoning and understanding visually rich information remains a challenge for RAG methods. Traditional text-based methods cannot handle visual-related information. On the other hand, current vision-based RAG approaches are often limited by fixed pipelines and frequently struggle to reason effectively due to the insufficient activation of the fundamental capabilities of models. As RL has been proven to be beneficial for model reasoning, we introduce VRAG-RL, a novel RL framework tailored for complex reasoning across visually rich information. With this framework, VLMs interact with search engines, autonomously sampling single-turn or multi-turn reasoning trajectories with the help of visual perception tokens and undergoing continual optimization based on these samples. Our approach highlights key limitations of RL in RAG domains: (i) Prior Multi-modal RAG approaches tend to merely incorporate images into the context, leading to insufficient reasoning token allocation and neglecting visual-specific perception; and (ii) When models interact with search engines, their queries often fail to retrieve relevant information due to the inability to articulate requirements, thereby leading to suboptimal performance. To address these challenges, we define an action space tailored for visually rich inputs, with actions including cropping and scaling, allowing the model to gather information from a coarse-to-fine perspective. Furthermore, to bridge the gap between users' original inquiries and the retriever, we employ a simple yet effective reward that integrates query rewriting and retrieval performance with a model-based reward. Our VRAG-RL optimizes VLMs for RAG tasks using specially designed RL strategies, aligning the model with real-world applications. The code is available at https://github.com/Alibaba-NLP/VRAG{https://github.com/Alibaba-NLP/VRAG}.
PiggyBack: Pretrained Visual Question Answering Environment for Backing up Non-deep Learning Professionals
We propose a PiggyBack, a Visual Question Answering platform that allows users to apply the state-of-the-art visual-language pretrained models easily. The PiggyBack supports the full stack of visual question answering tasks, specifically data processing, model fine-tuning, and result visualisation. We integrate visual-language models, pretrained by HuggingFace, an open-source API platform of deep learning technologies; however, it cannot be runnable without programming skills or deep learning understanding. Hence, our PiggyBack supports an easy-to-use browser-based user interface with several deep learning visual language pretrained models for general users and domain experts. The PiggyBack includes the following benefits: Free availability under the MIT License, Portability due to web-based and thus runs on almost any platform, A comprehensive data creation and processing technique, and ease of use on deep learning-based visual language pretrained models. The demo video is available on YouTube and can be found at https://youtu.be/iz44RZ1lF4s.
3D-Aware Visual Question Answering about Parts, Poses and Occlusions
Despite rapid progress in Visual question answering (VQA), existing datasets and models mainly focus on testing reasoning in 2D. However, it is important that VQA models also understand the 3D structure of visual scenes, for example to support tasks like navigation or manipulation. This includes an understanding of the 3D object pose, their parts and occlusions. In this work, we introduce the task of 3D-aware VQA, which focuses on challenging questions that require a compositional reasoning over the 3D structure of visual scenes. We address 3D-aware VQA from both the dataset and the model perspective. First, we introduce Super-CLEVR-3D, a compositional reasoning dataset that contains questions about object parts, their 3D poses, and occlusions. Second, we propose PO3D-VQA, a 3D-aware VQA model that marries two powerful ideas: probabilistic neural symbolic program execution for reasoning and deep neural networks with 3D generative representations of objects for robust visual recognition. Our experimental results show our model PO3D-VQA outperforms existing methods significantly, but we still observe a significant performance gap compared to 2D VQA benchmarks, indicating that 3D-aware VQA remains an important open research area.
Retrieving-to-Answer: Zero-Shot Video Question Answering with Frozen Large Language Models
Video Question Answering (VideoQA) has been significantly advanced from the scaling of recent Large Language Models (LLMs). The key idea is to convert the visual information into the language feature space so that the capacity of LLMs can be fully exploited. Existing VideoQA methods typically take two paradigms: (1) learning cross-modal alignment, and (2) using an off-the-shelf captioning model to describe the visual data. However, the first design needs costly training on many extra multi-modal data, whilst the second is further limited by limited domain generalization. To address these limitations, a simple yet effective Retrieving-to-Answer (R2A) framework is proposed.Given an input video, R2A first retrieves a set of semantically similar texts from a generic text corpus using a pre-trained multi-modal model (e.g., CLIP). With both the question and the retrieved texts, a LLM (e.g., DeBERTa) can be directly used to yield a desired answer. Without the need for cross-modal fine-tuning, R2A allows for all the key components (e.g., LLM, retrieval model, and text corpus) to plug-and-play. Extensive experiments on several VideoQA benchmarks show that despite with 1.3B parameters and no fine-tuning, our R2A can outperform the 61 times larger Flamingo-80B model even additionally trained on nearly 2.1B multi-modal data.
Zero-Shot Visual Reasoning by Vision-Language Models: Benchmarking and Analysis
Vision-language models (VLMs) have shown impressive zero- and few-shot performance on real-world visual question answering (VQA) benchmarks, alluding to their capabilities as visual reasoning engines. However, the benchmarks being used conflate "pure" visual reasoning with world knowledge, and also have questions that involve a limited number of reasoning steps. Thus, it remains unclear whether a VLM's apparent visual reasoning performance is due to its world knowledge, or due to actual visual reasoning capabilities. To clarify this ambiguity, we systematically benchmark and dissect the zero-shot visual reasoning capabilities of VLMs through synthetic datasets that require minimal world knowledge, and allow for analysis over a broad range of reasoning steps. We focus on two novel aspects of zero-shot visual reasoning: i) evaluating the impact of conveying scene information as either visual embeddings or purely textual scene descriptions to the underlying large language model (LLM) of the VLM, and ii) comparing the effectiveness of chain-of-thought prompting to standard prompting for zero-shot visual reasoning. We find that the underlying LLMs, when provided textual scene descriptions, consistently perform better compared to being provided visual embeddings. In particular, 18% higher accuracy is achieved on the PTR dataset. We also find that CoT prompting performs marginally better than standard prompting only for the comparatively large GPT-3.5-Turbo (175B) model, and does worse for smaller-scale models. This suggests the emergence of CoT abilities for visual reasoning in LLMs at larger scales even when world knowledge is limited. Overall, we find limitations in the abilities of VLMs and LLMs for more complex visual reasoning, and highlight the important role that LLMs can play in visual reasoning.
Document Haystacks: Vision-Language Reasoning Over Piles of 1000+ Documents
Large multimodal models (LMMs) have achieved impressive progress in vision-language understanding, yet they face limitations in real-world applications requiring complex reasoning over a large number of images. Existing benchmarks for multi-image question-answering are limited in scope, each question is paired with only up to 30 images, which does not fully capture the demands of large-scale retrieval tasks encountered in the real-world usages. To reduce these gaps, we introduce two document haystack benchmarks, dubbed DocHaystack and InfoHaystack, designed to evaluate LMM performance on large-scale visual document retrieval and understanding. Additionally, we propose V-RAG, a novel, vision-centric retrieval-augmented generation (RAG) framework that leverages a suite of multimodal vision encoders, each optimized for specific strengths, and a dedicated question-document relevance module. V-RAG sets a new standard, with a 9% and 11% improvement in Recall@1 on the challenging DocHaystack-1000 and InfoHaystack-1000 benchmarks, respectively, compared to the previous best baseline models. Additionally, integrating V-RAG with LMMs enables them to efficiently operate across thousands of images, yielding significant improvements on our DocHaystack and InfoHaystack benchmarks. Our code and datasets are available at https://github.com/Vision-CAIR/dochaystacks
MathVista: Evaluating Mathematical Reasoning of Foundation Models in Visual Contexts
Although Large Language Models (LLMs) and Large Multimodal Models (LMMs) exhibit impressive skills in various domains, their ability for mathematical reasoning within visual contexts has not been formally examined. Equipping LLMs and LMMs with this capability is vital for general-purpose AI assistants and showcases promising potential in education, data analysis, and scientific discovery. To bridge this gap, we present MathVista, a benchmark designed to amalgamate challenges from diverse mathematical and visual tasks. We first taxonomize the key task types, reasoning skills, and visual contexts from the literature to guide our selection from 28 existing math-focused and visual question answering datasets. Then, we construct three new datasets, IQTest, FunctionQA, and PaperQA, to accommodate for missing types of visual contexts. The problems featured often require deep visual understanding beyond OCR or image captioning, and compositional reasoning with rich domain-specific tools, thus posing a notable challenge to existing models. We conduct a comprehensive evaluation of 11 prominent open-source and proprietary foundation models (LLMs, LLMs augmented with tools, and LMMs), and early experiments with GPT-4V. The best-performing model, Multimodal Bard, achieves only 58% of human performance (34.8% vs 60.3%), indicating ample room for further improvement. Given this significant gap, MathVista fuels future research in the development of general-purpose AI agents capable of tackling mathematically intensive and visually rich real-world tasks. Preliminary tests show that MathVista also presents challenges to GPT-4V, underscoring the benchmark's importance. The project is available at https://mathvista.github.io/.
