Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeFoley Control: Aligning a Frozen Latent Text-to-Audio Model to Video
Foley Control is a lightweight approach to video-guided Foley that keeps pretrained single-modality models frozen and learns only a small cross-attention bridge between them. We connect V-JEPA2 video embeddings to a frozen Stable Audio Open DiT text-to-audio (T2A) model by inserting compact video cross-attention after the model's existing text cross-attention, so prompts set global semantics while video refines timing and local dynamics. The frozen backbones retain strong marginals (video; audio given text) and the bridge learns the audio-video dependency needed for synchronization -- without retraining the audio prior. To cut memory and stabilize training, we pool video tokens before conditioning. On curated video-audio benchmarks, Foley Control delivers competitive temporal and semantic alignment with far fewer trainable parameters than recent multi-modal systems, while preserving prompt-driven controllability and production-friendly modularity (swap/upgrade encoders or the T2A backbone without end-to-end retraining). Although we focus on Video-to-Foley, the same bridge design can potentially extend to other audio modalities (e.g., speech).
HowTo100M: Learning a Text-Video Embedding by Watching Hundred Million Narrated Video Clips
Learning text-video embeddings usually requires a dataset of video clips with manually provided captions. However, such datasets are expensive and time consuming to create and therefore difficult to obtain on a large scale. In this work, we propose instead to learn such embeddings from video data with readily available natural language annotations in the form of automatically transcribed narrations. The contributions of this work are three-fold. First, we introduce HowTo100M: a large-scale dataset of 136 million video clips sourced from 1.22M narrated instructional web videos depicting humans performing and describing over 23k different visual tasks. Our data collection procedure is fast, scalable and does not require any additional manual annotation. Second, we demonstrate that a text-video embedding trained on this data leads to state-of-the-art results for text-to-video retrieval and action localization on instructional video datasets such as YouCook2 or CrossTask. Finally, we show that this embedding transfers well to other domains: fine-tuning on generic Youtube videos (MSR-VTT dataset) and movies (LSMDC dataset) outperforms models trained on these datasets alone. Our dataset, code and models will be publicly available at: www.di.ens.fr/willow/research/howto100m/.
Learning video embedding space with Natural Language Supervision
The recent success of the CLIP model has shown its potential to be applied to a wide range of vision and language tasks. However this only establishes embedding space relationship of language to images, not to the video domain. In this paper, we propose a novel approach to map video embedding space to natural langugage. We propose a two-stage approach that first extracts visual features from each frame of a video using a pre-trained CNN, and then uses the CLIP model to encode the visual features for the video domain, along with the corresponding text descriptions. We evaluate our method on two benchmark datasets, UCF101 and HMDB51, and achieve state-of-the-art performance on both tasks.
VLM: Task-agnostic Video-Language Model Pre-training for Video Understanding
We present a simplified, task-agnostic multi-modal pre-training approach that can accept either video or text input, or both for a variety of end tasks. Existing pre-training are task-specific by adopting either a single cross-modal encoder that requires both modalities, limiting their use for retrieval-style end tasks or more complex multitask learning with two unimodal encoders, limiting early cross-modal fusion. We instead introduce new pretraining masking schemes that better mix across modalities (e.g. by forcing masks for text to predict the closest video embeddings) while also maintaining separability (e.g. unimodal predictions are sometimes required, without using all the input). Experimental results show strong performance across a wider range of tasks than any previous methods, often outperforming task-specific pre-training. Code is made available at https://github.com/pytorch/fairseq/tree/main/examples/MMPT.
Chirality in Action: Time-Aware Video Representation Learning by Latent Straightening
Our objective is to develop compact video representations that are sensitive to visual change over time. To measure such time-sensitivity, we introduce a new task: chiral action recognition, where one needs to distinguish between a pair of temporally opposite actions, such as "opening vs. closing a door", "approaching vs. moving away from something", "folding vs. unfolding paper", etc. Such actions (i) occur frequently in everyday life, (ii) require understanding of simple visual change over time (in object state, size, spatial position, count . . . ), and (iii) are known to be poorly represented by many video embeddings. Our goal is to build time aware video representations which offer linear separability between these chiral pairs. To that end, we propose a self-supervised adaptation recipe to inject time-sensitivity into a sequence of frozen image features. Our model is based on an auto-encoder with a latent space with inductive bias inspired by perceptual straightening. We show that this results in a compact but time-sensitive video representation for the proposed task across three datasets: Something-Something, EPIC-Kitchens, and Charade. Our method (i) outperforms much larger video models pre-trained on large-scale video datasets, and (ii) leads to an improvement in classification performance on standard benchmarks when combined with these existing models.
TWLV-I: Analysis and Insights from Holistic Evaluation on Video Foundation Models
In this work, we discuss evaluating video foundation models in a fair and robust manner. Unlike language or image foundation models, many video foundation models are evaluated with differing parameters (such as sampling rate, number of frames, pretraining steps, etc.), making fair and robust comparisons challenging. Therefore, we present a carefully designed evaluation framework for measuring two core capabilities of video comprehension: appearance and motion understanding. Our findings reveal that existing video foundation models, whether text-supervised like UMT or InternVideo2, or self-supervised like V-JEPA, exhibit limitations in at least one of these capabilities. As an alternative, we introduce TWLV-I, a new video foundation model that constructs robust visual representations for both motion- and appearance-based videos. Based on the average top-1 accuracy of linear probing on five action recognition benchmarks, pretrained only on publicly accessible datasets, our model shows a 4.6%p improvement compared to V-JEPA (ViT-L) and a 7.7%p improvement compared to UMT (ViT-L). Even when compared to much larger models, our model demonstrates a 7.2%p improvement compared to DFN (ViT-H), a 2.7%p improvement compared to V-JEPA~(ViT-H) and a 2.8%p improvement compared to InternVideo2 (ViT-g). We provide embedding vectors obtained by TWLV-I from videos of several commonly used video benchmarks, along with evaluation source code that can directly utilize these embeddings. The code is available on "https://github.com/twelvelabs-io/video-embeddings-evaluation-framework".
VideoPrism: A Foundational Visual Encoder for Video Understanding
We introduce VideoPrism, a general-purpose video encoder that tackles diverse video understanding tasks with a single frozen model. We pretrain VideoPrism on a heterogeneous corpus containing 36M high-quality video-caption pairs and 582M video clips with noisy parallel text (e.g., ASR transcripts). The pretraining approach improves upon masked autoencoding by global-local distillation of semantic video embeddings and a token shuffling scheme, enabling VideoPrism to focus primarily on the video modality while leveraging the invaluable text associated with videos. We extensively test VideoPrism on four broad groups of video understanding tasks, from web video question answering to CV for science, achieving state-of-the-art performance on 30 out of 33 video understanding benchmarks.
HLFormer: Enhancing Partially Relevant Video Retrieval with Hyperbolic Learning
Partially Relevant Video Retrieval (PRVR) addresses the critical challenge of matching untrimmed videos with text queries describing only partial content. Existing methods suffer from geometric distortion in Euclidean space that sometimes misrepresents the intrinsic hierarchical structure of videos and overlooks certain hierarchical semantics, ultimately leading to suboptimal temporal modeling. To address this issue, we propose the first hyperbolic modeling framework for PRVR, namely HLFormer, which leverages hyperbolic space learning to compensate for the suboptimal hierarchical modeling capabilities of Euclidean space. Specifically, HLFormer integrates the Lorentz Attention Block and Euclidean Attention Block to encode video embeddings in hybrid spaces, using the Mean-Guided Adaptive Interaction Module to dynamically fuse features. Additionally, we introduce a Partial Order Preservation Loss to enforce "text < video" hierarchy through Lorentzian cone constraints. This approach further enhances cross-modal matching by reinforcing partial relevance between video content and text queries. Extensive experiments show that HLFormer outperforms state-of-the-art methods. Code is released at https://github.com/lijun2005/ICCV25-HLFormer.
ModEFormer: Modality-Preserving Embedding for Audio-Video Synchronization using Transformers
Lack of audio-video synchronization is a common problem during television broadcasts and video conferencing, leading to an unsatisfactory viewing experience. A widely accepted paradigm is to create an error detection mechanism that identifies the cases when audio is leading or lagging. We propose ModEFormer, which independently extracts audio and video embeddings using modality-specific transformers. Different from the other transformer-based approaches, ModEFormer preserves the modality of the input streams which allows us to use a larger batch size with more negative audio samples for contrastive learning. Further, we propose a trade-off between the number of negative samples and number of unique samples in a batch to significantly exceed the performance of previous methods. Experimental results show that ModEFormer achieves state-of-the-art performance, 94.5% for LRS2 and 90.9% for LRS3. Finally, we demonstrate how ModEFormer can be used for offset detection for test clips.
Scaling RL to Long Videos
We introduce a full-stack framework that scales up reasoning in vision-language models (VLMs) to long videos, leveraging reinforcement learning. We address the unique challenges of long video reasoning by integrating three critical components: (1) a large-scale dataset, LongVideo-Reason, comprising 52K long video QA pairs with high-quality reasoning annotations across diverse domains such as sports, games, and vlogs; (2) a two-stage training pipeline that extends VLMs with chain-of-thought supervised fine-tuning (CoT-SFT) and reinforcement learning (RL); and (3) a training infrastructure for long video RL, named Multi-modal Reinforcement Sequence Parallelism (MR-SP), which incorporates sequence parallelism and a vLLM-based engine tailored for long video, using cached video embeddings for efficient rollout and prefilling. In experiments, LongVILA-R1-7B achieves strong performance on long video QA benchmarks such as VideoMME. It also outperforms Video-R1-7B and even matches Gemini-1.5-Pro across temporal reasoning, goal and purpose reasoning, spatial reasoning, and plot reasoning on our LongVideo-Reason-eval benchmark. Notably, our MR-SP system achieves up to 2.1x speedup on long video RL training. LongVILA-R1 demonstrates consistent performance gains as the number of input video frames scales. LongVILA-R1 marks a firm step towards long video reasoning in VLMs. In addition, we release our training system for public availability that supports RL training on various modalities (video, text, and audio), various models (VILA and Qwen series), and even image and video generation models. On a single A100 node (8 GPUs), it supports RL training on hour-long videos (e.g., 3,600 frames / around 256k tokens).
Learning Control by Iterative Inversion
We propose iterative inversion -- an algorithm for learning an inverse function without input-output pairs, but only with samples from the desired output distribution and access to the forward function. The key challenge is a distribution shift between the desired outputs and the outputs of an initial random guess, and we prove that iterative inversion can steer the learning correctly, under rather strict conditions on the function. We apply iterative inversion to learn control. Our input is a set of demonstrations of desired behavior, given as video embeddings of trajectories (without actions), and our method iteratively learns to imitate trajectories generated by the current policy, perturbed by random exploration noise. Our approach does not require rewards, and only employs supervised learning, which can be easily scaled to use state-of-the-art trajectory embedding techniques and policy representations. Indeed, with a VQ-VAE embedding, and a transformer-based policy, we demonstrate non-trivial continuous control on several tasks. Further, we report an improved performance on imitating diverse behaviors compared to reward based methods.
DATE: Dynamic Absolute Time Enhancement for Long Video Understanding
Long video understanding remains a fundamental challenge for multimodal large language models (MLLMs), particularly in tasks requiring precise temporal reasoning and event localization. Existing approaches typically adopt uniform frame sampling and rely on implicit position encodings to model temporal order. However, these methods struggle with long-range dependencies, leading to critical information loss and degraded temporal comprehension. In this paper, we propose Dynamic Absolute Time Enhancement (DATE) that enhances temporal awareness in MLLMs through the Timestamp Injection Mechanism (TIM) and a semantically guided Temporal-Aware Similarity Sampling (TASS) strategy. Specifically, we interleave video frame embeddings with textual timestamp tokens to construct a continuous temporal reference system. We further reformulate the video sampling problem as a vision-language retrieval task and introduce a two-stage algorithm to ensure both semantic relevance and temporal coverage: enriching each query into a descriptive caption to better align with the vision feature, and sampling key event with a similarity-driven temporally regularized greedy strategy. Our method achieves remarkable improvements w.r.t. absolute time understanding and key event localization, resulting in state-of-the-art performance among 7B and 72B models on hour-long video benchmarks. Particularly, our 7B model even exceeds many 72B models on some benchmarks.
Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision have been driven by vision-only models, which lack language semantics, relying on manually annotated videos to predict fixed object categories. This limits their generalizability to unseen surgical procedures and tasks. We propose leveraging surgical video lectures from e-learning platforms to provide effective vision and language supervisory signals for multi-modal representation learning, bypassing manual annotations. We address surgery-specific linguistic challenges using multiple automatic speech recognition systems for text transcriptions. We introduce SurgVLP - Surgical Vision Language Pre-training - a novel method for multi-modal representation learning. SurgVLP employs a new contrastive learning objective, aligning video clip embeddings with corresponding multiple text embeddings in a joint latent space. We demonstrate the representational capability of this space through several vision-and-language surgical tasks and vision-only tasks specific to surgery. Unlike current fully supervised approaches, SurgVLP adapts to different surgical procedures and tasks without specific fine-tuning, achieving zero-shot adaptation to tasks such as surgical tool, phase, and triplet recognition without manual annotation. These results highlight the transferability and versatility of the learned multi-modal representations in surgical video analysis. The code is available at https://github.com/CAMMA-public/SurgVLP
VividDream: Generating 3D Scene with Ambient Dynamics
We introduce VividDream, a method for generating explorable 4D scenes with ambient dynamics from a single input image or text prompt. VividDream first expands an input image into a static 3D point cloud through iterative inpainting and geometry merging. An ensemble of animated videos is then generated using video diffusion models with quality refinement techniques and conditioned on renderings of the static 3D scene from the sampled camera trajectories. We then optimize a canonical 4D scene representation using an animated video ensemble, with per-video motion embeddings and visibility masks to mitigate inconsistencies. The resulting 4D scene enables free-view exploration of a 3D scene with plausible ambient scene dynamics. Experiments demonstrate that VividDream can provide human viewers with compelling 4D experiences generated based on diverse real images and text prompts.
Motion Inversion for Video Customization
In this research, we present a novel approach to motion customization in video generation, addressing the widespread gap in the thorough exploration of motion representation within video generative models. Recognizing the unique challenges posed by video's spatiotemporal nature, our method introduces Motion Embeddings, a set of explicit, temporally coherent one-dimensional embeddings derived from a given video. These embeddings are designed to integrate seamlessly with the temporal transformer modules of video diffusion models, modulating self-attention computations across frames without compromising spatial integrity. Our approach offers a compact and efficient solution to motion representation and enables complex manipulations of motion characteristics through vector arithmetic in the embedding space. Furthermore, we identify the Temporal Discrepancy in video generative models, which refers to variations in how different motion modules process temporal relationships between frames. We leverage this understanding to optimize the integration of our motion embeddings. Our contributions include the introduction of a tailored motion embedding for customization tasks, insights into the temporal processing differences in video models, and a demonstration of the practical advantages and effectiveness of our method through extensive experiments.
STREAM: Spatio-TempoRal Evaluation and Analysis Metric for Video Generative Models
Image generative models have made significant progress in generating realistic and diverse images, supported by comprehensive guidance from various evaluation metrics. However, current video generative models struggle to generate even short video clips, with limited tools that provide insights for improvements. Current video evaluation metrics are simple adaptations of image metrics by switching the embeddings with video embedding networks, which may underestimate the unique characteristics of video. Our analysis reveals that the widely used Frechet Video Distance (FVD) has a stronger emphasis on the spatial aspect than the temporal naturalness of video and is inherently constrained by the input size of the embedding networks used, limiting it to 16 frames. Additionally, it demonstrates considerable instability and diverges from human evaluations. To address the limitations, we propose STREAM, a new video evaluation metric uniquely designed to independently evaluate spatial and temporal aspects. This feature allows comprehensive analysis and evaluation of video generative models from various perspectives, unconstrained by video length. We provide analytical and experimental evidence demonstrating that STREAM provides an effective evaluation tool for both visual and temporal quality of videos, offering insights into area of improvement for video generative models. To the best of our knowledge, STREAM is the first evaluation metric that can separately assess the temporal and spatial aspects of videos. Our code is available at https://github.com/pro2nit/STREAM.
Contextually Customized Video Summaries via Natural Language
The best summary of a long video differs among different people due to its highly subjective nature. Even for the same person, the best summary may change with time or mood. In this paper, we introduce the task of generating customized video summaries through simple text. First, we train a deep architecture to effectively learn semantic embeddings of video frames by leveraging the abundance of image-caption data via a progressive and residual manner. Given a user-specific text description, our algorithm is able to select semantically relevant video segments and produce a temporally aligned video summary. In order to evaluate our textually customized video summaries, we conduct experimental comparison with baseline methods that utilize ground-truth information. Despite the challenging baselines, our method still manages to show comparable or even exceeding performance. We also show that our method is able to generate semantically diverse video summaries by only utilizing the learned visual embeddings.
COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Egocentric video-based models capture rich semantic information and have demonstrated strong performance in human activity recognition (HAR). However, their high power consumption, privacy concerns, and dependence on lighting conditions limit their feasibility for continuous on-device recognition. In contrast, inertial measurement unit (IMU) sensors offer an energy-efficient and privacy-preserving alternative, yet they suffer from limited large-scale annotated datasets, leading to weaker generalization in downstream tasks. To bridge this gap, we propose COMODO, a cross-modal self-supervised distillation framework that transfers rich semantic knowledge from the video modality to the IMU modality without requiring labeled annotations. COMODO leverages a pretrained and frozen video encoder to construct a dynamic instance queue, aligning the feature distributions of video and IMU embeddings. By distilling knowledge from video representations, our approach enables the IMU encoder to inherit rich semantic information from video while preserving its efficiency for real-world applications. Experiments on multiple egocentric HAR datasets demonstrate that COMODO consistently improves downstream classification performance, achieving results comparable to or exceeding fully supervised fine-tuned models. Moreover, COMODO exhibits strong cross-dataset generalization. Benefiting from its simplicity, our method is also generally applicable to various video and time-series pre-trained models, offering the potential to leverage more powerful teacher and student foundation models in future research. The code is available at https://github.com/Breezelled/COMODO .
VPN: Video Provenance Network for Robust Content Attribution
We present VPN - a content attribution method for recovering provenance information from videos shared online. Platforms, and users, often transform video into different quality, codecs, sizes, shapes, etc. or slightly edit its content such as adding text or emoji, as they are redistributed online. We learn a robust search embedding for matching such video, invariant to these transformations, using full-length or truncated video queries. Once matched against a trusted database of video clips, associated information on the provenance of the clip is presented to the user. We use an inverted index to match temporal chunks of video using late-fusion to combine both visual and audio features. In both cases, features are extracted via a deep neural network trained using contrastive learning on a dataset of original and augmented video clips. We demonstrate high accuracy recall over a corpus of 100,000 videos.
Short-Form Video Recommendations with Multimodal Embeddings: Addressing Cold-Start and Bias Challenges
In recent years, social media users have spent significant amounts of time on short-form video platforms. As a result, established platforms in other domains, such as e-commerce, have begun introducing short-form video content to engage users and increase their time spent on the platform. The success of these experiences is due not only to the content itself but also to a unique UI innovation: instead of offering users a list of choices to click, platforms actively recommend content for users to watch one at a time. This creates new challenges for recommender systems, especially when launching a new video experience. Beyond the limited interaction data, immersive feed experiences introduce stronger position bias due to the UI and duration bias when optimizing for watch-time, as models tend to favor shorter videos. These issues, together with the feedback loop inherent in recommender systems, make it difficult to build effective solutions. In this paper, we highlight the challenges faced when introducing a new short-form video experience and present our experience showing that, even with sufficient video interaction data, it can be more beneficial to leverage a video retrieval system using a fine-tuned multimodal vision-language model to overcome these challenges. This approach demonstrated greater effectiveness compared to conventional supervised learning methods in online experiments conducted on our e-commerce platform.
EVA02-AT: Egocentric Video-Language Understanding with Spatial-Temporal Rotary Positional Embeddings and Symmetric Optimization
Egocentric video-language understanding demands both high efficiency and accurate spatial-temporal modeling. Existing approaches face three key challenges: 1) Excessive pre-training cost arising from multi-stage pre-training pipelines, 2) Ineffective spatial-temporal encoding due to manually split 3D rotary positional embeddings that hinder feature interactions, and 3) Imprecise learning objectives in soft-label multi-instance retrieval, which neglect negative pair correlations. In this paper, we introduce EVA02-AT, a suite of EVA02-based video-language foundation models tailored to egocentric video understanding tasks. EVA02-AT first efficiently transfers an image-based CLIP model into a unified video encoder via a single-stage pretraining. Second, instead of applying rotary positional embeddings to isolated dimensions, we introduce spatial-temporal rotary positional embeddings along with joint attention, which can effectively encode both spatial and temporal information on the entire hidden dimension. This joint encoding of spatial-temporal features enables the model to learn cross-axis relationships, which are crucial for accurately modeling motion and interaction in videos. Third, focusing on multi-instance video-language retrieval tasks, we introduce the Symmetric Multi-Similarity (SMS) loss and a novel training framework that advances all soft labels for both positive and negative pairs, providing a more precise learning objective. Extensive experiments on Ego4D, EPIC-Kitchens-100, and Charades-Ego under zero-shot and fine-tuning settings demonstrate that EVA02-AT achieves state-of-the-art performance across diverse egocentric video-language tasks with fewer parameters. Models with our SMS loss also show significant performance gains on multi-instance retrieval benchmarks. Our code and models are publicly available at https://github.com/xqwang14/EVA02-AT .
Frozen in Time: A Joint Video and Image Encoder for End-to-End Retrieval
Our objective in this work is video-text retrieval - in particular a joint embedding that enables efficient text-to-video retrieval. The challenges in this area include the design of the visual architecture and the nature of the training data, in that the available large scale video-text training datasets, such as HowTo100M, are noisy and hence competitive performance is achieved only at scale through large amounts of compute. We address both these challenges in this paper. We propose an end-to-end trainable model that is designed to take advantage of both large-scale image and video captioning datasets. Our model is an adaptation and extension of the recent ViT and Timesformer architectures, and consists of attention in both space and time. The model is flexible and can be trained on both image and video text datasets, either independently or in conjunction. It is trained with a curriculum learning schedule that begins by treating images as 'frozen' snapshots of video, and then gradually learns to attend to increasing temporal context when trained on video datasets. We also provide a new video-text pretraining dataset WebVid-2M, comprised of over two million videos with weak captions scraped from the internet. Despite training on datasets that are an order of magnitude smaller, we show that this approach yields state-of-the-art results on standard downstream video-retrieval benchmarks including MSR-VTT, MSVD, DiDeMo and LSMDC.
Tell me what you see: A zero-shot action recognition method based on natural language descriptions
This paper presents a novel approach to Zero-Shot Action Recognition. Recent works have explored the detection and classification of objects to obtain semantic information from videos with remarkable performance. Inspired by them, we propose using video captioning methods to extract semantic information about objects, scenes, humans, and their relationships. To the best of our knowledge, this is the first work to represent both videos and labels with descriptive sentences. More specifically, we represent videos using sentences generated via video captioning methods and classes using sentences extracted from documents acquired through search engines on the Internet. Using these representations, we build a shared semantic space employing BERT-based embedders pre-trained in the paraphrasing task on multiple text datasets. The projection of both visual and semantic information onto this space is straightforward, as they are sentences, enabling classification using the nearest neighbor rule. We demonstrate that representing videos and labels with sentences alleviates the domain adaptation problem. Additionally, we show that word vectors are unsuitable for building the semantic embedding space of our descriptions. Our method outperforms the state-of-the-art performance on the UCF101 dataset by 3.3 p.p. in accuracy under the TruZe protocol and achieves competitive results on both the UCF101 and HMDB51 datasets under the conventional protocol (0/50\% - training/testing split). Our code is available at https://github.com/valterlej/zsarcap.
UATVR: Uncertainty-Adaptive Text-Video Retrieval
With the explosive growth of web videos and emerging large-scale vision-language pre-training models, e.g., CLIP, retrieving videos of interest with text instructions has attracted increasing attention. A common practice is to transfer text-video pairs to the same embedding space and craft cross-modal interactions with certain entities in specific granularities for semantic correspondence. Unfortunately, the intrinsic uncertainties of optimal entity combinations in appropriate granularities for cross-modal queries are understudied, which is especially critical for modalities with hierarchical semantics, e.g., video, text, etc. In this paper, we propose an Uncertainty-Adaptive Text-Video Retrieval approach, termed UATVR, which models each look-up as a distribution matching procedure. Concretely, we add additional learnable tokens in the encoders to adaptively aggregate multi-grained semantics for flexible high-level reasoning. In the refined embedding space, we represent text-video pairs as probabilistic distributions where prototypes are sampled for matching evaluation. Comprehensive experiments on four benchmarks justify the superiority of our UATVR, which achieves new state-of-the-art results on MSR-VTT (50.8%), VATEX (64.5%), MSVD (49.7%), and DiDeMo (45.8%). The code is available at https://github.com/bofang98/UATVR.
Learning Video Representations without Natural Videos
In this paper, we show that useful video representations can be learned from synthetic videos and natural images, without incorporating natural videos in the training. We propose a progression of video datasets synthesized by simple generative processes, that model a growing set of natural video properties (e.g. motion, acceleration, and shape transformations). The downstream performance of video models pre-trained on these generated datasets gradually increases with the dataset progression. A VideoMAE model pre-trained on our synthetic videos closes 97.2% of the performance gap on UCF101 action classification between training from scratch and self-supervised pre-training from natural videos, and outperforms the pre-trained model on HMDB51. Introducing crops of static images to the pre-training stage results in similar performance to UCF101 pre-training and outperforms the UCF101 pre-trained model on 11 out of 14 out-of-distribution datasets of UCF101-P. Analyzing the low-level properties of the datasets, we identify correlations between frame diversity, frame similarity to natural data, and downstream performance. Our approach provides a more controllable and transparent alternative to video data curation processes for pre-training.
HNeRV: A Hybrid Neural Representation for Videos
Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality (+4.7 PSNR) and convergence speed (16times faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV
Vamos: Versatile Action Models for Video Understanding
What makes good video representations for video understanding, such as anticipating future activities, or answering video-conditioned questions? While earlier approaches focus on end-to-end learning directly from video pixels, we propose to revisit text-based representations, such as discrete action labels, or free-form video captions, which are interpretable and can be directly consumed by large language models (LLMs). Intuitively, different video understanding tasks may require representations that are complementary and at different granularities. To this end, we propose versatile action models (Vamos), a learning framework powered by a large language model as the "reasoner", and can flexibly leverage visual embeddings, action labels, and free-form descriptions extracted from videos as its input. We evaluate Vamos on four complementary video understanding benchmarks, Ego4D, Next-QA, IntentQA, and EgoSchema, on its capability to model temporal dynamics, encode visual history, and perform reasoning. Surprisingly, we observe that text-based representations consistently achieve competitive performance on all benchmarks, and that visual embeddings provide marginal or no performance improvement, demonstrating the effectiveness of text-based video representation in the LLM era. We perform extensive ablation study and qualitative analysis to support our observations, and achieve state-of-the-art performance on three benchmarks.
Learning Video Representations from Textual Web Supervision
Videos on the Internet are paired with pieces of text, such as titles and descriptions. This text typically describes the most important content in the video, such as the objects in the scene and the actions being performed. Based on this observation, we propose to use text as a method for learning video representations. To accomplish this, we propose a data collection process and use it to collect 70M video clips shared publicly on the Internet, and we then train a model to pair each video with its associated text. We evaluate the model on several down-stream action recognition tasks, including Kinetics, HMDB-51, and UCF-101. We find that this approach is an effective method of pre-training video representations. Specifically, it outperforms all existing methods for self-supervised and cross-modal video representation learning.
VideoBooth: Diffusion-based Video Generation with Image Prompts
Text-driven video generation witnesses rapid progress. However, merely using text prompts is not enough to depict the desired subject appearance that accurately aligns with users' intents, especially for customized content creation. In this paper, we study the task of video generation with image prompts, which provide more accurate and direct content control beyond the text prompts. Specifically, we propose a feed-forward framework VideoBooth, with two dedicated designs: 1) We propose to embed image prompts in a coarse-to-fine manner. Coarse visual embeddings from image encoder provide high-level encodings of image prompts, while fine visual embeddings from the proposed attention injection module provide multi-scale and detailed encoding of image prompts. These two complementary embeddings can faithfully capture the desired appearance. 2) In the attention injection module at fine level, multi-scale image prompts are fed into different cross-frame attention layers as additional keys and values. This extra spatial information refines the details in the first frame and then it is propagated to the remaining frames, which maintains temporal consistency. Extensive experiments demonstrate that VideoBooth achieves state-of-the-art performance in generating customized high-quality videos with subjects specified in image prompts. Notably, VideoBooth is a generalizable framework where a single model works for a wide range of image prompts with feed-forward pass.
