Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeDeviation Dynamics in Cardinal Hedonic Games
Computing stable partitions in hedonic games is a challenging task because there exist games in which stable outcomes do not exist. Even more, these No-instances can often be leveraged to prove computational hardness results. We make this impression rigorous in a dynamic model of cardinal hedonic games by providing meta theorems. These imply hardness of deciding about the possible or necessary convergence of deviation dynamics based on the mere existence of No-instances. Our results hold for additively separable, fractional, and modified fractional hedonic games (ASHGs, FHGs, and MFHGs). Moreover, they encompass essentially all reasonable stability notions based on single-agent deviations. In addition, we propose dynamics as a method to find individually rational and contractually individual stable (CIS) partitions in ASHGs. In particular, we find that CIS dynamics from the singleton partition possibly converge after a linear number of deviations but may require an exponential number of deviations in the worst case.
Policy Mirror Ascent for Efficient and Independent Learning in Mean Field Games
Mean-field games have been used as a theoretical tool to obtain an approximate Nash equilibrium for symmetric and anonymous N-player games. However, limiting applicability, existing theoretical results assume variations of a "population generative model", which allows arbitrary modifications of the population distribution by the learning algorithm. Moreover, learning algorithms typically work on abstract simulators with population instead of the N-player game. Instead, we show that N agents running policy mirror ascent converge to the Nash equilibrium of the regularized game within mathcal{O}(varepsilon^{-2}) samples from a single sample trajectory without a population generative model, up to a standard O(1{N}) error due to the mean field. Taking a divergent approach from the literature, instead of working with the best-response map we first show that a policy mirror ascent map can be used to construct a contractive operator having the Nash equilibrium as its fixed point. We analyze single-path TD learning for N-agent games, proving sample complexity guarantees by only using a sample path from the N-agent simulator without a population generative model. Furthermore, we demonstrate that our methodology allows for independent learning by N agents with finite sample guarantees.
Distance Preservation Games
We introduce and analyze distance preservation games (DPGs). In DPGs, agents express ideal distances to other agents and need to choose locations in the unit interval while preserving their ideal distances as closely as possible. We analyze the existence and computation of location profiles that are jump stable (i.e., no agent can benefit by moving to another location) or welfare optimal for DPGs, respectively. Specifically, we prove that there are DPGs without jump stable location profiles and identify important cases where such outcomes always exist and can be computed efficiently. Similarly, we show that finding welfare optimal location profiles is NP-complete and present approximation algorithms for finding solutions with social welfare close to optimal. Finally, we prove that DPGs have a price of anarchy of at most 2.
Are Equivariant Equilibrium Approximators Beneficial?
Recently, remarkable progress has been made by approximating Nash equilibrium (NE), correlated equilibrium (CE), and coarse correlated equilibrium (CCE) through function approximation that trains a neural network to predict equilibria from game representations. Furthermore, equivariant architectures are widely adopted in designing such equilibrium approximators in normal-form games. In this paper, we theoretically characterize benefits and limitations of equivariant equilibrium approximators. For the benefits, we show that they enjoy better generalizability than general ones and can achieve better approximations when the payoff distribution is permutation-invariant. For the limitations, we discuss their drawbacks in terms of equilibrium selection and social welfare. Together, our results help to understand the role of equivariance in equilibrium approximators.
Generative Adversarial Equilibrium Solvers
We introduce the use of generative adversarial learning to compute equilibria in general game-theoretic settings, specifically the generalized Nash equilibrium (GNE) in pseudo-games, and its specific instantiation as the competitive equilibrium (CE) in Arrow-Debreu competitive economies. Pseudo-games are a generalization of games in which players' actions affect not only the payoffs of other players but also their feasible action spaces. Although the computation of GNE and CE is intractable in the worst-case, i.e., PPAD-hard, in practice, many applications only require solutions with high accuracy in expectation over a distribution of problem instances. We introduce Generative Adversarial Equilibrium Solvers (GAES): a family of generative adversarial neural networks that can learn GNE and CE from only a sample of problem instances. We provide computational and sample complexity bounds, and apply the framework to finding Nash equilibria in normal-form games, CE in Arrow-Debreu competitive economies, and GNE in an environmental economic model of the Kyoto mechanism.
A Black-box Approach for Non-stationary Multi-agent Reinforcement Learning
We investigate learning the equilibria in non-stationary multi-agent systems and address the challenges that differentiate multi-agent learning from single-agent learning. Specifically, we focus on games with bandit feedback, where testing an equilibrium can result in substantial regret even when the gap to be tested is small, and the existence of multiple optimal solutions (equilibria) in stationary games poses extra challenges. To overcome these obstacles, we propose a versatile black-box approach applicable to a broad spectrum of problems, such as general-sum games, potential games, and Markov games, when equipped with appropriate learning and testing oracles for stationary environments. Our algorithms can achieve Oleft(Delta^{1/4}T^{3/4}right) regret when the degree of nonstationarity, as measured by total variation Delta, is known, and Oleft(Delta^{1/5}T^{4/5}right) regret when Delta is unknown, where T is the number of rounds. Meanwhile, our algorithm inherits the favorable dependence on number of agents from the oracles. As a side contribution that may be independent of interest, we show how to test for various types of equilibria by a black-box reduction to single-agent learning, which includes Nash equilibria, correlated equilibria, and coarse correlated equilibria.
Offline Learning in Markov Games with General Function Approximation
We study offline multi-agent reinforcement learning (RL) in Markov games, where the goal is to learn an approximate equilibrium -- such as Nash equilibrium and (Coarse) Correlated Equilibrium -- from an offline dataset pre-collected from the game. Existing works consider relatively restricted tabular or linear models and handle each equilibria separately. In this work, we provide the first framework for sample-efficient offline learning in Markov games under general function approximation, handling all 3 equilibria in a unified manner. By using Bellman-consistent pessimism, we obtain interval estimation for policies' returns, and use both the upper and the lower bounds to obtain a relaxation on the gap of a candidate policy, which becomes our optimization objective. Our results generalize prior works and provide several additional insights. Importantly, we require a data coverage condition that improves over the recently proposed "unilateral concentrability". Our condition allows selective coverage of deviation policies that optimally trade-off between their greediness (as approximate best responses) and coverage, and we show scenarios where this leads to significantly better guarantees. As a new connection, we also show how our algorithmic framework can subsume seemingly different solution concepts designed for the special case of two-player zero-sum games.
A Game-Theoretic Framework for Managing Risk in Multi-Agent Systems
In order for agents in multi-agent systems (MAS) to be safe, they need to take into account the risks posed by the actions of other agents. However, the dominant paradigm in game theory (GT) assumes that agents are not affected by risk from other agents and only strive to maximise their expected utility. For example, in hybrid human-AI driving systems, it is necessary to limit large deviations in reward resulting from car crashes. Although there are equilibrium concepts in game theory that take into account risk aversion, they either assume that agents are risk-neutral with respect to the uncertainty caused by the actions of other agents, or they are not guaranteed to exist. We introduce a new GT-based Risk-Averse Equilibrium (RAE) that always produces a solution that minimises the potential variance in reward accounting for the strategy of other agents. Theoretically and empirically, we show RAE shares many properties with a Nash Equilibrium (NE), establishing convergence properties and generalising to risk-dominant NE in certain cases. To tackle large-scale problems, we extend RAE to the PSRO multi-agent reinforcement learning (MARL) framework. We empirically demonstrate the minimum reward variance benefits of RAE in matrix games with high-risk outcomes. Results on MARL experiments show RAE generalises to risk-dominant NE in a trust dilemma game and that it reduces instances of crashing by 7x in an autonomous driving setting versus the best performing baseline.
Constrained Phi-Equilibria
The computational study of equilibria involving constraints on players' strategies has been largely neglected. However, in real-world applications, players are usually subject to constraints ruling out the feasibility of some of their strategies, such as, e.g., safety requirements and budget caps. Computational studies on constrained versions of the Nash equilibrium have lead to some results under very stringent assumptions, while finding constrained versions of the correlated equilibrium (CE) is still unexplored. In this paper, we introduce and computationally characterize constrained Phi-equilibria -- a more general notion than constrained CEs -- in normal-form games. We show that computing such equilibria is in general computationally intractable, and also that the set of the equilibria may not be convex, providing a sharp divide with unconstrained CEs. Nevertheless, we provide a polynomial-time algorithm for computing a constrained (approximate) Phi-equilibrium maximizing a given linear function, when either the number of constraints or that of players' actions is fixed. Moreover, in the special case in which a player's constraints do not depend on other players' strategies, we show that an exact, function-maximizing equilibrium can be computed in polynomial time, while one (approximate) equilibrium can be found with an efficient decentralized no-regret learning algorithm.
Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions
Machine learning approaches relying on such criteria as adversarial robustness or multi-agent settings have raised the need for solving game-theoretic equilibrium problems. Of particular relevance to these applications are methods targeting finite-sum structure, which generically arises in empirical variants of learning problems in these contexts. Further, methods with computable approximation errors are highly desirable, as they provide verifiable exit criteria. Motivated by these applications, we study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems. Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees in which n component operators in the finite sum are ``on average'' either cocoercive or Lipschitz continuous and monotone, with parameter L. The resulting oracle complexity of our methods, which provide guarantees for the last iterate and for a (computable) operator norm residual, is mathcal{O}( n + nLvarepsilon^{-1}), which improves upon existing methods by a factor up to n. This constitutes the first variance reduction-type result for general finite-sum monotone inclusions and for more specific problems such as convex-concave optimization when operator norm residual is the optimality measure. We further argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting; i.e., the provided result is near-optimal.