RealCQA: Scientific Chart Question Answering as a Test-bed for First-Order Logic
We present a comprehensive study of chart visual question-answering(QA) task, to address the challenges faced in comprehending and extracting data from chart visualizations within documents. Despite efforts to tackle this problem using synthetic charts, solutions are limited by the shortage of annotated real-world data. To fill this gap, we introduce a benchmark and dataset for chart visual QA on real-world charts, offering a systematic analysis of the task and a novel taxonomy for template-based chart question creation. Our contribution includes the introduction of a new answer type, 'list', with both ranked and unranked variations. Our study is conducted on a real-world chart dataset from scientific literature, showcasing higher visual complexity compared to other works. Our focus is on template-based QA and how it can serve as a standard for evaluating the first-order logic capabilities of models. The results of our experiments, conducted on a real-world out-of-distribution dataset, provide a robust evaluation of large-scale pre-trained models and advance the field of chart visual QA and formal logic verification for neural networks in general.
CSVQA: A Chinese Multimodal Benchmark for Evaluating STEM Reasoning Capabilities of VLMs
Vision-Language Models (VLMs) have demonstrated remarkable progress in multimodal understanding, yet their capabilities for scientific reasoning remains inadequately assessed. Current multimodal benchmarks predominantly evaluate generic image comprehension or text-driven reasoning, lacking authentic scientific contexts that require domain-specific knowledge integration with visual evidence analysis. To fill this gap, we present CSVQA, a diagnostic multimodal benchmark specifically designed for evaluating scientific reasoning through domain-grounded visual question answering.Our benchmark features 1,378 carefully constructed question-answer pairs spanning diverse STEM disciplines, each demanding domain knowledge, integration of visual evidence, and higher-order reasoning. Compared to prior multimodal benchmarks, CSVQA places greater emphasis on real-world scientific content and complex reasoning.We additionally propose a rigorous evaluation protocol to systematically assess whether model predictions are substantiated by valid intermediate reasoning steps based on curated explanations. Our comprehensive evaluation of 15 VLMs on this benchmark reveals notable performance disparities, as even the top-ranked proprietary model attains only 49.6\% accuracy.This empirical evidence underscores the pressing need for advancing scientific reasoning capabilities in VLMs. Our CSVQA is released at https://huggingface.co/datasets/Skywork/CSVQA.
Good Questions Help Zero-Shot Image Reasoning
Aligning the recent large language models (LLMs) with computer vision models leads to large vision-language models (LVLMs), which have paved the way for zero-shot image reasoning tasks. However, LVLMs are usually trained on short high-level captions only referring to sparse focus regions in images. Such a ``tunnel vision'' limits LVLMs to exploring other relevant contexts in complex scenes. To address this challenge, we introduce Question-Driven Visual Exploration (QVix), a novel prompting strategy that enhances the exploratory capabilities of LVLMs in zero-shot reasoning tasks. QVix leverages LLMs' strong language prior to generate input-exploratory questions with more details than the original query, guiding LVLMs to explore visual content more comprehensively and uncover subtle or peripheral details. QVix enables a wider exploration of visual scenes, improving the LVLMs' reasoning accuracy and depth in tasks such as visual question answering and visual entailment. Our evaluations on various challenging zero-shot vision-language benchmarks, including ScienceQA and fine-grained visual classification, demonstrate that QVix significantly outperforms existing methods, highlighting its effectiveness in bridging the gap between complex visual data and LVLMs' exploratory abilities.
Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning
Large language models equipped with retrieval-augmented generation (RAG) represent a burgeoning field aimed at enhancing answering capabilities by leveraging external knowledge bases. Although the application of RAG with language-only models has been extensively explored, its adaptation into multimodal vision-language models remains nascent. Going beyond mere answer generation, the primary goal of multimodal RAG is to cultivate the models' ability to reason in response to relevant queries. To this end, we introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning). The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs, which then serve as scaffolds for the multimodal reasoning process. This training-free approach not only encourages the model to engage deeply with the reasoning processes inherent in the retrieved content but also facilitates the generation of answers that are precise and richly interpretable. Surprisingly, utilizing solely the ScienceQA dataset, collected from elementary and high school science curricula, RMR significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets, including A-OKVQA, MMBench, and SEED. These outcomes highlight the substantial potential of our multimodal retrieval and reasoning mechanism to improve the reasoning capabilities of vision-language models.
YTCommentQA: Video Question Answerability in Instructional Videos
Instructional videos provide detailed how-to guides for various tasks, with viewers often posing questions regarding the content. Addressing these questions is vital for comprehending the content, yet receiving immediate answers is difficult. While numerous computational models have been developed for Video Question Answering (Video QA) tasks, they are primarily trained on questions generated based on video content, aiming to produce answers from within the content. However, in real-world situations, users may pose questions that go beyond the video's informational boundaries, highlighting the necessity to determine if a video can provide the answer. Discerning whether a question can be answered by video content is challenging due to the multi-modal nature of videos, where visual and verbal information are intertwined. To bridge this gap, we present the YTCommentQA dataset, which contains naturally-generated questions from YouTube, categorized by their answerability and required modality to answer -- visual, script, or both. Experiments with answerability classification tasks demonstrate the complexity of YTCommentQA and emphasize the need to comprehend the combined role of visual and script information in video reasoning. The dataset is available at https://github.com/lgresearch/YTCommentQA.
FM2DS: Few-Shot Multimodal Multihop Data Synthesis with Knowledge Distillation for Question Answering
Multimodal multihop question answering is a complex task that requires reasoning over multiple sources of information, such as images and text, to answer questions. While there has been significant progress in visual question answering, the multihop setting remains unexplored due to the lack of high-quality datasets. Current methods focus on single-hop question answering or a single modality, which makes them unsuitable for real-world scenarios such as analyzing multimodal educational materials, summarizing lengthy academic articles, or interpreting scientific studies that combine charts, images, and text. To address this gap, we propose a novel methodology, introducing the first framework for creating a high-quality dataset that enables training models for multimodal multihop question answering. Our approach consists of a 5-stage pipeline that involves acquiring relevant multimodal documents from Wikipedia, synthetically generating high-level questions and answers, and validating them through rigorous criteria to ensure quality data. We evaluate our methodology by training models on our synthesized dataset and testing on two benchmarks, our results demonstrate that, with an equal sample size, models trained on our synthesized data outperform those trained on human-collected data by 1.9 in exact match (EM) on average. We believe our data synthesis method will serve as a strong foundation for training and evaluating multimodal multihop question answering models.