VCR: Video representation for Contextual Retrieval
Streamlining content discovery within media archives requires integrating advanced data representations and effective visualization techniques for clear communication of video topics to users. The proposed system addresses the challenge of efficiently navigating large video collections by exploiting a fusion of visual, audio, and textual features to accurately index and categorize video content through a text-based method. Additionally, semantic embeddings are employed to provide contextually relevant information and recommendations to users, resulting in an intuitive and engaging exploratory experience over our topics ontology map using OpenAI GPT-4.
VLM2Vec-V2: Advancing Multimodal Embedding for Videos, Images, and Visual Documents
Multimodal embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering over different modalities. However, existing multimodal embeddings like VLM2Vec, E5-V, GME are predominantly focused on natural images, with limited support for other visual forms such as videos and visual documents. This restricts their applicability in real-world scenarios, including AI agents, multi-modal search and recommendation, and retrieval-augmented generation (RAG). To close this gap, we propose VLM2Vec-V2, a unified framework for learning embeddings across diverse visual forms. First, we introduce MMEB-V2, a comprehensive benchmark that extends MMEB with five new task types: visual document retrieval, video retrieval, temporal grounding, video classification and video question answering - spanning text, image, video, and visual document inputs. Next, we train VLM2Vec-V2, a general-purpose embedding model that supports text, image, video, and visual document inputs. Extensive experiments show that VLM2Vec-V2 achieves strong performance not only on the newly introduced video and document retrieval tasks, but also improves over prior baselines on the original image benchmarks. Through extensive evaluation, our study offers insights into the generalizability of various multimodal embedding models and highlights effective strategies for unified embedding learning, laying the groundwork for more scalable and adaptable representation learning in both research and real-world settings.
Video Motion Transfer with Diffusion Transformers
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
Instruction-Tuned Video-Audio Models Elucidate Functional Specialization in the Brain
Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models in both unimodal and multimodal stimulus settings. More recently, instruction-tuned multimodal models have shown to generate task-specific representations that align strongly with brain activity. However, prior work evaluating the brain alignment of MLLMs has primarily focused on unimodal settings or relied on non-instruction-tuned multimodal models for multimodal stimuli. To address this gap, we investigated brain alignment, that is, measuring the degree of predictivity of neural activity recorded while participants were watching naturalistic movies (video along with audio) with representations derived from MLLMs. We utilized instruction-specific embeddings from six video and two audio instruction-tuned MLLMs. Experiments with 13 video task-specific instructions show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal (by 15%) and unimodal models (by 20%). Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs, leading to precise differentiation of multimodal functional processing in the brain. We also find that MLLM layers align hierarchically with the brain, with early sensory areas showing strong alignment with early layers, while higher-level visual and language regions align more with middle to late layers. These findings provide clear evidence for the role of task-specific instructions in improving the alignment between brain activity and MLLMs, and open new avenues for mapping joint information processing in both the systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].
Term Set Expansion based on Multi-Context Term Embeddings: an End-to-end Workflow
We present SetExpander, a corpus-based system for expanding a seed set of terms into a more complete set of terms that belong to the same semantic class. SetExpander implements an iterative end-to end workflow for term set expansion. It enables users to easily select a seed set of terms, expand it, view the expanded set, validate it, re-expand the validated set and store it, thus simplifying the extraction of domain-specific fine-grained semantic classes. SetExpander has been used for solving real-life use cases including integration in an automated recruitment system and an issues and defects resolution system. A video demo of SetExpander is available at https://drive.google.com/open?id=1e545bB87Autsch36DjnJHmq3HWfSd1Rv (some images were blurred for privacy reasons).
VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset is publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO under the CC BY 4.0 License.
Video-to-Audio Generation with Hidden Alignment
Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model VTA-LDM built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
ULLME: A Unified Framework for Large Language Model Embeddings with Generation-Augmented Learning
Large Language Models (LLMs) excel in various natural language processing tasks, but leveraging them for dense passage embedding remains challenging. This is due to their causal attention mechanism and the misalignment between their pre-training objectives and the text ranking tasks. Despite some recent efforts to address these issues, existing frameworks for LLM-based text embeddings have been limited by their support for only a limited range of LLM architectures and fine-tuning strategies, limiting their practical application and versatility. In this work, we introduce the Unified framework for Large Language Model Embedding (ULLME), a flexible, plug-and-play implementation that enables bidirectional attention across various LLMs and supports a range of fine-tuning strategies. We also propose Generation-augmented Representation Learning (GRL), a novel fine-tuning method to boost LLMs for text embedding tasks. GRL enforces consistency between representation-based and generation-based relevance scores, leveraging LLMs' powerful generative abilities for learning passage embeddings. To showcase our framework's flexibility and effectiveness, we release three pre-trained models from ULLME with different backbone architectures, ranging from 1.5B to 8B parameters, all of which demonstrate strong performance on the Massive Text Embedding Benchmark. Our framework is publicly available at: https://github.com/nlp-uoregon/ullme. A demo video for ULLME can also be found at https://rb.gy/ws1ile.
Advanced Sign Language Video Generation with Compressed and Quantized Multi-Condition Tokenization
Sign Language Video Generation (SLVG) seeks to generate identity-preserving sign language videos from spoken language texts. Existing methods primarily rely on the single coarse condition (\eg, skeleton sequences) as the intermediary to bridge the translation model and the video generation model, which limits both the naturalness and expressiveness of the generated videos. To overcome these limitations, we propose SignViP, a novel SLVG framework that incorporates multiple fine-grained conditions for improved generation fidelity. Rather than directly translating error-prone high-dimensional conditions, SignViP adopts a discrete tokenization paradigm to integrate and represent fine-grained conditions (\ie, fine-grained poses and 3D hands). SignViP contains three core components. (1) Sign Video Diffusion Model is jointly trained with a multi-condition encoder to learn continuous embeddings that encapsulate fine-grained motion and appearance. (2) Finite Scalar Quantization (FSQ) Autoencoder is further trained to compress and quantize these embeddings into discrete tokens for compact representation of the conditions. (3) Multi-Condition Token Translator is trained to translate spoken language text to discrete multi-condition tokens. During inference, Multi-Condition Token Translator first translates the spoken language text into discrete multi-condition tokens. These tokens are then decoded to continuous embeddings by FSQ Autoencoder, which are subsequently injected into Sign Video Diffusion Model to guide video generation. Experimental results show that SignViP achieves state-of-the-art performance across metrics, including video quality, temporal coherence, and semantic fidelity. The code is available at https://github.com/umnooob/signvip/.
Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data
Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io.
VGDFR: Diffusion-based Video Generation with Dynamic Latent Frame Rate
Diffusion Transformer(DiT)-based generation models have achieved remarkable success in video generation. However, their inherent computational demands pose significant efficiency challenges. In this paper, we exploit the inherent temporal non-uniformity of real-world videos and observe that videos exhibit dynamic information density, with high-motion segments demanding greater detail preservation than static scenes. Inspired by this temporal non-uniformity, we propose VGDFR, a training-free approach for Diffusion-based Video Generation with Dynamic Latent Frame Rate. VGDFR adaptively adjusts the number of elements in latent space based on the motion frequency of the latent space content, using fewer tokens for low-frequency segments while preserving detail in high-frequency segments. Specifically, our key contributions are: (1) A dynamic frame rate scheduler for DiT video generation that adaptively assigns frame rates for video segments. (2) A novel latent-space frame merging method to align latent representations with their denoised counterparts before merging those redundant in low-resolution space. (3) A preference analysis of Rotary Positional Embeddings (RoPE) across DiT layers, informing a tailored RoPE strategy optimized for semantic and local information capture. Experiments show that VGDFR can achieve a speedup up to 3x for video generation with minimal quality degradation.
Semi-Supervised Contrastive Learning for Controllable Video-to-Music Retrieval
Content creators often use music to enhance their videos, from soundtracks in movies to background music in video blogs and social media content. However, identifying the best music for a video can be a difficult and time-consuming task. To address this challenge, we propose a novel framework for automatically retrieving a matching music clip for a given video, and vice versa. Our approach leverages annotated music labels, as well as the inherent artistic correspondence between visual and music elements. Distinct from previous cross-modal music retrieval works, our method combines both self-supervised and supervised training objectives. We use self-supervised and label-supervised contrastive learning to train a joint embedding space between music and video. We show the effectiveness of our approach by using music genre labels for the supervised training component, and our framework can be generalized to other music annotations (e.g., emotion, instrument, etc.). Furthermore, our method enables fine-grained control over how much the retrieval process focuses on self-supervised vs. label information at inference time. We evaluate the learned embeddings through a variety of video-to-music and music-to-video retrieval tasks. Our experiments show that the proposed approach successfully combines self-supervised and supervised objectives and is effective for controllable music-video retrieval.
VISAGE: Video Instance Segmentation with Appearance-Guided Enhancement
In recent years, online Video Instance Segmentation (VIS) methods have shown remarkable advancement with their powerful query-based detectors. Utilizing the output queries of the detector at the frame-level, these methods achieve high accuracy on challenging benchmarks. However, our observations demonstrate that these methods heavily rely on location information, which often causes incorrect associations between objects. This paper presents that a key axis of object matching in trackers is appearance information, which becomes greatly instructive under conditions where positional cues are insufficient for distinguishing their identities. Therefore, we suggest a simple yet powerful extension to object decoders that explicitly extract embeddings from backbone features and drive queries to capture the appearances of objects, which greatly enhances instance association accuracy. Furthermore, recognizing the limitations of existing benchmarks in fully evaluating appearance awareness, we have constructed a synthetic dataset to rigorously validate our method. By effectively resolving the over-reliance on location information, we achieve state-of-the-art results on YouTube-VIS 2019/2021 and Occluded VIS (OVIS). Code is available at https://github.com/KimHanjung/VISAGE.
CTVIS: Consistent Training for Online Video Instance Segmentation
The discrimination of instance embeddings plays a vital role in associating instances across time for online video instance segmentation (VIS). Instance embedding learning is directly supervised by the contrastive loss computed upon the contrastive items (CIs), which are sets of anchor/positive/negative embeddings. Recent online VIS methods leverage CIs sourced from one reference frame only, which we argue is insufficient for learning highly discriminative embeddings. Intuitively, a possible strategy to enhance CIs is replicating the inference phase during training. To this end, we propose a simple yet effective training strategy, called Consistent Training for Online VIS (CTVIS), which devotes to aligning the training and inference pipelines in terms of building CIs. Specifically, CTVIS constructs CIs by referring inference the momentum-averaged embedding and the memory bank storage mechanisms, and adding noise to the relevant embeddings. Such an extension allows a reliable comparison between embeddings of current instances and the stable representations of historical instances, thereby conferring an advantage in modeling VIS challenges such as occlusion, re-identification, and deformation. Empirically, CTVIS outstrips the SOTA VIS models by up to +5.0 points on three VIS benchmarks, including YTVIS19 (55.1% AP), YTVIS21 (50.1% AP) and OVIS (35.5% AP). Furthermore, we find that pseudo-videos transformed from images can train robust models surpassing fully-supervised ones.
Temporally Consistent Transformers for Video Generation
To generate accurate videos, algorithms have to understand the spatial and temporal dependencies in the world. Current algorithms enable accurate predictions over short horizons but tend to suffer from temporal inconsistencies. When generated content goes out of view and is later revisited, the model invents different content instead. Despite this severe limitation, no established benchmarks on complex data exist for rigorously evaluating video generation with long temporal dependencies. In this paper, we curate 3 challenging video datasets with long-range dependencies by rendering walks through 3D scenes of procedural mazes, Minecraft worlds, and indoor scans. We perform a comprehensive evaluation of current models and observe their limitations in temporal consistency. Moreover, we introduce the Temporally Consistent Transformer (TECO), a generative model that substantially improves long-term consistency while also reducing sampling time. By compressing its input sequence into fewer embeddings, applying a temporal transformer, and expanding back using a spatial MaskGit, TECO outperforms existing models across many metrics. Videos are available on the website: https://wilson1yan.github.io/teco
A CLIP-Hitchhiker's Guide to Long Video Retrieval
Our goal in this paper is the adaptation of image-text models for long video retrieval. Recent works have demonstrated state-of-the-art performance in video retrieval by adopting CLIP, effectively hitchhiking on the image-text representation for video tasks. However, there has been limited success in learning temporal aggregation that outperform mean-pooling the image-level representations extracted per frame by CLIP. We find that the simple yet effective baseline of weighted-mean of frame embeddings via query-scoring is a significant improvement above all prior temporal modelling attempts and mean-pooling. In doing so, we provide an improved baseline for others to compare to and demonstrate state-of-the-art performance of this simple baseline on a suite of long video retrieval benchmarks.
InternVid: A Large-scale Video-Text Dataset for Multimodal Understanding and Generation
This paper introduces InternVid, a large-scale video-centric multimodal dataset that enables learning powerful and transferable video-text representations for multimodal understanding and generation. The InternVid dataset contains over 7 million videos lasting nearly 760K hours, yielding 234M video clips accompanied by detailed descriptions of total 4.1B words. Our core contribution is to develop a scalable approach to autonomously build a high-quality video-text dataset with large language models (LLM), thereby showcasing its efficacy in learning video-language representation at scale. Specifically, we utilize a multi-scale approach to generate video-related descriptions. Furthermore, we introduce ViCLIP, a video-text representation learning model based on ViT-L. Learned on InternVid via contrastive learning, this model demonstrates leading zero-shot action recognition and competitive video retrieval performance. Beyond basic video understanding tasks like recognition and retrieval, our dataset and model have broad applications. They are particularly beneficial for generating interleaved video-text data for learning a video-centric dialogue system, advancing video-to-text and text-to-video generation research. These proposed resources provide a tool for researchers and practitioners interested in multimodal video understanding and generation.
RIFLEx: A Free Lunch for Length Extrapolation in Video Diffusion Transformers
Recent advancements in video generation have enabled models to synthesize high-quality, minute-long videos. However, generating even longer videos with temporal coherence remains a major challenge, and existing length extrapolation methods lead to temporal repetition or motion deceleration. In this work, we systematically analyze the role of frequency components in positional embeddings and identify an intrinsic frequency that primarily governs extrapolation behavior. Based on this insight, we propose RIFLEx, a minimal yet effective approach that reduces the intrinsic frequency to suppress repetition while preserving motion consistency, without requiring any additional modifications. RIFLEx offers a true free lunch--achieving high-quality 2times extrapolation on state-of-the-art video diffusion transformers in a completely training-free manner. Moreover, it enhances quality and enables 3times extrapolation by minimal fine-tuning without long videos. Project page and codes: https://riflex-video.github.io/{https://riflex-video.github.io/.}
Video-Bench: Human-Aligned Video Generation Benchmark
Video generation assessment is essential for ensuring that generative models produce visually realistic, high-quality videos while aligning with human expectations. Current video generation benchmarks fall into two main categories: traditional benchmarks, which use metrics and embeddings to evaluate generated video quality across multiple dimensions but often lack alignment with human judgments; and large language model (LLM)-based benchmarks, though capable of human-like reasoning, are constrained by a limited understanding of video quality metrics and cross-modal consistency. To address these challenges and establish a benchmark that better aligns with human preferences, this paper introduces Video-Bench, a comprehensive benchmark featuring a rich prompt suite and extensive evaluation dimensions. This benchmark represents the first attempt to systematically leverage MLLMs across all dimensions relevant to video generation assessment in generative models. By incorporating few-shot scoring and chain-of-query techniques, Video-Bench provides a structured, scalable approach to generated video evaluation. Experiments on advanced models including Sora demonstrate that Video-Bench achieves superior alignment with human preferences across all dimensions. Moreover, in instances where our framework's assessments diverge from human evaluations, it consistently offers more objective and accurate insights, suggesting an even greater potential advantage over traditional human judgment.
VEDIT: Latent Prediction Architecture For Procedural Video Representation Learning
Procedural video representation learning is an active research area where the objective is to learn an agent which can anticipate and forecast the future given the present video input, typically in conjunction with textual annotations. Prior works often rely on large-scale pretraining of visual encoders and prediction models with language supervision. However, the necessity and effectiveness of extending compute intensive pretraining to learn video clip sequences with noisy text supervision have not yet been fully validated by previous works. In this work, we show that a strong off-the-shelf frozen pretrained visual encoder, along with a well designed prediction model, can achieve state-of-the-art (SoTA) performance in forecasting and procedural planning without the need for pretraining the prediction model, nor requiring additional supervision from language or ASR. Instead of learning representations from pixel space, our method utilizes the latent embedding space of publicly available vision encoders. By conditioning on frozen clip-level embeddings from observed steps to predict the actions of unseen steps, our prediction model is able to learn robust representations for forecasting through iterative denoising - leveraging the recent advances in diffusion transformers (Peebles & Xie, 2023). Empirical studies over a total of five procedural learning tasks across four datasets (NIV, CrossTask, COIN and Ego4D-v2) show that our model advances the strong baselines in long-horizon action anticipation (+2.6% in Verb ED@20, +3.1% in Noun ED@20), and significantly improves the SoTA in step forecasting (+5.0%), task classification (+3.8%), and procedure planning tasks (up to +2.28% in success rate, +3.39% in mAcc, and +0.90% in mIoU).
SOC: Semantic-Assisted Object Cluster for Referring Video Object Segmentation
This paper studies referring video object segmentation (RVOS) by boosting video-level visual-linguistic alignment. Recent approaches model the RVOS task as a sequence prediction problem and perform multi-modal interaction as well as segmentation for each frame separately. However, the lack of a global view of video content leads to difficulties in effectively utilizing inter-frame relationships and understanding textual descriptions of object temporal variations. To address this issue, we propose Semantic-assisted Object Cluster (SOC), which aggregates video content and textual guidance for unified temporal modeling and cross-modal alignment. By associating a group of frame-level object embeddings with language tokens, SOC facilitates joint space learning across modalities and time steps. Moreover, we present multi-modal contrastive supervision to help construct well-aligned joint space at the video level. We conduct extensive experiments on popular RVOS benchmarks, and our method outperforms state-of-the-art competitors on all benchmarks by a remarkable margin. Besides, the emphasis on temporal coherence enhances the segmentation stability and adaptability of our method in processing text expressions with temporal variations. Code will be available.
Video Pre-trained Transformer: A Multimodal Mixture of Pre-trained Experts
We present Video Pre-trained Transformer. VPT uses four SOTA encoder models from prior work to convert a video into a sequence of compact embeddings. Our backbone, based on a reference Flan-T5-11B architecture, learns a universal representation of the video that is a non-linear sum of the encoder models. It learns using an autoregressive causal language modeling loss by predicting the words spoken in YouTube videos. Finally, we evaluate on standard downstream benchmarks by training fully connected prediction heads for each task. To the best of our knowledge, this is the first use of multiple frozen SOTA models as encoders in an "embedding -> backbone -> prediction head" design pattern - all others have trained their own joint encoder models. Additionally, we include more modalities than the current SOTA, Merlot Reserve, by adding explicit Scene Graph information. For these two reasons, we believe it could combine the world's best open-source models to achieve SOTA performance. Initial experiments demonstrate the model is learning appropriately, but more experimentation and compute is necessary, and already in progress, to realize our loftier goals. Alongside this work, we build on the YT-20M dataset, reproducing it and adding 25,000 personally selected YouTube videos to its corpus. All code and model checkpoints are open sourced under a standard MIT license.
AnimaX: Animating the Inanimate in 3D with Joint Video-Pose Diffusion Models
We present AnimaX, a feed-forward 3D animation framework that bridges the motion priors of video diffusion models with the controllable structure of skeleton-based animation. Traditional motion synthesis methods are either restricted to fixed skeletal topologies or require costly optimization in high-dimensional deformation spaces. In contrast, AnimaX effectively transfers video-based motion knowledge to the 3D domain, supporting diverse articulated meshes with arbitrary skeletons. Our method represents 3D motion as multi-view, multi-frame 2D pose maps, and enables joint video-pose diffusion conditioned on template renderings and a textual motion prompt. We introduce shared positional encodings and modality-aware embeddings to ensure spatial-temporal alignment between video and pose sequences, effectively transferring video priors to motion generation task. The resulting multi-view pose sequences are triangulated into 3D joint positions and converted into mesh animation via inverse kinematics. Trained on a newly curated dataset of 160,000 rigged sequences, AnimaX achieves state-of-the-art results on VBench in generalization, motion fidelity, and efficiency, offering a scalable solution for category-agnostic 3D animation. Project page: https://anima-x.github.io/{https://anima-x.github.io/}.
Reenact Anything: Semantic Video Motion Transfer Using Motion-Textual Inversion
Recent years have seen a tremendous improvement in the quality of video generation and editing approaches. While several techniques focus on editing appearance, few address motion. Current approaches using text, trajectories, or bounding boxes are limited to simple motions, so we specify motions with a single motion reference video instead. We further propose to use a pre-trained image-to-video model rather than a text-to-video model. This approach allows us to preserve the exact appearance and position of a target object or scene and helps disentangle appearance from motion. Our method, called motion-textual inversion, leverages our observation that image-to-video models extract appearance mainly from the (latent) image input, while the text/image embedding injected via cross-attention predominantly controls motion. We thus represent motion using text/image embedding tokens. By operating on an inflated motion-text embedding containing multiple text/image embedding tokens per frame, we achieve a high temporal motion granularity. Once optimized on the motion reference video, this embedding can be applied to various target images to generate videos with semantically similar motions. Our approach does not require spatial alignment between the motion reference video and target image, generalizes across various domains, and can be applied to various tasks such as full-body and face reenactment, as well as controlling the motion of inanimate objects and the camera. We empirically demonstrate the effectiveness of our method in the semantic video motion transfer task, significantly outperforming existing methods in this context.
VD3D: Taming Large Video Diffusion Transformers for 3D Camera Control
Modern text-to-video synthesis models demonstrate coherent, photorealistic generation of complex videos from a text description. However, most existing models lack fine-grained control over camera movement, which is critical for downstream applications related to content creation, visual effects, and 3D vision. Recently, new methods demonstrate the ability to generate videos with controllable camera poses these techniques leverage pre-trained U-Net-based diffusion models that explicitly disentangle spatial and temporal generation. Still, no existing approach enables camera control for new, transformer-based video diffusion models that process spatial and temporal information jointly. Here, we propose to tame video transformers for 3D camera control using a ControlNet-like conditioning mechanism that incorporates spatiotemporal camera embeddings based on Plucker coordinates. The approach demonstrates state-of-the-art performance for controllable video generation after fine-tuning on the RealEstate10K dataset. To the best of our knowledge, our work is the first to enable camera control for transformer-based video diffusion models.
Lynx: Towards High-Fidelity Personalized Video Generation
We present Lynx, a high-fidelity model for personalized video synthesis from a single input image. Built on an open-source Diffusion Transformer (DiT) foundation model, Lynx introduces two lightweight adapters to ensure identity fidelity. The ID-adapter employs a Perceiver Resampler to convert ArcFace-derived facial embeddings into compact identity tokens for conditioning, while the Ref-adapter integrates dense VAE features from a frozen reference pathway, injecting fine-grained details across all transformer layers through cross-attention. These modules collectively enable robust identity preservation while maintaining temporal coherence and visual realism. Through evaluation on a curated benchmark of 40 subjects and 20 unbiased prompts, which yielded 800 test cases, Lynx has demonstrated superior face resemblance, competitive prompt following, and strong video quality, thereby advancing the state of personalized video generation.
UME-R1: Exploring Reasoning-Driven Generative Multimodal Embeddings
The remarkable success of multimodal large language models (MLLMs) has driven advances in multimodal embeddings, yet existing models remain inherently discriminative, limiting their ability to benefit from reasoning-driven generation paradigm. In this work, we pioneer the exploration of generative embeddings, unifying embedding tasks within a generative paradigm. We propose UME-R1, a universal multimodal embedding framework consisting of a two-stage training strategy: a cold-start supervised fine-tuning equips the model with reasoning capabilities and enables it to generate both discriminative and generative embeddings; a subsequent reinforcement learning enhances reasoning and further optimizes generative embedding quality. This pioneering work reveals four key insights: 1) generative embeddings unlock substantial performance gains over conventional discriminative embeddings by leveraging the powerful generative reasoning capabilities of MLLMs; 2) discriminative and generative embeddings are complementary, whose combined oracle performance far exceeding that of either alone; 3) RL can effectively enhance generative embeddings, establishing a scalable optimization paradigm.; 4) repeated sampling at inference boosts downstream task coverage (pass@k), highlighting the inference-time scalability potential of generative embeddings. Evaluated on the MMEB-V2 benchmark across 78 tasks spanning video, image, and visual documents, UME-R1 significantly outperforms conventional discriminative embedding models and offers a foundation for more interpretable, reasoning-driven generative multimodal embeddings. Our code, models, and datasets will be publicly available at https://github.com/XMUDeepLIT/UME-R1.
VFRTok: Variable Frame Rates Video Tokenizer with Duration-Proportional Information Assumption
Modern video generation frameworks based on Latent Diffusion Models suffer from inefficiencies in tokenization due to the Frame-Proportional Information Assumption. Existing tokenizers provide fixed temporal compression rates, causing the computational cost of the diffusion model to scale linearly with the frame rate. The paper proposes the Duration-Proportional Information Assumption: the upper bound on the information capacity of a video is proportional to the duration rather than the number of frames. Based on this insight, the paper introduces VFRTok, a Transformer-based video tokenizer, that enables variable frame rate encoding and decoding through asymmetric frame rate training between the encoder and decoder. Furthermore, the paper proposes Partial Rotary Position Embeddings (RoPE) to decouple position and content modeling, which groups correlated patches into unified tokens. The Partial RoPE effectively improves content-awareness, enhancing the video generation capability. Benefiting from the compact and continuous spatio-temporal representation, VFRTok achieves competitive reconstruction quality and state-of-the-art generation fidelity while using only 1/8 tokens compared to existing tokenizers.
Contracting Skeletal Kinematics for Human-Related Video Anomaly Detection
Detecting the anomaly of human behavior is paramount to timely recognizing endangering situations, such as street fights or elderly falls. However, anomaly detection is complex since anomalous events are rare and because it is an open set recognition task, i.e., what is anomalous at inference has not been observed at training. We propose COSKAD, a novel model that encodes skeletal human motion by a graph convolutional network and learns to COntract SKeletal kinematic embeddings onto a latent hypersphere of minimum volume for Video Anomaly Detection. We propose three latent spaces: the commonly-adopted Euclidean and the novel spherical and hyperbolic. All variants outperform the state-of-the-art on the most recent UBnormal dataset, for which we contribute a human-related version with annotated skeletons. COSKAD sets a new state-of-the-art on the human-related versions of ShanghaiTech Campus and CUHK Avenue, with performance comparable to video-based methods. Source code and dataset will be released upon acceptance.
WAVE: Learning Unified & Versatile Audio-Visual Embeddings with Multimodal LLM
While embeddings from multimodal large language models (LLMs) excel as general-purpose representations, their application to dynamic modalities like audio and video remains underexplored. We introduce WAVE (unified \& versatile audio-visual embeddings), the first LLM-based embedding that creates a unified representation space for text, audio, and video modalities. WAVE employs a novel hierarchical feature fusion strategy and a joint multi-modal, multi-task training approach to enable two key capabilities: any-to-any cross-modal retrieval and the generation of prompt-aware embeddings tailored to user instructions. Experimentally, WAVE sets a new state-of-the-art on the MMEB-v2 video benchmark and achieves superior results in audio and video-to-audio retrieval. Its prompt-aware nature also yields remarkable performance in multimodal question answering, significantly outperforming existing embedding models. Ablation studies validate our joint training strategy, demonstrating improved performance across all modalities. With a newly introduced benchmark for versatile audio-visual learning, WAVE opens up broad possibilities for cross-modal, any-to-any applications. Our code, checkpoints, and data will be released.
Moving Off-the-Grid: Scene-Grounded Video Representations
Current vision models typically maintain a fixed correspondence between their representation structure and image space. Each layer comprises a set of tokens arranged "on-the-grid," which biases patches or tokens to encode information at a specific spatio(-temporal) location. In this work we present Moving Off-the-Grid (MooG), a self-supervised video representation model that offers an alternative approach, allowing tokens to move "off-the-grid" to better enable them to represent scene elements consistently, even as they move across the image plane through time. By using a combination of cross-attention and positional embeddings we disentangle the representation structure and image structure. We find that a simple self-supervised objective--next frame prediction--trained on video data, results in a set of latent tokens which bind to specific scene structures and track them as they move. We demonstrate the usefulness of MooG's learned representation both qualitatively and quantitatively by training readouts on top of the learned representation on a variety of downstream tasks. We show that MooG can provide a strong foundation for different vision tasks when compared to "on-the-grid" baselines.