Game-Theoretic Robust Reinforcement Learning Handles Temporally-Coupled Perturbations
Robust reinforcement learning (RL) seeks to train policies that can perform well under environment perturbations or adversarial attacks. Existing approaches typically assume that the space of possible perturbations remains the same across timesteps. However, in many settings, the space of possible perturbations at a given timestep depends on past perturbations. We formally introduce temporally-coupled perturbations, presenting a novel challenge for existing robust RL methods. To tackle this challenge, we propose GRAD, a novel game-theoretic approach that treats the temporally-coupled robust RL problem as a partially-observable two-player zero-sum game. By finding an approximate equilibrium in this game, GRAD ensures the agent's robustness against temporally-coupled perturbations. Empirical experiments on a variety of continuous control tasks demonstrate that our proposed approach exhibits significant robustness advantages compared to baselines against both standard and temporally-coupled attacks, in both state and action spaces.
Swim till You Sink: Computing the Limit of a Game
During 2023, two interesting results were proven about the limit behavior of game dynamics: First, it was shown that there is a game for which no dynamics converges to the Nash equilibria. Second, it was shown that the sink equilibria of a game adequately capture the limit behavior of natural game dynamics. These two results have created a need and opportunity to articulate a principled computational theory of the meaning of the game that is based on game dynamics. Given any game in normal form, and any prior distribution of play, we study the problem of computing the asymptotic behavior of a class of natural dynamics called the noisy replicator dynamics as a limit distribution over the sink equilibria of the game. When the prior distribution has pure strategy support, we prove this distribution can be computed efficiently, in near-linear time to the size of the best-response graph. When the distribution can be sampled -- for example, if it is the uniform distribution over all mixed strategy profiles -- we show through experiments that the limit distribution of reasonably large games can be estimated quite accurately through sampling and simulation.
What type of inference is planning?
Multiple types of inference are available for probabilistic graphical models, e.g., marginal, maximum-a-posteriori, and even marginal maximum-a-posteriori. Which one do researchers mean when they talk about ``planning as inference''? There is no consistency in the literature, different types are used, and their ability to do planning is further entangled with specific approximations or additional constraints. In this work we use the variational framework to show that, just like all commonly used types of inference correspond to different weightings of the entropy terms in the variational problem, planning corresponds exactly to a different set of weights. This means that all the tricks of variational inference are readily applicable to planning. We develop an analogue of loopy belief propagation that allows us to perform approximate planning in factored-state Markov decisions processes without incurring intractability due to the exponentially large state space. The variational perspective shows that the previous types of inference for planning are only adequate in environments with low stochasticity, and allows us to characterize each type by its own merits, disentangling the type of inference from the additional approximations that its practical use requires. We validate these results empirically on synthetic MDPs and tasks posed in the International Planning Competition.
Approximating Nash Equilibria in Normal-Form Games via Stochastic Optimization
We propose the first loss function for approximate Nash equilibria of normal-form games that is amenable to unbiased Monte Carlo estimation. This construction allows us to deploy standard non-convex stochastic optimization techniques for approximating Nash equilibria, resulting in novel algorithms with provable guarantees. We complement our theoretical analysis with experiments demonstrating that stochastic gradient descent can outperform previous state-of-the-art approaches.
Approximating the Shapley Value without Marginal Contributions
The Shapley value is arguably the most popular approach for assigning a meaningful contribution value to players in a cooperative game, which has recently been used intensively in explainable artificial intelligence. The meaningfulness is due to axiomatic properties that only the Shapley value satisfies, which, however, comes at the expense of an exact computation growing exponentially with the number of agents. Accordingly, a number of works are devoted to the efficient approximation of the Shapley values, most of them revolve around the notion of an agent's marginal contribution. In this paper, we propose with SVARM and Stratified SVARM two parameter-free and domain-independent approximation algorithms based on a representation of the Shapley value detached from the notion of marginal contributions. We prove unmatched theoretical guarantees regarding their approximation quality and provide empirical results including synthetic games as well as common explainability use cases comparing ourselves with state-of-the-art methods.
Performative Reinforcement Learning
We introduce the framework of performative reinforcement learning where the policy chosen by the learner affects the underlying reward and transition dynamics of the environment. Following the recent literature on performative prediction~Perdomo et. al., 2020, we introduce the concept of performatively stable policy. We then consider a regularized version of the reinforcement learning problem and show that repeatedly optimizing this objective converges to a performatively stable policy under reasonable assumptions on the transition dynamics. Our proof utilizes the dual perspective of the reinforcement learning problem and may be of independent interest in analyzing the convergence of other algorithms with decision-dependent environments. We then extend our results for the setting where the learner just performs gradient ascent steps instead of fully optimizing the objective, and for the setting where the learner has access to a finite number of trajectories from the changed environment. For both settings, we leverage the dual formulation of performative reinforcement learning and establish convergence to a stable solution. Finally, through extensive experiments on a grid-world environment, we demonstrate the dependence of convergence on various parameters e.g. regularization, smoothness, and the number of samples.
Abstracting Imperfect Information Away from Two-Player Zero-Sum Games
In their seminal work, Nayyar et al. (2013) showed that imperfect information can be abstracted away from common-payoff games by having players publicly announce their policies as they play. This insight underpins sound solvers and decision-time planning algorithms for common-payoff games. Unfortunately, a naive application of the same insight to two-player zero-sum games fails because Nash equilibria of the game with public policy announcements may not correspond to Nash equilibria of the original game. As a consequence, existing sound decision-time planning algorithms require complicated additional mechanisms that have unappealing properties. The main contribution of this work is showing that certain regularized equilibria do not possess the aforementioned non-correspondence problem -- thus, computing them can be treated as perfect-information problems. Because these regularized equilibria can be made arbitrarily close to Nash equilibria, our result opens the door to a new perspective to solving two-player zero-sum games and yields a simplified framework for decision-time planning in two-player zero-sum games, void of the unappealing properties that plague existing decision-time planning approaches.
Model as a Game: On Numerical and Spatial Consistency for Generative Games
Recent advances in generative models have significantly impacted game generation. However, despite producing high-quality graphics and adequately receiving player input, existing models often fail to maintain fundamental game properties such as numerical and spatial consistency. Numerical consistency ensures gameplay mechanics correctly reflect score changes and other quantitative elements, while spatial consistency prevents jarring scene transitions, providing seamless player experiences. In this paper, we revisit the paradigm of generative games to explore what truly constitutes a Model as a Game (MaaG) with a well-developed mechanism. We begin with an empirical study on ``Traveler'', a 2D game created by an LLM featuring minimalist rules yet challenging generative models in maintaining consistency. Based on the DiT architecture, we design two specialized modules: (1) a numerical module that integrates a LogicNet to determine event triggers, with calculations processed externally as conditions for image generation; and (2) a spatial module that maintains a map of explored areas, retrieving location-specific information during generation and linking new observations to ensure continuity. Experiments across three games demonstrate that our integrated modules significantly enhance performance on consistency metrics compared to baselines, while incurring minimal time overhead during inference.
Playing repeated games with Large Language Models
Large Language Models (LLMs) are transforming society and permeating into diverse applications. As a result, LLMs will frequently interact with us and other agents. It is, therefore, of great societal value to understand how LLMs behave in interactive social settings. Here, we propose to use behavioral game theory to study LLM's cooperation and coordination behavior. To do so, we let different LLMs (GPT-3, GPT-3.5, and GPT-4) play finitely repeated games with each other and with other, human-like strategies. Our results show that LLMs generally perform well in such tasks and also uncover persistent behavioral signatures. In a large set of two players-two strategies games, we find that LLMs are particularly good at games where valuing their own self-interest pays off, like the iterated Prisoner's Dilemma family. However, they behave sub-optimally in games that require coordination. We, therefore, further focus on two games from these distinct families. In the canonical iterated Prisoner's Dilemma, we find that GPT-4 acts particularly unforgivingly, always defecting after another agent has defected only once. In the Battle of the Sexes, we find that GPT-4 cannot match the behavior of the simple convention to alternate between options. We verify that these behavioral signatures are stable across robustness checks. Finally, we show how GPT-4's behavior can be modified by providing further information about the other player as well as by asking it to predict the other player's actions before making a choice. These results enrich our understanding of LLM's social behavior and pave the way for a behavioral game theory for machines.
Doubly Optimal No-Regret Learning in Monotone Games
We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow O(1{T}) last-iterate convergence rate to a Nash equilibrium. While the O(1{T}) rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal O(T) regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal O(1{T}) last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an O(log T) individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art O(T) bound.
Bayesian open games
This paper generalises the treatment of compositional game theory as introduced by the second and third authors with Ghani and Winschel, where games are modelled as morphisms of a symmetric monoidal category. From an economic modelling perspective, the existing notion of an open game is not expressive enough for many applications. This includes stochastic environments, stochastic choices by players, as well as incomplete information regarding the game being played. The current paper addresses these three issue all at once. To achieve this we make significant use of category theory, especially the 'coend optics' of Riley.