Enhancing Scientific Visual Question Answering via Vision-Caption aware Supervised Fine-Tuning
In this study, we introduce Vision-Caption aware Supervised FineTuning (VCASFT), a novel learning paradigm designed to enhance the performance of smaller Vision Language Models(VLMs) on scientific visual question answering(VQA) tasks. VCASFT leverages image captions as zero-shot prompts alongside question-answer pairs and instruction-tunes models to yield significant performance improvements. To comprehensively evaluate VCASFT, we benchmark it on ScienceQA, which consists of questions across diverse languages, subjects, and fields, demonstrating its adaptability and effectiveness in a variety of educational contexts. Additionally, to further demonstrate the effectiveness of this technique on lowresource languages, we developed HiSciVQA, a dataset comprising 2,245 high-quality, hand-annotated Hindi multimodal Q&A pairs. This dataset addresses the critical need for low-resource language Q&A datasets and serves as a foundation for testing VCASFT. Additionally, we introduce a novel LLM-based evaluation scheme to evaluate VLMs on HiSciVQA which offers deeper insights into model effectiveness surpassing traditional n-gram matching accuracy metrics. We are committed to advancing the field by open-sourcing all code files and the HiSciVQA dataset for the research community.
Sunny and Dark Outside?! Improving Answer Consistency in VQA through Entailed Question Generation
While models for Visual Question Answering (VQA) have steadily improved over the years, interacting with one quickly reveals that these models lack consistency. For instance, if a model answers "red" to "What color is the balloon?", it might answer "no" if asked, "Is the balloon red?". These responses violate simple notions of entailment and raise questions about how effectively VQA models ground language. In this work, we introduce a dataset, ConVQA, and metrics that enable quantitative evaluation of consistency in VQA. For a given observable fact in an image (e.g. the balloon's color), we generate a set of logically consistent question-answer (QA) pairs (e.g. Is the balloon red?) and also collect a human-annotated set of common-sense based consistent QA pairs (e.g. Is the balloon the same color as tomato sauce?). Further, we propose a consistency-improving data augmentation module, a Consistency Teacher Module (CTM). CTM automatically generates entailed (or similar-intent) questions for a source QA pair and fine-tunes the VQA model if the VQA's answer to the entailed question is consistent with the source QA pair. We demonstrate that our CTM-based training improves the consistency of VQA models on the ConVQA datasets and is a strong baseline for further research.
VLMT: Vision-Language Multimodal Transformer for Multimodal Multi-hop Question Answering
The increasing availability of multimodal data across text, tables, and images presents new challenges for developing models capable of complex cross-modal reasoning. Existing methods for Multimodal Multi-hop Question Answering (MMQA) often suffer from limited reasoning capabilities, reliance on modality conversion, and inadequate alignment between visual and textual representations. To address these limitations, this paper introduces Vision-Language Multimodal Transformer (VLMT), a unified architecture that integrates a transformer-based vision encoder with a sequence-to-sequence language model. VLMT employs a direct token-level injection mechanism to fuse visual and textual inputs within a shared embedding space, eliminating the need for intermediate projection layers. To enhance cross-modal alignment and reasoning, a three-stage pretraining strategy is proposed to progressively align vision-language representations and improve the model's capacity for multimodal understanding. Based on the pretrained backbone, two task-specific modules are instantiated to form a two-stage MMQA framework: a multimodal reranker that predicts document relevance scores and utilizes a relative threshold with top-k strategy for context retrieval, and a multimodal question answering model that generates contextually grounded answers based on the retrieved evidence. Comprehensive experiments on two benchmark datasets demonstrate the effectiveness of the proposed approach. On MultimodalQA validation set, VLMT-Large achieves 76.5% Exact Match and 80.1% F1, outperforming the previous state-of-the-art by +9.1% in Exact Match and +8.8% in F1. On WebQA, it attains a QA score of 47.6, surpassing prior models such as PERQA by +3.2. These results highlight VLMT's strong capabilities in multimodal reasoning and its potential to advance real-world information retrieval and question answering systems.
Locate Then Generate: Bridging Vision and Language with Bounding Box for Scene-Text VQA
In this paper, we propose a novel multi-modal framework for Scene Text Visual Question Answering (STVQA), which requires models to read scene text in images for question answering. Apart from text or visual objects, which could exist independently, scene text naturally links text and visual modalities together by conveying linguistic semantics while being a visual object in an image simultaneously. Different to conventional STVQA models which take the linguistic semantics and visual semantics in scene text as two separate features, in this paper, we propose a paradigm of "Locate Then Generate" (LTG), which explicitly unifies this two semantics with the spatial bounding box as a bridge connecting them. Specifically, at first, LTG locates the region in an image that may contain the answer words with an answer location module (ALM) consisting of a region proposal network and a language refinement network, both of which can transform to each other with one-to-one mapping via the scene text bounding box. Next, given the answer words selected by ALM, LTG generates a readable answer sequence with an answer generation module (AGM) based on a pre-trained language model. As a benefit of the explicit alignment of the visual and linguistic semantics, even without any scene text based pre-training tasks, LTG can boost the absolute accuracy by +6.06% and +6.92% on the TextVQA dataset and the ST-VQA dataset respectively, compared with a non-pre-training baseline. We further demonstrate that LTG effectively unifies visual and text modalities through the spatial bounding box connection, which is underappreciated in previous methods.
SeeingEye: Agentic Information Flow Unlocks Multimodal Reasoning In Text-only LLMs
Recent advances in text-only large language models (LLMs), such as DeepSeek-R1, demonstrate remarkable reasoning ability. However, these models remain fragile or entirely incapable when extended to multi-modal tasks. Existing approaches largely rely on single-form captions, which lack diversity and often fail to adapt across different types of Visual Question Answering (VQA) benchmarks. As a result, they provide no principled or efficient channel for transmitting fine-grained visual information. We introduce Seeing Eye, a modular framework that unlocks multimodal reasoning in text-only LLMs through an agent-based small VLM translator. This translator acts as a perception agent: it can invoke specialized tools (e.g., OCR and crop) and iteratively distill multimodal inputs into structured intermediate representations (SIRs) tailored to the question. These SIRs are then passed to the text-only LLM, which serves as a reasoning agent. Crucially, the translator and reasoner engage in multi-round feedback and interaction, enabling the extraction of targeted visual details and yielding more confident answers. Experiments on knowledge-intensive VQA benchmarks, including MMMU and MIA-Bench, demonstrate that Seeing Eye not only reduces inference cost but also surpasses much larger end-to-end VLMs. For example, an instantiation combining a 3B-parameter vision translator with an 8B-parameter language reasoner outperforms a monolithic 32B VLM on challenging knowledge-based questions. Our results highlight that decoupling perception from reasoning via agent information flow offers a scalable and plug-and-play pathway to multimodal reasoning, allowing strong text-only LLMs to fully leverage their reasoning capabilities. Code is available at: https://github.com/ulab-uiuc/SeeingEye
Muffin or Chihuahua? Challenging Large Vision-Language Models with Multipanel VQA
Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, our paper introduces Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark that specifically challenges models in comprehending multipanel images. The benchmark comprises 6,600 questions and answers related to multipanel images. While these questions are straightforward for average humans, achieving nearly perfect correctness, they pose significant challenges to the state-of-the-art Large Vision Language Models (LVLMs) we tested. In our study, we utilized synthetically curated multipanel images specifically designed to isolate and evaluate the impact of diverse factors on model performance, revealing the sensitivity of LVLMs to various interferences in multipanel images, such as adjacent subfigures and layout complexity. As a result, MultipanelVQA highlights the need and direction for improving LVLMs' ability to understand complex visual-language contexts. Code and data are released at https://sites.google.com/view/multipanelvqa/home.