Unified Embedding Alignment for Open-Vocabulary Video Instance Segmentation
Open-Vocabulary Video Instance Segmentation (VIS) is attracting increasing attention due to its ability to segment and track arbitrary objects. However, the recent Open-Vocabulary VIS attempts obtained unsatisfactory results, especially in terms of generalization ability of novel categories. We discover that the domain gap between the VLM features (e.g., CLIP) and the instance queries and the underutilization of temporal consistency are two central causes. To mitigate these issues, we design and train a novel Open-Vocabulary VIS baseline called OVFormer. OVFormer utilizes a lightweight module for unified embedding alignment between query embeddings and CLIP image embeddings to remedy the domain gap. Unlike previous image-based training methods, we conduct video-based model training and deploy a semi-online inference scheme to fully mine the temporal consistency in the video. Without bells and whistles, OVFormer achieves 21.9 mAP with a ResNet-50 backbone on LV-VIS, exceeding the previous state-of-the-art performance by 7.7. Extensive experiments on some Close-Vocabulary VIS datasets also demonstrate the strong zero-shot generalization ability of OVFormer (+ 7.6 mAP on YouTube-VIS 2019, + 3.9 mAP on OVIS). Code is available at https://github.com/fanghaook/OVFormer.
HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera
Continuous space-time video super-resolution (C-STVSR) aims to simultaneously enhance video resolution and frame rate at an arbitrary scale. Recently, implicit neural representation (INR) has been applied to video restoration, representing videos as implicit fields that can be decoded at an arbitrary scale. However, the highly ill-posed nature of C-STVSR limits the effectiveness of current INR-based methods: they assume linear motion between frames and use interpolation or feature warping to generate features at arbitrary spatiotemporal positions with two consecutive frames. This restrains C-STVSR from capturing rapid and nonlinear motion and long-term dependencies (involving more than two frames) in complex dynamic scenes. In this paper, we propose a novel C-STVSR framework, called HR-INR, which captures both holistic dependencies and regional motions based on INR. It is assisted by an event camera, a novel sensor renowned for its high temporal resolution and low latency. To fully utilize the rich temporal information from events, we design a feature extraction consisting of (1) a regional event feature extractor - taking events as inputs via the proposed event temporal pyramid representation to capture the regional nonlinear motion and (2) a holistic event-frame feature extractor for long-term dependence and continuity motion. We then propose a novel INR-based decoder with spatiotemporal embeddings to capture long-term dependencies with a larger temporal perception field. We validate the effectiveness and generalization of our method on four datasets (both simulated and real data), showing the superiority of our method.
Learning Universal Policies via Text-Guided Video Generation
A goal of artificial intelligence is to construct an agent that can solve a wide variety of tasks. Recent progress in text-guided image synthesis has yielded models with an impressive ability to generate complex novel images, exhibiting combinatorial generalization across domains. Motivated by this success, we investigate whether such tools can be used to construct more general-purpose agents. Specifically, we cast the sequential decision making problem as a text-conditioned video generation problem, where, given a text-encoded specification of a desired goal, a planner synthesizes a set of future frames depicting its planned actions in the future, after which control actions are extracted from the generated video. By leveraging text as the underlying goal specification, we are able to naturally and combinatorially generalize to novel goals. The proposed policy-as-video formulation can further represent environments with different state and action spaces in a unified space of images, which, for example, enables learning and generalization across a variety of robot manipulation tasks. Finally, by leveraging pretrained language embeddings and widely available videos from the internet, the approach enables knowledge transfer through predicting highly realistic video plans for real robots.
Adversarial Skill Networks: Unsupervised Robot Skill Learning from Video
Key challenges for the deployment of reinforcement learning (RL) agents in the real world are the discovery, representation and reuse of skills in the absence of a reward function. To this end, we propose a novel approach to learn a task-agnostic skill embedding space from unlabeled multi-view videos. Our method learns a general skill embedding independently from the task context by using an adversarial loss. We combine a metric learning loss, which utilizes temporal video coherence to learn a state representation, with an entropy regularized adversarial skill-transfer loss. The metric learning loss learns a disentangled representation by attracting simultaneous viewpoints of the same observations and repelling visually similar frames from temporal neighbors. The adversarial skill-transfer loss enhances re-usability of learned skill embeddings over multiple task domains. We show that the learned embedding enables training of continuous control policies to solve novel tasks that require the interpolation of previously seen skills. Our extensive evaluation with both simulation and real world data demonstrates the effectiveness of our method in learning transferable skills from unlabeled interaction videos and composing them for new tasks. Code, pretrained models and dataset are available at http://robotskills.cs.uni-freiburg.de
Perception Encoder: The best visual embeddings are not at the output of the network
We introduce Perception Encoder (PE), a state-of-the-art encoder for image and video understanding trained via simple vision-language learning. Traditionally, vision encoders have relied on a variety of pretraining objectives, each tailored to specific downstream tasks such as classification, captioning, or localization. Surprisingly, after scaling our carefully tuned image pretraining recipe and refining with our robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods, language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together with the core contrastive checkpoint, our PE family of models achieves state-of-the-art performance on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, depth estimation, and tracking. To foster further research, we are releasing our models, code, and a novel dataset of synthetically and human-annotated videos.
StableAvatar: Infinite-Length Audio-Driven Avatar Video Generation
Current diffusion models for audio-driven avatar video generation struggle to synthesize long videos with natural audio synchronization and identity consistency. This paper presents StableAvatar, the first end-to-end video diffusion transformer that synthesizes infinite-length high-quality videos without post-processing. Conditioned on a reference image and audio, StableAvatar integrates tailored training and inference modules to enable infinite-length video generation. We observe that the main reason preventing existing models from generating long videos lies in their audio modeling. They typically rely on third-party off-the-shelf extractors to obtain audio embeddings, which are then directly injected into the diffusion model via cross-attention. Since current diffusion backbones lack any audio-related priors, this approach causes severe latent distribution error accumulation across video clips, leading the latent distribution of subsequent segments to drift away from the optimal distribution gradually. To address this, StableAvatar introduces a novel Time-step-aware Audio Adapter that prevents error accumulation via time-step-aware modulation. During inference, we propose a novel Audio Native Guidance Mechanism to further enhance the audio synchronization by leveraging the diffusion's own evolving joint audio-latent prediction as a dynamic guidance signal. To enhance the smoothness of the infinite-length videos, we introduce a Dynamic Weighted Sliding-window Strategy that fuses latent over time. Experiments on benchmarks show the effectiveness of StableAvatar both qualitatively and quantitatively.
Timestep Embedding Tells: It's Time to Cache for Video Diffusion Model
As a fundamental backbone for video generation, diffusion models are challenged by low inference speed due to the sequential nature of denoising. Previous methods speed up the models by caching and reusing model outputs at uniformly selected timesteps. However, such a strategy neglects the fact that differences among model outputs are not uniform across timesteps, which hinders selecting the appropriate model outputs to cache, leading to a poor balance between inference efficiency and visual quality. In this study, we introduce Timestep Embedding Aware Cache (TeaCache), a training-free caching approach that estimates and leverages the fluctuating differences among model outputs across timesteps. Rather than directly using the time-consuming model outputs, TeaCache focuses on model inputs, which have a strong correlation with the modeloutputs while incurring negligible computational cost. TeaCache first modulates the noisy inputs using the timestep embeddings to ensure their differences better approximating those of model outputs. TeaCache then introduces a rescaling strategy to refine the estimated differences and utilizes them to indicate output caching. Experiments show that TeaCache achieves up to 4.41x acceleration over Open-Sora-Plan with negligible (-0.07% Vbench score) degradation of visual quality.
ConceptMaster: Multi-Concept Video Customization on Diffusion Transformer Models Without Test-Time Tuning
Text-to-video generation has made remarkable advancements through diffusion models. However, Multi-Concept Video Customization (MCVC) remains a significant challenge. We identify two key challenges in this task: 1) the identity decoupling problem, where directly adopting existing customization methods inevitably mix attributes when handling multiple concepts simultaneously, and 2) the scarcity of high-quality video-entity pairs, which is crucial for training such a model that represents and decouples various concepts well. To address these challenges, we introduce ConceptMaster, an innovative framework that effectively tackles the critical issues of identity decoupling while maintaining concept fidelity in customized videos. Specifically, we introduce a novel strategy of learning decoupled multi-concept embeddings that are injected into the diffusion models in a standalone manner, which effectively guarantees the quality of customized videos with multiple identities, even for highly similar visual concepts. To further overcome the scarcity of high-quality MCVC data, we carefully establish a data construction pipeline, which enables systematic collection of precise multi-concept video-entity data across diverse concepts. A comprehensive benchmark is designed to validate the effectiveness of our model from three critical dimensions: concept fidelity, identity decoupling ability, and video generation quality across six different concept composition scenarios. Extensive experiments demonstrate that our ConceptMaster significantly outperforms previous approaches for this task, paving the way for generating personalized and semantically accurate videos across multiple concepts.
Long Context Tuning for Video Generation
Recent advances in video generation can produce realistic, minute-long single-shot videos with scalable diffusion transformers. However, real-world narrative videos require multi-shot scenes with visual and dynamic consistency across shots. In this work, we introduce Long Context Tuning (LCT), a training paradigm that expands the context window of pre-trained single-shot video diffusion models to learn scene-level consistency directly from data. Our method expands full attention mechanisms from individual shots to encompass all shots within a scene, incorporating interleaved 3D position embedding and an asynchronous noise strategy, enabling both joint and auto-regressive shot generation without additional parameters. Models with bidirectional attention after LCT can further be fine-tuned with context-causal attention, facilitating auto-regressive generation with efficient KV-cache. Experiments demonstrate single-shot models after LCT can produce coherent multi-shot scenes and exhibit emerging capabilities, including compositional generation and interactive shot extension, paving the way for more practical visual content creation. See https://guoyww.github.io/projects/long-context-video/ for more details.
Meta-Personalizing Vision-Language Models to Find Named Instances in Video
Large-scale vision-language models (VLM) have shown impressive results for language-guided search applications. While these models allow category-level queries, they currently struggle with personalized searches for moments in a video where a specific object instance such as ``My dog Biscuit'' appears. We present the following three contributions to address this problem. First, we describe a method to meta-personalize a pre-trained VLM, i.e., learning how to learn to personalize a VLM at test time to search in video. Our method extends the VLM's token vocabulary by learning novel word embeddings specific to each instance. To capture only instance-specific features, we represent each instance embedding as a combination of shared and learned global category features. Second, we propose to learn such personalization without explicit human supervision. Our approach automatically identifies moments of named visual instances in video using transcripts and vision-language similarity in the VLM's embedding space. Finally, we introduce This-Is-My, a personal video instance retrieval benchmark. We evaluate our approach on This-Is-My and DeepFashion2 and show that we obtain a 15% relative improvement over the state of the art on the latter dataset.
MaxInfo: A Training-Free Key-Frame Selection Method Using Maximum Volume for Enhanced Video Understanding
Modern Video Large Language Models (VLLMs) often rely on uniform frame sampling for video understanding, but this approach frequently fails to capture critical information due to frame redundancy and variations in video content. We propose MaxInfo, a training-free method based on the maximum volume principle, which selects and retains the most representative frames from the input video. By maximizing the geometric volume formed by selected embeddings, MaxInfo ensures that the chosen frames cover the most informative regions of the embedding space, effectively reducing redundancy while preserving diversity. This method enhances the quality of input representations and improves long video comprehension performance across benchmarks. For instance, MaxInfo achieves a 3.28% improvement on LongVideoBench and a 6.4% improvement on EgoSchema for LLaVA-Video-7B. It also achieves a 3.47% improvement for LLaVA-Video-72B. The approach is simple to implement and works with existing VLLMs without the need for additional training, making it a practical and effective alternative to traditional uniform sampling methods.
LVCHAT: Facilitating Long Video Comprehension
Enabling large language models (LLMs) to read videos is vital for multimodal LLMs. Existing works show promise on short videos whereas long video (longer than e.g.~1 minute) comprehension remains challenging. The major problem lies in the over-compression of videos, i.e., the encoded video representations are not enough to represent the whole video. To address this issue, we propose Long Video Chat (LVChat), where Frame-Scalable Encoding (FSE) is introduced to dynamically adjust the number of embeddings in alignment with the duration of the video to ensure long videos are not overly compressed into a few embeddings. To deal with long videos whose length is beyond videos seen during training, we propose Interleaved Frame Encoding (IFE), repeating positional embedding and interleaving multiple groups of videos to enable long video input, avoiding performance degradation due to overly long videos. Experimental results show that LVChat significantly outperforms existing methods by up to 27\% in accuracy on long-video QA datasets and long-video captioning benchmarks. Our code is published at https://github.com/wangyu-ustc/LVChat.
VideoFACT: Detecting Video Forgeries Using Attention, Scene Context, and Forensic Traces
Fake videos represent an important misinformation threat. While existing forensic networks have demonstrated strong performance on image forgeries, recent results reported on the Adobe VideoSham dataset show that these networks fail to identify fake content in videos. In this paper, we show that this is due to video coding, which introduces local variation into forensic traces. In response, we propose VideoFACT - a new network that is able to detect and localize a wide variety of video forgeries and manipulations. To overcome challenges that existing networks face when analyzing videos, our network utilizes both forensic embeddings to capture traces left by manipulation, context embeddings to control for variation in forensic traces introduced by video coding, and a deep self-attention mechanism to estimate the quality and relative importance of local forensic embeddings. We create several new video forgery datasets and use these, along with publicly available data, to experimentally evaluate our network's performance. These results show that our proposed network is able to identify a diverse set of video forgeries, including those not encountered during training. Furthermore, we show that our network can be fine-tuned to achieve even stronger performance on challenging AI-based manipulations.
Text-guided Fine-Grained Video Anomaly Detection
Video Anomaly Detection (VAD) aims to identify anomalous events within video segments. In scenarios such as surveillance or industrial process monitoring, anomaly detection is of critical importance. While existing approaches are semi-automated, requiring human assessment for anomaly detection, traditional VADs offer limited output as either normal or anomalous. We propose Text-guided Fine-Grained Video Anomaly Detection (T-VAD), a framework built upon Large Vision-Language Model (LVLM). T-VAD introduces an Anomaly Heatmap Decoder (AHD) that performs pixel-wise visual-textual feature alignment to generate fine-grained anomaly heatmaps. Furthermore, we design a Region-aware Anomaly Encoder (RAE) that transforms the heatmaps into learnable textual embeddings, guiding the LVLM to accurately identify and localize anomalous events in videos. This significantly enhances both the granularity and interactivity of anomaly detection. The proposed method achieving SOTA performance by demonstrating 94.8% Area Under the Curve (AUC, specifically micro-AUC) and 67.8%/76.7% accuracy in anomaly heatmaps (RBDC/TBDC) on the UBnormal dataset, and subjectively verified more preferable textual description on the ShanghaiTech-based dataset (BLEU-4: 62.67 for targets, 88.84 for trajectories; Yes/No accuracy: 97.67%), and on the UBnormal dataset (BLEU-4: 50.32 for targets, 78.10 for trajectories; Yes/No accuracy: 89.73%).
Multi-view Video-Pose Pretraining for Operating Room Surgical Activity Recognition
Understanding the workflow of surgical procedures in complex operating rooms requires a deep understanding of the interactions between clinicians and their environment. Surgical activity recognition (SAR) is a key computer vision task that detects activities or phases from multi-view camera recordings. Existing SAR models often fail to account for fine-grained clinician movements and multi-view knowledge, or they require calibrated multi-view camera setups and advanced point-cloud processing to obtain better results. In this work, we propose a novel calibration-free multi-view multi-modal pretraining framework called Multiview Pretraining for Video-Pose Surgical Activity Recognition PreViPS, which aligns 2D pose and vision embeddings across camera views. Our model follows CLIP-style dual-encoder architecture: one encoder processes visual features, while the other encodes human pose embeddings. To handle the continuous 2D human pose coordinates, we introduce a tokenized discrete representation to convert the continuous 2D pose coordinates into discrete pose embeddings, thereby enabling efficient integration within the dual-encoder framework. To bridge the gap between these two modalities, we propose several pretraining objectives using cross- and in-modality geometric constraints within the embedding space and incorporating masked pose token prediction strategy to enhance representation learning. Extensive experiments and ablation studies demonstrate improvements over the strong baselines, while data-efficiency experiments on two distinct operating room datasets further highlight the effectiveness of our approach. We highlight the benefits of our approach for surgical activity recognition in both multi-view and single-view settings, showcasing its practical applicability in complex surgical environments. Code will be made available at: https://github.com/CAMMA-public/PreViPS.
Shaping a Stabilized Video by Mitigating Unintended Changes for Concept-Augmented Video Editing
Text-driven video editing utilizing generative diffusion models has garnered significant attention due to their potential applications. However, existing approaches are constrained by the limited word embeddings provided in pre-training, which hinders nuanced editing targeting open concepts with specific attributes. Directly altering the keywords in target prompts often results in unintended disruptions to the attention mechanisms. To achieve more flexible editing easily, this work proposes an improved concept-augmented video editing approach that generates diverse and stable target videos flexibly by devising abstract conceptual pairs. Specifically, the framework involves concept-augmented textual inversion and a dual prior supervision mechanism. The former enables plug-and-play guidance of stable diffusion for video editing, effectively capturing target attributes for more stylized results. The dual prior supervision mechanism significantly enhances video stability and fidelity. Comprehensive evaluations demonstrate that our approach generates more stable and lifelike videos, outperforming state-of-the-art methods.
HOSNeRF: Dynamic Human-Object-Scene Neural Radiance Fields from a Single Video
We introduce HOSNeRF, a novel 360{\deg} free-viewpoint rendering method that reconstructs neural radiance fields for dynamic human-object-scene from a single monocular in-the-wild video. Our method enables pausing the video at any frame and rendering all scene details (dynamic humans, objects, and backgrounds) from arbitrary viewpoints. The first challenge in this task is the complex object motions in human-object interactions, which we tackle by introducing the new object bones into the conventional human skeleton hierarchy to effectively estimate large object deformations in our dynamic human-object model. The second challenge is that humans interact with different objects at different times, for which we introduce two new learnable object state embeddings that can be used as conditions for learning our human-object representation and scene representation, respectively. Extensive experiments show that HOSNeRF significantly outperforms SOTA approaches on two challenging datasets by a large margin of 40% ~ 50% in terms of LPIPS. The code, data, and compelling examples of 360{\deg} free-viewpoint renderings from single videos will be released in https://showlab.github.io/HOSNeRF.
Text2Performer: Text-Driven Human Video Generation
Text-driven content creation has evolved to be a transformative technique that revolutionizes creativity. Here we study the task of text-driven human video generation, where a video sequence is synthesized from texts describing the appearance and motions of a target performer. Compared to general text-driven video generation, human-centric video generation requires maintaining the appearance of synthesized human while performing complex motions. In this work, we present Text2Performer to generate vivid human videos with articulated motions from texts. Text2Performer has two novel designs: 1) decomposed human representation and 2) diffusion-based motion sampler. First, we decompose the VQVAE latent space into human appearance and pose representation in an unsupervised manner by utilizing the nature of human videos. In this way, the appearance is well maintained along the generated frames. Then, we propose continuous VQ-diffuser to sample a sequence of pose embeddings. Unlike existing VQ-based methods that operate in the discrete space, continuous VQ-diffuser directly outputs the continuous pose embeddings for better motion modeling. Finally, motion-aware masking strategy is designed to mask the pose embeddings spatial-temporally to enhance the temporal coherence. Moreover, to facilitate the task of text-driven human video generation, we contribute a Fashion-Text2Video dataset with manually annotated action labels and text descriptions. Extensive experiments demonstrate that Text2Performer generates high-quality human videos (up to 512x256 resolution) with diverse appearances and flexible motions.
Unified Perception: Efficient Depth-Aware Video Panoptic Segmentation with Minimal Annotation Costs
Depth-aware video panoptic segmentation is a promising approach to camera based scene understanding. However, the current state-of-the-art methods require costly video annotations and use a complex training pipeline compared to their image-based equivalents. In this paper, we present a new approach titled Unified Perception that achieves state-of-the-art performance without requiring video-based training. Our method employs a simple two-stage cascaded tracking algorithm that (re)uses object embeddings computed in an image-based network. Experimental results on the Cityscapes-DVPS dataset demonstrate that our method achieves an overall DVPQ of 57.1, surpassing state-of-the-art methods. Furthermore, we show that our tracking strategies are effective for long-term object association on KITTI-STEP, achieving an STQ of 59.1 which exceeded the performance of state-of-the-art methods that employ the same backbone network. Code is available at: https://tue-mps.github.io/unipercept
Phenaki: Variable Length Video Generation From Open Domain Textual Description
We present Phenaki, a model capable of realistic video synthesis, given a sequence of textual prompts. Generating videos from text is particularly challenging due to the computational cost, limited quantities of high quality text-video data and variable length of videos. To address these issues, we introduce a new model for learning video representation which compresses the video to a small representation of discrete tokens. This tokenizer uses causal attention in time, which allows it to work with variable-length videos. To generate video tokens from text we are using a bidirectional masked transformer conditioned on pre-computed text tokens. The generated video tokens are subsequently de-tokenized to create the actual video. To address data issues, we demonstrate how joint training on a large corpus of image-text pairs as well as a smaller number of video-text examples can result in generalization beyond what is available in the video datasets. Compared to the previous video generation methods, Phenaki can generate arbitrary long videos conditioned on a sequence of prompts (i.e. time variable text or a story) in open domain. To the best of our knowledge, this is the first time a paper studies generating videos from time variable prompts. In addition, compared to the per-frame baselines, the proposed video encoder-decoder computes fewer tokens per video but results in better spatio-temporal consistency.
VideoGen-of-Thought: A Collaborative Framework for Multi-Shot Video Generation
Current video generation models excel at generating short clips but still struggle with creating multi-shot, movie-like videos. Existing models trained on large-scale data on the back of rich computational resources are unsurprisingly inadequate for maintaining a logical storyline and visual consistency across multiple shots of a cohesive script since they are often trained with a single-shot objective. To this end, we propose VideoGen-of-Thought (VGoT), a collaborative and training-free architecture designed specifically for multi-shot video generation. VGoT is designed with three goals in mind as follows. Multi-Shot Video Generation: We divide the video generation process into a structured, modular sequence, including (1) Script Generation, which translates a curt story into detailed prompts for each shot; (2) Keyframe Generation, responsible for creating visually consistent keyframes faithful to character portrayals; and (3) Shot-Level Video Generation, which transforms information from scripts and keyframes into shots; (4) Smoothing Mechanism that ensures a consistent multi-shot output. Reasonable Narrative Design: Inspired by cinematic scriptwriting, our prompt generation approach spans five key domains, ensuring logical consistency, character development, and narrative flow across the entire video. Cross-Shot Consistency: We ensure temporal and identity consistency by leveraging identity-preserving (IP) embeddings across shots, which are automatically created from the narrative. Additionally, we incorporate a cross-shot smoothing mechanism, which integrates a reset boundary that effectively combines latent features from adjacent shots, resulting in smooth transitions and maintaining visual coherence throughout the video. Our experiments demonstrate that VGoT surpasses existing video generation methods in producing high-quality, coherent, multi-shot videos.
VideoAuteur: Towards Long Narrative Video Generation
Recent video generation models have shown promising results in producing high-quality video clips lasting several seconds. However, these models face challenges in generating long sequences that convey clear and informative events, limiting their ability to support coherent narrations. In this paper, we present a large-scale cooking video dataset designed to advance long-form narrative generation in the cooking domain. We validate the quality of our proposed dataset in terms of visual fidelity and textual caption accuracy using state-of-the-art Vision-Language Models (VLMs) and video generation models, respectively. We further introduce a Long Narrative Video Director to enhance both visual and semantic coherence in generated videos and emphasize the role of aligning visual embeddings to achieve improved overall video quality. Our method demonstrates substantial improvements in generating visually detailed and semantically aligned keyframes, supported by finetuning techniques that integrate text and image embeddings within the video generation process. Project page: https://videoauteur.github.io/
Slow-Fast Architecture for Video Multi-Modal Large Language Models
Balancing temporal resolution and spatial detail under limited compute budget remains a key challenge for video-based multi-modal large language models (MLLMs). Existing methods typically compress video representations using predefined rules before feeding them into the LLM, resulting in irreversible information loss and often ignoring input instructions. To address this, we propose a novel slow-fast architecture that naturally circumvents this trade-off, enabling the use of more input frames while preserving spatial details. Inspired by how humans first skim a video before focusing on relevant parts, our slow-fast design employs a dual-token strategy: 1) "fast" visual tokens -- a compact set of compressed video features -- are fed into the LLM alongside text embeddings to provide a quick overview; 2) "slow" visual tokens -- uncompressed video features -- are cross-attended by text embeddings through specially designed hybrid decoder layers, enabling instruction-aware extraction of relevant visual details with linear complexity. We conduct systematic exploration to optimize both the overall architecture and key components. Experiments show that our model significantly outperforms self-attention-only baselines, extending the input capacity from 16 to 128 frames with just a 3% increase in computation, and achieving a 16% average performance improvement across five video understanding benchmarks. Our 7B model achieves state-of-the-art performance among models of similar size. Furthermore, our slow-fast architecture is a plug-and-play design that can be integrated into other video MLLMs to improve efficiency and scalability.
TextToon: Real-Time Text Toonify Head Avatar from Single Video
We propose TextToon, a method to generate a drivable toonified avatar. Given a short monocular video sequence and a written instruction about the avatar style, our model can generate a high-fidelity toonified avatar that can be driven in real-time by another video with arbitrary identities. Existing related works heavily rely on multi-view modeling to recover geometry via texture embeddings, presented in a static manner, leading to control limitations. The multi-view video input also makes it difficult to deploy these models in real-world applications. To address these issues, we adopt a conditional embedding Tri-plane to learn realistic and stylized facial representations in a Gaussian deformation field. Additionally, we expand the stylization capabilities of 3D Gaussian Splatting by introducing an adaptive pixel-translation neural network and leveraging patch-aware contrastive learning to achieve high-quality images. To push our work into consumer applications, we develop a real-time system that can operate at 48 FPS on a GPU machine and 15-18 FPS on a mobile machine. Extensive experiments demonstrate the efficacy of our approach in generating textual avatars over existing methods in terms of quality and real-time animation. Please refer to our project page for more details: https://songluchuan.github.io/TextToon/.
GAID: Frame-Level Gated Audio-Visual Integration with Directional Perturbation for Text-Video Retrieval
Text-to-video retrieval requires precise alignment between language and temporally rich video signals. Existing methods predominantly exploit visual cues and often overlook complementary audio semantics or adopt coarse fusion strategies, leading to suboptimal multimodal representations. We present GAID, a framework that jointly address this gap via two key components: (i) a Frame-level Gated Fusion (FGF) that adaptively integrates audio and visual features under textual guidance, enabling fine-grained temporal alignment; and (ii) a Directional Adaptive Semantic Perturbation (DASP) that injects structure-aware perturbations into text embeddings, enhancing robustness and discrimination without incurring multi-pass inference. These modules complement each other -- fusion reduces modality gaps while perturbation regularizes cross-modal matching -- yielding more stable and expressive representations. Extensive experiments on MSR-VTT, DiDeMo, LSMDC, and VATEX show consistent state-of-the-art results across all retrieval metrics with notable efficiency gains. Our code is available at https://github.com/YangBowenn/GAID.
OmniAvatar: Efficient Audio-Driven Avatar Video Generation with Adaptive Body Animation
Significant progress has been made in audio-driven human animation, while most existing methods focus mainly on facial movements, limiting their ability to create full-body animations with natural synchronization and fluidity. They also struggle with precise prompt control for fine-grained generation. To tackle these challenges, we introduce OmniAvatar, an innovative audio-driven full-body video generation model that enhances human animation with improved lip-sync accuracy and natural movements. OmniAvatar introduces a pixel-wise multi-hierarchical audio embedding strategy to better capture audio features in the latent space, enhancing lip-syncing across diverse scenes. To preserve the capability for prompt-driven control of foundation models while effectively incorporating audio features, we employ a LoRA-based training approach. Extensive experiments show that OmniAvatar surpasses existing models in both facial and semi-body video generation, offering precise text-based control for creating videos in various domains, such as podcasts, human interactions, dynamic scenes, and singing. Our project page is https://omni-avatar.github.io/.