Beyond Pass@1: Self-Play with Variational Problem Synthesis Sustains RLVR
Reinforcement Learning with Verifiable Rewards (RLVR) has recently emerged as a key paradigm for post-training Large Language Models (LLMs), particularly for complex reasoning tasks. However, vanilla RLVR training has been shown to improve Pass@1 performance at the expense of policy entropy, leading to reduced generation diversity and limiting the Pass@k performance, which typically represents the upper bound of LLM reasoning capability. In this paper, we systematically analyze the policy's generation diversity from the perspective of training problems and find that augmenting and updating training problems helps mitigate entropy collapse during training. Based on these observations, we propose an online Self-play with Variational problem Synthesis (SvS) strategy for RLVR training, which uses the policy's correct solutions to synthesize variational problems while ensuring their reference answers remain identical to the originals. This self-improving strategy effectively maintains policy entropy during training and substantially improves Pass@k compared with standard RLVR, sustaining prolonged improvements and achieving absolute gains of 18.3% and 22.8% in Pass@32 performance on the competition-level AIME24 and AIME25 benchmarks. Experiments on 12 reasoning benchmarks across varying model sizes from 3B to 32B consistently demonstrate the generalizability and robustness of SvS.
Adapting to game trees in zero-sum imperfect information games
Imperfect information games (IIG) are games in which each player only partially observes the current game state. We study how to learn epsilon-optimal strategies in a zero-sum IIG through self-play with trajectory feedback. We give a problem-independent lower bound mathcal{O}(H(A_{X}+B_{Y})/epsilon^2) on the required number of realizations to learn these strategies with high probability, where H is the length of the game, A_{X} and B_{Y} are the total number of actions for the two players. We also propose two Follow the Regularized leader (FTRL) algorithms for this setting: Balanced FTRL which matches this lower bound, but requires the knowledge of the information set structure beforehand to define the regularization; and Adaptive FTRL which needs mathcal{O}(H^2(A_{X}+B_{Y})/epsilon^2) realizations without this requirement by progressively adapting the regularization to the observations.
Solving Football by Exploiting Equilibrium Structure of 2p0s Differential Games with One-Sided Information
For a two-player imperfect-information extensive-form game (IIEFG) with K time steps and a player action space of size U, the game tree complexity is U^{2K}, causing existing IIEFG solvers to struggle with large or infinite (U,K), e.g., differential games with continuous action spaces. To partially address this scalability challenge, we focus on an important class of 2p0s games where the informed player (P1) knows the payoff while the uninformed player (P2) only has a belief over the set of I possible payoffs. Such games encompass a wide range of scenarios in sports, defense, cybersecurity, and finance. We prove that under mild conditions, P1's (resp. P2's) equilibrium strategy at any infostate concentrates on at most I (resp. I+1) action prototypes. When Ill U, this equilibrium structure causes the game tree complexity to collapse to I^K for P1 when P2 plays pure best responses, and (I+1)^K for P2 in a dual game where P1 plays pure best responses. We then show that exploiting this structure in standard learning modes, i.e., model-free multiagent reinforcement learning and model predictive control, is straightforward, leading to significant improvements in learning accuracy and efficiency from SOTA IIEFG solvers. Our demonstration solves a 22-player football game (K=10, U=infty) where the attacking team has to strategically conceal their intention until a critical moment in order to exploit information advantage. Code is available at https://github.com/ghimiremukesh/cams/tree/iclr
Multi-Agent Reinforcement Learning from Human Feedback: Data Coverage and Algorithmic Techniques
We initiate the study of Multi-Agent Reinforcement Learning from Human Feedback (MARLHF), exploring both theoretical foundations and empirical validations. We define the task as identifying Nash equilibrium from a preference-only offline dataset in general-sum games, a problem marked by the challenge of sparse feedback signals. Our theory establishes the upper complexity bounds for Nash Equilibrium in effective MARLHF, demonstrating that single-policy coverage is inadequate and highlighting the importance of unilateral dataset coverage. These theoretical insights are verified through comprehensive experiments. To enhance the practical performance, we further introduce two algorithmic techniques. (1) We propose a Mean Squared Error (MSE) regularization along the time axis to achieve a more uniform reward distribution and improve reward learning outcomes. (2) We utilize imitation learning to approximate the reference policy, ensuring stability and effectiveness in training. Our findings underscore the multifaceted approach required for MARLHF, paving the way for effective preference-based multi-agent systems.
Stein Variational Goal Generation for adaptive Exploration in Multi-Goal Reinforcement Learning
In multi-goal Reinforcement Learning, an agent can share experience between related training tasks, resulting in better generalization for new tasks at test time. However, when the goal space has discontinuities and the reward is sparse, a majority of goals are difficult to reach. In this context, a curriculum over goals helps agents learn by adapting training tasks to their current capabilities. In this work we propose Stein Variational Goal Generation (SVGG), which samples goals of intermediate difficulty for the agent, by leveraging a learned predictive model of its goal reaching capabilities. The distribution of goals is modeled with particles that are attracted in areas of appropriate difficulty using Stein Variational Gradient Descent. We show that SVGG outperforms state-of-the-art multi-goal Reinforcement Learning methods in terms of success coverage in hard exploration problems, and demonstrate that it is endowed with a useful recovery property when the environment changes.
Learning to Play Imperfect-Information Games by Imitating an Oracle Planner
We consider learning to play multiplayer imperfect-information games with simultaneous moves and large state-action spaces. Previous attempts to tackle such challenging games have largely focused on model-free learning methods, often requiring hundreds of years of experience to produce competitive agents. Our approach is based on model-based planning. We tackle the problem of partial observability by first building an (oracle) planner that has access to the full state of the environment and then distilling the knowledge of the oracle to a (follower) agent which is trained to play the imperfect-information game by imitating the oracle's choices. We experimentally show that planning with naive Monte Carlo tree search does not perform very well in large combinatorial action spaces. We therefore propose planning with a fixed-depth tree search and decoupled Thompson sampling for action selection. We show that the planner is able to discover efficient playing strategies in the games of Clash Royale and Pommerman and the follower policy successfully learns to implement them by training on a few hundred battles.
Competitive Gradient Optimization
We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO ), a gradient-based method that incorporates the interactions between the two players in zero-sum games for optimization updates. We provide continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, CGO predecessors degenerate to their gradient descent ascent (GDA) variants. We provide a rate of convergence to stationary points and further propose a generalized class of alpha-coherent function for which we provide convergence analysis. We show that for strictly alpha-coherent functions, our algorithm convergences to a saddle point. Moreover, we propose optimistic CGO (OCGO), an optimistic variant, for which we show convergence rate to saddle points in alpha-coherent class of functions.
NfgTransformer: Equivariant Representation Learning for Normal-form Games
Normal-form games (NFGs) are the fundamental model of strategic interaction. We study their representation using neural networks. We describe the inherent equivariance of NFGs -- any permutation of strategies describes an equivalent game -- as well as the challenges this poses for representation learning. We then propose the NfgTransformer architecture that leverages this equivariance, leading to state-of-the-art performance in a range of game-theoretic tasks including equilibrium-solving, deviation gain estimation and ranking, with a common approach to NFG representation. We show that the resulting model is interpretable and versatile, paving the way towards deep learning systems capable of game-theoretic reasoning when interacting with humans and with each other.
Provably Efficient Offline Reinforcement Learning with Perturbed Data Sources
Existing theoretical studies on offline reinforcement learning (RL) mostly consider a dataset sampled directly from the target task. In practice, however, data often come from several heterogeneous but related sources. Motivated by this gap, this work aims at rigorously understanding offline RL with multiple datasets that are collected from randomly perturbed versions of the target task instead of from itself. An information-theoretic lower bound is derived, which reveals a necessary requirement on the number of involved sources in addition to that on the number of data samples. Then, a novel HetPEVI algorithm is proposed, which simultaneously considers the sample uncertainties from a finite number of data samples per data source and the source uncertainties due to a finite number of available data sources. Theoretical analyses demonstrate that HetPEVI can solve the target task as long as the data sources collectively provide a good data coverage. Moreover, HetPEVI is demonstrated to be optimal up to a polynomial factor of the horizon length. Finally, the study is extended to offline Markov games and offline robust RL, which demonstrates the generality of the proposed designs and theoretical analyses.
Learning Mean Field Games on Sparse Graphs: A Hybrid Graphex Approach
Learning the behavior of large agent populations is an important task for numerous research areas. Although the field of multi-agent reinforcement learning (MARL) has made significant progress towards solving these systems, solutions for many agents often remain computationally infeasible and lack theoretical guarantees. Mean Field Games (MFGs) address both of these issues and can be extended to Graphon MFGs (GMFGs) to include network structures between agents. Despite their merits, the real world applicability of GMFGs is limited by the fact that graphons only capture dense graphs. Since most empirically observed networks show some degree of sparsity, such as power law graphs, the GMFG framework is insufficient for capturing these network topologies. Thus, we introduce the novel concept of Graphex MFGs (GXMFGs) which builds on the graph theoretical concept of graphexes. Graphexes are the limiting objects to sparse graph sequences that also have other desirable features such as the small world property. Learning equilibria in these games is challenging due to the rich and sparse structure of the underlying graphs. To tackle these challenges, we design a new learning algorithm tailored to the GXMFG setup. This hybrid graphex learning approach leverages that the system mainly consists of a highly connected core and a sparse periphery. After defining the system and providing a theoretical analysis, we state our learning approach and demonstrate its learning capabilities on both synthetic graphs and real-world networks. This comparison shows that our GXMFG learning algorithm successfully extends MFGs to a highly relevant class of hard, realistic learning problems that are not accurately addressed by current MARL and MFG methods.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control
We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning.