BLIVA: A Simple Multimodal LLM for Better Handling of Text-Rich Visual Questions
Vision Language Models (VLMs), which extend Large Language Models (LLM) by incorporating visual understanding capability, have demonstrated significant advancements in addressing open-ended visual question-answering (VQA) tasks. However, these models cannot accurately interpret images infused with text, a common occurrence in real-world scenarios. Standard procedures for extracting information from images often involve learning a fixed set of query embeddings. These embeddings are designed to encapsulate image contexts and are later used as soft prompt inputs in LLMs. Yet, this process is limited to the token count, potentially curtailing the recognition of scenes with text-rich context. To improve upon them, the present study introduces BLIVA: an augmented version of InstructBLIP with Visual Assistant. BLIVA incorporates the query embeddings from InstructBLIP and also directly projects encoded patch embeddings into the LLM, a technique inspired by LLaVA. This approach assists the model to capture intricate details potentially missed during the query decoding process. Empirical evidence demonstrates that our model, BLIVA, significantly enhances performance in processing text-rich VQA benchmarks (up to 17.76\% in OCR-VQA benchmark) and in undertaking typical VQA benchmarks (up to 7.9\% in Visual Spatial Reasoning benchmark), comparing to our baseline InstructBLIP. BLIVA demonstrates significant capability in decoding real-world images, irrespective of text presence. To demonstrate the broad industry applications enabled by BLIVA, we evaluate the model using a new dataset comprising YouTube thumbnails paired with question-answer sets across 13 diverse categories. For researchers interested in further exploration, our code and models are freely accessible at https://github.com/mlpc-ucsd/BLIVA.git
Visionary-R1: Mitigating Shortcuts in Visual Reasoning with Reinforcement Learning
Learning general-purpose reasoning capabilities has long been a challenging problem in AI. Recent research in large language models (LLMs), such as DeepSeek-R1, has shown that reinforcement learning techniques like GRPO can enable pre-trained LLMs to develop reasoning capabilities using simple question-answer pairs. In this paper, we aim to train visual language models (VLMs) to perform reasoning on image data through reinforcement learning and visual question-answer pairs, without any explicit chain-of-thought (CoT) supervision. Our findings indicate that simply applying reinforcement learning to a VLM -- by prompting the model to produce a reasoning chain before providing an answer -- can lead the model to develop shortcuts from easy questions, thereby reducing its ability to generalize across unseen data distributions. We argue that the key to mitigating shortcut learning is to encourage the model to interpret images prior to reasoning. Therefore, we train the model to adhere to a caption-reason-answer output format: initially generating a detailed caption for an image, followed by constructing an extensive reasoning chain. When trained on 273K CoT-free visual question-answer pairs and using only reinforcement learning, our model, named Visionary-R1, outperforms strong multimodal models, such as GPT-4o, Claude3.5-Sonnet, and Gemini-1.5-Pro, on multiple visual reasoning benchmarks.
Multimodal ChatGPT for Medical Applications: an Experimental Study of GPT-4V
In this paper, we critically evaluate the capabilities of the state-of-the-art multimodal large language model, i.e., GPT-4 with Vision (GPT-4V), on Visual Question Answering (VQA) task. Our experiments thoroughly assess GPT-4V's proficiency in answering questions paired with images using both pathology and radiology datasets from 11 modalities (e.g. Microscopy, Dermoscopy, X-ray, CT, etc.) and fifteen objects of interests (brain, liver, lung, etc.). Our datasets encompass a comprehensive range of medical inquiries, including sixteen distinct question types. Throughout our evaluations, we devised textual prompts for GPT-4V, directing it to synergize visual and textual information. The experiments with accuracy score conclude that the current version of GPT-4V is not recommended for real-world diagnostics due to its unreliable and suboptimal accuracy in responding to diagnostic medical questions. In addition, we delineate seven unique facets of GPT-4V's behavior in medical VQA, highlighting its constraints within this complex arena. The complete details of our evaluation cases are accessible at https://github.com/ZhilingYan/GPT4V-Medical-Report.
BOK-VQA: Bilingual outside Knowledge-Based Visual Question Answering via Graph Representation Pretraining
The current research direction in generative models, such as the recently developed GPT4, aims to find relevant knowledge information for multimodal and multilingual inputs to provide answers. Under these research circumstances, the demand for multilingual evaluation of visual question answering (VQA) tasks, a representative task of multimodal systems, has increased. Accordingly, we propose a bilingual outside-knowledge VQA (BOK-VQA) dataset in this study that can be extended to multilingualism. The proposed data include 17K images, 17K question-answer pairs for both Korean and English and 280K instances of knowledge information related to question-answer content. We also present a framework that can effectively inject knowledge information into a VQA system by pretraining the knowledge information of BOK-VQA data in the form of graph embeddings. Finally, through in-depth analysis, we demonstrated the actual effect of the knowledge information contained in the constructed training data on VQA.
RAVEN: A Dataset for Relational and Analogical Visual rEasoNing
Dramatic progress has been witnessed in basic vision tasks involving low-level perception, such as object recognition, detection, and tracking. Unfortunately, there is still an enormous performance gap between artificial vision systems and human intelligence in terms of higher-level vision problems, especially ones involving reasoning. Earlier attempts in equipping machines with high-level reasoning have hovered around Visual Question Answering (VQA), one typical task associating vision and language understanding. In this work, we propose a new dataset, built in the context of Raven's Progressive Matrices (RPM) and aimed at lifting machine intelligence by associating vision with structural, relational, and analogical reasoning in a hierarchical representation. Unlike previous works in measuring abstract reasoning using RPM, we establish a semantic link between vision and reasoning by providing structure representation. This addition enables a new type of abstract reasoning by jointly operating on the structure representation. Machine reasoning ability using modern computer vision is evaluated in this newly proposed dataset. Additionally, we also provide human performance as a reference. Finally, we show consistent improvement across all models by incorporating a simple neural module that combines visual understanding and structure reasoning.
VideoMultiAgents: A Multi-Agent Framework for Video Question Answering
Video Question Answering (VQA) inherently relies on multimodal reasoning, integrating visual, temporal, and linguistic cues to achieve a deeper understanding of video content. However, many existing methods rely on feeding frame-level captions into a single model, making it difficult to adequately capture temporal and interactive contexts. To address this limitation, we introduce VideoMultiAgents, a framework that integrates specialized agents for vision, scene graph analysis, and text processing. It enhances video understanding leveraging complementary multimodal reasoning from independently operating agents. Our approach is also supplemented with a question-guided caption generation, which produces captions that highlight objects, actions, and temporal transitions directly relevant to a given query, thus improving the answer accuracy. Experimental results demonstrate that our method achieves state-of-the-art performance on Intent-QA (79.0%, +6.2% over previous SOTA), EgoSchema subset (75.4%, +3.4%), and NExT-QA (79.6%, +0.4%). The source code is available at https://github.com/PanasonicConnect/VideoMultiAgents.
Towards Retrieval Augmented Generation over Large Video Libraries
Video content creators need efficient tools to repurpose content, a task that often requires complex manual or automated searches. Crafting a new video from large video libraries remains a challenge. In this paper we introduce the task of Video Library Question Answering (VLQA) through an interoperable architecture that applies Retrieval Augmented Generation (RAG) to video libraries. We propose a system that uses large language models (LLMs) to generate search queries, retrieving relevant video moments indexed by speech and visual metadata. An answer generation module then integrates user queries with this metadata to produce responses with specific video timestamps. This approach shows promise in multimedia content retrieval, and AI-assisted video content creation.
MiCo: Multi-image Contrast for Reinforcement Visual Reasoning
This work explores enabling Chain-of-Thought (CoT) reasoning to link visual cues across multiple images. A straightforward solution is to adapt rule-based reinforcement learning for Vision-Language Models (VLMs). However, such methods typically rely on manually curated question-answer pairs, which can be particularly challenging when dealing with fine grained visual details and complex logic across images. Inspired by self-supervised visual representation learning, we observe that images contain inherent constraints that can serve as supervision. Based on this insight, we construct image triplets comprising two augmented views of the same image and a third, similar but distinct image. During training, the model is prompted to generate a reasoning process to compare these images (i.e., determine same or different). Then we optimize the model with rule-based reinforcement learning. Due to the high visual similarity and the presence of augmentations, the model must attend to subtle visual changes and perform logical reasoning to succeed. Experiments show that, although trained solely on visual comparison tasks, the learned reasoning ability generalizes effectively to a wide range of questions. Without relying on any human-annotated question-answer pairs, our method achieves significant improvements on multi-image reasoning benchmarks and shows strong performance on general vision tasks.