EchoShot: Multi-Shot Portrait Video Generation
Video diffusion models substantially boost the productivity of artistic workflows with high-quality portrait video generative capacity. However, prevailing pipelines are primarily constrained to single-shot creation, while real-world applications urge for multiple shots with identity consistency and flexible content controllability. In this work, we propose EchoShot, a native and scalable multi-shot framework for portrait customization built upon a foundation video diffusion model. To start with, we propose shot-aware position embedding mechanisms within video diffusion transformer architecture to model inter-shot variations and establish intricate correspondence between multi-shot visual content and their textual descriptions. This simple yet effective design enables direct training on multi-shot video data without introducing additional computational overhead. To facilitate model training within multi-shot scenario, we construct PortraitGala, a large-scale and high-fidelity human-centric video dataset featuring cross-shot identity consistency and fine-grained captions such as facial attributes, outfits, and dynamic motions. To further enhance applicability, we extend EchoShot to perform reference image-based personalized multi-shot generation and long video synthesis with infinite shot counts. Extensive evaluations demonstrate that EchoShot achieves superior identity consistency as well as attribute-level controllability in multi-shot portrait video generation. Notably, the proposed framework demonstrates potential as a foundational paradigm for general multi-shot video modeling.
DiffV2S: Diffusion-based Video-to-Speech Synthesis with Vision-guided Speaker Embedding
Recent research has demonstrated impressive results in video-to-speech synthesis which involves reconstructing speech solely from visual input. However, previous works have struggled to accurately synthesize speech due to a lack of sufficient guidance for the model to infer the correct content with the appropriate sound. To resolve the issue, they have adopted an extra speaker embedding as a speaking style guidance from a reference auditory information. Nevertheless, it is not always possible to obtain the audio information from the corresponding video input, especially during the inference time. In this paper, we present a novel vision-guided speaker embedding extractor using a self-supervised pre-trained model and prompt tuning technique. In doing so, the rich speaker embedding information can be produced solely from input visual information, and the extra audio information is not necessary during the inference time. Using the extracted vision-guided speaker embedding representations, we further develop a diffusion-based video-to-speech synthesis model, so called DiffV2S, conditioned on those speaker embeddings and the visual representation extracted from the input video. The proposed DiffV2S not only maintains phoneme details contained in the input video frames, but also creates a highly intelligible mel-spectrogram in which the speaker identities of the multiple speakers are all preserved. Our experimental results show that DiffV2S achieves the state-of-the-art performance compared to the previous video-to-speech synthesis technique.
Fine-tuned CLIP Models are Efficient Video Learners
Large-scale multi-modal training with image-text pairs imparts strong generalization to CLIP model. Since training on a similar scale for videos is infeasible, recent approaches focus on the effective transfer of image-based CLIP to the video domain. In this pursuit, new parametric modules are added to learn temporal information and inter-frame relationships which require meticulous design efforts. Furthermore, when the resulting models are learned on videos, they tend to overfit on the given task distribution and lack in generalization aspect. This begs the following question: How to effectively transfer image-level CLIP representations to videos? In this work, we show that a simple Video Fine-tuned CLIP (ViFi-CLIP) baseline is generally sufficient to bridge the domain gap from images to videos. Our qualitative analysis illustrates that the frame-level processing from CLIP image-encoder followed by feature pooling and similarity matching with corresponding text embeddings helps in implicitly modeling the temporal cues within ViFi-CLIP. Such fine-tuning helps the model to focus on scene dynamics, moving objects and inter-object relationships. For low-data regimes where full fine-tuning is not viable, we propose a `bridge and prompt' approach that first uses fine-tuning to bridge the domain gap and then learns prompts on language and vision side to adapt CLIP representations. We extensively evaluate this simple yet strong baseline on zero-shot, base-to-novel generalization, few-shot and fully supervised settings across five video benchmarks. Our code is available at https://github.com/muzairkhattak/ViFi-CLIP.
VideoMAR: Autoregressive Video Generatio with Continuous Tokens
Masked-based autoregressive models have demonstrated promising image generation capability in continuous space. However, their potential for video generation remains under-explored. In this paper, we propose VideoMAR, a concise and efficient decoder-only autoregressive image-to-video model with continuous tokens, composing temporal frame-by-frame and spatial masked generation. We first identify temporal causality and spatial bi-directionality as the first principle of video AR models, and propose the next-frame diffusion loss for the integration of mask and video generation. Besides, the huge cost and difficulty of long sequence autoregressive modeling is a basic but crucial issue. To this end, we propose the temporal short-to-long curriculum learning and spatial progressive resolution training, and employ progressive temperature strategy at inference time to mitigate the accumulation error. Furthermore, VideoMAR replicates several unique capacities of language models to video generation. It inherently bears high efficiency due to simultaneous temporal-wise KV cache and spatial-wise parallel generation, and presents the capacity of spatial and temporal extrapolation via 3D rotary embeddings. On the VBench-I2V benchmark, VideoMAR surpasses the previous state-of-the-art (Cosmos I2V) while requiring significantly fewer parameters (9.3%), training data (0.5%), and GPU resources (0.2%).
MAGMaR Shared Task System Description: Video Retrieval with OmniEmbed
Effective video retrieval remains challenging due to the complexity of integrating visual, auditory, and textual modalities. In this paper, we explore unified retrieval methods using OmniEmbed, a powerful multimodal embedding model from the Tevatron 2.0 toolkit, in the context of the MAGMaR shared task. Evaluated on the comprehensive MultiVENT 2.0 dataset, OmniEmbed generates unified embeddings for text, images, audio, and video, enabling robust multimodal retrieval. By finetuning OmniEmbed with the combined multimodal data--visual frames, audio tracks, and textual descriptions provided in MultiVENT 2.0, we achieve substantial improvements in complex, multilingual video retrieval tasks. Our submission achieved the highest score on the MAGMaR shared task leaderboard among public submissions as of May 20th, 2025, highlighting the practical effectiveness of our unified multimodal retrieval approach. Model checkpoint in this work is opensourced.
Corruption-Aware Training of Latent Video Diffusion Models for Robust Text-to-Video Generation
Latent Video Diffusion Models (LVDMs) achieve high-quality generation but are sensitive to imperfect conditioning, which causes semantic drift and temporal incoherence on noisy, web-scale video-text datasets. We introduce CAT-LVDM, the first corruption-aware training framework for LVDMs that improves robustness through structured, data-aligned noise injection. Our method includes Batch-Centered Noise Injection (BCNI), which perturbs embeddings along intra-batch semantic directions to preserve temporal consistency. BCNI is especially effective on caption-rich datasets like WebVid-2M, MSR-VTT, and MSVD. We also propose Spectrum-Aware Contextual Noise (SACN), which injects noise along dominant spectral directions to improve low-frequency smoothness, showing strong results on UCF-101. On average, BCNI reduces FVD by 31.9% across WebVid-2M, MSR-VTT, and MSVD, while SACN yields a 12.3% improvement on UCF-101. Ablation studies confirm the benefit of low-rank, data-aligned noise. Our theoretical analysis further explains how such perturbations tighten entropy, Wasserstein, score-drift, mixing-time, and generalization bounds. CAT-LVDM establishes a principled, scalable training approach for robust video diffusion under multimodal noise. Code and models: https://github.com/chikap421/catlvdm
Smoothie: Smoothing Diffusion on Token Embeddings for Text Generation
Diffusion models have achieved state-of-the-art performance in generating images, audio, and video, but their adaptation to text remains challenging due to its discrete nature. Prior approaches either apply Gaussian diffusion in continuous latent spaces, which inherits semantic structure but struggles with token decoding, or operate in categorical simplex space, which respect discreteness but disregard semantic relation between tokens. In this paper, we propose Smoothing Diffusion on Token Embeddings (Smoothie), a novel diffusion method that combines the strengths of both approaches by progressively smoothing token embeddings based on semantic similarity. This technique enables gradual information removal while maintaining a natural decoding process. Experimental results on several sequence-to-sequence generation tasks demonstrate that Smoothie outperforms existing diffusion-based models in generation quality. Furthermore, ablation studies show that our proposed diffusion space yields better performance than both the standard embedding space and the categorical simplex. Our code is available at https://github.com/ashaba1in/smoothie.
BlobGEN-Vid: Compositional Text-to-Video Generation with Blob Video Representations
Existing video generation models struggle to follow complex text prompts and synthesize multiple objects, raising the need for additional grounding input for improved controllability. In this work, we propose to decompose videos into visual primitives - blob video representation, a general representation for controllable video generation. Based on blob conditions, we develop a blob-grounded video diffusion model named BlobGEN-Vid that allows users to control object motions and fine-grained object appearance. In particular, we introduce a masked 3D attention module that effectively improves regional consistency across frames. In addition, we introduce a learnable module to interpolate text embeddings so that users can control semantics in specific frames and obtain smooth object transitions. We show that our framework is model-agnostic and build BlobGEN-Vid based on both U-Net and DiT-based video diffusion models. Extensive experimental results show that BlobGEN-Vid achieves superior zero-shot video generation ability and state-of-the-art layout controllability on multiple benchmarks. When combined with an LLM for layout planning, our framework even outperforms proprietary text-to-video generators in terms of compositional accuracy.
Temporal Contrastive Learning for Video Temporal Reasoning in Large Vision-Language Models
Temporal reasoning is a critical challenge in video-language understanding, as it requires models to align semantic concepts consistently across time. While existing large vision-language models (LVLMs) and large language models (LLMs) excel at static tasks, they struggle to capture dynamic interactions and temporal dependencies in video sequences. In this work, we propose Temporal Semantic Alignment via Dynamic Prompting (TSADP), a novel framework that enhances temporal reasoning capabilities through dynamic task-specific prompts and temporal contrastive learning. TSADP leverages a Dynamic Prompt Generator (DPG) to encode fine-grained temporal relationships and a Temporal Contrastive Loss (TCL) to align visual and textual embeddings across time. We evaluate our method on the VidSitu dataset, augmented with enriched temporal annotations, and demonstrate significant improvements over state-of-the-art models in tasks such as Intra-Video Entity Association, Temporal Relationship Understanding, and Chronology Prediction. Human evaluations further confirm TSADP's ability to generate coherent and semantically accurate descriptions. Our analysis highlights the robustness, efficiency, and practical utility of TSADP, making it a step forward in the field of video-language understanding.
Optical-Flow Guided Prompt Optimization for Coherent Video Generation
While text-to-video diffusion models have made significant strides, many still face challenges in generating videos with temporal consistency. Within diffusion frameworks, guidance techniques have proven effective in enhancing output quality during inference; however, applying these methods to video diffusion models introduces additional complexity of handling computations across entire sequences. To address this, we propose a novel framework called MotionPrompt that guides the video generation process via optical flow. Specifically, we train a discriminator to distinguish optical flow between random pairs of frames from real videos and generated ones. Given that prompts can influence the entire video, we optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs. This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content. We demonstrate the effectiveness of our approach across various models.
ID-Animator: Zero-Shot Identity-Preserving Human Video Generation
Generating high fidelity human video with specified identities has attracted significant attention in the content generation community. However, existing techniques struggle to strike a balance between training efficiency and identity preservation, either requiring tedious case-by-case finetuning or usually missing the identity details in video generation process. In this study, we present ID-Animator, a zero-shot human-video generation approach that can perform personalized video generation given single reference facial image without further training. ID-Animator inherits existing diffusion-based video generation backbones with a face adapter to encode the ID-relevant embeddings from learnable facial latent queries. To facilitate the extraction of identity information in video generation, we introduce an ID-oriented dataset construction pipeline, which incorporates decoupled human attribute and action captioning technique from a constructed facial image pool. Based on this pipeline, a random face reference training method is further devised to precisely capture the ID-relevant embeddings from reference images, thus improving the fidelity and generalization capacity of our model for ID-specific video generation. Extensive experiments demonstrate the superiority of ID-Animator to generate personalized human videos over previous models. Moreover, our method is highly compatible with popular pre-trained T2V models like animatediff and various community backbone models, showing high extendability in real-world applications for video generation where identity preservation is highly desired. Our codes and checkpoints will be released at https://github.com/ID-Animator/ID-Animator.
Spatio-temporal Prompting Network for Robust Video Feature Extraction
Frame quality deterioration is one of the main challenges in the field of video understanding. To compensate for the information loss caused by deteriorated frames, recent approaches exploit transformer-based integration modules to obtain spatio-temporal information. However, these integration modules are heavy and complex. Furthermore, each integration module is specifically tailored for its target task, making it difficult to generalise to multiple tasks. In this paper, we present a neat and unified framework, called Spatio-Temporal Prompting Network (STPN). It can efficiently extract robust and accurate video features by dynamically adjusting the input features in the backbone network. Specifically, STPN predicts several video prompts containing spatio-temporal information of neighbour frames. Then, these video prompts are prepended to the patch embeddings of the current frame as the updated input for video feature extraction. Moreover, STPN is easy to generalise to various video tasks because it does not contain task-specific modules. Without bells and whistles, STPN achieves state-of-the-art performance on three widely-used datasets for different video understanding tasks, i.e., ImageNetVID for video object detection, YouTubeVIS for video instance segmentation, and GOT-10k for visual object tracking. Code is available at https://github.com/guanxiongsun/vfe.pytorch.
SyncFusion: Multimodal Onset-synchronized Video-to-Audio Foley Synthesis
Sound design involves creatively selecting, recording, and editing sound effects for various media like cinema, video games, and virtual/augmented reality. One of the most time-consuming steps when designing sound is synchronizing audio with video. In some cases, environmental recordings from video shoots are available, which can aid in the process. However, in video games and animations, no reference audio exists, requiring manual annotation of event timings from the video. We propose a system to extract repetitive actions onsets from a video, which are then used - in conjunction with audio or textual embeddings - to condition a diffusion model trained to generate a new synchronized sound effects audio track. In this way, we leave complete creative control to the sound designer while removing the burden of synchronization with video. Furthermore, editing the onset track or changing the conditioning embedding requires much less effort than editing the audio track itself, simplifying the sonification process. We provide sound examples, source code, and pretrained models to faciliate reproducibility
EventTransAct: A video transformer-based framework for Event-camera based action recognition
Recognizing and comprehending human actions and gestures is a crucial perception requirement for robots to interact with humans and carry out tasks in diverse domains, including service robotics, healthcare, and manufacturing. Event cameras, with their ability to capture fast-moving objects at a high temporal resolution, offer new opportunities compared to standard action recognition in RGB videos. However, previous research on event camera action recognition has primarily focused on sensor-specific network architectures and image encoding, which may not be suitable for new sensors and limit the use of recent advancements in transformer-based architectures. In this study, we employ a computationally efficient model, namely the video transformer network (VTN), which initially acquires spatial embeddings per event-frame and then utilizes a temporal self-attention mechanism. In order to better adopt the VTN for the sparse and fine-grained nature of event data, we design Event-Contrastive Loss (L_{EC}) and event-specific augmentations. Proposed L_{EC} promotes learning fine-grained spatial cues in the spatial backbone of VTN by contrasting temporally misaligned frames. We evaluate our method on real-world action recognition of N-EPIC Kitchens dataset, and achieve state-of-the-art results on both protocols - testing in seen kitchen (74.9\% accuracy) and testing in unseen kitchens (42.43\% and 46.66\% Accuracy). Our approach also takes less computation time compared to competitive prior approaches, which demonstrates the potential of our framework EventTransAct for real-world applications of event-camera based action recognition. Project Page: https://tristandb8.github.io/EventTransAct_webpage/
Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection to Image-Text Pre-Training
The correlation between the vision and text is essential for video moment retrieval (VMR), however, existing methods heavily rely on separate pre-training feature extractors for visual and textual understanding. Without sufficient temporal boundary annotations, it is non-trivial to learn universal video-text alignments. In this work, we explore multi-modal correlations derived from large-scale image-text data to facilitate generalisable VMR. To address the limitations of image-text pre-training models on capturing the video changes, we propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments. Whilst existing VMR methods are focusing on building temporal-aware video features, being aware of the text descriptions about the temporal changes is also critical but originally overlooked in pre-training by matching static images with sentences. Therefore, we extract visual context and spatial dynamic information from video frames and explicitly enforce their alignments with the phrases describing video changes (e.g. verb). By doing so, the potentially relevant visual and motion patterns in videos are encoded in the corresponding text embeddings (injected) so to enable more accurate video-text alignments. We conduct extensive experiments on two VMR benchmark datasets (Charades-STA and ActivityNet-Captions) and achieve state-of-the-art performances. Especially, VDI yields notable advantages when being tested on the out-of-distribution splits where the testing samples involve novel scenes and vocabulary.
PolyVivid: Vivid Multi-Subject Video Generation with Cross-Modal Interaction and Enhancement
Despite recent advances in video generation, existing models still lack fine-grained controllability, especially for multi-subject customization with consistent identity and interaction. In this paper, we propose PolyVivid, a multi-subject video customization framework that enables flexible and identity-consistent generation. To establish accurate correspondences between subject images and textual entities, we design a VLLM-based text-image fusion module that embeds visual identities into the textual space for precise grounding. To further enhance identity preservation and subject interaction, we propose a 3D-RoPE-based enhancement module that enables structured bidirectional fusion between text and image embeddings. Moreover, we develop an attention-inherited identity injection module to effectively inject fused identity features into the video generation process, mitigating identity drift. Finally, we construct an MLLM-based data pipeline that combines MLLM-based grounding, segmentation, and a clique-based subject consolidation strategy to produce high-quality multi-subject data, effectively enhancing subject distinction and reducing ambiguity in downstream video generation. Extensive experiments demonstrate that PolyVivid achieves superior performance in identity fidelity, video realism, and subject alignment, outperforming existing open-source and commercial baselines.
STANCE: Motion Coherent Video Generation Via Sparse-to-Dense Anchored Encoding
Video generation has recently made striking visual progress, but maintaining coherent object motion and interactions remains difficult. We trace two practical bottlenecks: (i) human-provided motion hints (e.g., small 2D maps) often collapse to too few effective tokens after encoding, weakening guidance; and (ii) optimizing for appearance and motion in a single head can favor texture over temporal consistency. We present STANCE, an image-to-video framework that addresses both issues with two simple components. First, we introduce Instance Cues -- a pixel-aligned control signal that turns sparse, user-editable hints into a dense 2.5D (camera-relative) motion field by averaging per-instance flow and augmenting with monocular depth over the instance mask. This reduces depth ambiguity compared to 2D arrow inputs while remaining easy to use. Second, we preserve the salience of these cues in token space with Dense RoPE, which tags a small set of motion tokens (anchored on the first frame) with spatial-addressable rotary embeddings. Paired with joint RGB \(+\) auxiliary-map prediction (segmentation or depth), our model anchors structure while RGB handles appearance, stabilizing optimization and improving temporal coherence without requiring per-frame trajectory scripts.
Ovi: Twin Backbone Cross-Modal Fusion for Audio-Video Generation
Audio-video generation has often relied on complex multi-stage architectures or sequential synthesis of sound and visuals. We introduce Ovi, a unified paradigm for audio-video generation that models the two modalities as a single generative process. By using blockwise cross-modal fusion of twin-DiT modules, Ovi achieves natural synchronization and removes the need for separate pipelines or post hoc alignment. To facilitate fine-grained multimodal fusion modeling, we initialize an audio tower with an architecture identical to that of a strong pretrained video model. Trained from scratch on hundreds of thousands of hours of raw audio, the audio tower learns to generate realistic sound effects, as well as speech that conveys rich speaker identity and emotion. Fusion is obtained by jointly training the identical video and audio towers via blockwise exchange of timing (via scaled-RoPE embeddings) and semantics (through bidirectional cross-attention) on a vast video corpus. Our model enables cinematic storytelling with natural speech and accurate, context-matched sound effects, producing movie-grade video clips. All the demos, code and model weights are published at https://aaxwaz.github.io/Ovi
Factorized-Dreamer: Training A High-Quality Video Generator with Limited and Low-Quality Data
Text-to-video (T2V) generation has gained significant attention due to its wide applications to video generation, editing, enhancement and translation, \etc. However, high-quality (HQ) video synthesis is extremely challenging because of the diverse and complex motions existed in real world. Most existing works struggle to address this problem by collecting large-scale HQ videos, which are inaccessible to the community. In this work, we show that publicly available limited and low-quality (LQ) data are sufficient to train a HQ video generator without recaptioning or finetuning. We factorize the whole T2V generation process into two steps: generating an image conditioned on a highly descriptive caption, and synthesizing the video conditioned on the generated image and a concise caption of motion details. Specifically, we present Factorized-Dreamer, a factorized spatiotemporal framework with several critical designs for T2V generation, including an adapter to combine text and image embeddings, a pixel-aware cross attention module to capture pixel-level image information, a T5 text encoder to better understand motion description, and a PredictNet to supervise optical flows. We further present a noise schedule, which plays a key role in ensuring the quality and stability of video generation. Our model lowers the requirements in detailed captions and HQ videos, and can be directly trained on limited LQ datasets with noisy and brief captions such as WebVid-10M, largely alleviating the cost to collect large-scale HQ video-text pairs. Extensive experiments in a variety of T2V and image-to-video generation tasks demonstrate the effectiveness of our proposed Factorized-Dreamer. Our source codes are available at https://github.com/yangxy/Factorized-Dreamer/.
LayerFlow: A Unified Model for Layer-aware Video Generation
We present LayerFlow, a unified solution for layer-aware video generation. Given per-layer prompts, LayerFlow generates videos for the transparent foreground, clean background, and blended scene. It also supports versatile variants like decomposing a blended video or generating the background for the given foreground and vice versa. Starting from a text-to-video diffusion transformer, we organize the videos for different layers as sub-clips, and leverage layer embeddings to distinguish each clip and the corresponding layer-wise prompts. In this way, we seamlessly support the aforementioned variants in one unified framework. For the lack of high-quality layer-wise training videos, we design a multi-stage training strategy to accommodate static images with high-quality layer annotations. Specifically, we first train the model with low-quality video data. Then, we tune a motion LoRA to make the model compatible with static frames. Afterward, we train the content LoRA on the mixture of image data with high-quality layered images along with copy-pasted video data. During inference, we remove the motion LoRA thus generating smooth videos with desired layers.
Tora2: Motion and Appearance Customized Diffusion Transformer for Multi-Entity Video Generation
Recent advances in diffusion transformer models for motion-guided video generation, such as Tora, have shown significant progress. In this paper, we present Tora2, an enhanced version of Tora, which introduces several design improvements to expand its capabilities in both appearance and motion customization. Specifically, we introduce a decoupled personalization extractor that generates comprehensive personalization embeddings for multiple open-set entities, better preserving fine-grained visual details compared to previous methods. Building on this, we design a gated self-attention mechanism to integrate trajectory, textual description, and visual information for each entity. This innovation significantly reduces misalignment in multimodal conditioning during training. Moreover, we introduce a contrastive loss that jointly optimizes trajectory dynamics and entity consistency through explicit mapping between motion and personalization embeddings. Tora2 is, to our best knowledge, the first method to achieve simultaneous multi-entity customization of appearance and motion for video generation. Experimental results demonstrate that Tora2 achieves competitive performance with state-of-the-art customization methods while providing advanced motion control capabilities, which marks a critical advancement in multi-condition video generation. Project page: https://github.com/alibaba/Tora .
Ingredients: Blending Custom Photos with Video Diffusion Transformers
This paper presents a powerful framework to customize video creations by incorporating multiple specific identity (ID) photos, with video diffusion Transformers, referred to as Ingredients. Generally, our method consists of three primary modules: (i) a facial extractor that captures versatile and precise facial features for each human ID from both global and local perspectives; (ii) a multi-scale projector that maps face embeddings into the contextual space of image query in video diffusion transformers; (iii) an ID router that dynamically combines and allocates multiple ID embedding to the corresponding space-time regions. Leveraging a meticulously curated text-video dataset and a multi-stage training protocol, Ingredients demonstrates superior performance in turning custom photos into dynamic and personalized video content. Qualitative evaluations highlight the advantages of proposed method, positioning it as a significant advancement toward more effective generative video control tools in Transformer-based architecture, compared to existing methods. The data, code, and model weights are publicly available at: https://github.com/feizc/Ingredients.
MultiTalk: Enhancing 3D Talking Head Generation Across Languages with Multilingual Video Dataset
Recent studies in speech-driven 3D talking head generation have achieved convincing results in verbal articulations. However, generating accurate lip-syncs degrades when applied to input speech in other languages, possibly due to the lack of datasets covering a broad spectrum of facial movements across languages. In this work, we introduce a novel task to generate 3D talking heads from speeches of diverse languages. We collect a new multilingual 2D video dataset comprising over 420 hours of talking videos in 20 languages. With our proposed dataset, we present a multilingually enhanced model that incorporates language-specific style embeddings, enabling it to capture the unique mouth movements associated with each language. Additionally, we present a metric for assessing lip-sync accuracy in multilingual settings. We demonstrate that training a 3D talking head model with our proposed dataset significantly enhances its multilingual performance. Codes and datasets are available at https://multi-talk.github.io/.
DiTraj: training-free trajectory control for video diffusion transformer
Diffusion Transformers (DiT)-based video generation models with 3D full attention exhibit strong generative capabilities. Trajectory control represents a user-friendly task in the field of controllable video generation. However, existing methods either require substantial training resources or are specifically designed for U-Net, do not take advantage of the superior performance of DiT. To address these issues, we propose DiTraj, a simple but effective training-free framework for trajectory control in text-to-video generation, tailored for DiT. Specifically, first, to inject the object's trajectory, we propose foreground-background separation guidance: we use the Large Language Model (LLM) to convert user-provided prompts into foreground and background prompts, which respectively guide the generation of foreground and background regions in the video. Then, we analyze 3D full attention and explore the tight correlation between inter-token attention scores and position embedding. Based on this, we propose inter-frame Spatial-Temporal Decoupled 3D-RoPE (STD-RoPE). By modifying only foreground tokens' position embedding, STD-RoPE eliminates their cross-frame spatial discrepancies, strengthening cross-frame attention among them and thus enhancing trajectory control. Additionally, we achieve 3D-aware trajectory control by regulating the density of position embedding. Extensive experiments demonstrate that our method outperforms previous methods in both video quality and trajectory controllability.
MOOSE: Pay Attention to Temporal Dynamics for Video Understanding via Optical Flows
Many motion-centric video analysis tasks, such as atomic actions, detecting atypical motor behavior in individuals with autism, or analyzing articulatory motion in real-time MRI of human speech, require efficient and interpretable temporal modeling. Capturing temporal dynamics is a central challenge in video analysis, often requiring significant computational resources and fine-grained annotations that are not widely available. This paper presents MOOSE (Motion Flow Over Spatial Space), a novel temporally-centric video encoder explicitly integrating optical flow with spatial embeddings to model temporal information efficiently, inspired by human perception of motion. Unlike prior models, MOOSE takes advantage of rich, widely available pre-trained visual and optical flow encoders instead of training video models from scratch. This significantly reduces computational complexity while enhancing temporal interpretability. Our primary contributions includes (1) proposing a computationally efficient temporally-centric architecture for video understanding (2) demonstrating enhanced interpretability in modeling temporal dynamics; and (3) achieving state-of-the-art performance on diverse benchmarks, including clinical, medical, and standard action recognition datasets, confirming the broad applicability and effectiveness of our approach.
MARLIN: Masked Autoencoder for facial video Representation LearnINg
This paper proposes a self-supervised approach to learn universal facial representations from videos, that can transfer across a variety of facial analysis tasks such as Facial Attribute Recognition (FAR), Facial Expression Recognition (FER), DeepFake Detection (DFD), and Lip Synchronization (LS). Our proposed framework, named MARLIN, is a facial video masked autoencoder, that learns highly robust and generic facial embeddings from abundantly available non-annotated web crawled facial videos. As a challenging auxiliary task, MARLIN reconstructs the spatio-temporal details of the face from the densely masked facial regions which mainly include eyes, nose, mouth, lips, and skin to capture local and global aspects that in turn help in encoding generic and transferable features. Through a variety of experiments on diverse downstream tasks, we demonstrate MARLIN to be an excellent facial video encoder as well as feature extractor, that performs consistently well across a variety of downstream tasks including FAR (1.13% gain over supervised benchmark), FER (2.64% gain over unsupervised benchmark), DFD (1.86% gain over unsupervised benchmark), LS (29.36% gain for Frechet Inception Distance), and even in low data regime. Our code and models are available at https://github.com/ControlNet/MARLIN .
From Play to Replay: Composed Video Retrieval for Temporally Fine-Grained Videos
Composed Video Retrieval (CoVR) retrieves a target video given a query video and a modification text describing the intended change. Existing CoVR benchmarks emphasize appearance shifts or coarse event changes and therefore do not test the ability to capture subtle, fast-paced temporal differences. We introduce TF-CoVR, the first large-scale benchmark dedicated to temporally fine-grained CoVR. TF-CoVR focuses on gymnastics and diving and provides 180K triplets drawn from FineGym and FineDiving. Previous CoVR benchmarks focusing on temporal aspect, link each query to a single target segment taken from the same video, limiting practical usefulness. In TF-CoVR, we instead construct each <query, modification> pair by prompting an LLM with the label differences between clips drawn from different videos; every pair is thus associated with multiple valid target videos (3.9 on average), reflecting real-world tasks such as sports-highlight generation. To model these temporal dynamics we propose TF-CoVR-Base, a concise two-stage training framework: (i) pre-train a video encoder on fine-grained action classification to obtain temporally discriminative embeddings; (ii) align the composed query with candidate videos using contrastive learning. We conduct the first comprehensive study of image, video, and general multimodal embedding (GME) models on temporally fine-grained composed retrieval in both zero-shot and fine-tuning regimes. On TF-CoVR, TF-CoVR-Base improves zero-shot mAP@50 from 5.92 (LanguageBind) to 7.51, and after fine-tuning raises the state-of-the-art from 19.83 to 25.82.