Regret Minimization and Convergence to Equilibria in General-sum Markov Games
An abundance of recent impossibility results establish that regret minimization in Markov games with adversarial opponents is both statistically and computationally intractable. Nevertheless, none of these results preclude the possibility of regret minimization under the assumption that all parties adopt the same learning procedure. In this work, we present the first (to our knowledge) algorithm for learning in general-sum Markov games that provides sublinear regret guarantees when executed by all agents. The bounds we obtain are for swap regret, and thus, along the way, imply convergence to a correlated equilibrium. Our algorithm is decentralized, computationally efficient, and does not require any communication between agents. Our key observation is that online learning via policy optimization in Markov games essentially reduces to a form of weighted regret minimization, with unknown weights determined by the path length of the agents' policy sequence. Consequently, controlling the path length leads to weighted regret objectives for which sufficiently adaptive algorithms provide sublinear regret guarantees.
Reparameterized Policy Learning for Multimodal Trajectory Optimization
We investigate the challenge of parametrizing policies for reinforcement learning (RL) in high-dimensional continuous action spaces. Our objective is to develop a multimodal policy that overcomes limitations inherent in the commonly-used Gaussian parameterization. To achieve this, we propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories. By conditioning the policy on a latent variable, we derive a novel variational bound as the optimization objective, which promotes exploration of the environment. We then present a practical model-based RL method, called Reparameterized Policy Gradient (RPG), which leverages the multimodal policy parameterization and learned world model to achieve strong exploration capabilities and high data efficiency. Empirical results demonstrate that our method can help agents evade local optima in tasks with dense rewards and solve challenging sparse-reward environments by incorporating an object-centric intrinsic reward. Our method consistently outperforms previous approaches across a range of tasks. Code and supplementary materials are available on the project page https://haosulab.github.io/RPG/
Enabling First-Order Gradient-Based Learning for Equilibrium Computation in Markets
Understanding and analyzing markets is crucial, yet analytical equilibrium solutions remain largely infeasible. Recent breakthroughs in equilibrium computation rely on zeroth-order policy gradient estimation. These approaches commonly suffer from high variance and are computationally expensive. The use of fully differentiable simulators would enable more efficient gradient estimation. However, the discrete allocation of goods in economic simulations is a non-differentiable operation. This renders the first-order Monte Carlo gradient estimator inapplicable and the learning feedback systematically misleading. We propose a novel smoothing technique that creates a surrogate market game, in which first-order methods can be applied. We provide theoretical bounds on the resulting bias which justifies solving the smoothed game instead. These bounds also allow choosing the smoothing strength a priori such that the resulting estimate has low variance. Furthermore, we validate our approach via numerous empirical experiments. Our method theoretically and empirically outperforms zeroth-order methods in approximation quality and computational efficiency.
Game Theory with Simulation in the Presence of Unpredictable Randomisation
AI agents will be predictable in certain ways that traditional agents are not. Where and how can we leverage this predictability in order to improve social welfare? We study this question in a game-theoretic setting where one agent can pay a fixed cost to simulate the other in order to learn its mixed strategy. As a negative result, we prove that, in contrast to prior work on pure-strategy simulation, enabling mixed-strategy simulation may no longer lead to improved outcomes for both players in all so-called "generalised trust games". In fact, mixed-strategy simulation does not help in any game where the simulatee's action can depend on that of the simulator. We also show that, in general, deciding whether simulation introduces Pareto-improving Nash equilibria in a given game is NP-hard. As positive results, we establish that mixed-strategy simulation can improve social welfare if the simulator has the option to scale their level of trust, if the players face challenges with both trust and coordination, or if maintaining some level of privacy is essential for enabling cooperation.
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning
Policy optimization methods with function approximation are widely used in multi-agent reinforcement learning. However, it remains elusive how to design such algorithms with statistical guarantees. Leveraging a multi-agent performance difference lemma that characterizes the landscape of multi-agent policy optimization, we find that the localized action value function serves as an ideal descent direction for each local policy. Motivated by the observation, we present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO. We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate. We extend our algorithm to the off-policy setting and introduce pessimism to policy evaluation, which aligns with experiments. To our knowledge, this is the first provably convergent multi-agent PPO algorithm in cooperative Markov games.
Complex Momentum for Optimization in Games
We generalize gradient descent with momentum for optimization in differentiable games to have complex-valued momentum. We give theoretical motivation for our method by proving convergence on bilinear zero-sum games for simultaneous and alternating updates. Our method gives real-valued parameter updates, making it a drop-in replacement for standard optimizers. We empirically demonstrate that complex-valued momentum can improve convergence in realistic adversarial games - like generative adversarial networks - by showing we can find better solutions with an almost identical computational cost. We also show a practical generalization to a complex-valued Adam variant, which we use to train BigGAN to better inception scores on CIFAR-10.
Symmetric Mean-field Langevin Dynamics for Distributional Minimax Problems
In this paper, we extend mean-field Langevin dynamics to minimax optimization over probability distributions for the first time with symmetric and provably convergent updates. We propose mean-field Langevin averaged gradient (MFL-AG), a single-loop algorithm that implements gradient descent ascent in the distribution spaces with a novel weighted averaging, and establish average-iterate convergence to the mixed Nash equilibrium. We also study both time and particle discretization regimes and prove a new uniform-in-time propagation of chaos result which accounts for the dependency of the particle interactions on all previous distributions. Furthermore, we propose mean-field Langevin anchored best response (MFL-ABR), a symmetric double-loop algorithm based on best response dynamics with linear last-iterate convergence. Finally, we study applications to zero-sum Markov games and conduct simulations demonstrating long-term optimality.
A Minimaximalist Approach to Reinforcement Learning from Human Feedback
We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a rater or preference model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while maintaining robustness to the intransitive and stochastic preferences that frequently occur in practice when aggregating human judgments.
Last Switch Dependent Bandits with Monotone Payoff Functions
In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.
Learning Meta Representations for Agents in Multi-Agent Reinforcement Learning
In multi-agent reinforcement learning, the behaviors that agents learn in a single Markov Game (MG) are typically confined to the given agent number. Every single MG induced by varying the population may possess distinct optimal joint strategies and game-specific knowledge, which are modeled independently in modern multi-agent reinforcement learning algorithms. In this work, our focus is on creating agents that can generalize across population-varying MGs. Instead of learning a unimodal policy, each agent learns a policy set comprising effective strategies across a variety of games. To achieve this, we propose Meta Representations for Agents (MRA) that explicitly models the game-common and game-specific strategic knowledge. By representing the policy sets with multi-modal latent policies, the game-common strategic knowledge and diverse strategic modes are discovered through an iterative optimization procedure. We prove that by approximately maximizing the resulting constrained mutual information objective, the policies can reach Nash Equilibrium in every evaluation MG when the latent space is sufficiently large. When deploying MRA in practical settings with limited latent space sizes, fast adaptation can be achieved by leveraging the first-order gradient information. Extensive experiments demonstrate the effectiveness of MRA in improving training performance and generalization ability in challenging evaluation games.
Diegetic Representation of Feedback in Open Games
We improve the framework of open games with agency by showing how the players' counterfactual analysis giving rise to Nash equilibria can be described in the dynamics of the game itself (hence diegetically), getting rid of devices such as equilibrium predicates. This new approach overlaps almost completely with the way gradient-based learners are specified and trained. Indeed, we show feedback propagation in games can be seen as a form of backpropagation, with a crucial difference explaining the distinctive character of the phenomenology of non-cooperative games. We outline a functorial construction of arena of games, show players form a subsystem over it, and prove that their 'fixpoint behaviours' are Nash equilibria.
Optimistic Games for Combinatorial Bayesian Optimization with Application to Protein Design
Bayesian optimization (BO) is a powerful framework to optimize black-box expensive-to-evaluate functions via sequential interactions. In several important problems (e.g. drug discovery, circuit design, neural architecture search, etc.), though, such functions are defined over large combinatorial and unstructured spaces. This makes existing BO algorithms not feasible due to the intractable maximization of the acquisition function over these domains. To address this issue, we propose GameOpt, a novel game-theoretical approach to combinatorial BO. GameOpt establishes a cooperative game between the different optimization variables, and selects points that are game equilibria of an upper confidence bound acquisition function. These are stable configurations from which no variable has an incentive to deviate- analog to local optima in continuous domains. Crucially, this allows us to efficiently break down the complexity of the combinatorial domain into individual decision sets, making GameOpt scalable to large combinatorial spaces. We demonstrate the application of GameOpt to the challenging protein design problem and validate its performance on four real-world protein datasets. Each protein can take up to 20^{X} possible configurations, where X is the length of a protein, making standard BO methods infeasible. Instead, our approach iteratively selects informative protein configurations and very quickly discovers highly active protein variants compared to other baselines.