Automated Generation of Challenging Multiple-Choice Questions for Vision Language Model Evaluation
The rapid development of vision language models (VLMs) demands rigorous and reliable evaluation. However, current visual question answering (VQA) benchmarks often depend on open-ended questions, making accurate evaluation difficult due to the variability in natural language responses. To address this, we introduce AutoConverter, an agentic framework that automatically converts these open-ended questions into multiple-choice format, enabling objective evaluation while reducing the costly question creation process. Our experiments demonstrate that AutoConverter can generate correct and challenging multiple-choice questions, with VLMs demonstrating consistently similar or lower accuracy on these questions compared to human-created ones. Using AutoConverter, we construct VMCBench, a benchmark created by transforming 20 existing VQA datasets into a unified multiple-choice format, totaling 9,018 questions. We comprehensively evaluate 33 state-of-the-art VLMs on VMCBench, setting a new standard for scalable, consistent, and reproducible VLM evaluation.
I Can't Believe There's No Images! Learning Visual Tasks Using only Language Supervision
Many high-level skills that are required for computer vision tasks, such as parsing questions, comparing and contrasting semantics, and writing descriptions, are also required in other domains such as natural language processing. In this paper, we ask whether it is possible to learn those skills from text data and then transfer them to vision tasks without ever training on visual training data. Key to our approach is exploiting the joint embedding space of contrastively trained vision and language encoders. In practice, there can be systematic differences between embedding spaces for different modalities in contrastive models, and we analyze how these differences affect our approach and study strategies to mitigate this concern. We produce models using only text training data on four representative tasks: image captioning, visual entailment, visual question answering and visual news captioning, and evaluate them on standard benchmarks using images. We find these models perform close to models trained on images, while surpassing prior work for captioning and visual entailment in this text-only setting by over 9 points, and outperforming all prior work on visual news by over 30 points. We also showcase a variety of stylistic image captioning models that are trained using no image data and no human-curated language data, but instead using readily-available text data from books, the web, or language models.
Towards Models that Can See and Read
Visual Question Answering (VQA) and Image Captioning (CAP), which are among the most popular vision-language tasks, have analogous scene-text versions that require reasoning from the text in the image. Despite their obvious resemblance, the two are treated independently and, as we show, yield task-specific methods that can either see or read, but not both. In this work, we conduct an in-depth analysis of this phenomenon and propose UniTNT, a Unified Text-Non-Text approach, which grants existing multimodal architectures scene-text understanding capabilities. Specifically, we treat scene-text information as an additional modality, fusing it with any pretrained encoder-decoder-based architecture via designated modules. Thorough experiments reveal that UniTNT leads to the first single model that successfully handles both task types. Moreover, we show that scene-text understanding capabilities can boost vision-language models' performance on general VQA and CAP by up to 2.69% and 0.6 CIDEr, respectively.
VisualSimpleQA: A Benchmark for Decoupled Evaluation of Large Vision-Language Models in Fact-Seeking Question Answering
Large vision-language models (LVLMs) have demonstrated remarkable achievements, yet the generation of non-factual responses remains prevalent in fact-seeking question answering (QA). Current multimodal fact-seeking benchmarks primarily focus on comparing model outputs to ground truth answers, providing limited insights into the performance of modality-specific modules. To bridge this gap, we introduce VisualSimpleQA, a multimodal fact-seeking benchmark with two key features. First, it enables streamlined and decoupled evaluation of LVLMs in visual and linguistic modalities. Second, it incorporates well-defined difficulty criteria to guide human annotation and facilitates the extraction of a challenging subset, VisualSimpleQA-hard. Experiments on 15 LVLMs show that even state-of-the-art models such as GPT-4o achieve merely 60%+ correctness in multimodal fact-seeking QA on VisualSimpleQA and 30%+ on VisualSimpleQA-hard. Furthermore, the decoupled evaluation across these models highlights substantial opportunities for improvement in both visual and linguistic modules. The dataset is available at https://huggingface.co/datasets/WYLing/VisualSimpleQA.
UDKAG: Augmenting Large Vision-Language Models with Up-to-Date Knowledge
Large vision-language models (LVLMs) are ignorant of the up-to-date knowledge, such as LLaVA series, because they cannot be updated frequently due to the large amount of resources required, and therefore fail in many cases. For example, if a LVLM was released on January 2024, and it wouldn't know the detailed plot of the new movie Dune 2, which wasn't released until February 2024. To solve the problem, a promising solution is to provide LVLMs with up-to-date knowledge via internet search during inference, i.e., internet-augmented generation (IAG), which is already integrated in some closed-source commercial LVLMs such as GPT-4V. However, the specific mechanics underpinning them remain a mystery. In this paper, we propose a plug-and-play framework, for augmenting existing LVLMs in handling visual question answering (VQA) about up-to-date knowledge, dubbed UDKAG. A hierarchical filtering model is trained to effectively and efficiently find the most helpful content from the websites returned by a search engine to prompt LVLMs with up-to-date knowledge. To train the model and evaluate our framework's performance, we propose a pipeline to automatically generate news-related VQA samples to construct a dataset, dubbed UDK-VQA. A multi-model voting mechanism is introduced to label the usefulness of website/content for VQA samples to construct the training set. Experimental results demonstrate the effectiveness of our framework, outperforming GPT-4V by about 25% in accuracy.
Document Collection Visual Question Answering
Current tasks and methods in Document Understanding aims to process documents as single elements. However, documents are usually organized in collections (historical records, purchase invoices), that provide context useful for their interpretation. To address this problem, we introduce Document Collection Visual Question Answering (DocCVQA) a new dataset and related task, where questions are posed over a whole collection of document images and the goal is not only to provide the answer to the given question, but also to retrieve the set of documents that contain the information needed to infer the answer. Along with the dataset we propose a new evaluation metric and baselines which provide further insights to the new dataset and task.
Pyramid Coder: Hierarchical Code Generator for Compositional Visual Question Answering
Visual question answering (VQA) is the task of providing accurate answers to natural language questions based on visual input. Programmatic VQA (PVQA) models have been gaining attention recently. These use large language models (LLMs) to formulate executable programs that address questions requiring complex visual reasoning. However, there are challenges in enabling LLMs to comprehend the usage of image processing modules and generate relevant code. To overcome these challenges, this paper introduces PyramidCoder, a novel prompting framework for PVQA models. PyramidCoder consists of three hierarchical levels, each serving a distinct purpose: query rephrasing, code generation, and answer aggregation. Notably, PyramidCoder utilizes a single frozen LLM and pre-defined prompts at each level, eliminating the need for additional training and ensuring flexibility across various LLM architectures. Compared to the state-of-the-art PVQA model, our approach improves accuracy by at least 0.5% on the GQA dataset, 1.4% on the VQAv2 dataset, and 2.9% on the NLVR2 dataset.
Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent
Multimodal Retrieval Augmented Generation (mRAG) plays an important role in mitigating the "hallucination" issue inherent in multimodal large language models (MLLMs). Although promising, existing heuristic mRAGs typically predefined fixed retrieval processes, which causes two issues: (1) Non-adaptive Retrieval Queries. (2) Overloaded Retrieval Queries. However, these flaws cannot be adequately reflected by current knowledge-seeking visual question answering (VQA) datasets, since the most required knowledge can be readily obtained with a standard two-step retrieval. To bridge the dataset gap, we first construct Dyn-VQA dataset, consisting of three types of "dynamic" questions, which require complex knowledge retrieval strategies variable in query, tool, and time: (1) Questions with rapidly changing answers. (2) Questions requiring multi-modal knowledge. (3) Multi-hop questions. Experiments on Dyn-VQA reveal that existing heuristic mRAGs struggle to provide sufficient and precisely relevant knowledge for dynamic questions due to their rigid retrieval processes. Hence, we further propose the first self-adaptive planning agent for multimodal retrieval, OmniSearch. The underlying idea is to emulate the human behavior in question solution which dynamically decomposes complex multimodal questions into sub-question chains with retrieval action. Extensive experiments prove the effectiveness of our OmniSearch, also provide direction for advancing mRAG. The code and dataset will be open-sourced at https://github.com/Alibaba-NLP/OmniSearch.