Towards Real-Time Open-Vocabulary Video Instance Segmentation
In this paper, we address the challenge of performing open-vocabulary video instance segmentation (OV-VIS) in real-time. We analyze the computational bottlenecks of state-of-the-art foundation models that performs OV-VIS, and propose a new method, TROY-VIS, that significantly improves processing speed while maintaining high accuracy. We introduce three key techniques: (1) Decoupled Attention Feature Enhancer to speed up information interaction between different modalities and scales; (2) Flash Embedding Memory for obtaining fast text embeddings of object categories; and, (3) Kernel Interpolation for exploiting the temporal continuity in videos. Our experiments demonstrate that TROY-VIS achieves the best trade-off between accuracy and speed on two large-scale OV-VIS benchmarks, BURST and LV-VIS, running 20x faster than GLEE-Lite (25 FPS v.s. 1.25 FPS) with comparable or even better accuracy. These results demonstrate TROY-VIS's potential for real-time applications in dynamic environments such as mobile robotics and augmented reality. Code and model will be released at https://github.com/google-research/troyvis.
VidCompress: Memory-Enhanced Temporal Compression for Video Understanding in Large Language Models
Video-based multimodal large language models (Video-LLMs) possess significant potential for video understanding tasks. However, most Video-LLMs treat videos as a sequential set of individual frames, which results in insufficient temporal-spatial interaction that hinders fine-grained comprehension and difficulty in processing longer videos due to limited visual token capacity. To address these challenges, we propose VidCompress, a novel Video-LLM featuring memory-enhanced temporal compression. VidCompress employs a dual-compressor approach: a memory-enhanced compressor captures both short-term and long-term temporal relationships in videos and compresses the visual tokens using a multiscale transformer with a memory-cache mechanism, while a text-perceived compressor generates condensed visual tokens by utilizing Q-Former and integrating temporal contexts into query embeddings with cross attention. Experiments on several VideoQA datasets and comprehensive benchmarks demonstrate that VidCompress efficiently models complex temporal-spatial relations and significantly outperforms existing Video-LLMs.
A Simple but Strong Baseline for Sounding Video Generation: Effective Adaptation of Audio and Video Diffusion Models for Joint Generation
In this work, we build a simple but strong baseline for sounding video generation. Given base diffusion models for audio and video, we integrate them with additional modules into a single model and train it to make the model jointly generate audio and video. To enhance alignment between audio-video pairs, we introduce two novel mechanisms in our model. The first one is timestep adjustment, which provides different timestep information to each base model. It is designed to align how samples are generated along with timesteps across modalities. The second one is a new design of the additional modules, termed Cross-Modal Conditioning as Positional Encoding (CMC-PE). In CMC-PE, cross-modal information is embedded as if it represents temporal position information, and the embeddings are fed into the model like positional encoding. Compared with the popular cross-attention mechanism, CMC-PE provides a better inductive bias for temporal alignment in the generated data. Experimental results validate the effectiveness of the two newly introduced mechanisms and also demonstrate that our method outperforms existing methods.
On Gradient Boosted Decision Trees and Neural Rankers: A Case-Study on Short-Video Recommendations at ShareChat
Practitioners who wish to build real-world applications that rely on ranking models, need to decide which modelling paradigm to follow. This is not an easy choice to make, as the research literature on this topic has been shifting in recent years. In particular, whilst Gradient Boosted Decision Trees (GBDTs) have reigned supreme for more than a decade, the flexibility of neural networks has allowed them to catch up, and recent works report accuracy metrics that are on par. Nevertheless, practical systems require considerations beyond mere accuracy metrics to decide on a modelling approach. This work describes our experiences in balancing some of the trade-offs that arise, presenting a case study on a short-video recommendation application. We highlight (1) neural networks' ability to handle large training data size, user- and item-embeddings allows for more accurate models than GBDTs in this setting, and (2) because GBDTs are less reliant on specialised hardware, they can provide an equally accurate model at a lower cost. We believe these findings are of relevance to researchers in both academia and industry, and hope they can inspire practitioners who need to make similar modelling choices in the future.
VX2TEXT: End-to-End Learning of Video-Based Text Generation From Multimodal Inputs
We present Vx2Text, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our approach to perform multimodal fusion in the language space, thus eliminating the need for ad-hoc cross-modal fusion modules. To address the non-differentiability of tokenization on continuous inputs (e.g., video or audio), we utilize a relaxation scheme that enables end-to-end training. Furthermore, unlike prior encoder-only models, our network includes an autoregressive decoder to generate open-ended text from the multimodal embeddings fused by the language encoder. This renders our approach fully generative and makes it directly applicable to different "video+x to text" problems without the need to design specialized network heads for each task. The proposed framework is not only conceptually simple but also remarkably effective: experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks -- captioning, question answering and audio-visual scene-aware dialog.
Condensed Movies: Story Based Retrieval with Contextual Embeddings
Our objective in this work is long range understanding of the narrative structure of movies. Instead of considering the entire movie, we propose to learn from the `key scenes' of the movie, providing a condensed look at the full storyline. To this end, we make the following three contributions: (i) We create the Condensed Movies Dataset (CMD) consisting of the key scenes from over 3K movies: each key scene is accompanied by a high level semantic description of the scene, character face-tracks, and metadata about the movie. The dataset is scalable, obtained automatically from YouTube, and is freely available for anybody to download and use. It is also an order of magnitude larger than existing movie datasets in the number of movies; (ii) We provide a deep network baseline for text-to-video retrieval on our dataset, combining character, speech and visual cues into a single video embedding; and finally (iii) We demonstrate how the addition of context from other video clips improves retrieval performance.
OnlyFlow: Optical Flow based Motion Conditioning for Video Diffusion Models
We consider the problem of text-to-video generation tasks with precise control for various applications such as camera movement control and video-to-video editing. Most methods tacking this problem rely on providing user-defined controls, such as binary masks or camera movement embeddings. In our approach we propose OnlyFlow, an approach leveraging the optical flow firstly extracted from an input video to condition the motion of generated videos. Using a text prompt and an input video, OnlyFlow allows the user to generate videos that respect the motion of the input video as well as the text prompt. This is implemented through an optical flow estimation model applied on the input video, which is then fed to a trainable optical flow encoder. The output feature maps are then injected into the text-to-video backbone model. We perform quantitative, qualitative and user preference studies to show that OnlyFlow positively compares to state-of-the-art methods on a wide range of tasks, even though OnlyFlow was not specifically trained for such tasks. OnlyFlow thus constitutes a versatile, lightweight yet efficient method for controlling motion in text-to-video generation. Models and code will be made available on GitHub and HuggingFace.
LangScene-X: Reconstruct Generalizable 3D Language-Embedded Scenes with TriMap Video Diffusion
Recovering 3D structures with open-vocabulary scene understanding from 2D images is a fundamental but daunting task. Recent developments have achieved this by performing per-scene optimization with embedded language information. However, they heavily rely on the calibrated dense-view reconstruction paradigm, thereby suffering from severe rendering artifacts and implausible semantic synthesis when limited views are available. In this paper, we introduce a novel generative framework, coined LangScene-X, to unify and generate 3D consistent multi-modality information for reconstruction and understanding. Powered by the generative capability of creating more consistent novel observations, we can build generalizable 3D language-embedded scenes from only sparse views. Specifically, we first train a TriMap video diffusion model that can generate appearance (RGBs), geometry (normals), and semantics (segmentation maps) from sparse inputs through progressive knowledge integration. Furthermore, we propose a Language Quantized Compressor (LQC), trained on large-scale image datasets, to efficiently encode language embeddings, enabling cross-scene generalization without per-scene retraining. Finally, we reconstruct the language surface fields by aligning language information onto the surface of 3D scenes, enabling open-ended language queries. Extensive experiments on real-world data demonstrate the superiority of our LangScene-X over state-of-the-art methods in terms of quality and generalizability. Project Page: https://liuff19.github.io/LangScene-X.
Visual Context Window Extension: A New Perspective for Long Video Understanding
Large Multimodal Models (LMMs) have demonstrated impressive performance in short video understanding tasks but face great challenges when applied to long video understanding. In contrast, Large Language Models (LLMs) exhibit outstanding capabilities in modeling long texts. Existing work attempts to address this issue by introducing long video-text pairs during training. However, these approaches require substantial computational and data resources. In this paper, we tackle the challenge of long video understanding from the perspective of context windows, aiming to apply LMMs to long video tasks without retraining on long video datasets. We first conduct an in-depth analysis of why pretrained LMMs struggle to understand lengthy video content, identifying that discrepancies between visual and language modalities lead to different context windows for visual and language tokens, making it difficult to directly extend the visual tokens to match the language context window. Based on this, we propose to adapt LMMs for long video understanding tasks by extending the visual context window, eliminating the need for retraining on large scalelong video datasets. To further mitigate the significant memory consumption caused by long sequences, we introduce a progressive pooling inference strategy that selectively adjusts the spatial resolution of frame embeddings, reducing the number of visual tokens while retaining important spatial information. Across multiple long video understanding benchmarks, our method consistently improves the performance as the number of video frames increases. On the MLVU benchmark, our method outperforms GPT-4o, even though our model size is only 7B. Additionally, in the 256-frame setting, our method reduces memory usage by approximately 45% compared to the baseline, without introducing any performance loss.
FEAT: Full-Dimensional Efficient Attention Transformer for Medical Video Generation
Synthesizing high-quality dynamic medical videos remains a significant challenge due to the need for modeling both spatial consistency and temporal dynamics. Existing Transformer-based approaches face critical limitations, including insufficient channel interactions, high computational complexity from self-attention, and coarse denoising guidance from timestep embeddings when handling varying noise levels. In this work, we propose FEAT, a full-dimensional efficient attention Transformer, which addresses these issues through three key innovations: (1) a unified paradigm with sequential spatial-temporal-channel attention mechanisms to capture global dependencies across all dimensions, (2) a linear-complexity design for attention mechanisms in each dimension, utilizing weighted key-value attention and global channel attention, and (3) a residual value guidance module that provides fine-grained pixel-level guidance to adapt to different noise levels. We evaluate FEAT on standard benchmarks and downstream tasks, demonstrating that FEAT-S, with only 23\% of the parameters of the state-of-the-art model Endora, achieves comparable or even superior performance. Furthermore, FEAT-L surpasses all comparison methods across multiple datasets, showcasing both superior effectiveness and scalability. Code is available at https://github.com/Yaziwel/FEAT.
Neural Discrete Token Representation Learning for Extreme Token Reduction in Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling large language models (LLMs) to interpret video content. However, existing token reduction techniques, such as pruning and merging, often disrupt essential positional embeddings and rely on continuous visual tokens sampled from nearby pixels with similar spatial-temporal locations. By removing only a small fraction of tokens, these methods still produce relatively lengthy continuous sequences, which falls short of the extreme compression required to balance computational efficiency and token count in video LLMs. In this paper, we introduce the novel task of Extreme Short Token Reduction, which aims to represent entire videos using a minimal set of discrete tokens. We propose VQToken, a neural discrete token representation framework that (i) applies adaptive vector quantization to continuous ViT embeddings to learn a compact codebook and (ii) preserves spatial-temporal positions via a token hash function by assigning each grid-level token to its nearest codebook entry. On the Extreme Short Token Reduction task, our VQToken compresses sequences to just 0.07 percent of their original length while incurring only a 0.66 percent drop in accuracy on the NextQA-MC benchmark. It also achieves comparable performance on ActNet-QA, Long Video Bench, and VideoMME. We further introduce the Token Information Density (TokDense) metric and formalize fixed-length and adaptive-length subtasks, achieving state-of-the-art results in both settings. Our approach dramatically lowers theoretical complexity, increases information density, drastically reduces token counts, and enables efficient video LLMs in resource-constrained environments.
SeViCES: Unifying Semantic-Visual Evidence Consensus for Long Video Understanding
Long video understanding remains challenging due to its complex, diverse, and temporally scattered content. Although video large language models (Video-LLMs) can process videos lasting tens of minutes, applying them to truly long sequences is computationally prohibitive and often leads to unfocused or inconsistent reasoning. A promising solution is to select only the most informative frames, yet existing approaches typically ignore temporal dependencies or rely on unimodal evidence, limiting their ability to provide complete and query-relevant context. We propose a Semantic-Visual Consensus Evidence Selection (SeViCES) framework for effective and reliable long video understanding. SeViCES is training-free and model-agnostic, and introduces two key components. The Semantic-Visual Consensus Frame Selection (SVCFS) module selects frames through (1) a temporal-aware semantic branch that leverages LLM reasoning over captions, and (2) a cluster-guided visual branch that aligns embeddings with semantic scores via mutual information. The Answer Consensus Refinement (ACR) module further resolves inconsistencies between semantic- and visual-based predictions by fusing evidence and constraining the answer space. Extensive experiments on long video understanding benchmarks show that SeViCES consistently outperforms state-of-the-art methods in both accuracy and robustness, demonstrating the importance of consensus-driven evidence selection for Video-LLMs.
FVQ: A Large-Scale Dataset and A LMM-based Method for Face Video Quality Assessment
Face video quality assessment (FVQA) deserves to be explored in addition to general video quality assessment (VQA), as face videos are the primary content on social media platforms and human visual system (HVS) is particularly sensitive to human faces. However, FVQA is rarely explored due to the lack of large-scale FVQA datasets. To fill this gap, we present the first large-scale in-the-wild FVQA dataset, FVQ-20K, which contains 20,000 in-the-wild face videos together with corresponding mean opinion score (MOS) annotations. Along with the FVQ-20K dataset, we further propose a specialized FVQA method named FVQ-Rater to achieve human-like rating and scoring for face video, which is the first attempt to explore the potential of large multimodal models (LMMs) for the FVQA task. Concretely, we elaborately extract multi-dimensional features including spatial features, temporal features, and face-specific features (i.e., portrait features and face embeddings) to provide comprehensive visual information, and take advantage of the LoRA-based instruction tuning technique to achieve quality-specific fine-tuning, which shows superior performance on both FVQ-20K and CFVQA datasets. Extensive experiments and comprehensive analysis demonstrate the significant potential of the FVQ-20K dataset and FVQ-Rater method in promoting the development of FVQA.
Text Slider: Efficient and Plug-and-Play Continuous Concept Control for Image/Video Synthesis via LoRA Adapters
Recent advances in diffusion models have significantly improved image and video synthesis. In addition, several concept control methods have been proposed to enable fine-grained, continuous, and flexible control over free-form text prompts. However, these methods not only require intensive training time and GPU memory usage to learn the sliders or embeddings but also need to be retrained for different diffusion backbones, limiting their scalability and adaptability. To address these limitations, we introduce Text Slider, a lightweight, efficient and plug-and-play framework that identifies low-rank directions within a pre-trained text encoder, enabling continuous control of visual concepts while significantly reducing training time, GPU memory consumption, and the number of trainable parameters. Furthermore, Text Slider supports multi-concept composition and continuous control, enabling fine-grained and flexible manipulation in both image and video synthesis. We show that Text Slider enables smooth and continuous modulation of specific attributes while preserving the original spatial layout and structure of the input. Text Slider achieves significantly better efficiency: 5times faster training than Concept Slider and 47times faster than Attribute Control, while reducing GPU memory usage by nearly 2times and 4times, respectively.
SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation
Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.
YouTube-8M: A Large-Scale Video Classification Benchmark
Many recent advancements in Computer Vision are attributed to large datasets. Open-source software packages for Machine Learning and inexpensive commodity hardware have reduced the barrier of entry for exploring novel approaches at scale. It is possible to train models over millions of examples within a few days. Although large-scale datasets exist for image understanding, such as ImageNet, there are no comparable size video classification datasets. In this paper, we introduce YouTube-8M, the largest multi-label video classification dataset, composed of ~8 million videos (500K hours of video), annotated with a vocabulary of 4800 visual entities. To get the videos and their labels, we used a YouTube video annotation system, which labels videos with their main topics. While the labels are machine-generated, they have high-precision and are derived from a variety of human-based signals including metadata and query click signals. We filtered the video labels (Knowledge Graph entities) using both automated and manual curation strategies, including asking human raters if the labels are visually recognizable. Then, we decoded each video at one-frame-per-second, and used a Deep CNN pre-trained on ImageNet to extract the hidden representation immediately prior to the classification layer. Finally, we compressed the frame features and make both the features and video-level labels available for download. We trained various (modest) classification models on the dataset, evaluated them using popular evaluation metrics, and report them as baselines. Despite the size of the dataset, some of our models train to convergence in less than a day on a single machine using TensorFlow. We plan to release code for training a TensorFlow model and for computing metrics.
Splatter a Video: Video Gaussian Representation for Versatile Processing
Video representation is a long-standing problem that is crucial for various down-stream tasks, such as tracking,depth prediction,segmentation,view synthesis,and editing. However, current methods either struggle to model complex motions due to the absence of 3D structure or rely on implicit 3D representations that are ill-suited for manipulation tasks. To address these challenges, we introduce a novel explicit 3D representation-video Gaussian representation -- that embeds a video into 3D Gaussians. Our proposed representation models video appearance in a 3D canonical space using explicit Gaussians as proxies and associates each Gaussian with 3D motions for video motion. This approach offers a more intrinsic and explicit representation than layered atlas or volumetric pixel matrices. To obtain such a representation, we distill 2D priors, such as optical flow and depth, from foundation models to regularize learning in this ill-posed setting. Extensive applications demonstrate the versatility of our new video representation. It has been proven effective in numerous video processing tasks, including tracking, consistent video depth and feature refinement, motion and appearance editing, and stereoscopic video generation. Project page: https://sunyangtian.github.io/spatter_a_video_web/
ChatVideo: A Tracklet-centric Multimodal and Versatile Video Understanding System
Existing deep video models are limited by specific tasks, fixed input-output spaces, and poor generalization capabilities, making it difficult to deploy them in real-world scenarios. In this paper, we present our vision for multimodal and versatile video understanding and propose a prototype system, \system. Our system is built upon a tracklet-centric paradigm, which treats tracklets as the basic video unit and employs various Video Foundation Models (ViFMs) to annotate their properties e.g., appearance, motion, \etc. All the detected tracklets are stored in a database and interact with the user through a database manager. We have conducted extensive case studies on different types of in-the-wild videos, which demonstrates the effectiveness of our method in answering various video-related problems. Our project is available at https://www.wangjunke.info/ChatVideo/
Joint Visual-Temporal Embedding for Unsupervised Learning of Actions in Untrimmed Sequences
Understanding the structure of complex activities in untrimmed videos is a challenging task in the area of action recognition. One problem here is that this task usually requires a large amount of hand-annotated minute- or even hour-long video data, but annotating such data is very time consuming and can not easily be automated or scaled. To address this problem, this paper proposes an approach for the unsupervised learning of actions in untrimmed video sequences based on a joint visual-temporal embedding space. To this end, we combine a visual embedding based on a predictive U-Net architecture with a temporal continuous function. The resulting representation space allows detecting relevant action clusters based on their visual as well as their temporal appearance. The proposed method is evaluated on three standard benchmark datasets, Breakfast Actions, INRIA YouTube Instructional Videos, and 50 Salads. We show that the proposed approach is able to provide a meaningful visual and temporal embedding out of the visual cues present in contiguous video frames and is suitable for the task of unsupervised temporal segmentation of actions.
Unsupervised Learning of Video Representations using LSTMs
We use multilayer Long Short Term Memory (LSTM) networks to learn representations of video sequences. Our model uses an encoder LSTM to map an input sequence into a fixed length representation. This representation is decoded using single or multiple decoder LSTMs to perform different tasks, such as reconstructing the input sequence, or predicting the future sequence. We experiment with two kinds of input sequences - patches of image pixels and high-level representations ("percepts") of video frames extracted using a pretrained convolutional net. We explore different design choices such as whether the decoder LSTMs should condition on the generated output. We analyze the outputs of the model qualitatively to see how well the model can extrapolate the learned video representation into the future and into the past. We try to visualize and interpret the learned features. We stress test the model by running it on longer time scales and on out-of-domain data. We further evaluate the representations by finetuning them for a supervised learning problem - human action recognition on the UCF-101 and HMDB-51 datasets. We show that the representations help improve classification accuracy, especially when there are only a few training examples. Even models pretrained on unrelated datasets (300 hours of YouTube videos) can help action recognition performance.
Video Representation Learning with Joint-Embedding Predictive Architectures
Video representation learning is an increasingly important topic in machine learning research. We present Video JEPA with Variance-Covariance Regularization (VJ-VCR): a joint-embedding predictive architecture for self-supervised video representation learning that employs variance and covariance regularization to avoid representation collapse. We show that hidden representations from our VJ-VCR contain abstract, high-level information about the input data. Specifically, they outperform representations obtained from a generative baseline on downstream tasks that require understanding of the underlying dynamics of moving objects in the videos. Additionally, we explore different ways to incorporate latent variables into the VJ-VCR framework that capture information about uncertainty in the future in non-deterministic settings.
ViViT: A Video Vision Transformer
We present pure-transformer based models for video classification, drawing upon the recent success of such models in image classification. Our model extracts spatio-temporal tokens from the input video, which are then encoded by a series of transformer layers. In order to handle the long sequences of tokens encountered in video, we propose several, efficient variants of our model which factorise the spatial- and temporal-dimensions of the input. Although transformer-based models are known to only be effective when large training datasets are available, we show how we can effectively regularise the model during training and leverage pretrained image models to be able to train on comparatively small datasets. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple video classification benchmarks including Kinetics 400 and 600, Epic Kitchens, Something-Something v2 and Moments in Time, outperforming prior methods based on deep 3D convolutional networks. To facilitate further research, we release code at https://github.com/google-research/scenic/tree/main/scenic/projects/vivit
VIOLET : End-to-End Video-Language Transformers with Masked Visual-token Modeling
A great challenge in video-language (VidL) modeling lies in the disconnection between fixed video representations extracted from image/video understanding models and downstream VidL data. Recent studies try to mitigate this disconnection via end-to-end training. To make it computationally feasible, prior works tend to "imagify" video inputs, i.e., a handful of sparsely sampled frames are fed into a 2D CNN, followed by a simple mean-pooling or concatenation to obtain the overall video representations. Although achieving promising results, such simple approaches may lose temporal information that is essential for performing downstream VidL tasks. In this work, we present VIOLET, a fully end-to-end VIdeO-LanguagE Transformer, which adopts a video transformer to explicitly model the temporal dynamics of video inputs. Further, unlike previous studies that found pre-training tasks on video inputs (e.g., masked frame modeling) not very effective, we design a new pre-training task, Masked Visual-token Modeling (MVM), for better video modeling. Specifically, the original video frame patches are "tokenized" into discrete visual tokens, and the goal is to recover the original visual tokens based on the masked patches. Comprehensive analysis demonstrates the effectiveness of both explicit temporal modeling via video transformer and MVM. As a result, VIOLET achieves new state-of-the-art performance on 5 video question answering tasks and 4 text-to-video retrieval tasks.
Self-supervised Spatio-temporal Representation Learning for Videos by Predicting Motion and Appearance Statistics
We address the problem of video representation learning without human-annotated labels. While previous efforts address the problem by designing novel self-supervised tasks using video data, the learned features are merely on a frame-by-frame basis, which are not applicable to many video analytic tasks where spatio-temporal features are prevailing. In this paper we propose a novel self-supervised approach to learn spatio-temporal features for video representation. Inspired by the success of two-stream approaches in video classification, we propose to learn visual features by regressing both motion and appearance statistics along spatial and temporal dimensions, given only the input video data. Specifically, we extract statistical concepts (fast-motion region and the corresponding dominant direction, spatio-temporal color diversity, dominant color, etc.) from simple patterns in both spatial and temporal domains. Unlike prior puzzles that are even hard for humans to solve, the proposed approach is consistent with human inherent visual habits and therefore easy to answer. We conduct extensive experiments with C3D to validate the effectiveness of our proposed approach. The experiments show that our approach can significantly improve the performance of C3D when applied to video classification tasks. Code is available at https://github.com/laura-wang/video_repres_mas.
Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework
We propose a self-supervised method to learn feature representations from videos. A standard approach in traditional self-supervised methods uses positive-negative data pairs to train with contrastive learning strategy. In such a case, different modalities of the same video are treated as positives and video clips from a different video are treated as negatives. Because the spatio-temporal information is important for video representation, we extend the negative samples by introducing intra-negative samples, which are transformed from the same anchor video by breaking temporal relations in video clips. With the proposed Inter-Intra Contrastive (IIC) framework, we can train spatio-temporal convolutional networks to learn video representations. There are many flexible options in our IIC framework and we conduct experiments by using several different configurations. Evaluations are conducted on video retrieval and video recognition tasks using the learned video representation. Our proposed IIC outperforms current state-of-the-art results by a large margin, such as 16.7% and 9.5% points improvements in top-1 accuracy on UCF101 and HMDB51 datasets for video retrieval, respectively. For video recognition, improvements can also be obtained on these two benchmark datasets. Code is available at https://github.com/BestJuly/Inter-intra-video-contrastive-learning.
VideoFactory: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation
We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.
Describing Videos by Exploiting Temporal Structure
Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. First, our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN) representation of the short temporal dynamics. The 3-D CNN representation is trained on video action recognition tasks, so as to produce a representation that is tuned to human motion and behavior. Second we propose a temporal attention mechanism that allows to go beyond local temporal modeling and learns to automatically select the most relevant temporal segments given the text-generating RNN. Our approach exceeds the current state-of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present results on a new, larger and more challenging dataset of paired video and natural language descriptions.
Prompt Switch: Efficient CLIP Adaptation for Text-Video Retrieval
In text-video retrieval, recent works have benefited from the powerful learning capabilities of pre-trained text-image foundation models (e.g., CLIP) by adapting them to the video domain. A critical problem for them is how to effectively capture the rich semantics inside the video using the image encoder of CLIP. To tackle this, state-of-the-art methods adopt complex cross-modal modeling techniques to fuse the text information into video frame representations, which, however, incurs severe efficiency issues in large-scale retrieval systems as the video representations must be recomputed online for every text query. In this paper, we discard this problematic cross-modal fusion process and aim to learn semantically-enhanced representations purely from the video, so that the video representations can be computed offline and reused for different texts. Concretely, we first introduce a spatial-temporal "Prompt Cube" into the CLIP image encoder and iteratively switch it within the encoder layers to efficiently incorporate the global video semantics into frame representations. We then propose to apply an auxiliary video captioning objective to train the frame representations, which facilitates the learning of detailed video semantics by providing fine-grained guidance in the semantic space. With a naive temporal fusion strategy (i.e., mean-pooling) on the enhanced frame representations, we obtain state-of-the-art performances on three benchmark datasets, i.e., MSR-VTT, MSVD, and LSMDC.
MAGVIT: Masked Generative Video Transformer
We introduce the MAsked Generative VIdeo Transformer, MAGVIT, to tackle various video synthesis tasks with a single model. We introduce a 3D tokenizer to quantize a video into spatial-temporal visual tokens and propose an embedding method for masked video token modeling to facilitate multi-task learning. We conduct extensive experiments to demonstrate the quality, efficiency, and flexibility of MAGVIT. Our experiments show that (i) MAGVIT performs favorably against state-of-the-art approaches and establishes the best-published FVD on three video generation benchmarks, including the challenging Kinetics-600. (ii) MAGVIT outperforms existing methods in inference time by two orders of magnitude against diffusion models and by 60x against autoregressive models. (iii) A single MAGVIT model supports ten diverse generation tasks and generalizes across videos from different visual domains. The source code and trained models will be released to the public at https://magvit.cs.cmu.edu.
Self-supervised Video Representation Learning by Uncovering Spatio-temporal Statistics
This paper proposes a novel pretext task to address the self-supervised video representation learning problem. Specifically, given an unlabeled video clip, we compute a series of spatio-temporal statistical summaries, such as the spatial location and dominant direction of the largest motion, the spatial location and dominant color of the largest color diversity along the temporal axis, etc. Then a neural network is built and trained to yield the statistical summaries given the video frames as inputs. In order to alleviate the learning difficulty, we employ several spatial partitioning patterns to encode rough spatial locations instead of exact spatial Cartesian coordinates. Our approach is inspired by the observation that human visual system is sensitive to rapidly changing contents in the visual field, and only needs impressions about rough spatial locations to understand the visual contents. To validate the effectiveness of the proposed approach, we conduct extensive experiments with four 3D backbone networks, i.e., C3D, 3D-ResNet, R(2+1)D and S3D-G. The results show that our approach outperforms the existing approaches across these backbone networks on four downstream video analysis tasks including action recognition, video retrieval, dynamic scene recognition, and action similarity labeling. The source code is publicly available at: https://github.com/laura-wang/video_repres_sts.