Unattainability of Common Knowledge in Asymmetric Games with Imperfect Information
In this paper, we present a conceptual model game to examine the dynamics of asymmetric interactions in games with imperfect information. The game involves two agents with starkly contrasting capabilities: one agent can take actions but has no information of the state of the game, whereas the other agent has perfect information of the state but cannot act or observe the other agent's actions. This duality manifests an extreme form of asymmetry, and how differing abilities influence the possibility of attaining common knowledge. Using Kripke structures and epistemic logic we demonstrate that, under these conditions, common knowledge of the current game state becomes unattainable. Our findings advance the discussion on the strategic limitations of knowledge in environments where information and action are unevenly distributed.
Accelerating Nash Learning from Human Feedback via Mirror Prox
Traditional Reinforcement Learning from Human Feedback (RLHF) often relies on reward models, frequently assuming preference structures like the Bradley-Terry model, which may not accurately capture the complexities of real human preferences (e.g., intransitivity). Nash Learning from Human Feedback (NLHF) offers a more direct alternative by framing the problem as finding a Nash equilibrium of a game defined by these preferences. In this work, we introduce Nash Mirror Prox (Nash-MP), an online NLHF algorithm that leverages the Mirror Prox optimization scheme to achieve fast and stable convergence to the Nash equilibrium. Our theoretical analysis establishes that Nash-MP exhibits last-iterate linear convergence towards the beta-regularized Nash equilibrium. Specifically, we prove that the KL-divergence to the optimal policy decreases at a rate of order (1+2beta)^{-N/2}, where N is a number of preference queries. We further demonstrate last-iterate linear convergence for the exploitability gap and uniformly for the span semi-norm of log-probabilities, with all these rates being independent of the size of the action space. Furthermore, we propose and analyze an approximate version of Nash-MP where proximal steps are estimated using stochastic policy gradients, making the algorithm closer to applications. Finally, we detail a practical implementation strategy for fine-tuning large language models and present experiments that demonstrate its competitive performance and compatibility with existing methods.
ConcaveQ: Non-Monotonic Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement Learning
Value function factorization has achieved great success in multi-agent reinforcement learning by optimizing joint action-value functions through the maximization of factorized per-agent utilities. To ensure Individual-Global-Maximum property, existing works often focus on value factorization using monotonic functions, which are known to result in restricted representation expressiveness. In this paper, we analyze the limitations of monotonic factorization and present ConcaveQ, a novel non-monotonic value function factorization approach that goes beyond monotonic mixing functions and employs neural network representations of concave mixing functions. Leveraging the concave property in factorization, an iterative action selection scheme is developed to obtain optimal joint actions during training. It is used to update agents' local policy networks, enabling fully decentralized execution. The effectiveness of the proposed ConcaveQ is validated across scenarios involving multi-agent predator-prey environment and StarCraft II micromanagement tasks. Empirical results exhibit significant improvement of ConcaveQ over state-of-the-art multi-agent reinforcement learning approaches.
Simplex Neural Population Learning: Any-Mixture Bayes-Optimality in Symmetric Zero-sum Games
Learning to play optimally against any mixture over a diverse set of strategies is of important practical interests in competitive games. In this paper, we propose simplex-NeuPL that satisfies two desiderata simultaneously: i) learning a population of strategically diverse basis policies, represented by a single conditional network; ii) using the same network, learn best-responses to any mixture over the simplex of basis policies. We show that the resulting conditional policies incorporate prior information about their opponents effectively, enabling near optimal returns against arbitrary mixture policies in a game with tractable best-responses. We verify that such policies behave Bayes-optimally under uncertainty and offer insights in using this flexibility at test time. Finally, we offer evidence that learning best-responses to any mixture policies is an effective auxiliary task for strategic exploration, which, by itself, can lead to more performant populations.
Decentralized Online Learning in General-Sum Stackelberg Games
We study an online learning problem in general-sum Stackelberg games, where players act in a decentralized and strategic manner. We study two settings depending on the type of information for the follower: (1) the limited information setting where the follower only observes its own reward, and (2) the side information setting where the follower has extra side information about the leader's reward. We show that for the follower, myopically best responding to the leader's action is the best strategy for the limited information setting, but not necessarily so for the side information setting -- the follower can manipulate the leader's reward signals with strategic actions, and hence induce the leader's strategy to converge to an equilibrium that is better off for itself. Based on these insights, we study decentralized online learning for both players in the two settings. Our main contribution is to derive last-iterate convergence and sample complexity results in both settings. Notably, we design a new manipulation strategy for the follower in the latter setting, and show that it has an intrinsic advantage against the best response strategy. Our theories are also supported by empirical results.
Multiplayer Nash Preference Optimization
Reinforcement learning from human feedback (RLHF) has emerged as the standard paradigm for aligning large language models (LLMs) with human preferences. However, reward-based methods built on the Bradley-Terry assumption struggle to capture the non-transitive and heterogeneous nature of real-world preferences. To address this, recent studies have reframed alignment as a two-player Nash game, giving rise to Nash learning from human feedback (NLHF). While this perspective has inspired algorithms such as INPO, ONPO, and EGPO with strong theoretical and empirical guarantees, they remain fundamentally restricted to two-player interactions, creating a single-opponent bias that fails to capture the full complexity of realistic preference structures. In this work, we introduce Multiplayer Nash Preference Optimization (MNPO), a novel framework that generalizes NLHF to the multiplayer regime. It formulates alignment as an n-player game, where each policy competes against a population of opponents while being regularized toward a reference model. Our framework establishes well-defined Nash equilibria in multiplayer settings and extends the concept of duality gap to quantify approximation quality. We demonstrate that MNPO inherits the equilibrium guarantees of two-player methods while enabling richer competitive dynamics and improved coverage of diverse preference structures. Through comprehensive empirical evaluation, we show that MNPO consistently outperforms existing NLHF baselines on instruction-following benchmarks, achieving superior alignment quality under heterogeneous annotator conditions and mixed-policy evaluation scenarios. Together, these results establish MNPO as a principled and scalable framework for aligning LLMs with complex, non-transitive human preferences. Code is available at https://github.com/smiles724/MNPO.
Two-Scale Gradient Descent Ascent Dynamics Finds Mixed Nash Equilibria of Continuous Games: A Mean-Field Perspective
Finding the mixed Nash equilibria (MNE) of a two-player zero sum continuous game is an important and challenging problem in machine learning. A canonical algorithm to finding the MNE is the noisy gradient descent ascent method which in the infinite particle limit gives rise to the {\em Mean-Field Gradient Descent Ascent} (GDA) dynamics on the space of probability measures. In this paper, we first study the convergence of a two-scale Mean-Field GDA dynamics for finding the MNE of the entropy-regularized objective. More precisely we show that for each finite temperature (or regularization parameter), the two-scale Mean-Field GDA with a suitable {\em finite} scale ratio converges exponentially to the unique MNE without assuming the convexity or concavity of the interaction potential. The key ingredient of our proof lies in the construction of new Lyapunov functions that dissipate exponentially along the Mean-Field GDA. We further study the simulated annealing of the Mean-Field GDA dynamics. We show that with a temperature schedule that decays logarithmically in time the annealed Mean-Field GDA converges to the MNE of the original unregularized objective.
Hardness of Independent Learning and Sparse Equilibrium Computation in Markov Games
We consider the problem of decentralized multi-agent reinforcement learning in Markov games. A fundamental question is whether there exist algorithms that, when adopted by all agents and run independently in a decentralized fashion, lead to no-regret for each player, analogous to celebrated convergence results in normal-form games. While recent work has shown that such algorithms exist for restricted settings (notably, when regret is defined with respect to deviations to Markovian policies), the question of whether independent no-regret learning can be achieved in the standard Markov game framework was open. We provide a decisive negative resolution this problem, both from a computational and statistical perspective. We show that: - Under the widely-believed assumption that PPAD-hard problems cannot be solved in polynomial time, there is no polynomial-time algorithm that attains no-regret in general-sum Markov games when executed independently by all players, even when the game is known to the algorithm designer and the number of players is a small constant. - When the game is unknown, no algorithm, regardless of computational efficiency, can achieve no-regret without observing a number of episodes that is exponential in the number of players. Perhaps surprisingly, our lower bounds hold even for seemingly easier setting in which all agents are controlled by a a centralized algorithm. They are proven via lower bounds for a simpler problem we refer to as SparseCCE, in which the goal is to compute a coarse correlated equilibrium that is sparse in the sense that it can be represented as a mixture of a small number of product policies. The crux of our approach is a novel application of aggregation techniques from online learning, whereby we show that any algorithm for the SparseCCE problem can be used to compute approximate Nash equilibria for non-zero sum normal-form games.
The Update-Equivalence Framework for Decision-Time Planning
The process of revising (or constructing) a policy at execution time -- known as decision-time planning -- has been key to achieving superhuman performance in perfect-information games like chess and Go. A recent line of work has extended decision-time planning to imperfect-information games, leading to superhuman performance in poker. However, these methods involve solving subgames whose sizes grow quickly in the amount of non-public information, making them unhelpful when the amount of non-public information is large. Motivated by this issue, we introduce an alternative framework for decision-time planning that is not based on solving subgames, but rather on update equivalence. In this update-equivalence framework, decision-time planning algorithms replicate the updates of last-iterate algorithms, which need not rely on public information. This facilitates scalability to games with large amounts of non-public information. Using this framework, we derive a provably sound search algorithm for fully cooperative games based on mirror descent and a search algorithm for adversarial games based on magnetic mirror descent. We validate the performance of these algorithms in cooperative and adversarial domains, notably in Hanabi, the standard benchmark for search in fully cooperative imperfect-information games. Here, our mirror descent approach exceeds or matches the performance of public information-based search while using two orders of magnitude less search time. This is the first instance of a non-public-information-based algorithm outperforming public-information-based approaches in a domain they have historically dominated.