Visual Riddles: a Commonsense and World Knowledge Challenge for Large Vision and Language Models
Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person's discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, ground-truth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82\% accuracy, with Gemini-Pro-1.5 leading with 40\% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models' capabilities in interpreting complex visual scenarios.
VL-BERT: Pre-training of Generic Visual-Linguistic Representations
We introduce a new pre-trainable generic representation for visual-linguistic tasks, called Visual-Linguistic BERT (VL-BERT for short). VL-BERT adopts the simple yet powerful Transformer model as the backbone, and extends it to take both visual and linguistic embedded features as input. In it, each element of the input is either of a word from the input sentence, or a region-of-interest (RoI) from the input image. It is designed to fit for most of the visual-linguistic downstream tasks. To better exploit the generic representation, we pre-train VL-BERT on the massive-scale Conceptual Captions dataset, together with text-only corpus. Extensive empirical analysis demonstrates that the pre-training procedure can better align the visual-linguistic clues and benefit the downstream tasks, such as visual commonsense reasoning, visual question answering and referring expression comprehension. It is worth noting that VL-BERT achieved the first place of single model on the leaderboard of the VCR benchmark. Code is released at https://github.com/jackroos/VL-BERT.
CMRAG: Co-modality-based visual document retrieval and question answering
Retrieval-Augmented Generation (RAG) has become a core paradigm in document question answering tasks. However, existing methods have limitations when dealing with multimodal documents: one category of methods relies on layout analysis and text extraction, which can only utilize explicit text information and struggle to capture images or unstructured content; the other category treats document segmentation as visual input and directly passes it to visual language models (VLMs) for processing, yet it ignores the semantic advantages of text, leading to suboptimal retrieval and generation results. To address these research gaps, we propose the Co-Modality-based RAG (CMRAG) framework, which can simultaneously leverage texts and images for more accurate retrieval and generation. Our framework includes two key components: (1) a Unified Encoding Model (UEM) that projects queries, parsed text, and images into a shared embedding space via triplet-based training, and (2) a Unified Co-Modality-informed Retrieval (UCMR) method that statistically normalizes similarity scores to effectively fuse cross-modal signals. To support research in this direction, we further construct and release a large-scale triplet dataset of (query, text, image) examples. Experiments demonstrate that our proposed framework consistently outperforms single-modality--based RAG in multiple visual document question-answering (VDQA) benchmarks. The findings of this paper show that integrating co-modality information into the RAG framework in a unified manner is an effective approach to improving the performance of complex VDQA systems.
From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis
We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct 50k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks. Our code and dataset are available at https://github.com/steven-ccq/VisualReasoner.
Hierarchical multimodal transformers for Multi-Page DocVQA
Document Visual Question Answering (DocVQA) refers to the task of answering questions from document images. Existing work on DocVQA only considers single-page documents. However, in real scenarios documents are mostly composed of multiple pages that should be processed altogether. In this work we extend DocVQA to the multi-page scenario. For that, we first create a new dataset, MP-DocVQA, where questions are posed over multi-page documents instead of single pages. Second, we propose a new hierarchical method, Hi-VT5, based on the T5 architecture, that overcomes the limitations of current methods to process long multi-page documents. The proposed method is based on a hierarchical transformer architecture where the encoder summarizes the most relevant information of every page and then, the decoder takes this summarized information to generate the final answer. Through extensive experimentation, we demonstrate that our method is able, in a single stage, to answer the questions and provide the page that contains the relevant information to find the answer, which can be used as a kind of explainability measure.
Socratic Questioning: Learn to Self-guide Multimodal Reasoning in the Wild
Complex visual reasoning remains a key challenge today. Typically, the challenge is tackled using methodologies such as Chain of Thought (COT) and visual instruction tuning. However, how to organically combine these two methodologies for greater success remains unexplored. Also, issues like hallucinations and high training cost still need to be addressed. In this work, we devise an innovative multi-round training and reasoning framework suitable for lightweight Multimodal Large Language Models (MLLMs). Our self-questioning approach heuristically guides MLLMs to focus on visual clues relevant to the target problem, reducing hallucinations and enhancing the model's ability to describe fine-grained image details. This ultimately enables the model to perform well in complex visual reasoning and question-answering tasks. We have named this framework Socratic Questioning(SQ). To facilitate future research, we create a multimodal mini-dataset named CapQA, which includes 1k images of fine-grained activities, for visual instruction tuning and evaluation, our proposed SQ method leads to a 31.2% improvement in the hallucination score. Our extensive experiments on various benchmarks demonstrate SQ's remarkable capabilities in heuristic self-questioning, zero-shot visual reasoning and hallucination mitigation. Our model and code will be publicly available.
An Image Grid Can Be Worth a Video: Zero-shot Video Question Answering Using a VLM
Stimulated by the sophisticated reasoning capabilities of recent Large Language Models (LLMs), a variety of strategies for bridging video modality have been devised. A prominent strategy involves Video Language Models (VideoLMs), which train a learnable interface with video data to connect advanced vision encoders with LLMs. Recently, an alternative strategy has surfaced, employing readily available foundation models, such as VideoLMs and LLMs, across multiple stages for modality bridging. In this study, we introduce a simple yet novel strategy where only a single Vision Language Model (VLM) is utilized. Our starting point is the plain insight that a video comprises a series of images, or frames, interwoven with temporal information. The essence of video comprehension lies in adeptly managing the temporal aspects along with the spatial details of each frame. Initially, we transform a video into a single composite image by arranging multiple frames in a grid layout. The resulting single image is termed as an image grid. This format, while maintaining the appearance of a solitary image, effectively retains temporal information within the grid structure. Therefore, the image grid approach enables direct application of a single high-performance VLM without necessitating any video-data training. Our extensive experimental analysis across ten zero-shot video question answering benchmarks, including five open-ended and five multiple-choice benchmarks, reveals that the proposed Image Grid Vision Language Model (IG-VLM) surpasses the existing methods in nine out of ten benchmarks.
Unifying Vision-and-Language Tasks via Text Generation
Existing methods for vision-and-language learning typically require designing task-specific architectures and objectives for each task. For example, a multi-label answer classifier for visual question answering, a region scorer for referring expression comprehension, and a language decoder for image captioning, etc. To alleviate these hassles, in this work, we propose a unified framework that learns different tasks in a single architecture with the same language modeling objective, i.e., multimodal conditional text generation, where our models learn to generate labels in text based on the visual and textual inputs. On 7 popular vision-and-language benchmarks, including visual question answering, referring expression comprehension, visual commonsense reasoning, most of which have been previously modeled as discriminative tasks, our generative approach (with a single unified architecture) reaches comparable performance to recent task-specific state-of-the-art vision-and-language models. Moreover, our generative approach shows better generalization ability on questions that have rare answers. Also, we show that our framework allows multi-task learning in a single architecture with a single set of parameters, achieving similar performance to separately optimized single-task models. Our code is publicly available at: https://github.com/j-min/VL-T5
Veagle: Advancements in Multimodal Representation Learning
Lately, researchers in artificial intelligence have been really interested in how language and vision come together, giving rise to the development of multimodal models that aim to seamlessly integrate textual and visual information. Multimodal models, an extension of Large Language Models (LLMs), have exhibited remarkable capabilities in addressing a diverse array of tasks, ranging from image captioning and visual question answering (VQA) to visual grounding. While these models have showcased significant advancements, challenges persist in accurately interpreting images and answering the question, a common occurrence in real-world scenarios. This paper introduces a novel approach to enhance the multimodal capabilities of existing models. In response to the limitations observed in current Vision Language Models (VLMs) and Multimodal Large Language Models (MLLMs), our proposed model Veagle, incorporates a unique mechanism inspired by the successes and insights of previous works. Veagle leverages a dynamic mechanism to project encoded visual information directly into the language model. This dynamic approach allows for a more nuanced understanding of intricate details present in visual contexts. To validate the effectiveness of Veagle, we conduct comprehensive experiments on benchmark datasets, emphasizing tasks such as visual question answering and image understanding. Our results indicate a improvement of 5-6 \% in performance, with Veagle outperforming existing models by a notable margin. The outcomes underscore the model's versatility and applicability beyond traditional benchmarks.