Weakly Supervised Video Representation Learning with Unaligned Text for Sequential Videos
Sequential video understanding, as an emerging video understanding task, has driven lots of researchers' attention because of its goal-oriented nature. This paper studies weakly supervised sequential video understanding where the accurate time-stamp level text-video alignment is not provided. We solve this task by borrowing ideas from CLIP. Specifically, we use a transformer to aggregate frame-level features for video representation and use a pre-trained text encoder to encode the texts corresponding to each action and the whole video, respectively. To model the correspondence between text and video, we propose a multiple granularity loss, where the video-paragraph contrastive loss enforces matching between the whole video and the complete script, and a fine-grained frame-sentence contrastive loss enforces the matching between each action and its description. As the frame-sentence correspondence is not available, we propose to use the fact that video actions happen sequentially in the temporal domain to generate pseudo frame-sentence correspondence and supervise the network training with the pseudo labels. Extensive experiments on video sequence verification and text-to-video matching show that our method outperforms baselines by a large margin, which validates the effectiveness of our proposed approach. Code is available at https://github.com/svip-lab/WeakSVR
Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
In light of recent advances in multimodal Large Language Models (LLMs), there is increasing attention to scaling them from image-text data to more informative real-world videos. Compared to static images, video poses unique challenges for effective large-scale pre-training due to the modeling of its spatiotemporal dynamics. In this paper, we address such limitations in video-language pre-training with an efficient video decomposition that represents each video as keyframes and temporal motions. These are then adapted to an LLM using well-designed tokenizers that discretize visual and temporal information as a few tokens, thus enabling unified generative pre-training of videos, images, and text. At inference, the generated tokens from the LLM are carefully recovered to the original continuous pixel space to create various video content. Our proposed framework is both capable of comprehending and generating image and video content, as demonstrated by its competitive performance across 13 multimodal benchmarks in image and video understanding and generation. Our code and models will be available at https://video-lavit.github.io.
Tarsier: Recipes for Training and Evaluating Large Video Description Models
Generating fine-grained video descriptions is a fundamental challenge in video understanding. In this work, we introduce Tarsier, a family of large-scale video-language models designed to generate high-quality video descriptions. Tarsier employs CLIP-ViT to encode frames separately and then uses an LLM to model temporal relationships. Despite its simple architecture, we demonstrate that with a meticulously designed two-stage training procedure, the Tarsier models exhibit substantially stronger video description capabilities than any existing open-source model, showing a +51.4% advantage in human side-by-side evaluation over the strongest model. Additionally, they are comparable to state-of-the-art proprietary models, with a +12.3% advantage against GPT-4V and a -6.7% disadvantage against Gemini 1.5 Pro. Besides video description, Tarsier proves to be a versatile generalist model, achieving new state-of-the-art results across nine public benchmarks, including multi-choice VQA, open-ended VQA, and zero-shot video captioning. Our second contribution is the introduction of a new benchmark for evaluating video description models, consisting of a new challenging dataset featuring videos from diverse sources and varying complexity, along with an automatic method specifically designed to assess the quality of fine-grained video descriptions. We make our models and evaluation benchmark publicly available at https://github.com/bytedance/tarsier.
A Large-Scale Study on Unsupervised Spatiotemporal Representation Learning
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at https://github.com/facebookresearch/SlowFast
VideoMind: An Omni-Modal Video Dataset with Intent Grounding for Deep-Cognitive Video Understanding
This paper introduces VideoMind, a video-centric omni-modal dataset designed for deep video content cognition and enhanced multi-modal feature representation. The dataset comprises 103K video samples (3K reserved for testing), each paired with audio and systematically detailed textual descriptions. Specifically, every video and its audio is described across three hierarchical layers (factual, abstract, and intent), progressing from surface to depth. It contains over 22 million words, averaging ~225 words per sample. VideoMind's key distinction from existing datasets is its provision of intent expressions, which require contextual integration across the entire video and are not directly observable. These deep-cognitive expressions are generated using a Chain-of-Thought (COT) approach, prompting the mLLM through step-by-step reasoning. Each description includes annotations for subject, place, time, event, action, and intent, supporting downstream recognition tasks. Crucially, we establish a gold-standard benchmark with 3,000 manually validated samples for evaluating deep-cognitive video understanding. We design hybrid-cognitive retrieval experiments, scored by multi-level retrieval metrics, to appropriately assess deep video comprehension. Evaluation results for models (e.g., InternVideo, VAST, UMT-L) are released. VideoMind serves as a powerful benchmark for fine-grained cross-modal alignment and advances fields requiring in-depth video understanding, such as emotion and intent recognition. The data is publicly available on GitHub, HuggingFace, and OpenDataLab, https://github.com/cdx-cindy/VideoMind.
TinyLLaVA-Video: A Simple Framework of Small-scale Large Multimodal Models for Video Understanding
We present the TinyLLaVA-Video, a video understanding model with parameters not exceeding 4B that processes video sequences in a simple manner, without the need for complex architectures, supporting both fps sampling and uniform frame sampling. Our model is characterized by modularity and scalability, allowing training and inference with limited computational resources and enabling users to replace components based on their needs. We validate the effectiveness of this framework through experiments, the best model achieving performance comparable to certain existing 7B models on multiple video understanding benchmarks. The code and training recipes are fully open source, with all components and training data publicly available. We hope this work can serve as a baseline for practitioners exploring small-scale multimodal models for video understanding. It is available at https://github.com/ZhangXJ199/TinyLLaVA-Video.
VideoLLaMB: Long-context Video Understanding with Recurrent Memory Bridges
Recent advancements in large-scale video-language models have shown significant potential for real-time planning and detailed interactions. However, their high computational demands and the scarcity of annotated datasets limit their practicality for academic researchers. In this work, we introduce VideoLLaMB, a novel framework that utilizes temporal memory tokens within bridge layers to allow for the encoding of entire video sequences alongside historical visual data, effectively preserving semantic continuity and enhancing model performance across various tasks. This approach includes recurrent memory tokens and a SceneTilling algorithm, which segments videos into independent semantic units to preserve semantic integrity. Empirically, VideoLLaMB significantly outstrips existing video-language models, demonstrating a 5.5 points improvement over its competitors across three VideoQA benchmarks, and 2.06 points on egocentric planning. Comprehensive results on the MVBench show that VideoLLaMB-7B achieves markedly better results than previous 7B models of same LLM. Remarkably, it maintains robust performance as PLLaVA even as video length increases up to 8 times. Besides, the frame retrieval results on our specialized Needle in a Video Haystack (NIAVH) benchmark, further validate VideoLLaMB's prowess in accurately identifying specific frames within lengthy videos. Our SceneTilling algorithm also enables the generation of streaming video captions directly, without necessitating additional training. In terms of efficiency, VideoLLaMB, trained on 16 frames, supports up to 320 frames on a single Nvidia A100 GPU with linear GPU memory scaling, ensuring both high performance and cost-effectiveness, thereby setting a new foundation for long-form video-language models in both academic and practical applications.
Map the Flow: Revealing Hidden Pathways of Information in VideoLLMs
Video Large Language Models (VideoLLMs) extend the capabilities of vision-language models to spatiotemporal inputs, enabling tasks such as video question answering (VideoQA). Despite recent advances in VideoLLMs, their internal mechanisms on where and how they extract and propagate video and textual information remain less explored. In this study, we investigate the internal information flow of VideoLLMs using mechanistic interpretability techniques. Our analysis reveals consistent patterns across diverse VideoQA tasks: (1) temporal reasoning in VideoLLMs initiates with active cross-frame interactions in early-to-middle layers, (2) followed by progressive video-language integration in middle layers. This is facilitated by alignment between video representations and linguistic embeddings containing temporal concepts. (3) Upon completion of this integration, the model is ready to generate correct answers in middle-to-late layers. (4) Based on our analysis, we show that VideoLLMs can retain their VideoQA performance by selecting these effective information pathways while suppressing a substantial amount of attention edges, e.g., 58% in LLaVA-NeXT-7B-Video-FT. These findings provide a blueprint on how VideoLLMs perform temporal reasoning and offer practical insights for improving model interpretability and downstream generalization. Our project page with the source code is available at https://map-the-flow.github.io
Learning Procedure-aware Video Representation from Instructional Videos and Their Narrations
The abundance of instructional videos and their narrations over the Internet offers an exciting avenue for understanding procedural activities. In this work, we propose to learn video representation that encodes both action steps and their temporal ordering, based on a large-scale dataset of web instructional videos and their narrations, without using human annotations. Our method jointly learns a video representation to encode individual step concepts, and a deep probabilistic model to capture both temporal dependencies and immense individual variations in the step ordering. We empirically demonstrate that learning temporal ordering not only enables new capabilities for procedure reasoning, but also reinforces the recognition of individual steps. Our model significantly advances the state-of-the-art results on step classification (+2.8% / +3.3% on COIN / EPIC-Kitchens) and step forecasting (+7.4% on COIN). Moreover, our model attains promising results in zero-shot inference for step classification and forecasting, as well as in predicting diverse and plausible steps for incomplete procedures. Our code is available at https://github.com/facebookresearch/ProcedureVRL.
Prompting Visual-Language Models for Efficient Video Understanding
Image-based visual-language (I-VL) pre-training has shown great success for learning joint visual-textual representations from large-scale web data, revealing remarkable ability for zero-shot generalisation. This paper presents a simple but strong baseline to efficiently adapt the pre-trained I-VL model, and exploit its powerful ability for resource-hungry video understanding tasks, with minimal training. Specifically, we propose to optimise a few random vectors, termed as continuous prompt vectors, that convert video-related tasks into the same format as the pre-training objectives. In addition, to bridge the gap between static images and videos, temporal information is encoded with lightweight Transformers stacking on top of frame-wise visual features. Experimentally, we conduct extensive ablation studies to analyse the critical components. On 10 public benchmarks of action recognition, action localisation, and text-video retrieval, across closed-set, few-shot, and zero-shot scenarios, we achieve competitive or state-of-the-art performance to existing methods, despite optimising significantly fewer parameters.
CausalImages: An R Package for Causal Inference with Earth Observation, Bio-medical, and Social Science Images
The causalimages R package enables causal inference with image and image sequence data, providing new tools for integrating novel data sources like satellite and bio-medical imagery into the study of cause and effect. One set of functions enables image-based causal inference analyses. For example, one key function decomposes treatment effect heterogeneity by images using an interpretable Bayesian framework. This allows for determining which types of images or image sequences are most responsive to interventions. A second modeling function allows researchers to control for confounding using images. The package also allows investigators to produce embeddings that serve as vector summaries of the image or video content. Finally, infrastructural functions are also provided, such as tools for writing large-scale image and image sequence data as sequentialized byte strings for more rapid image analysis. causalimages therefore opens new capabilities for causal inference in R, letting researchers use informative imagery in substantive analyses in a fast and accessible manner.
Masked Diffusion with Task-awareness for Procedure Planning in Instructional Videos
A key challenge with procedure planning in instructional videos lies in how to handle a large decision space consisting of a multitude of action types that belong to various tasks. To understand real-world video content, an AI agent must proficiently discern these action types (e.g., pour milk, pour water, open lid, close lid, etc.) based on brief visual observation. Moreover, it must adeptly capture the intricate semantic relation of the action types and task goals, along with the variable action sequences. Recently, notable progress has been made via the integration of diffusion models and visual representation learning to address the challenge. However, existing models employ rudimentary mechanisms to utilize task information to manage the decision space. To overcome this limitation, we introduce a simple yet effective enhancement - a masked diffusion model. The introduced mask acts akin to a task-oriented attention filter, enabling the diffusion/denoising process to concentrate on a subset of action types. Furthermore, to bolster the accuracy of task classification, we harness more potent visual representation learning techniques. In particular, we learn a joint visual-text embedding, where a text embedding is generated by prompting a pre-trained vision-language model to focus on human actions. We evaluate the method on three public datasets and achieve state-of-the-art performance on multiple metrics. Code is available at https://github.com/ffzzy840304/Masked-PDPP.
Revisiting Feature Prediction for Learning Visual Representations from Video
This paper explores feature prediction as a stand-alone objective for unsupervised learning from video and introduces V-JEPA, a collection of vision models trained solely using a feature prediction objective, without the use of pretrained image encoders, text, negative examples, reconstruction, or other sources of supervision. The models are trained on 2 million videos collected from public datasets and are evaluated on downstream image and video tasks. Our results show that learning by predicting video features leads to versatile visual representations that perform well on both motion and appearance-based tasks, without adaption of the model's parameters; e.g., using a frozen backbone. Our largest model, a ViT-H/16 trained only on videos, obtains 81.9% on Kinetics-400, 72.2% on Something-Something-v2, and 77.9% on ImageNet1K.
VideoGPT: Video Generation using VQ-VAE and Transformers
We present VideoGPT: a conceptually simple architecture for scaling likelihood based generative modeling to natural videos. VideoGPT uses VQ-VAE that learns downsampled discrete latent representations of a raw video by employing 3D convolutions and axial self-attention. A simple GPT-like architecture is then used to autoregressively model the discrete latents using spatio-temporal position encodings. Despite the simplicity in formulation and ease of training, our architecture is able to generate samples competitive with state-of-the-art GAN models for video generation on the BAIR Robot dataset, and generate high fidelity natural videos from UCF-101 and Tumbler GIF Dataset (TGIF). We hope our proposed architecture serves as a reproducible reference for a minimalistic implementation of transformer based video generation models. Samples and code are available at https://wilson1yan.github.io/videogpt/index.html
RoPECraft: Training-Free Motion Transfer with Trajectory-Guided RoPE Optimization on Diffusion Transformers
We propose RoPECraft, a training-free video motion transfer method for diffusion transformers that operates solely by modifying their rotary positional embeddings (RoPE). We first extract dense optical flow from a reference video, and utilize the resulting motion offsets to warp the complex-exponential tensors of RoPE, effectively encoding motion into the generation process. These embeddings are then further optimized during denoising time steps via trajectory alignment between the predicted and target velocities using a flow-matching objective. To keep the output faithful to the text prompt and prevent duplicate generations, we incorporate a regularization term based on the phase components of the reference video's Fourier transform, projecting the phase angles onto a smooth manifold to suppress high-frequency artifacts. Experiments on benchmarks reveal that RoPECraft outperforms all recently published methods, both qualitatively and quantitatively.
Words are all you need? Language as an approximation for human similarity judgments
Human similarity judgments are a powerful supervision signal for machine learning applications based on techniques such as contrastive learning, information retrieval, and model alignment, but classical methods for collecting human similarity judgments are too expensive to be used at scale. Recent methods propose using pre-trained deep neural networks (DNNs) to approximate human similarity, but pre-trained DNNs may not be available for certain domains (e.g., medical images, low-resource languages) and their performance in approximating human similarity has not been extensively tested. We conducted an evaluation of 611 pre-trained models across three domains -- images, audio, video -- and found that there is a large gap in performance between human similarity judgments and pre-trained DNNs. To address this gap, we propose a new class of similarity approximation methods based on language. To collect the language data required by these new methods, we also developed and validated a novel adaptive tag collection pipeline. We find that our proposed language-based methods are significantly cheaper, in the number of human judgments, than classical methods, but still improve performance over the DNN-based methods. Finally, we also develop `stacked' methods that combine language embeddings with DNN embeddings, and find that these consistently provide the best approximations for human similarity across all three of our modalities. Based on the results of this comprehensive study, we provide a concise guide for researchers interested in collecting or approximating human similarity data. To accompany this guide, we also release all of the similarity and language data, a total of 206,339 human judgments, that we collected in our experiments, along with a detailed breakdown of all modeling results.
Matching Anything by Segmenting Anything
The robust association of the same objects across video frames in complex scenes is crucial for many applications, especially Multiple Object Tracking (MOT). Current methods predominantly rely on labeled domain-specific video datasets, which limits the cross-domain generalization of learned similarity embeddings. We propose MASA, a novel method for robust instance association learning, capable of matching any objects within videos across diverse domains without tracking labels. Leveraging the rich object segmentation from the Segment Anything Model (SAM), MASA learns instance-level correspondence through exhaustive data transformations. We treat the SAM outputs as dense object region proposals and learn to match those regions from a vast image collection. We further design a universal MASA adapter which can work in tandem with foundational segmentation or detection models and enable them to track any detected objects. Those combinations present strong zero-shot tracking ability in complex domains. Extensive tests on multiple challenging MOT and MOTS benchmarks indicate that the proposed method, using only unlabeled static images, achieves even better performance than state-of-the-art methods trained with fully annotated in-domain video sequences, in zero-shot association. Project Page: https://matchinganything.github.io/
Advancing Video Self-Supervised Learning via Image Foundation Models
In the past decade, image foundation models (IFMs) have achieved unprecedented progress. However, the potential of directly using IFMs for video self-supervised representation learning has largely been overlooked. In this study, we propose an advancing video self-supervised learning (AdViSe) approach, aimed at significantly reducing the training overhead of video representation models using pre-trained IFMs. Specifically, we first introduce temporal modeling modules (ResNet3D) to IFMs, constructing a video representation model. We then employ a video self-supervised learning approach, playback rate perception, to train temporal modules while freezing the IFM components. Experiments on UCF101 demonstrate that AdViSe achieves performance comparable to state-of-the-art methods while reducing training time by 3.4times and GPU memory usage by 8.2times. This study offers fresh insights into low-cost video self-supervised learning based on pre-trained IFMs. Code is available at https://github.com/JingwWu/advise-video-ssl.
InternVideo: General Video Foundation Models via Generative and Discriminative Learning
The foundation models have recently shown excellent performance on a variety of downstream tasks in computer vision. However, most existing vision foundation models simply focus on image-level pretraining and adpation, which are limited for dynamic and complex video-level understanding tasks. To fill the gap, we present general video foundation models, InternVideo, by taking advantage of both generative and discriminative self-supervised video learning. Specifically, InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives, and selectively coordinates video representations of these two complementary frameworks in a learnable manner to boost various video applications. Without bells and whistles, InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications. Especially, our methods can obtain 91.1% and 77.2% top-1 accuracy on the challenging Kinetics-400 and Something-Something V2 benchmarks, respectively. All of these results effectively show the generality of our InternVideo for video understanding. The code will be released at https://github.com/OpenGVLab/InternVideo .
Video-LLaMA: An Instruction-tuned Audio-Visual Language Model for Video Understanding
We present Video-LLaMA, a multi-modal framework that empowers Large Language Models (LLMs) with the capability of understanding both visual and auditory content in the video. Video-LLaMA bootstraps cross-modal training from the frozen pre-trained visual \& audio encoders and the frozen LLMs. Unlike previous vision- LLMs that focus on static image comprehensions such as MiniGPT-4~zhu2023minigpt and LLaVA~liu2023visualit, Video-LLaMA tackles two challenges in video understanding: (1) capturing the temporal changes in visual scenes, (2) integrating audio-visual signals. For the first challenge, we propose Video Q-former to extend the pre-trained image encoder to a video encoder and introduce a video-to-text generation task to learn video-language correspondence. For the second challenge, we leverage ImageBind~girdhar2023imagebind as the pre-trained audio encoder which performs exceptionally well in aligning different modalities to a common embedding space. And then introduce an Audio Q-former to learn auditory query tokens. To align the output of both visual \& audio encoder with LLM's embedding space, we train Video-LLaMA on a large-scale vision caption dataset and a hign-quantity vision-instruction-tuning dataset. We found Video-LLaMA showcases the ability to perceive and comprehend video content, generating meaningful responses that are grounded in the visual and auditory information present in the videos. This highlights the potential of Video-LLaMA as a promising prototype for audio-visual AI assistants. Our code, pre-trained model, and demo are available at https://github.com/DAMO-NLP-SG/Video-LLaMA.
Iwin Transformer: Hierarchical Vision Transformer using Interleaved Windows
We introduce Iwin Transformer, a novel position-embedding-free hierarchical vision transformer, which can be fine-tuned directly from low to high resolution, through the collaboration of innovative interleaved window attention and depthwise separable convolution. This approach uses attention to connect distant tokens and applies convolution to link neighboring tokens, enabling global information exchange within a single module, overcoming Swin Transformer's limitation of requiring two consecutive blocks to approximate global attention. Extensive experiments on visual benchmarks demonstrate that Iwin Transformer exhibits strong competitiveness in tasks such as image classification (87.4 top-1 accuracy on ImageNet-1K), semantic segmentation and video action recognition. We also validate the effectiveness of the core component in Iwin as a standalone module that can seamlessly replace the self-attention module in class-conditional image generation. The concepts and methods introduced by the Iwin Transformer have the potential to inspire future research, like Iwin 3D Attention in video generation. The code and models are available at https://github.com/cominder/Iwin-Transformer.
PoseAnimate: Zero-shot high fidelity pose controllable character animation
Image-to-video(I2V) generation aims to create a video sequence from a single image, which requires high temporal coherence and visual fidelity with the source image.However, existing approaches suffer from character appearance inconsistency and poor preservation of fine details. Moreover, they require a large amount of video data for training, which can be computationally demanding.To address these limitations,we propose PoseAnimate, a novel zero-shot I2V framework for character animation.PoseAnimate contains three key components: 1) Pose-Aware Control Module (PACM) incorporates diverse pose signals into conditional embeddings, to preserve character-independent content and maintain precise alignment of actions.2) Dual Consistency Attention Module (DCAM) enhances temporal consistency, and retains character identity and intricate background details.3) Mask-Guided Decoupling Module (MGDM) refines distinct feature perception, improving animation fidelity by decoupling the character and background.We also propose a Pose Alignment Transition Algorithm (PATA) to ensure smooth action transition.Extensive experiment results demonstrate that our approach outperforms the state-of-the-art training-based methods in terms of character consistency and detail fidelity. Moreover, it maintains a high level of temporal coherence throughout the generated animations.
MViTv2: Improved Multiscale Vision Transformers for Classification and Detection
In this paper, we study Multiscale Vision Transformers (MViTv2) as a unified architecture for image and video classification, as well as object detection. We present an improved version of MViT that incorporates decomposed relative positional embeddings and residual pooling connections. We instantiate this architecture in five sizes and evaluate it for ImageNet classification, COCO detection and Kinetics video recognition where it outperforms prior work. We further compare MViTv2s' pooling attention to window attention mechanisms where it outperforms the latter in accuracy/compute. Without bells-and-whistles, MViTv2 has state-of-the-art performance in 3 domains: 88.8% accuracy on ImageNet classification, 58.7 boxAP on COCO object detection as well as 86.1% on Kinetics-400 video classification. Code and models are available at https://github.com/facebookresearch/mvit.
SpatialTracker: Tracking Any 2D Pixels in 3D Space
Recovering dense and long-range pixel motion in videos is a challenging problem. Part of the difficulty arises from the 3D-to-2D projection process, leading to occlusions and discontinuities in the 2D motion domain. While 2D motion can be intricate, we posit that the underlying 3D motion can often be simple and low-dimensional. In this work, we propose to estimate point trajectories in 3D space to mitigate the issues caused by image projection. Our method, named SpatialTracker, lifts 2D pixels to 3D using monocular depth estimators, represents the 3D content of each frame efficiently using a triplane representation, and performs iterative updates using a transformer to estimate 3D trajectories. Tracking in 3D allows us to leverage as-rigid-as-possible (ARAP) constraints while simultaneously learning a rigidity embedding that clusters pixels into different rigid parts. Extensive evaluation shows that our approach achieves state-of-the-art tracking performance both qualitatively and quantitatively, particularly in challenging scenarios such as out-of-plane rotation.
Towards Robust Family-Infant Audio Analysis Based on Unsupervised Pretraining of Wav2vec 2.0 on Large-Scale Unlabeled Family Audio
To perform automatic family audio analysis, past studies have collected recordings using phone, video, or audio-only recording devices like LENA, investigated supervised learning methods, and used or fine-tuned general-purpose embeddings learned from large pretrained models. In this study, we advance the audio component of a new infant wearable multi-modal device called LittleBeats (LB) by learning family audio representation via wav2vec 2.0 (W2V2) pertaining. We show given a limited number of labeled LB home recordings, W2V2 pretrained using 1k-hour of unlabeled home recordings outperforms oracle W2V2 pretrained on 52k-hour unlabeled audio in terms of parent/infant speaker diarization (SD) and vocalization classifications (VC) at home. Extra relevant external unlabeled and labeled data further benefit W2V2 pretraining and fine-tuning. With SpecAug and environmental speech corruptions, we obtain 12% relative gain on SD and moderate boost on VC. Code and model weights are available.
A Large-Scale Analysis on Contextual Self-Supervised Video Representation Learning
Self-supervised learning has emerged as a powerful paradigm for label-free model pretraining, particularly in the video domain, where manual annotation is costly and time-intensive. However, existing self-supervised approaches employ diverse experimental setups, making direct comparisons challenging due to the absence of a standardized benchmark. In this work, we establish a unified benchmark that enables fair comparisons across different methods. Additionally, we systematically investigate five critical aspects of self-supervised learning in videos: (1) dataset size, (2) model complexity, (3) data distribution, (4) data noise, and (5) feature representations. To facilitate this study, we evaluate six self-supervised learning methods across six network architectures, conducting extensive experiments on five benchmark datasets and assessing performance on two distinct downstream tasks. Our analysis reveals key insights into the interplay between pretraining strategies, dataset characteristics, pretext tasks, and model architectures. Furthermore, we extend these findings to Video Foundation Models (ViFMs), demonstrating their relevance in large-scale video representation learning. Finally, leveraging these insights, we propose a novel approach that significantly reduces training data requirements while surpassing state-of-the-art methods that rely on 10% more pretraining data. We believe this work will guide future research toward a deeper understanding of self-supervised video representation learning and its broader implications.
StyleDubber: Towards Multi-Scale Style Learning for Movie Dubbing
Given a script, the challenge in Movie Dubbing (Visual Voice Cloning, V2C) is to generate speech that aligns well with the video in both time and emotion, based on the tone of a reference audio track. Existing state-of-the-art V2C models break the phonemes in the script according to the divisions between video frames, which solves the temporal alignment problem but leads to incomplete phoneme pronunciation and poor identity stability. To address this problem, we propose StyleDubber, which switches dubbing learning from the frame level to phoneme level. It contains three main components: (1) A multimodal style adaptor operating at the phoneme level to learn pronunciation style from the reference audio, and generate intermediate representations informed by the facial emotion presented in the video; (2) An utterance-level style learning module, which guides both the mel-spectrogram decoding and the refining processes from the intermediate embeddings to improve the overall style expression; And (3) a phoneme-guided lip aligner to maintain lip sync. Extensive experiments on two of the primary benchmarks, V2C and Grid, demonstrate the favorable performance of the proposed method as compared to the current state-of-the-art. The source code and trained models will be released to the public.
RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning
We study unsupervised video representation learning that seeks to learn both motion and appearance features from unlabeled video only, which can be reused for downstream tasks such as action recognition. This task, however, is extremely challenging due to 1) the highly complex spatial-temporal information in videos; and 2) the lack of labeled data for training. Unlike the representation learning for static images, it is difficult to construct a suitable self-supervised task to well model both motion and appearance features. More recently, several attempts have been made to learn video representation through video playback speed prediction. However, it is non-trivial to obtain precise speed labels for the videos. More critically, the learnt models may tend to focus on motion pattern and thus may not learn appearance features well. In this paper, we observe that the relative playback speed is more consistent with motion pattern, and thus provide more effective and stable supervision for representation learning. Therefore, we propose a new way to perceive the playback speed and exploit the relative speed between two video clips as labels. In this way, we are able to well perceive speed and learn better motion features. Moreover, to ensure the learning of appearance features, we further propose an appearance-focused task, where we enforce the model to perceive the appearance difference between two video clips. We show that optimizing the two tasks jointly consistently improves the performance on two downstream tasks, namely action recognition and video retrieval. Remarkably, for action recognition on UCF101 dataset, we achieve 93.7% accuracy without the use of labeled data for pre-training, which outperforms the ImageNet supervised pre-trained model. Code and pre-trained models can be found at https://github.com/PeihaoChen/RSPNet.