Maximum Entropy Heterogeneous-Agent Reinforcement Learning
Multi-agent reinforcement learning (MARL) has been shown effective for cooperative games in recent years. However, existing state-of-the-art methods face challenges related to sample complexity, training instability, and the risk of converging to a suboptimal Nash Equilibrium. In this paper, we propose a unified framework for learning stochastic policies to resolve these issues. We embed cooperative MARL problems into probabilistic graphical models, from which we derive the maximum entropy (MaxEnt) objective for MARL. Based on the MaxEnt framework, we propose Heterogeneous-Agent Soft Actor-Critic (HASAC) algorithm. Theoretically, we prove the monotonic improvement and convergence to quantal response equilibrium (QRE) properties of HASAC. Furthermore, we generalize a unified template for MaxEnt algorithmic design named Maximum Entropy Heterogeneous-Agent Mirror Learning (MEHAML), which provides any induced method with the same guarantees as HASAC. We evaluate HASAC on six benchmarks: Bi-DexHands, Multi-Agent MuJoCo, StarCraft Multi-Agent Challenge, Google Research Football, Multi-Agent Particle Environment, and Light Aircraft Game. Results show that HASAC consistently outperforms strong baselines, exhibiting better sample efficiency, robustness, and sufficient exploration.
NeuPL: Neural Population Learning
Learning in strategy games (e.g. StarCraft, poker) requires the discovery of diverse policies. This is often achieved by iteratively training new policies against existing ones, growing a policy population that is robust to exploit. This iterative approach suffers from two issues in real-world games: a) under finite budget, approximate best-response operators at each iteration needs truncating, resulting in under-trained good-responses populating the population; b) repeated learning of basic skills at each iteration is wasteful and becomes intractable in the presence of increasingly strong opponents. In this work, we propose Neural Population Learning (NeuPL) as a solution to both issues. NeuPL offers convergence guarantees to a population of best-responses under mild assumptions. By representing a population of policies within a single conditional model, NeuPL enables transfer learning across policies. Empirically, we show the generality, improved performance and efficiency of NeuPL across several test domains. Most interestingly, we show that novel strategies become more accessible, not less, as the neural population expands.
Byzantine Robust Cooperative Multi-Agent Reinforcement Learning as a Bayesian Game
In this study, we explore the robustness of cooperative multi-agent reinforcement learning (c-MARL) against Byzantine failures, where any agent can enact arbitrary, worst-case actions due to malfunction or adversarial attack. To address the uncertainty that any agent can be adversarial, we propose a Bayesian Adversarial Robust Dec-POMDP (BARDec-POMDP) framework, which views Byzantine adversaries as nature-dictated types, represented by a separate transition. This allows agents to learn policies grounded on their posterior beliefs about the type of other agents, fostering collaboration with identified allies and minimizing vulnerability to adversarial manipulation. We define the optimal solution to the BARDec-POMDP as an ex post robust Bayesian Markov perfect equilibrium, which we proof to exist and weakly dominates the equilibrium of previous robust MARL approaches. To realize this equilibrium, we put forward a two-timescale actor-critic algorithm with almost sure convergence under specific conditions. Experimentation on matrix games, level-based foraging and StarCraft II indicate that, even under worst-case perturbations, our method successfully acquires intricate micromanagement skills and adaptively aligns with allies, demonstrating resilience against non-oblivious adversaries, random allies, observation-based attacks, and transfer-based attacks.
Robust Adversarial Reinforcement Learning via Bounded Rationality Curricula
Robustness against adversarial attacks and distribution shifts is a long-standing goal of Reinforcement Learning (RL). To this end, Robust Adversarial Reinforcement Learning (RARL) trains a protagonist against destabilizing forces exercised by an adversary in a competitive zero-sum Markov game, whose optimal solution, i.e., rational strategy, corresponds to a Nash equilibrium. However, finding Nash equilibria requires facing complex saddle point optimization problems, which can be prohibitive to solve, especially for high-dimensional control. In this paper, we propose a novel approach for adversarial RL based on entropy regularization to ease the complexity of the saddle point optimization problem. We show that the solution of this entropy-regularized problem corresponds to a Quantal Response Equilibrium (QRE), a generalization of Nash equilibria that accounts for bounded rationality, i.e., agents sometimes play random actions instead of optimal ones. Crucially, the connection between the entropy-regularized objective and QRE enables free modulation of the rationality of the agents by simply tuning the temperature coefficient. We leverage this insight to propose our novel algorithm, Quantal Adversarial RL (QARL), which gradually increases the rationality of the adversary in a curriculum fashion until it is fully rational, easing the complexity of the optimization problem while retaining robustness. We provide extensive evidence of QARL outperforming RARL and recent baselines across several MuJoCo locomotion and navigation problems in overall performance and robustness.
A Distributional Perspective on Reinforcement Learning
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
Risk-Averse Reinforcement Learning with Itakura-Saito Loss
Risk-averse reinforcement learning finds application in various high-stakes fields. Unlike classical reinforcement learning, which aims to maximize expected returns, risk-averse agents choose policies that minimize risk, occasionally sacrificing expected value. These preferences can be framed through utility theory. We focus on the specific case of the exponential utility function, where we can derive the Bellman equations and employ various reinforcement learning algorithms with few modifications. However, these methods suffer from numerical instability due to the need for exponent computation throughout the process. To address this, we introduce a numerically stable and mathematically sound loss function based on the Itakura-Saito divergence for learning state-value and action-value functions. We evaluate our proposed loss function against established alternatives, both theoretically and empirically. In the experimental section, we explore multiple financial scenarios, some with known analytical solutions, and show that our loss function outperforms the alternatives.
Regret-Minimizing Double Oracle for Extensive-Form Games
By incorporating regret minimization, double oracle methods have demonstrated rapid convergence to Nash Equilibrium (NE) in normal-form games and extensive-form games, through algorithms such as online double oracle (ODO) and extensive-form double oracle (XDO), respectively. In this study, we further examine the theoretical convergence rate and sample complexity of such regret minimization-based double oracle methods, utilizing a unified framework called Regret-Minimizing Double Oracle. Based on this framework, we extend ODO to extensive-form games and determine its sample complexity. Moreover, we demonstrate that the sample complexity of XDO can be exponential in the number of information sets |S|, owing to the exponentially decaying stopping threshold of restricted games. To solve this problem, we propose the Periodic Double Oracle (PDO) method, which has the lowest sample complexity among all existing double oracle methods, being only polynomial in |S|. Empirical evaluations on multiple poker and board games show that PDO achieves significantly faster convergence than previous double oracle algorithms and reaches a competitive level with state-of-the-art regret minimization methods.
Chasing Moving Targets with Online Self-Play Reinforcement Learning for Safer Language Models
Conventional language model (LM) safety alignment relies on a reactive, disjoint procedure: attackers exploit a static model, followed by defensive fine-tuning to patch exposed vulnerabilities. This sequential approach creates a mismatch -- attackers overfit to obsolete defenses, while defenders perpetually lag behind emerging threats. To address this, we propose Self-RedTeam, an online self-play reinforcement learning algorithm where an attacker and defender agent co-evolve through continuous interaction. We cast safety alignment as a two-player zero-sum game, where a single model alternates between attacker and defender roles -- generating adversarial prompts and safeguarding against them -- while a reward LM adjudicates outcomes. This enables dynamic co-adaptation. Grounded in the game-theoretic framework of zero-sum games, we establish a theoretical safety guarantee which motivates the design of our method: if self-play converges to a Nash Equilibrium, the defender will reliably produce safe responses to any adversarial input. Empirically, Self-RedTeam uncovers more diverse attacks (+21.8% SBERT) compared to attackers trained against static defenders and achieves higher robustness on safety benchmarks (e.g., +65.5% on WildJailBreak) than defenders trained against static attackers. We further propose hidden Chain-of-Thought, allowing agents to plan privately, which boosts adversarial diversity and reduces over-refusals. Our results motivate a shift from reactive patching to proactive co-evolution in LM safety training, enabling scalable, autonomous, and robust self-improvement of LMs via multi-agent reinforcement learning (MARL).
Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees
Variational inequalities in general and saddle point problems in particular are increasingly relevant in machine learning applications, including adversarial learning, GANs, transport and robust optimization. With increasing data and problem sizes necessary to train high performing models across various applications, we need to rely on parallel and distributed computing. However, in distributed training, communication among the compute nodes is a key bottleneck during training, and this problem is exacerbated for high dimensional and over-parameterized models. Due to these considerations, it is important to equip existing methods with strategies that would allow to reduce the volume of transmitted information during training while obtaining a model of comparable quality. In this paper, we present the first theoretically grounded distributed methods for solving variational inequalities and saddle point problems using compressed communication: MASHA1 and MASHA2. Our theory and methods allow for the use of both unbiased (such as Randk; MASHA1) and contractive (such as Topk; MASHA2) compressors. New algorithms support bidirectional compressions, and also can be modified for stochastic setting with batches and for federated learning with partial participation of clients. We empirically validated our conclusions using two experimental setups: a standard bilinear min-max problem, and large-scale distributed adversarial training of transformers.