V-Doc : Visual questions answers with Documents
We propose V-Doc, a question-answering tool using document images and PDF, mainly for researchers and general non-deep learning experts looking to generate, process, and understand the document visual question answering tasks. The V-Doc supports generating and using both extractive and abstractive question-answer pairs using documents images. The extractive QA selects a subset of tokens or phrases from the document contents to predict the answers, while the abstractive QA recognises the language in the content and generates the answer based on the trained model. Both aspects are crucial to understanding the documents, especially in an image format. We include a detailed scenario of question generation for the abstractive QA task. V-Doc supports a wide range of datasets and models, and is highly extensible through a declarative, framework-agnostic platform.
InfoChartQA: A Benchmark for Multimodal Question Answering on Infographic Charts
Understanding infographic charts with design-driven visual elements (e.g., pictograms, icons) requires both visual recognition and reasoning, posing challenges for multimodal large language models (MLLMs). However, existing visual-question answering benchmarks fall short in evaluating these capabilities of MLLMs due to the lack of paired plain charts and visual-element-based questions. To bridge this gap, we introduce InfoChartQA, a benchmark for evaluating MLLMs on infographic chart understanding. It includes 5,642 pairs of infographic and plain charts, each sharing the same underlying data but differing in visual presentations. We further design visual-element-based questions to capture their unique visual designs and communicative intent. Evaluation of 20 MLLMs reveals a substantial performance decline on infographic charts, particularly for visual-element-based questions related to metaphors. The paired infographic and plain charts enable fine-grained error analysis and ablation studies, which highlight new opportunities for advancing MLLMs in infographic chart understanding. We release InfoChartQA at https://github.com/CoolDawnAnt/InfoChartQA.
LaKo: Knowledge-driven Visual Question Answering via Late Knowledge-to-Text Injection
Visual question answering (VQA) often requires an understanding of visual concepts and language semantics, which relies on external knowledge. Most existing methods exploit pre-trained language models or/and unstructured text, but the knowledge in these resources are often incomplete and noisy. Some other methods prefer to use knowledge graphs (KGs) which often have intensive structured knowledge, but the research is still quite preliminary. In this paper, we propose LaKo, a knowledge-driven VQA method via Late Knowledge-to-text Injection. To effectively incorporate an external KG, we transfer triples into textual format and propose a late injection mechanism for knowledge fusion. Finally we address VQA as a text generation task with an effective encoder-decoder paradigm, which achieves state-of-the-art results on OKVQA dataset.
Interactive Text-to-Image Retrieval with Large Language Models: A Plug-and-Play Approach
In this paper, we primarily address the issue of dialogue-form context query within the interactive text-to-image retrieval task. Our methodology, PlugIR, actively utilizes the general instruction-following capability of LLMs in two ways. First, by reformulating the dialogue-form context, we eliminate the necessity of fine-tuning a retrieval model on existing visual dialogue data, thereby enabling the use of any arbitrary black-box model. Second, we construct the LLM questioner to generate non-redundant questions about the attributes of the target image, based on the information of retrieval candidate images in the current context. This approach mitigates the issues of noisiness and redundancy in the generated questions. Beyond our methodology, we propose a novel evaluation metric, Best log Rank Integral (BRI), for a comprehensive assessment of the interactive retrieval system. PlugIR demonstrates superior performance compared to both zero-shot and fine-tuned baselines in various benchmarks. Additionally, the two methodologies comprising PlugIR can be flexibly applied together or separately in various situations. Our codes are available at https://github.com/Saehyung-Lee/PlugIR.
Visual Dialog
We introduce the task of Visual Dialog, which requires an AI agent to hold a meaningful dialog with humans in natural, conversational language about visual content. Specifically, given an image, a dialog history, and a question about the image, the agent has to ground the question in image, infer context from history, and answer the question accurately. Visual Dialog is disentangled enough from a specific downstream task so as to serve as a general test of machine intelligence, while being grounded in vision enough to allow objective evaluation of individual responses and benchmark progress. We develop a novel two-person chat data-collection protocol to curate a large-scale Visual Dialog dataset (VisDial). VisDial v0.9 has been released and contains 1 dialog with 10 question-answer pairs on ~120k images from COCO, with a total of ~1.2M dialog question-answer pairs. We introduce a family of neural encoder-decoder models for Visual Dialog with 3 encoders -- Late Fusion, Hierarchical Recurrent Encoder and Memory Network -- and 2 decoders (generative and discriminative), which outperform a number of sophisticated baselines. We propose a retrieval-based evaluation protocol for Visual Dialog where the AI agent is asked to sort a set of candidate answers and evaluated on metrics such as mean-reciprocal-rank of human response. We quantify gap between machine and human performance on the Visual Dialog task via human studies. Putting it all together, we demonstrate the first 'visual chatbot'! Our dataset, code, trained models and visual chatbot are available on https://visualdialog.org
Searching for Best Practices in Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) techniques have proven to be effective in integrating up-to-date information, mitigating hallucinations, and enhancing response quality, particularly in specialized domains. While many RAG approaches have been proposed to enhance large language models through query-dependent retrievals, these approaches still suffer from their complex implementation and prolonged response times. Typically, a RAG workflow involves multiple processing steps, each of which can be executed in various ways. Here, we investigate existing RAG approaches and their potential combinations to identify optimal RAG practices. Through extensive experiments, we suggest several strategies for deploying RAG that balance both performance and efficiency. Moreover, we demonstrate that multimodal retrieval techniques can significantly enhance question-answering capabilities about visual inputs and accelerate the generation of multimodal content using a "retrieval as generation" strategy.
Expanding the Boundaries of Vision Prior Knowledge in Multi-modal Large Language Models
Does the prior knowledge of the vision encoder constrain the capability boundary of Multi-modal Large Language Models (MLLMs)? While most existing research treats MLLMs as unified systems optimized through end-to-end training, the impact of vision encoder's prior knowledge is seldom investigated. In this work, we introduce a novel metric, Rank_e, to quantify the effect of the vision encoder's prior knowledge on MLLM performance. Our analysis reveals a positive correlation between prior knowledge and MLLM performance. Moreover, we find that domain-specific fine-tuning using solely end-to-end visual question answering (VQA) data is insufficient--particularly for entities with low inherent visual prior knowledge. To address this issue, we propose VisPRE (Vision Prior Remediation), a two-stage training framework that explicitly incorporates prior knowledge at the vision encoder level. Experimental results demonstrate that augmenting vision encoder's prior knowledge substantially boosts the visual understanding capabilities of MLLMs, offering a novel and effective strategy for improving performance, especially in scenarios involving uncommon visual entities.