Multimodal Pretraining for Dense Video Captioning
Learning specific hands-on skills such as cooking, car maintenance, and home repairs increasingly happens via instructional videos. The user experience with such videos is known to be improved by meta-information such as time-stamped annotations for the main steps involved. Generating such annotations automatically is challenging, and we describe here two relevant contributions. First, we construct and release a new dense video captioning dataset, Video Timeline Tags (ViTT), featuring a variety of instructional videos together with time-stamped annotations. Second, we explore several multimodal sequence-to-sequence pretraining strategies that leverage large unsupervised datasets of videos and caption-like texts. We pretrain and subsequently finetune dense video captioning models using both YouCook2 and ViTT. We show that such models generalize well and are robust over a wide variety of instructional videos.
InternVideo2: Scaling Video Foundation Models for Multimodal Video Understanding
We introduce InternVideo2, a new video foundation model (ViFM) that achieves the state-of-the-art performance in action recognition, video-text tasks, and video-centric dialogue. Our approach employs a progressive training paradigm that unifies the different self- or weakly-supervised learning frameworks of masked video token reconstruction, cross-modal contrastive learning, and next token prediction. Different training stages would guide our model to capture different levels of structure and semantic information through different pretext tasks. At the data level, we prioritize the spatiotemporal consistency by semantically segmenting videos and generating video-audio-speech captions. This improves the alignment between video and text. We scale both data and model size for our InternVideo2. Through extensive experiments, we validate our designs and demonstrate the state-of-the-art performance on over 60 video and audio tasks. Notably, our model outperforms others on various video-related captioning, dialogue, and long video understanding benchmarks, highlighting its ability to reason and comprehend long temporal contexts. Code and models are available at https://github.com/OpenGVLab/InternVideo2/.
All in One: Exploring Unified Video-Language Pre-training
Mainstream Video-Language Pre-training models actbert,clipbert,violet consist of three parts, a video encoder, a text encoder, and a video-text fusion Transformer. They pursue better performance via utilizing heavier unimodal encoders or multimodal fusion Transformers, resulting in increased parameters with lower efficiency in downstream tasks. In this work, we for the first time introduce an end-to-end video-language model, namely all-in-one Transformer, that embeds raw video and textual signals into joint representations using a unified backbone architecture. We argue that the unique temporal information of video data turns out to be a key barrier hindering the design of a modality-agnostic Transformer. To overcome the challenge, we introduce a novel and effective token rolling operation to encode temporal representations from video clips in a non-parametric manner. The careful design enables the representation learning of both video-text multimodal inputs and unimodal inputs using a unified backbone model. Our pre-trained all-in-one Transformer is transferred to various downstream video-text tasks after fine-tuning, including text-video retrieval, video-question answering, multiple choice and visual commonsense reasoning. State-of-the-art performances with the minimal model FLOPs on nine datasets demonstrate the superiority of our method compared to the competitive counterparts. The code and pretrained model have been released in https://github.com/showlab/all-in-one.
Learning Video Context as Interleaved Multimodal Sequences
Narrative videos, such as movies, pose significant challenges in video understanding due to their rich contexts (characters, dialogues, storylines) and diverse demands (identify who, relationship, and reason). In this paper, we introduce MovieSeq, a multimodal language model developed to address the wide range of challenges in understanding video contexts. Our core idea is to represent videos as interleaved multimodal sequences (including images, plots, videos, and subtitles), either by linking external knowledge databases or using offline models (such as whisper for subtitles). Through instruction-tuning, this approach empowers the language model to interact with videos using interleaved multimodal instructions. For example, instead of solely relying on video as input, we jointly provide character photos alongside their names and dialogues, allowing the model to associate these elements and generate more comprehensive responses. To demonstrate its effectiveness, we validate MovieSeq's performance on six datasets (LVU, MAD, Movienet, CMD, TVC, MovieQA) across five settings (video classification, audio description, video-text retrieval, video captioning, and video question-answering). The code will be public at https://github.com/showlab/MovieSeq.
Learning Fine-Grained Features for Pixel-wise Video Correspondences
Video analysis tasks rely heavily on identifying the pixels from different frames that correspond to the same visual target. To tackle this problem, recent studies have advocated feature learning methods that aim to learn distinctive representations to match the pixels, especially in a self-supervised fashion. Unfortunately, these methods have difficulties for tiny or even single-pixel visual targets. Pixel-wise video correspondences were traditionally related to optical flows, which however lead to deterministic correspondences and lack robustness on real-world videos. We address the problem of learning features for establishing pixel-wise correspondences. Motivated by optical flows as well as the self-supervised feature learning, we propose to use not only labeled synthetic videos but also unlabeled real-world videos for learning fine-grained representations in a holistic framework. We adopt an adversarial learning scheme to enhance the generalization ability of the learned features. Moreover, we design a coarse-to-fine framework to pursue high computational efficiency. Our experimental results on a series of correspondence-based tasks demonstrate that the proposed method outperforms state-of-the-art rivals in both accuracy and efficiency.
Dynamic Reflections: Probing Video Representations with Text Alignment
The alignment of representations from different modalities has recently been shown to provide insights on the structural similarities and downstream capabilities of different encoders across diverse data types. While significant progress has been made in aligning images with text, the temporal nature of video data remains largely unexplored in this context. In this work, we conduct the first comprehensive study of video-text representation alignment, probing the capabilities of modern video and language encoders. Our findings reveal several key insights. First, we demonstrate that cross-modal alignment highly depends on the richness of both visual (static images vs. multi-frame videos) and text (single caption vs. a collection) data provided at test time, especially when using state-of-the-art video encoders. We propose parametric test-time scaling laws that capture this behavior and show remarkable predictive power against empirical observations. Secondly, we investigate the correlation between semantic alignment and performance on both semantic and non-semantic downstream tasks, providing initial evidence that strong alignment against text encoders may be linked to general-purpose video representation and understanding. Finally, we correlate temporal reasoning with cross-modal alignment providing a challenging test-bed for vision and language models. Overall, our work introduces video-text alignment as an informative zero-shot way to probe the representation power of different encoders for spatio-temporal data. Project page can be found at https://video-prh.github.io/
OST: Refining Text Knowledge with Optimal Spatio-Temporal Descriptor for General Video Recognition
Due to the resource-intensive nature of training vision-language models on expansive video data, a majority of studies have centered on adapting pre-trained image-language models to the video domain. Dominant pipelines propose to tackle the visual discrepancies with additional temporal learners while overlooking the substantial discrepancy for web-scaled descriptive narratives and concise action category names, leading to less distinct semantic space and potential performance limitations. In this work, we prioritize the refinement of text knowledge to facilitate generalizable video recognition. To address the limitations of the less distinct semantic space of category names, we prompt a large language model (LLM) to augment action class names into Spatio-Temporal Descriptors thus bridging the textual discrepancy and serving as a knowledge base for general recognition. Moreover, to assign the best descriptors with different video instances, we propose Optimal Descriptor Solver, forming the video recognition problem as solving the optimal matching flow across frame-level representations and descriptors. Comprehensive evaluations in zero-shot, few-shot, and fully supervised video recognition highlight the effectiveness of our approach. Our best model achieves a state-of-the-art zero-shot accuracy of 75.1% on Kinetics-600.
DREAM: Improving Video-Text Retrieval Through Relevance-Based Augmentation Using Large Foundation Models
Recent progress in video-text retrieval has been driven largely by advancements in model architectures and training strategies. However, the representation learning capabilities of videotext retrieval models remain constrained by lowquality and limited training data annotations. To address this issue, we present a novel ViDeoText Retrieval Paradigm with RElevance-based AugMentation, namely DREAM, which enhances video and text data using large foundation models to learn more generalized features. Specifically, we first adopt a simple augmentation method, which generates self-similar data by randomly duplicating or dropping subwords and frames. In addition, inspired by the recent advancement in visual and language generative models, we propose a more robust augmentation method through textual paraphrasing and video stylization using large language models (LLMs) and visual generative models (VGMs). To further enrich video and text information, we propose a relevance-based augmentation method, where LLMs and VGMs generate and integrate new relevant information into the original data. Leveraging this enriched data, extensive experiments on several video-text retrieval benchmarks demonstrate the superiority of DREAM over existing methods.
Advancing High-Resolution Video-Language Representation with Large-Scale Video Transcriptions
We study joint video and language (VL) pre-training to enable cross-modality learning and benefit plentiful downstream VL tasks. Existing works either extract low-quality video features or learn limited text embedding, while neglecting that high-resolution videos and diversified semantics can significantly improve cross-modality learning. In this paper, we propose a novel High-resolution and Diversified VIdeo-LAnguage pre-training model (HD-VILA) for many visual tasks. In particular, we collect a large dataset with two distinct properties: 1) the first high-resolution dataset including 371.5k hours of 720p videos, and 2) the most diversified dataset covering 15 popular YouTube categories. To enable VL pre-training, we jointly optimize the HD-VILA model by a hybrid Transformer that learns rich spatiotemporal features, and a multimodal Transformer that enforces interactions of the learned video features with diversified texts. Our pre-training model achieves new state-of-the-art results in 10 VL understanding tasks and 2 more novel text-to-visual generation tasks. For example, we outperform SOTA models with relative increases of 40.4% R@1 in zero-shot MSR-VTT text-to-video retrieval task and 55.4% in high-resolution dataset LSMDC. The learned VL embedding is also effective in generating visually pleasing and semantically relevant results in text-to-visual editing and super-resolution tasks.
LongVLM: Efficient Long Video Understanding via Large Language Models
Empowered by Large Language Models (LLMs), recent advancements in Video-based LLMs (VideoLLMs) have driven progress in various video understanding tasks. These models encode video representations through pooling or query aggregation over a vast number of visual tokens, making computational and memory costs affordable. Despite successfully providing an overall comprehension of video content, existing VideoLLMs still face challenges in achieving detailed understanding due to overlooking local information in long-term videos. To tackle this challenge, we introduce LongVLM, a simple yet powerful VideoLLM for long video understanding, building upon the observation that long videos often consist of sequential key events, complex actions, and camera movements. Our approach proposes to decompose long videos into multiple short-term segments and encode local features for each segment via a hierarchical token merging module. These features are concatenated in temporal order to maintain the storyline across sequential short-term segments. Additionally, we propose to integrate global semantics into each local feature to enhance context understanding. In this way, we encode video representations that incorporate both local and global information, enabling the LLM to generate comprehensive responses for long-term videos. Experimental results on the VideoChatGPT benchmark and zero-shot video question-answering datasets demonstrate the superior capabilities of our model over the previous state-of-the-art methods. Qualitative examples show that our model produces more precise responses for long video understanding. Code is available at https://github.com/ziplab/LongVLM.
Towards Universal Video Retrieval: Generalizing Video Embedding via Synthesized Multimodal Pyramid Curriculum
The prevailing video retrieval paradigm is structurally misaligned, as narrow benchmarks incentivize correspondingly limited data and single-task training. Therefore, universal capability is suppressed due to the absence of a diagnostic evaluation that defines and demands multi-dimensional generalization. To break this cycle, we introduce a framework built on the co-design of evaluation, data, and modeling. First, we establish the Universal Video Retrieval Benchmark (UVRB), a suite of 16 datasets designed not only to measure performance but also to diagnose critical capability gaps across tasks and domains. Second, guided by UVRB's diagnostics, we introduce a scalable synthesis workflow that generates 1.55 million high-quality pairs to populate the semantic space required for universality. Finally, we devise the Modality Pyramid, a curriculum that trains our General Video Embedder (GVE) by explicitly leveraging the latent interconnections within our diverse data. Extensive experiments show GVE achieves state-of-the-art zero-shot generalization on UVRB. In particular, our analysis reveals that popular benchmarks are poor predictors of general ability and that partially relevant retrieval is a dominant but overlooked scenario. Overall, our co-designed framework provides a practical path to escape the limited scope and advance toward truly universal video retrieval.
SMILE: Infusing Spatial and Motion Semantics in Masked Video Learning
Masked video modeling, such as VideoMAE, is an effective paradigm for video self-supervised learning (SSL). However, they are primarily based on reconstructing pixel-level details on natural videos which have substantial temporal redundancy, limiting their capability for semantic representation and sufficient encoding of motion dynamics. To address these issues, this paper introduces a novel SSL approach for video representation learning, dubbed as SMILE, by infusing both spatial and motion semantics. In SMILE, we leverage image-language pretrained models, such as CLIP, to guide the learning process with their high-level spatial semantics. We enhance the representation of motion by introducing synthetic motion patterns in the training data, allowing the model to capture more complex and dynamic content. Furthermore, using SMILE, we establish a new self-supervised video learning paradigm capable of learning strong video representations without requiring any natural video data. We have carried out extensive experiments on 7 datasets with various downstream scenarios. SMILE surpasses current state-of-the-art SSL methods, showcasing its effectiveness in learning more discriminative and generalizable video representations. Code is available: https://github.com/fmthoker/SMILE
Text-Video Retrieval with Global-Local Semantic Consistent Learning
Adapting large-scale image-text pre-training models, e.g., CLIP, to the video domain represents the current state-of-the-art for text-video retrieval. The primary approaches involve transferring text-video pairs to a common embedding space and leveraging cross-modal interactions on specific entities for semantic alignment. Though effective, these paradigms entail prohibitive computational costs, leading to inefficient retrieval. To address this, we propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL), which capitalizes on latent shared semantics across modalities for text-video retrieval. Specifically, we introduce a parameter-free global interaction module to explore coarse-grained alignment. Then, we devise a shared local interaction module that employs several learnable queries to capture latent semantic concepts for learning fine-grained alignment. Furthermore, an Inter-Consistency Loss (ICL) is devised to accomplish the concept alignment between the visual query and corresponding textual query, and an Intra-Diversity Loss (IDL) is developed to repulse the distribution within visual (textual) queries to generate more discriminative concepts. Extensive experiments on five widely used benchmarks (i.e., MSR-VTT, MSVD, DiDeMo, LSMDC, and ActivityNet) substantiate the superior effectiveness and efficiency of the proposed method. Remarkably, our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost. Code is available at: https://github.com/zchoi/GLSCL.
In-Style: Bridging Text and Uncurated Videos with Style Transfer for Text-Video Retrieval
Large-scale noisy web image-text datasets have been proven to be efficient for learning robust vision-language models. However, when transferring them to the task of video retrieval, models still need to be fine-tuned on hand-curated paired text-video data to adapt to the diverse styles of video descriptions. To address this problem without the need for hand-annotated pairs, we propose a new setting, text-video retrieval with uncurated & unpaired data, that during training utilizes only text queries together with uncurated web videos without any paired text-video data. To this end, we propose an approach, In-Style, that learns the style of the text queries and transfers it to uncurated web videos. Moreover, to improve generalization, we show that one model can be trained with multiple text styles. To this end, we introduce a multi-style contrastive training procedure that improves the generalizability over several datasets simultaneously. We evaluate our model on retrieval performance over multiple datasets to demonstrate the advantages of our style transfer framework on the new task of uncurated & unpaired text-video retrieval and improve state-of-the-art performance on zero-shot text-video retrieval.
HawkEye: Training Video-Text LLMs for Grounding Text in Videos
Video-text Large Language Models (video-text LLMs) have shown remarkable performance in answering questions and holding conversations on simple videos. However, they perform almost the same as random on grounding text queries in long and complicated videos, having little ability to understand and reason about temporal information, which is the most fundamental difference between videos and images. In this paper, we propose HawkEye, one of the first video-text LLMs that can perform temporal video grounding in a fully text-to-text manner. To collect training data that is applicable for temporal video grounding, we construct InternVid-G, a large-scale video-text corpus with segment-level captions and negative spans, with which we introduce two new time-aware training objectives to video-text LLMs. We also propose a coarse-grained method of representing segments in videos, which is more robust and easier for LLMs to learn and follow than other alternatives. Extensive experiments show that HawkEye is better at temporal video grounding and comparable on other video-text tasks with existing video-text LLMs, which verifies its superior video-text multi-modal understanding abilities.
G2L: Semantically Aligned and Uniform Video Grounding via Geodesic and Game Theory
The recent video grounding works attempt to introduce vanilla contrastive learning into video grounding. However, we claim that this naive solution is suboptimal. Contrastive learning requires two key properties: (1) alignment of features of similar samples, and (2) uniformity of the induced distribution of the normalized features on the hypersphere. Due to two annoying issues in video grounding: (1) the co-existence of some visual entities in both ground truth and other moments, \ie semantic overlapping; (2) only a few moments in the video are annotated, \ie sparse annotation dilemma, vanilla contrastive learning is unable to model the correlations between temporally distant moments and learned inconsistent video representations. Both characteristics lead to vanilla contrastive learning being unsuitable for video grounding. In this paper, we introduce Geodesic and Game Localization (G2L), a semantically aligned and uniform video grounding framework via geodesic and game theory. We quantify the correlations among moments leveraging the geodesic distance that guides the model to learn the correct cross-modal representations. Furthermore, from the novel perspective of game theory, we propose semantic Shapley interaction based on geodesic distance sampling to learn fine-grained semantic alignment in similar moments. Experiments on three benchmarks demonstrate the effectiveness of our method.
TS-LLaVA: Constructing Visual Tokens through Thumbnail-and-Sampling for Training-Free Video Large Language Models
Recent advances in multimodal Large Language Models (LLMs) have shown great success in understanding multi-modal contents. For video understanding tasks, training-based video LLMs are difficult to build due to the scarcity of high-quality, curated video-text paired data. In contrast, paired image-text data are much easier to obtain, and there is substantial similarity between images and videos. Consequently, extending image LLMs for video understanding tasks presents an appealing alternative. Developing effective strategies for compressing visual tokens from multiple frames is a promising way to leverage the powerful pre-trained image LLM. In this work, we explore the limitations of the existing compression strategies for building a training-free video LLM. The findings lead to our method TS-LLaVA, which constructs visual tokens through a Thumbnail-and-Sampling strategy. Given a video, we select few equidistant frames from all input frames to construct a Thumbnail image as a detailed visual cue, complemented by Sampled visual tokens from all input frames. Our method establishes the new state-of-the-art performance among training-free video LLMs on various benchmarks. Notably, our 34B model outperforms GPT-4V on the MVBench benchmark, and achieves performance comparable to the 72B training-based video LLM, Video-LLaMA2, on the challenging MLVU benchmark. Code is available at https://github.com/tingyu215/TS-LLaVA.
VidChapters-7M: Video Chapters at Scale
Segmenting long videos into chapters enables users to quickly navigate to the information of their interest. This important topic has been understudied due to the lack of publicly released datasets. To address this issue, we present VidChapters-7M, a dataset of 817K user-chaptered videos including 7M chapters in total. VidChapters-7M is automatically created from videos online in a scalable manner by scraping user-annotated chapters and hence without any additional manual annotation. We introduce the following three tasks based on this data. First, the video chapter generation task consists of temporally segmenting the video and generating a chapter title for each segment. To further dissect the problem, we also define two variants of this task: video chapter generation given ground-truth boundaries, which requires generating a chapter title given an annotated video segment, and video chapter grounding, which requires temporally localizing a chapter given its annotated title. We benchmark both simple baselines and state-of-the-art video-language models for these three tasks. We also show that pretraining on VidChapters-7M transfers well to dense video captioning tasks in both zero-shot and finetuning settings, largely improving the state of the art on the YouCook2 and ViTT benchmarks. Finally, our experiments reveal that downstream performance scales well with the size of the pretraining dataset. Our dataset, code, and models are publicly available at https://antoyang.github.io/vidchapters.html.
SkyReels-A2: Compose Anything in Video Diffusion Transformers
This paper presents SkyReels-A2, a controllable video generation framework capable of assembling arbitrary visual elements (e.g., characters, objects, backgrounds) into synthesized videos based on textual prompts while maintaining strict consistency with reference images for each element. We term this task elements-to-video (E2V), whose primary challenges lie in preserving the fidelity of each reference element, ensuring coherent composition of the scene, and achieving natural outputs. To address these, we first design a comprehensive data pipeline to construct prompt-reference-video triplets for model training. Next, we propose a novel image-text joint embedding model to inject multi-element representations into the generative process, balancing element-specific consistency with global coherence and text alignment. We also optimize the inference pipeline for both speed and output stability. Moreover, we introduce a carefully curated benchmark for systematic evaluation, i.e, A2 Bench. Experiments demonstrate that our framework can generate diverse, high-quality videos with precise element control. SkyReels-A2 is the first open-source commercial grade model for the generation of E2V, performing favorably against advanced closed-source commercial models. We anticipate SkyReels-A2 will advance creative applications such as drama and virtual e-commerce, pushing the boundaries of controllable video generation.
Generating Videos with Scene Dynamics
We capitalize on large amounts of unlabeled video in order to learn a model of scene dynamics for both video recognition tasks (e.g. action classification) and video generation tasks (e.g. future prediction). We propose a generative adversarial network for video with a spatio-temporal convolutional architecture that untangles the scene's foreground from the background. Experiments suggest this model can generate tiny videos up to a second at full frame rate better than simple baselines, and we show its utility at predicting plausible futures of static images. Moreover, experiments and visualizations show the model internally learns useful features for recognizing actions with minimal supervision, suggesting scene dynamics are a promising signal for representation learning. We believe generative video models can impact many applications in video understanding and simulation.
VideoChat: Chat-Centric Video Understanding
In this study, we initiate an exploration into video understanding by introducing VideoChat, an end-to-end chat-centric video understanding system. It integrates video foundation models and large language models via a learnable neural interface, excelling in spatiotemporal reasoning, event localization, and causal relationship inference. To instructively tune this system, we propose a video-centric instruction dataset, composed of thousands of videos matched with detailed descriptions and conversations. This dataset emphasizes spatiotemporal reasoning and causal relationships, providing a valuable asset for training chat-centric video understanding systems. Preliminary qualitative experiments reveal our system's potential across a broad spectrum of video applications and set the standard for future research. Access our code and data at https://github.com/OpenGVLab/Ask-Anything
Tubelet-Contrastive Self-Supervision for Video-Efficient Generalization
We propose a self-supervised method for learning motion-focused video representations. Existing approaches minimize distances between temporally augmented videos, which maintain high spatial similarity. We instead propose to learn similarities between videos with identical local motion dynamics but an otherwise different appearance. We do so by adding synthetic motion trajectories to videos which we refer to as tubelets. By simulating different tubelet motions and applying transformations, such as scaling and rotation, we introduce motion patterns beyond what is present in the pretraining data. This allows us to learn a video representation that is remarkably data-efficient: our approach maintains performance when using only 25% of the pretraining videos. Experiments on 10 diverse downstream settings demonstrate our competitive performance and generalizability to new domains and fine-grained actions.
E-ViLM: Efficient Video-Language Model via Masked Video Modeling with Semantic Vector-Quantized Tokenizer
To build scalable models for challenging real-world tasks, it is important to learn from diverse, multi-modal data in various forms (e.g., videos, text, and images). Among the existing works, a plethora of them have focused on leveraging large but cumbersome cross-modal architectures. Regardless of their effectiveness, larger architectures unavoidably prevent the models from being extended to real-world applications, so building a lightweight VL architecture and an efficient learning schema is of great practical value. In this paper, we propose an Efficient Video-Language Model (dubbed as E-ViLM) and a masked video modeling (MVM) schema, assisted with a semantic vector-quantized tokenizer. In particular, our E-ViLM learns to reconstruct the semantic labels of masked video regions, produced by the pre-trained vector-quantized tokenizer, which discretizes the continuous visual signals into labels. We show that with our simple MVM task and regular VL pre-training modelings, our E-ViLM, despite its compactness, is able to learn expressive representations from Video-Language corpus and generalize well to extensive Video-Language tasks including video question answering, text-to-video retrieval, etc. In particular, our E-ViLM obtains obvious efficiency improvements by reaching competing performances with faster inference speed, i.e., our model reaches 39.3% Top-1 accuracy on the MSRVTT benchmark, retaining 91.4% of the accuracy of state-of-the-art larger VL architecture with only 15% parameters and 94.8% fewer GFLOPs. We also provide extensive ablative studies that validate the effectiveness of our proposed learning schema for E-ViLM.
ViSMaP: Unsupervised Hour-long Video Summarisation by Meta-Prompting
We introduce ViSMap: Unsupervised Video Summarisation by Meta Prompting, a system to summarise hour long videos with no-supervision. Most existing video understanding models work well on short videos of pre-segmented events, yet they struggle to summarise longer videos where relevant events are sparsely distributed and not pre-segmented. Moreover, long-form video understanding often relies on supervised hierarchical training that needs extensive annotations which are costly, slow and prone to inconsistency. With ViSMaP we bridge the gap between short videos (where annotated data is plentiful) and long ones (where it's not). We rely on LLMs to create optimised pseudo-summaries of long videos using segment descriptions from short ones. These pseudo-summaries are used as training data for a model that generates long-form video summaries, bypassing the need for expensive annotations of long videos. Specifically, we adopt a meta-prompting strategy to iteratively generate and refine creating pseudo-summaries of long videos. The strategy leverages short clip descriptions obtained from a supervised short video model to guide the summary. Each iteration uses three LLMs working in sequence: one to generate the pseudo-summary from clip descriptions, another to evaluate it, and a third to optimise the prompt of the generator. This iteration is necessary because the quality of the pseudo-summaries is highly dependent on the generator prompt, and varies widely among videos. We evaluate our summaries extensively on multiple datasets; our results show that ViSMaP achieves performance comparable to fully supervised state-of-the-art models while generalising across domains without sacrificing performance. Code will be released upon publication.
Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos
Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
Dynamic-VLM: Simple Dynamic Visual Token Compression for VideoLLM
The application of Large Vision-Language Models (LVLMs) for analyzing images and videos is an exciting and rapidly evolving field. In recent years, we've seen significant growth in high-quality image-text datasets for fine-tuning image understanding, but there is still a lack of comparable datasets for videos. Additionally, many VideoLLMs are extensions of single-image VLMs, which may not efficiently handle the complexities of longer videos. In this study, we introduce a large-scale synthetic dataset created from proprietary models, using carefully designed prompts to tackle a wide range of questions. We also explore a dynamic visual token compression architecture that strikes a balance between computational efficiency and performance. Our proposed achieves state-of-the-art results across various video tasks and shows impressive generalization, setting new baselines in multi-image understanding. Notably, delivers an absolute improvement of 2.7\% over LLaVA-OneVision on VideoMME and 10.7\% on MuirBench. Codes are available at https://github.com/Hon-Wong/ByteVideoLLM
HowToCaption: Prompting LLMs to Transform Video Annotations at Scale
Instructional videos are an excellent source for learning multimodal representations by leveraging video-subtitle pairs extracted with automatic speech recognition systems (ASR) from the audio signal in the videos. However, in contrast to human-annotated captions, both speech and subtitles naturally differ from the visual content of the videos and thus provide only noisy supervision for multimodal learning. As a result, large-scale annotation-free web video training data remains sub-optimal for training text-video models. In this work, we propose to leverage the capability of large language models (LLMs) to obtain fine-grained video descriptions aligned with videos. Specifically, we prompt an LLM to create plausible video descriptions based on ASR narrations of the video for a large-scale instructional video dataset. To this end, we introduce a prompting method that is able to take into account a longer text of subtitles, allowing us to capture context beyond a single sentence. To align the captions to the video temporally, we prompt the LLM to generate timestamps for each produced caption based on the subtitles. In this way, we obtain human-style video captions at scale without human supervision. We apply our method to the subtitles of the HowTo100M dataset, creating a new large-scale dataset, HowToCaption. Our evaluation shows that the resulting captions not only significantly improve the performance over many different benchmark datasets for text-video retrieval but also lead to a disentangling of textual narration from the audio, boosting performance in text-video-audio tasks.
RzenEmbed: Towards Comprehensive Multimodal Retrieval
The rapid advancement of Multimodal Large Language Models (MLLMs) has extended CLIP-based frameworks to produce powerful, universal embeddings for retrieval tasks. However, existing methods primarily focus on natural images, offering limited support for other crucial visual modalities such as videos and visual documents. To bridge this gap, we introduce RzenEmbed, a unified framework to learn embeddings across a diverse set of modalities, including text, images, videos, and visual documents. We employ a novel two-stage training strategy to learn discriminative representations. The first stage focuses on foundational text and multimodal retrieval. In the second stage, we introduce an improved InfoNCE loss, incorporating two key enhancements. Firstly, a hardness-weighted mechanism guides the model to prioritize challenging samples by assigning them higher weights within each batch. Secondly, we implement an approach to mitigate the impact of false negatives and alleviate data noise. This strategy not only enhances the model's discriminative power but also improves its instruction-following capabilities. We further boost performance with learnable temperature parameter and model souping. RzenEmbed sets a new state-of-the-art on the MMEB benchmark. It not only achieves the best overall score but also outperforms all prior work on the challenging video and visual document retrieval tasks. Our models are available in https://huggingface.co/qihoo360/RzenEmbed.