COFAR: Commonsense and Factual Reasoning in Image Search
One characteristic that makes humans superior to modern artificially intelligent models is the ability to interpret images beyond what is visually apparent. Consider the following two natural language search queries - (i) "a queue of customers patiently waiting to buy ice cream" and (ii) "a queue of tourists going to see a famous Mughal architecture in India." Interpreting these queries requires one to reason with (i) Commonsense such as interpreting people as customers or tourists, actions as waiting to buy or going to see; and (ii) Fact or world knowledge associated with named visual entities, for example, whether the store in the image sells ice cream or whether the landmark in the image is a Mughal architecture located in India. Such reasoning goes beyond just visual recognition. To enable both commonsense and factual reasoning in the image search, we present a unified framework, namely Knowledge Retrieval-Augmented Multimodal Transformer (KRAMT), that treats the named visual entities in an image as a gateway to encyclopedic knowledge and leverages them along with natural language query to ground relevant knowledge. Further, KRAMT seamlessly integrates visual content and grounded knowledge to learn alignment between images and search queries. This unified framework is then used to perform image search requiring commonsense and factual reasoning. The retrieval performance of KRAMT is evaluated and compared with related approaches on a new dataset we introduce - namely COFAR. We make our code and dataset available at https://vl2g.github.io/projects/cofar
Towards Complex Document Understanding By Discrete Reasoning
Document Visual Question Answering (VQA) aims to understand visually-rich documents to answer questions in natural language, which is an emerging research topic for both Natural Language Processing and Computer Vision. In this work, we introduce a new Document VQA dataset, named TAT-DQA, which consists of 3,067 document pages comprising semi-structured table(s) and unstructured text as well as 16,558 question-answer pairs by extending the TAT-QA dataset. These documents are sampled from real-world financial reports and contain lots of numbers, which means discrete reasoning capability is demanded to answer questions on this dataset. Based on TAT-DQA, we further develop a novel model named MHST that takes into account the information in multi-modalities, including text, layout and visual image, to intelligently address different types of questions with corresponding strategies, i.e., extraction or reasoning. Extensive experiments show that the MHST model significantly outperforms the baseline methods, demonstrating its effectiveness. However, the performance still lags far behind that of expert humans. We expect that our new TAT-DQA dataset would facilitate the research on deep understanding of visually-rich documents combining vision and language, especially for scenarios that require discrete reasoning. Also, we hope the proposed model would inspire researchers to design more advanced Document VQA models in future. Our dataset will be publicly available for non-commercial use at https://nextplusplus.github.io/TAT-DQA/.
Understanding Multimodal LLMs: the Mechanistic Interpretability of Llava in Visual Question Answering
Understanding the mechanisms behind Large Language Models (LLMs) is crucial for designing improved models and strategies. While recent studies have yielded valuable insights into the mechanisms of textual LLMs, the mechanisms of Multi-modal Large Language Models (MLLMs) remain underexplored. In this paper, we apply mechanistic interpretability methods to analyze the visual question answering (VQA) mechanisms in the first MLLM, Llava. We compare the mechanisms between VQA and textual QA (TQA) in color answering tasks and find that: a) VQA exhibits a mechanism similar to the in-context learning mechanism observed in TQA; b) the visual features exhibit significant interpretability when projecting the visual embeddings into the embedding space; and c) Llava enhances the existing capabilities of the corresponding textual LLM Vicuna during visual instruction tuning. Based on these findings, we develop an interpretability tool to help users and researchers identify important visual locations for final predictions, aiding in the understanding of visual hallucination. Our method demonstrates faster and more effective results compared to existing interpretability approaches. Code: https://github.com/zepingyu0512/llava-mechanism
Learning to Answer Visual Questions from Web Videos
Recent methods for visual question answering rely on large-scale annotated datasets. Manual annotation of questions and answers for videos, however, is tedious, expensive and prevents scalability. In this work, we propose to avoid manual annotation and generate a large-scale training dataset for video question answering making use of automatic cross-modal supervision. We leverage a question generation transformer trained on text data and use it to generate question-answer pairs from transcribed video narrations. Given narrated videos, we then automatically generate the HowToVQA69M dataset with 69M video-question-answer triplets. To handle the open vocabulary of diverse answers in this dataset, we propose a training procedure based on a contrastive loss between a video-question multi-modal transformer and an answer transformer. We introduce the zero-shot VideoQA task and the VideoQA feature probe evaluation setting and show excellent results, in particular for rare answers. Furthermore, our method achieves competitive results on MSRVTT-QA, ActivityNet-QA, MSVD-QA and How2QA datasets. We also show that our VideoQA dataset generation approach generalizes to another source of web video and text data. We use our method to generate the WebVidVQA3M dataset from the WebVid dataset, i.e., videos with alt-text annotations, and show its benefits for training VideoQA models. Finally, for a detailed evaluation we introduce iVQA, a new VideoQA dataset with reduced language bias and high-quality manual annotations. Code, datasets and trained models are available at https://antoyang.github.io/just-ask.html
ActivityNet-QA: A Dataset for Understanding Complex Web Videos via Question Answering
Recent developments in modeling language and vision have been successfully applied to image question answering. It is both crucial and natural to extend this research direction to the video domain for video question answering (VideoQA). Compared to the image domain where large scale and fully annotated benchmark datasets exists, VideoQA datasets are limited to small scale and are automatically generated, etc. These limitations restrict their applicability in practice. Here we introduce ActivityNet-QA, a fully annotated and large scale VideoQA dataset. The dataset consists of 58,000 QA pairs on 5,800 complex web videos derived from the popular ActivityNet dataset. We present a statistical analysis of our ActivityNet-QA dataset and conduct extensive experiments on it by comparing existing VideoQA baselines. Moreover, we explore various video representation strategies to improve VideoQA performance, especially for long videos. The dataset is available at https://github.com/MILVLG/activitynet-qa
PreFLMR: Scaling Up Fine-Grained Late-Interaction Multi-modal Retrievers
Large Multimodal Models (LMMs) excel in natural language and visual understanding but are challenged by exacting tasks such as Knowledge-based Visual Question Answering (KB-VQA) which involve the retrieval of relevant information from document collections to use in shaping answers to questions. We present an extensive training and evaluation framework, M2KR, for KB-VQA. M2KR contains a collection of vision and language tasks which we have incorporated into a single suite of benchmark tasks for training and evaluating general-purpose multi-modal retrievers. We use M2KR to develop PreFLMR, a pre-trained version of the recently developed Fine-grained Late-interaction Multi-modal Retriever (FLMR) approach to KB-VQA, and we report new state-of-the-art results across a range of tasks. We also present investigations into the scaling behaviors of PreFLMR intended to be useful in future developments in general-purpose multi-modal retrievers.
FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
Information retrieval in hour-long videos presents a significant challenge, even for state-of-the-art Vision-Language Models (VLMs), particularly when the desired information is localized within a small subset of frames. Long video data presents challenges for VLMs due to context window limitations and the difficulty of pinpointing frames containing the answer. Our novel video agent, FALCONEye, combines a VLM and a Large Language Model (LLM) to search relevant information along the video, and locate the frames with the answer. FALCONEye novelty relies on 1) the proposed meta-architecture, which is better suited to tackle hour-long videos compared to short video approaches in the state-of-the-art; 2) a new efficient exploration algorithm to locate the information using short clips, captions and answer confidence; and 3) our state-of-the-art VLMs calibration analysis for the answer confidence. Our agent is built over a small-size VLM and a medium-size LLM being accessible to run on standard computational resources. We also release FALCON-Bench, a benchmark to evaluate long (average > 1 hour) Video Answer Search challenges, highlighting the need for open-ended question evaluation. Our experiments show FALCONEye's superior performance than the state-of-the-art in FALCON-Bench, and similar or better performance in related benchmarks.
Question-Instructed Visual Descriptions for Zero-Shot Video Question Answering
We present Q-ViD, a simple approach for video question answering (video QA), that unlike prior methods, which are based on complex architectures, computationally expensive pipelines or use closed models like GPTs, Q-ViD relies on a single instruction-aware open vision-language model (InstructBLIP) to tackle videoQA using frame descriptions. Specifically, we create captioning instruction prompts that rely on the target questions about the videos and leverage InstructBLIP to obtain video frame captions that are useful to the task at hand. Subsequently, we form descriptions of the whole video using the question-dependent frame captions, and feed that information, along with a question-answering prompt, to a large language model (LLM). The LLM is our reasoning module, and performs the final step of multiple-choice QA. Our simple Q-ViD framework achieves competitive or even higher performances than current state of the art models on a diverse range of videoQA benchmarks, including NExT-QA, STAR, How2QA, TVQA and IntentQA.