Distilling Vision-Language Models on Millions of Videos
The recent advance in vision-language models is largely attributed to the abundance of image-text data. We aim to replicate this success for video-language models, but there simply is not enough human-curated video-text data available. We thus resort to fine-tuning a video-language model from a strong image-language baseline with synthesized instructional data. The resulting video-language model is then used to auto-label millions of videos to generate high-quality captions. We show the adapted video-language model performs well on a wide range of video-language benchmarks. For instance, it surpasses the best prior result on open-ended NExT-QA by 2.8%. Besides, our model generates detailed descriptions for previously unseen videos, which provide better textual supervision than existing methods. Experiments show that a video-language dual-encoder model contrastively trained on these auto-generated captions is 3.8% better than the strongest baseline that also leverages vision-language models. Our best model outperforms state-of-the-art methods on MSR-VTT zero-shot text-to-video retrieval by 6%.
Harvest Video Foundation Models via Efficient Post-Pretraining
Building video-language foundation models is costly and difficult due to the redundant nature of video data and the lack of high-quality video-language datasets. In this paper, we propose an efficient framework to harvest video foundation models from image ones. Our method is intuitively simple by randomly dropping input video patches and masking out input text during the post-pretraining procedure. The patch dropping boosts the training efficiency significantly and text masking enforces the learning of cross-modal fusion. We conduct extensive experiments to validate the effectiveness of our method on a wide range of video-language downstream tasks including various zero-shot tasks, video question answering, and video-text retrieval. Despite its simplicity, our method achieves state-of-the-art performances, which are comparable to some heavily pretrained video foundation models. Our method is extremely efficient and can be trained in less than one day on 8 GPUs, requiring only WebVid-10M as pretraining data. We hope our method can serve as a simple yet strong counterpart for prevalent video foundation models, provide useful insights when building them, and make large pretrained models more accessible and sustainable. This is part of the InternVideo project https://github.com/OpenGVLab/InternVideo.
Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models
We present an efficient encoder-free approach for video-language understanding that achieves competitive performance while significantly reducing computational overhead. Current video-language models typically rely on heavyweight image encoders (300M-1.1B parameters) or video encoders (1B-1.4B parameters), creating a substantial computational burden when processing multi-frame videos. Our method introduces a novel Spatio-Temporal Alignment Block (STAB) that directly processes video inputs without requiring pre-trained encoders while using only 45M parameters for visual processing - at least a 6.5times reduction compared to traditional approaches. The STAB architecture combines Local Spatio-Temporal Encoding for fine-grained feature extraction, efficient spatial downsampling through learned attention and separate mechanisms for modeling frame-level and video-level relationships. Our model achieves comparable or superior performance to encoder-based approaches for open-ended video question answering on standard benchmarks. The fine-grained video question-answering evaluation demonstrates our model's effectiveness, outperforming the encoder-based approaches Video-ChatGPT and Video-LLaVA in key aspects like correctness and temporal understanding. Extensive ablation studies validate our architectural choices and demonstrate the effectiveness of our spatio-temporal modeling approach while achieving 3-4times faster processing speeds than previous methods. Code is available at https://github.com/jh-yi/Video-Panda.
ShareGPT4Video: Improving Video Understanding and Generation with Better Captions
We present the ShareGPT4Video series, aiming to facilitate the video understanding of large video-language models (LVLMs) and the video generation of text-to-video models (T2VMs) via dense and precise captions. The series comprises: 1) ShareGPT4Video, 40K GPT4V annotated dense captions of videos with various lengths and sources, developed through carefully designed data filtering and annotating strategy. 2) ShareCaptioner-Video, an efficient and capable captioning model for arbitrary videos, with 4.8M high-quality aesthetic videos annotated by it. 3) ShareGPT4Video-8B, a simple yet superb LVLM that reached SOTA performance on three advancing video benchmarks. To achieve this, taking aside the non-scalable costly human annotators, we find using GPT4V to caption video with a naive multi-frame or frame-concatenation input strategy leads to less detailed and sometimes temporal-confused results. We argue the challenge of designing a high-quality video captioning strategy lies in three aspects: 1) Inter-frame precise temporal change understanding. 2) Intra-frame detailed content description. 3) Frame-number scalability for arbitrary-length videos. To this end, we meticulously designed a differential video captioning strategy, which is stable, scalable, and efficient for generating captions for videos with arbitrary resolution, aspect ratios, and length. Based on it, we construct ShareGPT4Video, which contains 40K high-quality videos spanning a wide range of categories, and the resulting captions encompass rich world knowledge, object attributes, camera movements, and crucially, detailed and precise temporal descriptions of events. Based on ShareGPT4Video, we further develop ShareCaptioner-Video, a superior captioner capable of efficiently generating high-quality captions for arbitrary videos...
VideoOrion: Tokenizing Object Dynamics in Videos
We present VideoOrion, a Video Large Language Model (Video-LLM) that explicitly captures the key semantic information in videos--the spatial-temporal dynamics of objects throughout the videos. VideoOrion employs expert vision models to extract object dynamics through a detect-segment-track pipeline, encoding them into a set of object tokens by aggregating spatial-temporal object features. Our method addresses the persistent challenge in Video-LLMs of efficiently compressing high-dimensional video data into semantic tokens that are comprehensible to LLMs. Compared to prior methods which resort to downsampling the original video or aggregating visual tokens using resamplers, leading to information loss and entangled semantics, VideoOrion not only offers a more natural and efficient way to derive compact, disentangled semantic representations but also enables explicit object modeling of video content with minimal computational cost. Moreover, the introduced object tokens naturally allow VideoOrion to accomplish video-based referring tasks. Experimental results show that VideoOrion can learn to make good use of the object tokens, and achieves competitive results on both general video question answering and video-based referring benchmarks.
LLM4VG: Large Language Models Evaluation for Video Grounding
Recently, researchers have attempted to investigate the capability of LLMs in handling videos and proposed several video LLM models. However, the ability of LLMs to handle video grounding (VG), which is an important time-related video task requiring the model to precisely locate the start and end timestamps of temporal moments in videos that match the given textual queries, still remains unclear and unexplored in literature. To fill the gap, in this paper, we propose the LLM4VG benchmark, which systematically evaluates the performance of different LLMs on video grounding tasks. Based on our proposed LLM4VG, we design extensive experiments to examine two groups of video LLM models on video grounding: (i) the video LLMs trained on the text-video pairs (denoted as VidLLM), and (ii) the LLMs combined with pretrained visual description models such as the video/image captioning model. We propose prompt methods to integrate the instruction of VG and description from different kinds of generators, including caption-based generators for direct visual description and VQA-based generators for information enhancement. We also provide comprehensive comparisons of various VidLLMs and explore the influence of different choices of visual models, LLMs, prompt designs, etc, as well. Our experimental evaluations lead to two conclusions: (i) the existing VidLLMs are still far away from achieving satisfactory video grounding performance, and more time-related video tasks should be included to further fine-tune these models, and (ii) the combination of LLMs and visual models shows preliminary abilities for video grounding with considerable potential for improvement by resorting to more reliable models and further guidance of prompt instructions.
Expanding Language-Image Pretrained Models for General Video Recognition
Contrastive language-image pretraining has shown great success in learning visual-textual joint representation from web-scale data, demonstrating remarkable "zero-shot" generalization ability for various image tasks. However, how to effectively expand such new language-image pretraining methods to video domains is still an open problem. In this work, we present a simple yet effective approach that adapts the pretrained language-image models to video recognition directly, instead of pretraining a new model from scratch. More concretely, to capture the long-range dependencies of frames along the temporal dimension, we propose a cross-frame attention mechanism that explicitly exchanges information across frames. Such module is lightweight and can be plugged into pretrained language-image models seamlessly. Moreover, we propose a video-specific prompting scheme, which leverages video content information for generating discriminative textual prompts. Extensive experiments demonstrate that our approach is effective and can be generalized to different video recognition scenarios. In particular, under fully-supervised settings, our approach achieves a top-1 accuracy of 87.1% on Kinectics-400, while using 12 times fewer FLOPs compared with Swin-L and ViViT-H. In zero-shot experiments, our approach surpasses the current state-of-the-art methods by +7.6% and +14.9% in terms of top-1 accuracy under two popular protocols. In few-shot scenarios, our approach outperforms previous best methods by +32.1% and +23.1% when the labeled data is extremely limited. Code and models are available at https://aka.ms/X-CLIP
CLIP2Video: Mastering Video-Text Retrieval via Image CLIP
We present CLIP2Video network to transfer the image-language pre-training model to video-text retrieval in an end-to-end manner. Leading approaches in the domain of video-and-language learning try to distill the spatio-temporal video features and multi-modal interaction between videos and languages from a large-scale video-text dataset. Different from them, we leverage pretrained image-language model, simplify it as a two-stage framework with co-learning of image-text and enhancing temporal relations between video frames and video-text respectively, make it able to train on comparatively small datasets. Specifically, based on the spatial semantics captured by Contrastive Language-Image Pretraining (CLIP) model, our model involves a Temporal Difference Block to capture motions at fine temporal video frames, and a Temporal Alignment Block to re-align the tokens of video clips and phrases and enhance the multi-modal correlation. We conduct thorough ablation studies, and achieve state-of-the-art performance on major text-to-video and video-to-text retrieval benchmarks, including new records of retrieval accuracy on MSR-VTT, MSVD and VATEX.
Generative Pretraining in Multimodality
We present Emu, a Transformer-based multimodal foundation model, which can seamlessly generate images and texts in multimodal context. This omnivore model can take in any single-modality or multimodal data input indiscriminately (e.g., interleaved image, text and video) through a one-model-for-all autoregressive training process. First, visual signals are encoded into embeddings, and together with text tokens form an interleaved input sequence. Emu is then end-to-end trained with a unified objective of classifying the next text token or regressing the next visual embedding in the multimodal sequence. This versatile multimodality empowers the exploration of diverse pretraining data sources at scale, such as videos with interleaved frames and text, webpages with interleaved images and text, as well as web-scale image-text pairs and video-text pairs. Emu can serve as a generalist multimodal interface for both image-to-text and text-to-image tasks, and supports in-context image and text generation. Across a broad range of zero-shot/few-shot tasks including image captioning, visual question answering, video question answering and text-to-image generation, Emu demonstrates superb performance compared to state-of-the-art large multimodal models. Extended capabilities such as multimodal assistants via instruction tuning are also demonstrated with impressive performance.
Needle In A Video Haystack: A Scalable Synthetic Framework for Benchmarking Video MLLMs
Video understanding is a crucial next step for multimodal large language models (MLLMs). To probe specific aspects of video understanding ability, existing video benchmarks typically require careful video selection based on the target capability, along with laborious annotation of query-response pairs to match the specific video content. This process is both challenging and resource-intensive. In this paper, we propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation. VideoNIAH decouples test video content from their query-responses by inserting unrelated image/text 'needles' into original videos. It generates annotations solely from these needles, ensuring diversity in video sources and a variety of query-responses. Additionally, by inserting multiple needles, VideoNIAH rigorously evaluates the temporal understanding capabilities of models. We utilized VideoNIAH to compile a video benchmark VNBench, including tasks such as retrieval, ordering, and counting. VNBench can efficiently evaluate the fine-grained understanding ability and spatio-temporal modeling ability of a video model, while also supporting the long-context evaluation. Additionally, we evaluated recent video-centric multimodal large language models (MLLMs), both open-source and proprietary, providing a comprehensive analysis. We found that although proprietary models have significant advantages over open-source models, all existing video models still perform poorly on long-distance dependency tasks. VideoNIAH is a simple yet highly scalable benchmark construction framework, and we believe it will inspire future video benchmark works. The code and data are available at https://github.com/joez17/VideoNIAH.
Beyond Simple Edits: Composed Video Retrieval with Dense Modifications
Composed video retrieval is a challenging task that strives to retrieve a target video based on a query video and a textual description detailing specific modifications. Standard retrieval frameworks typically struggle to handle the complexity of fine-grained compositional queries and variations in temporal understanding limiting their retrieval ability in the fine-grained setting. To address this issue, we introduce a novel dataset that captures both fine-grained and composed actions across diverse video segments, enabling more detailed compositional changes in retrieved video content. The proposed dataset, named Dense-WebVid-CoVR, consists of 1.6 million samples with dense modification text that is around seven times more than its existing counterpart. We further develop a new model that integrates visual and textual information through Cross-Attention (CA) fusion using grounded text encoder, enabling precise alignment between dense query modifications and target videos. The proposed model achieves state-of-the-art results surpassing existing methods on all metrics. Notably, it achieves 71.3\% Recall@1 in visual+text setting and outperforms the state-of-the-art by 3.4\%, highlighting its efficacy in terms of leveraging detailed video descriptions and dense modification texts. Our proposed dataset, code, and model are available at :https://github.com/OmkarThawakar/BSE-CoVR
Preacher: Paper-to-Video Agentic System
The paper-to-video task converts a research paper into a structured video abstract, distilling key concepts, methods, and conclusions into an accessible, well-organized format. While state-of-the-art video generation models demonstrate potential, they are constrained by limited context windows, rigid video duration constraints, limited stylistic diversity, and an inability to represent domain-specific knowledge. To address these limitations, we introduce Preacher, the first paper-to-video agentic system. Preacher employs a topdown approach to decompose, summarize, and reformulate the paper, followed by bottom-up video generation, synthesizing diverse video segments into a coherent abstract. To align cross-modal representations, we define key scenes and introduce a Progressive Chain of Thought (P-CoT) for granular, iterative planning. Preacher successfully generates high-quality video abstracts across five research fields, demonstrating expertise beyond current video generation models. Code will be released at: https://github.com/GenVerse/Paper2Video
Spatio-Temporal Crop Aggregation for Video Representation Learning
We propose Spatio-temporal Crop Aggregation for video representation LEarning (SCALE), a novel method that enjoys high scalability at both training and inference time. Our model builds long-range video features by learning from sets of video clip-level features extracted with a pre-trained backbone. To train the model, we propose a self-supervised objective consisting of masked clip feature prediction. We apply sparsity to both the input, by extracting a random set of video clips, and to the loss function, by only reconstructing the sparse inputs. Moreover, we use dimensionality reduction by working in the latent space of a pre-trained backbone applied to single video clips. These techniques make our method not only extremely efficient to train but also highly effective in transfer learning. We demonstrate that our video representation yields state-of-the-art performance with linear, non-linear, and KNN probing on common action classification and video understanding datasets.
LV-MAE: Learning Long Video Representations through Masked-Embedding Autoencoders
In this work, we introduce long-video masked-embedding autoencoders (LV-MAE), a self-supervised learning framework for long video representation. Our approach treats short- and long-span dependencies as two separate tasks. Such decoupling allows for a more intuitive video processing where short-span spatiotemporal primitives are first encoded and are then used to capture long-range dependencies across consecutive video segments. To achieve this, we leverage advanced off-the-shelf multimodal encoders to extract representations from short segments within the long video, followed by pre-training a masked-embedding autoencoder capturing high-level interactions across segments. LV-MAE is highly efficient to train and enables the processing of much longer videos by alleviating the constraint on the number of input frames. Furthermore, unlike existing methods that typically pre-train on short-video datasets, our approach offers self-supervised pre-training using long video samples (e.g., 20+ minutes video clips) at scale. Using LV-MAE representations, we achieve state-of-the-art results on three long-video benchmarks -- LVU, COIN, and Breakfast -- employing only a simple classification head for either attentive or linear probing. Finally, to assess LV-MAE pre-training and visualize its reconstruction quality, we leverage the video-language aligned space of short video representations to monitor LV-MAE through video-text retrieval.
Structured Video-Language Modeling with Temporal Grouping and Spatial Grounding
Existing video-language pre-training methods primarily focus on instance-level alignment between video clips and captions via global contrastive learning but neglect rich fine-grained local information in both videos and text, which is of importance to downstream tasks requiring temporal localization and semantic reasoning. A powerful model is expected to be capable of capturing region-object correspondences and recognizing scene changes in a video clip, reflecting spatial and temporal granularity, respectively. To strengthen model's understanding into such fine-grained details, we propose a simple yet effective video-language modeling framework, S-ViLM, by exploiting the intrinsic structures of these two modalities. It includes two novel designs, inter-clip spatial grounding and intra-clip temporal grouping, to promote learning region-object alignment and temporal-aware features, simultaneously. Comprehensive evaluations demonstrate that S-ViLM performs favorably against existing approaches in learning more expressive representations. Specifically, S-ViLM surpasses the state-of-the-art methods substantially on four representative downstream tasks, covering text-video retrieval, video question answering, video action recognition, and temporal action localization.
Fewer Tokens and Fewer Videos: Extending Video Understanding Abilities in Large Vision-Language Models
Amidst the advancements in image-based Large Vision-Language Models (image-LVLM), the transition to video-based models (video-LVLM) is hindered by the limited availability of quality video data. This paper addresses the challenge by leveraging the visual commonalities between images and videos to efficiently evolve image-LVLMs into video-LVLMs. We present a cost-effective video-LVLM that enhances model architecture, introduces innovative training strategies, and identifies the most effective types of video instruction data. Our innovative weighted token sampler significantly compresses the visual token numbers of each video frame, effectively cutting computational expenses. We also find that judiciously using just 10% of the video data, compared to prior video-LVLMs, yields impressive results during various training phases. Moreover, we delve into the influence of video instruction data in limited-resource settings, highlighting the significance of incorporating video training data that emphasizes temporal understanding to enhance model performance. The resulting Fewer Tokens and Fewer Videos LVLM (FTFV-LVLM) exhibits exceptional performance across video and image benchmarks, validating our model's design and training approaches.
X-CoT: Explainable Text-to-Video Retrieval via LLM-based Chain-of-Thought Reasoning
Prevalent text-to-video retrieval systems mainly adopt embedding models for feature extraction and compute cosine similarities for ranking. However, this design presents two limitations. Low-quality text-video data pairs could compromise the retrieval, yet are hard to identify and examine. Cosine similarity alone provides no explanation for the ranking results, limiting the interpretability. We ask that can we interpret the ranking results, so as to assess the retrieval models and examine the text-video data? This work proposes X-CoT, an explainable retrieval framework upon LLM CoT reasoning in place of the embedding model-based similarity ranking. We first expand the existing benchmarks with additional video annotations to support semantic understanding and reduce data bias. We also devise a retrieval CoT consisting of pairwise comparison steps, yielding detailed reasoning and complete ranking. X-CoT empirically improves the retrieval performance and produces detailed rationales. It also facilitates the model behavior and data quality analysis. Code and data are available at: https://github.com/PrasannaPulakurthi/X-CoT.
T2Vid: Translating Long Text into Multi-Image is the Catalyst for Video-LLMs
The success of Multimodal Large Language Models (MLLMs) in the image domain has garnered wide attention from the research community. Drawing on previous successful experiences, researchers have recently explored extending the success to the video understanding realms. Apart from training from scratch, an efficient way is to utilize the pre-trained image-LLMs, leading to two mainstream approaches, i.e. zero-shot inference and further fine-tuning with video data. In this work, our study of these approaches harvests an effective data augmentation method. We first make a deeper inspection of the zero-shot inference way and identify two limitations, i.e. limited generalization and lack of temporal understanding capabilities. Thus, we further investigate the fine-tuning approach and find a low learning efficiency when simply using all the video data samples, which can be attributed to a lack of instruction diversity. Aiming at this issue, we develop a method called T2Vid to synthesize video-like samples to enrich the instruction diversity in the training corpus. Integrating these data enables a simple and efficient training scheme, which achieves performance comparable to or even superior to using full video datasets by training with just 15% the sample size. Meanwhile, we find that the proposed scheme can boost the performance of long video understanding without training with long video samples. We hope our study will spark more thinking about using MLLMs for video understanding and curation of high-quality data. The code is released at https://github.com/xjtupanda/T2Vid.
FitCLIP: Refining Large-Scale Pretrained Image-Text Models for Zero-Shot Video Understanding Tasks
Large-scale pretrained image-text models have shown incredible zero-shot performance in a handful of tasks, including video ones such as action recognition and text-to-video retrieval. However, these models have not been adapted to video, mainly because they do not account for the time dimension but also because video frames are different from the typical images (e.g., containing motion blur, and less sharpness). In this paper, we present a fine-tuning strategy to refine these large-scale pretrained image-text models for zero-shot video understanding tasks. We show that by carefully adapting these models we obtain considerable improvements on two zero-shot Action Recognition tasks and three zero-shot Text-to-video Retrieval tasks. The code is available at https://github.com/bryant1410/fitclip
VideoICL: Confidence-based Iterative In-context Learning for Out-of-Distribution Video Understanding
Recent advancements in video large multimodal models (LMMs) have significantly improved their video understanding and reasoning capabilities. However, their performance drops on out-of-distribution (OOD) tasks that are underrepresented in training data. Traditional methods like fine-tuning on OOD datasets are impractical due to high computational costs. While In-context learning (ICL) with demonstration examples has shown promising generalization performance in language tasks and image-language tasks without fine-tuning, applying ICL to video-language tasks faces challenges due to the limited context length in Video LMMs, as videos require longer token lengths. To address these issues, we propose VideoICL, a novel video in-context learning framework for OOD tasks that introduces a similarity-based relevant example selection strategy and a confidence-based iterative inference approach. This allows to select the most relevant examples and rank them based on similarity, to be used for inference. If the generated response has low confidence, our framework selects new examples and performs inference again, iteratively refining the results until a high-confidence response is obtained. This approach improves OOD video understanding performance by extending effective context length without incurring high costs. The experimental results on multiple benchmarks demonstrate significant performance gains, especially in domain-specific scenarios, laying the groundwork for broader video comprehension applications. Code will be released at https://github.com/KangsanKim07/VideoICL
Exploring Pre-trained Text-to-Video Diffusion Models for Referring Video Object Segmentation
In this paper, we explore the visual representations produced from a pre-trained text-to-video (T2V) diffusion model for video understanding tasks. We hypothesize that the latent representation learned from a pretrained generative T2V model encapsulates rich semantics and coherent temporal correspondences, thereby naturally facilitating video understanding. Our hypothesis is validated through the classic referring video object segmentation (R-VOS) task. We introduce a novel framework, termed "VD-IT", tailored with dedicatedly designed components built upon a fixed pretrained T2V model. Specifically, VD-IT uses textual information as a conditional input, ensuring semantic consistency across time for precise temporal instance matching. It further incorporates image tokens as supplementary textual inputs, enriching the feature set to generate detailed and nuanced masks. Besides, instead of using the standard Gaussian noise, we propose to predict the video-specific noise with an extra noise prediction module, which can help preserve the feature fidelity and elevates segmentation quality. Through extensive experiments, we surprisingly observe that fixed generative T2V diffusion models, unlike commonly used video backbones (e.g., Video Swin Transformer) pretrained with discriminative image/video pre-tasks, exhibit better potential to maintain semantic alignment and temporal consistency. On existing standard benchmarks, our VD-IT achieves highly competitive results, surpassing many existing state-of-the-art methods. The code is available at https://github.com/buxiangzhiren/VD-IT.
Video In-context Learning
In-context learning for vision data has been underexplored compared with that in natural language. Previous works studied image in-context learning, urging models to generate a single image guided by demonstrations. In this paper, we propose and study video in-context learning, where the model starts from an existing video clip and generates diverse potential future sequences, each semantically guided by the prompted video demonstrations. To achieve this, we provide a clear definition of the task, and train an autoregressive Transformer on video datasets. We thoroughly analyze the effect of different datasets and represent frames as discrete tokens, and then model them by next token predictions. We design various evaluation metrics, including both objective and subjective measures, to demonstrate the visual quality and semantic accuracy of generation results. Our model follows the scaling law and generates high-quality video clips that accurately align with the semantic guidance provided by in-context examples.
SIGMA: Sinkhorn-Guided Masked Video Modeling
Video-based pretraining offers immense potential for learning strong visual representations on an unprecedented scale. Recently, masked video modeling methods have shown promising scalability, yet fall short in capturing higher-level semantics due to reconstructing predefined low-level targets such as pixels. To tackle this, we present Sinkhorn-guided Masked Video Modelling (SIGMA), a novel video pretraining method that jointly learns the video model in addition to a target feature space using a projection network. However, this simple modification means that the regular L2 reconstruction loss will lead to trivial solutions as both networks are jointly optimized. As a solution, we distribute features of space-time tubes evenly across a limited number of learnable clusters. By posing this as an optimal transport problem, we enforce high entropy in the generated features across the batch, infusing semantic and temporal meaning into the feature space. The resulting cluster assignments are used as targets for a symmetric prediction task where the video model predicts cluster assignment of the projection network and vice versa. Experimental results on ten datasets across three benchmarks validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations improving upon state-of-the-art methods. Our project website with code is available at: https://quva-lab.github.io/SIGMA.
Cycle-Contrast for Self-Supervised Video Representation Learning
We present Cycle-Contrastive Learning (CCL), a novel self-supervised method for learning video representation. Following a nature that there is a belong and inclusion relation of video and its frames, CCL is designed to find correspondences across frames and videos considering the contrastive representation in their domains respectively. It is different from recent approaches that merely learn correspondences across frames or clips. In our method, the frame and video representations are learned from a single network based on an R3D architecture, with a shared non-linear transformation for embedding both frame and video features before the cycle-contrastive loss. We demonstrate that the video representation learned by CCL can be transferred well to downstream tasks of video understanding, outperforming previous methods in nearest neighbour retrieval and action recognition tasks on UCF101, HMDB51 and MMAct.
Learning Video Representations from Large Language Models
We introduce LaViLa, a new approach to learning video-language representations by leveraging Large Language Models (LLMs). We repurpose pre-trained LLMs to be conditioned on visual input, and finetune them to create automatic video narrators. Our auto-generated narrations offer a number of advantages, including dense coverage of long videos, better temporal synchronization of the visual information and text, and much higher diversity of text. The video-text embedding learned contrastively with these additional auto-generated narrations outperforms the previous state-of-the-art on multiple first-person and third-person video tasks, both in zero-shot and finetuned setups. Most notably, LaViLa obtains an absolute gain of 10.1% on EGTEA classification and 5.9% Epic-Kitchens-100 multi-instance retrieval benchmarks. Furthermore, LaViLa trained with only half the narrations from the Ego4D dataset outperforms baseline models trained on the full set, and shows positive scaling behavior on increasing pre-training data and model size.
xGen-MM-Vid (BLIP-3-Video): You Only Need 32 Tokens to Represent a Video Even in VLMs
We present xGen-MM-Vid (BLIP-3-Video): a multimodal language model for videos, particularly designed to efficiently capture temporal information over multiple frames. BLIP-3-Video takes advantage of the 'temporal encoder' in addition to the conventional visual tokenizer, which maps a sequence of tokens over multiple frames into a compact set of visual tokens. This enables BLIP3-Video to use much fewer visual tokens than its competing models (e.g., 32 vs. 4608 tokens). We explore different types of temporal encoders, including learnable spatio-temporal pooling as well as sequential models like Token Turing Machines. We experimentally confirm that BLIP-3-Video obtains video question-answering accuracies comparable to much larger state-of-the-art models (e.g., 34B), while being much smaller (i.e., 4B) and more efficient by using fewer visual tokens. The project website is at https://www.salesforceairesearch.com/opensource/xGen-MM-Vid/index.html
Understanding Video Transformers via Universal Concept Discovery
This paper studies the problem of concept-based interpretability of transformer representations for videos. Concretely, we seek to explain the decision-making process of video transformers based on high-level, spatiotemporal concepts that are automatically discovered. Prior research on concept-based interpretability has concentrated solely on image-level tasks. Comparatively, video models deal with the added temporal dimension, increasing complexity and posing challenges in identifying dynamic concepts over time. In this work, we systematically address these challenges by introducing the first Video Transformer Concept Discovery (VTCD) algorithm. To this end, we propose an efficient approach for unsupervised identification of units of video transformer representations - concepts, and ranking their importance to the output of a model. The resulting concepts are highly interpretable, revealing spatio-temporal reasoning mechanisms and object-centric representations in unstructured video models. Performing this analysis jointly over a diverse set of supervised and self-supervised representations, we discover that some of these mechanism are universal in video transformers. Finally, we demonstrate that VTCDcan be used to improve model performance for fine-grained tasks.
Video Representation Learning by Recognizing Temporal Transformations
We introduce a novel self-supervised learning approach to learn representations of videos that are responsive to changes in the motion dynamics. Our representations can be learned from data without human annotation and provide a substantial boost to the training of neural networks on small labeled data sets for tasks such as action recognition, which require to accurately distinguish the motion of objects. We promote an accurate learning of motion without human annotation by training a neural network to discriminate a video sequence from its temporally transformed versions. To learn to distinguish non-trivial motions, the design of the transformations is based on two principles: 1) To define clusters of motions based on time warps of different magnitude; 2) To ensure that the discrimination is feasible only by observing and analyzing as many image frames as possible. Thus, we introduce the following transformations: forward-backward playback, random frame skipping, and uniform frame skipping. Our experiments show that networks trained with the proposed method yield representations with improved transfer performance for action recognition on UCF101 and HMDB51.