A Theoretical Analysis of Deep Q-Learning
Despite the great empirical success of deep reinforcement learning, its theoretical foundation is less well understood. In this work, we make the first attempt to theoretically understand the deep Q-network (DQN) algorithm (Mnih et al., 2015) from both algorithmic and statistical perspectives. In specific, we focus on a slight simplification of DQN that fully captures its key features. Under mild assumptions, we establish the algorithmic and statistical rates of convergence for the action-value functions of the iterative policy sequence obtained by DQN. In particular, the statistical error characterizes the bias and variance that arise from approximating the action-value function using deep neural network, while the algorithmic error converges to zero at a geometric rate. As a byproduct, our analysis provides justifications for the techniques of experience replay and target network, which are crucial to the empirical success of DQN. Furthermore, as a simple extension of DQN, we propose the Minimax-DQN algorithm for zero-sum Markov game with two players. Borrowing the analysis of DQN, we also quantify the difference between the policies obtained by Minimax-DQN and the Nash equilibrium of the Markov game in terms of both the algorithmic and statistical rates of convergence.
Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning
Reinforcement Learning with Human Feedback (RLHF) has achieved great success in aligning large language models (LLMs) with human preferences. Prevalent RLHF approaches are reward-based, following the Bradley-Terry (BT) model assumption, which may not fully capture the complexity of human preferences. In this paper, we explore RLHF under a general preference framework and approach it from a game-theoretic perspective. Specifically, we formulate the problem as a two-player game and propose a novel algorithm, iterative Nash policy optimization (INPO). The key idea is to let the policy play against itself via no-regret learning, thereby approximating the Nash policy. Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses, which typically incurs high computational or annotation costs. Instead, we introduce a new loss objective that is directly minimized over a preference dataset. We provide theoretical analysis for our approach and demonstrate its effectiveness through experiments on various representative benchmarks. With an LLaMA-3-8B-based SFT model, INPO achieves a 41.5% length-controlled win rate on AlpacaEval 2.0 and a 38.3% win rate on Arena-Hard, showing substantial improvement over the state-of-the-art iterative algorithm [Dong et al., 2024] under the BT model assumption. Additionally, our ablation study highlights the benefits of incorporating KL regularization for response length control.
If generative AI is the answer, what is the question?
Beginning with text and images, generative AI has expanded to audio, video, computer code, and molecules. Yet, if generative AI is the answer, what is the question? We explore the foundations of generation as a distinct machine learning task with connections to prediction, compression, and decision-making. We survey five major generative model families: autoregressive models, variational autoencoders, normalizing flows, generative adversarial networks, and diffusion models. We then introduce a probabilistic framework that emphasizes the distinction between density estimation and generation. We review a game-theoretic framework with a two-player adversary-learner setup to study generation. We discuss post-training modifications that prepare generative models for deployment. We end by highlighting some important topics in socially responsible generation such as privacy, detection of AI-generated content, and copyright and IP. We adopt a task-first framing of generation, focusing on what generation is as a machine learning problem, rather than only on how models implement it.
Rethinking Scaling Laws for Learning in Strategic Environments
The deployment of ever-larger machine learning models reflects a growing consensus that the more expressive the modelx2013and the more data one has access tox2013the more one can improve performance. As models get deployed in a variety of real world scenarios, they inevitably face strategic environments. In this work, we consider the natural question of how the interplay of models and strategic interactions affects scaling laws. We find that strategic interactions can break the conventional view of scaling lawsx2013meaning that performance does not necessarily monotonically improve as models get larger and/ or more expressive (even with infinite data). We show the implications of this phenomenon in several contexts including strategic regression, strategic classification, and multi-agent reinforcement learning through examples of strategic environments in whichx2013by simply restricting the expressivity of one's model or policy classx2013one can achieve strictly better equilibrium outcomes. Motivated by these examples, we then propose a new paradigm for model-selection in games wherein an agent seeks to choose amongst different model classes to use as their action set in a game.
An analytical framework for the Levine hats problem: new strategies, bounds and generalizations
We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies.
Multi-Agent Online Optimization with Delays: Asynchronicity, Adaptivity, and Optimism
In this paper, we provide a general framework for studying multi-agent online learning problems in the presence of delays and asynchronicities. Specifically, we propose and analyze a class of adaptive dual averaging schemes in which agents only need to accumulate gradient feedback received from the whole system, without requiring any between-agent coordination. In the single-agent case, the adaptivity of the proposed method allows us to extend a range of existing results to problems with potentially unbounded delays between playing an action and receiving the corresponding feedback. In the multi-agent case, the situation is significantly more complicated because agents may not have access to a global clock to use as a reference point; to overcome this, we focus on the information that is available for producing each prediction rather than the actual delay associated with each feedback. This allows us to derive adaptive learning strategies with optimal regret bounds, even in a fully decentralized, asynchronous environment. Finally, we also analyze an "optimistic" variant of the proposed algorithm which is capable of exploiting the predictability of problems with a slower variation and leads to improved regret bounds.
Exploring Large Language Models for Communication Games: An Empirical Study on Werewolf
Communication games, which we refer to as incomplete information games that heavily depend on natural language communication, hold significant research value in fields such as economics, social science, and artificial intelligence. In this work, we explore the problem of how to engage large language models (LLMs) in communication games, and in response, propose a tuning-free framework. Our approach keeps LLMs frozen, and relies on the retrieval and reflection on past communications and experiences for improvement. An empirical study on the representative and widely-studied communication game, ``Werewolf'', demonstrates that our framework can effectively play Werewolf game without tuning the parameters of the LLMs. More importantly, strategic behaviors begin to emerge in our experiments, suggesting that it will be a fruitful journey to engage LLMs in communication games and associated domains.
Offline Decentralized Multi-Agent Reinforcement Learning
In many real-world multi-agent cooperative tasks, due to high cost and risk, agents cannot continuously interact with the environment and collect experiences during learning, but have to learn from offline datasets. However, the transition dynamics in the dataset of each agent can be much different from the ones induced by the learned policies of other agents in execution, creating large errors in value estimates. Consequently, agents learn uncoordinated low-performing policies. In this paper, we propose a framework for offline decentralized multi-agent reinforcement learning, which exploits value deviation and transition normalization to deliberately modify the transition probabilities. Value deviation optimistically increases the transition probabilities of high-value next states, and transition normalization normalizes the transition probabilities of next states. They together enable agents to learn high-performing and coordinated policies. Theoretically, we prove the convergence of Q-learning under the altered non-stationary transition dynamics. Empirically, we show that the framework can be easily built on many existing offline reinforcement learning algorithms and achieve substantial improvement in a variety of multi-agent tasks.
MixFlows: principled variational inference via mixed flows
This work presents mixed variational flows (MixFlows), a new variational family that consists of a mixture of repeated applications of a map to an initial reference distribution. First, we provide efficient algorithms for i.i.d. sampling, density evaluation, and unbiased ELBO estimation. We then show that MixFlows have MCMC-like convergence guarantees when the flow map is ergodic and measure-preserving, and provide bounds on the accumulation of error for practical implementations where the flow map is approximated. Finally, we develop an implementation of MixFlows based on uncorrected discretized Hamiltonian dynamics combined with deterministic momentum refreshment. Simulated and real data experiments show that MixFlows can provide more reliable posterior approximations than several black-box normalizing flows, as well as samples of comparable quality to those obtained from state-of-the-art MCMC methods.
From open learners to open games
The categories of open learners (due to Fong, Spivak and Tuy\'eras) and open games (due to the present author, Ghani, Winschel and Zahn) bear a very striking and unexpected similarity. The purpose of this short note is to prove that there is a faithful symmetric monoidal functor from the former to the latter, which means that any supervised neural network (without feedback or other complicating features) can be seen as an open game in a canonical way. Roughly, each parameter is controlled by a different player, and the game's best response relation encodes the dynamics of gradient descent. We suggest paths for further work exploiting the link.
Monopoly Deal: A Benchmark Environment for Bounded One-Sided Response Games
Card games are widely used to study sequential decision-making under uncertainty, with real-world analogues in negotiation, finance, and cybersecurity. These games typically fall into three categories based on the flow of control: strictly sequential (players alternate single actions), deterministic response (some actions trigger a fixed outcome), and unbounded reciprocal response (alternating counterplays are permitted). A less-explored but strategically rich structure is the bounded one-sided response, where a player's action briefly transfers control to the opponent, who must satisfy a fixed condition through one or more moves before the turn resolves. We term games featuring this mechanism Bounded One-Sided Response Games (BORGs). We introduce a modified version of Monopoly Deal as a benchmark environment that isolates this dynamic, where a Rent action forces the opponent to choose payment assets. The gold-standard algorithm, Counterfactual Regret Minimization (CFR), converges on effective strategies without novel algorithmic extensions. A lightweight full-stack research platform unifies the environment, a parallelized CFR runtime, and a human-playable web interface. The trained CFR agent and source code are available at https://monopolydeal.ai.
Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems
The entropic fictitious play (EFP) is a recently proposed algorithm that minimizes the sum of a convex functional and entropy in the space of measures -- such an objective naturally arises in the optimization of a two-layer neural network in the mean-field regime. In this work, we provide a concise primal-dual analysis of EFP in the setting where the learning problem exhibits a finite-sum structure. We establish quantitative global convergence guarantees for both the continuous-time and discrete-time dynamics based on properties of a proximal Gibbs measure introduced in Nitanda et al. (2022). Furthermore, our primal-dual framework entails a memory-efficient particle-based implementation of the EFP update, and also suggests a connection to gradient boosting methods. We illustrate the efficiency of our novel implementation in experiments including neural network optimization and image synthesis.
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
A major barrier to deploying current machine learning models lies in their non-reliability to dataset shifts. To resolve this problem, most existing studies attempted to transfer stable information to unseen environments. Particularly, independent causal mechanisms-based methods proposed to remove mutable causal mechanisms via the do-operator. Compared to previous methods, the obtained stable predictors are more effective in identifying stable information. However, a key question remains: which subset of this whole stable information should the model transfer, in order to achieve optimal generalization ability? To answer this question, we present a comprehensive minimax analysis from a causal perspective. Specifically, we first provide a graphical condition for the whole stable set to be optimal. When this condition fails, we surprisingly find with an example that this whole stable set, although can fully exploit stable information, is not the optimal one to transfer. To identify the optimal subset under this case, we propose to estimate the worst-case risk with a novel optimization scheme over the intervention functions on mutable causal mechanisms. We then propose an efficient algorithm to search for the subset with minimal worst-case risk, based on a newly defined equivalence relation between stable subsets. Compared to the exponential cost of exhaustively searching over all subsets, our searching strategy enjoys a polynomial complexity. The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
From Natural Language to Extensive-Form Game Representations
We introduce a framework for translating game descriptions in natural language into extensive-form representations in game theory, leveraging Large Language Models (LLMs) and in-context learning. Given the varying levels of strategic complexity in games, such as perfect versus imperfect information, directly applying in-context learning would be insufficient. To address this, we introduce a two-stage framework with specialized modules to enhance in-context learning, enabling it to divide and conquer the problem effectively. In the first stage, we tackle the challenge of imperfect information by developing a module that identifies information sets along and the corresponding partial tree structure. With this information, the second stage leverages in-context learning alongside a self-debugging module to produce a complete extensive-form game tree represented using pygambit, the Python API of a recognized game-theoretic analysis tool called Gambit. Using this python representation enables the automation of tasks such as computing Nash equilibria directly from natural language descriptions. We evaluate the performance of the full framework, as well as its individual components, using various LLMs on games with different levels of strategic complexity. Our experimental results show that the framework significantly outperforms baseline models in generating accurate extensive-form games, with each module playing a critical role in its success.
Variational Inference for SDEs Driven by Fractional Noise
We present a novel variational framework for performing inference in (neural) stochastic differential equations (SDEs) driven by Markov-approximate fractional Brownian motion (fBM). SDEs offer a versatile tool for modeling real-world continuous-time dynamic systems with inherent noise and randomness. Combining SDEs with the powerful inference capabilities of variational methods, enables the learning of representative function distributions through stochastic gradient descent. However, conventional SDEs typically assume the underlying noise to follow a Brownian motion (BM), which hinders their ability to capture long-term dependencies. In contrast, fractional Brownian motion (fBM) extends BM to encompass non-Markovian dynamics, but existing methods for inferring fBM parameters are either computationally demanding or statistically inefficient. In this paper, building upon the Markov approximation of fBM, we derive the evidence lower bound essential for efficient variational inference of posterior path measures, drawing from the well-established field of stochastic analysis. Additionally, we provide a closed-form expression to determine optimal approximation coefficients. Furthermore, we propose the use of neural networks to learn the drift, diffusion and control terms within our variational posterior, leading to the variational training of neural-SDEs. In this framework, we also optimize the Hurst index, governing the nature of our fractional noise. Beyond validation on synthetic data, we contribute a novel architecture for variational latent video prediction,-an approach that, to the best of our knowledge, enables the first variational neural-SDE application to video perception.
Playing games with Large language models: Randomness and strategy
Playing games has a long history of describing intricate interactions in simplified forms. In this paper we explore if large language models (LLMs) can play games, investigating their capabilities for randomisation and strategic adaptation through both simultaneous and sequential game interactions. We focus on GPT-4o-Mini-2024-08-17 and test two games between LLMs: Rock Paper Scissors (RPS) and games of strategy (Prisoners Dilemma PD). LLMs are often described as stochastic parrots, and while they may indeed be parrots, our results suggest that they are not very stochastic in the sense that their outputs - when prompted to be random - are often very biased. Our research reveals that LLMs appear to develop loss aversion strategies in repeated games, with RPS converging to stalemate conditions while PD shows systematic shifts between cooperative and competitive outcomes based on prompt design. We detail programmatic tools for independent agent interactions and the Agentic AI challenges faced in implementation. We show that LLMs can indeed play games, just not very well. These results have implications for the use of LLMs in multi-agent LLM systems and showcase limitations in current approaches to model output for strategic decision-making.
pFedGame -- Decentralized Federated Learning using Game Theory in Dynamic Topology
Conventional federated learning frameworks suffer from several challenges including performance bottlenecks at the central aggregation server, data bias, poor model convergence, and exposure to model poisoning attacks, and limited trust in the centralized infrastructure. In the current paper, a novel game theory-based approach called pFedGame is proposed for decentralized federated learning, best suitable for temporally dynamic networks. The proposed algorithm works without any centralized server for aggregation and incorporates the problem of vanishing gradients and poor convergence over temporally dynamic topology among federated learning participants. The solution comprises two sequential steps in every federated learning round, for every participant. First, it selects suitable peers for collaboration in federated learning. Secondly, it executes a two-player constant sum cooperative game to reach convergence by applying an optimal federated learning aggregation strategy. Experiments performed to assess the performance of pFedGame in comparison to existing methods in decentralized federated learning have shown promising results with accuracy higher than 70% for heterogeneous data.
The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning
Offline reinforcement learning aims to train agents from pre-collected datasets. However, this comes with the added challenge of estimating the value of behaviors not covered in the dataset. Model-based methods offer a potential solution by training an approximate dynamics model, which then allows collection of additional synthetic data via rollouts in this model. The prevailing theory treats this approach as online RL in an approximate dynamics model, and any remaining performance gap is therefore understood as being due to dynamics model errors. In this paper, we analyze this assumption and investigate how popular algorithms perform as the learned dynamics model is improved. In contrast to both intuition and theory, if the learned dynamics model is replaced by the true error-free dynamics, existing model-based methods completely fail. This reveals a key oversight: The theoretical foundations assume sampling of full horizon rollouts in the learned dynamics model; however, in practice, the number of model-rollout steps is aggressively reduced to prevent accumulating errors. We show that this truncation of rollouts results in a set of edge-of-reach states at which we are effectively ``bootstrapping from the void.'' This triggers pathological value overestimation and complete performance collapse. We term this the edge-of-reach problem. Based on this new insight, we fill important gaps in existing theory, and reveal how prior model-based methods are primarily addressing the edge-of-reach problem, rather than model-inaccuracy as claimed. Finally, we propose Reach-Aware Value Learning (RAVL), a simple and robust method that directly addresses the edge-of-reach problem and hence - unlike existing methods - does not fail as the dynamics model is improved. Code open-sourced at: github.com/anyasims/edge-of-reach.
Democratizing Diplomacy: A Harness for Evaluating Any Large Language Model on Full-Press Diplomacy
We present the first evaluation harness that enables any out-of-the-box, local, Large Language Models (LLMs) to play full-press Diplomacy without fine-tuning or specialized training. Previous work required frontier LLMs, or fine-tuning, due to the high complexity and information density of Diplomacy's game state. Combined with the high variance of matches, these factors made Diplomacy prohibitive for study. In this work, we used data-driven iteration to optimize a textual game state representation such that a 24B model can reliably complete matches without any fine tuning. We develop tooling to facilitate hypothesis testing and statistical analysis, and we present case studies on persuasion, aggressive playstyles, and performance across a range of models. We conduct a variety of experiments across many popular LLMs, finding the larger models perform the best, but the smaller models still play adequately. We also introduce Critical State Analysis: an experimental protocol for rapidly iterating and analyzing key moments in a game at depth. Our harness democratizes the evaluation of strategic reasoning in LLMs by eliminating the need for fine-tuning, and it provides insights into how these capabilities emerge naturally from widely used LLMs. Our code is available in the supplement and will be open sourced.
Lipschitzness Is All You Need To Tame Off-policy Generative Adversarial Imitation Learning
Despite the recent success of reinforcement learning in various domains, these approaches remain, for the most part, deterringly sensitive to hyper-parameters and are often riddled with essential engineering feats allowing their success. We consider the case of off-policy generative adversarial imitation learning, and perform an in-depth review, qualitative and quantitative, of the method. We show that forcing the learned reward function to be local Lipschitz-continuous is a sine qua non condition for the method to perform well. We then study the effects of this necessary condition and provide several theoretical results involving the local Lipschitzness of the state-value function. We complement these guarantees with empirical evidence attesting to the strong positive effect that the consistent satisfaction of the Lipschitzness constraint on the reward has on imitation performance. Finally, we tackle a generic pessimistic reward preconditioning add-on spawning a large class of reward shaping methods, which makes the base method it is plugged into provably more robust, as shown in several additional theoretical guarantees. We then discuss these through a fine-grained lens and share our insights. Crucially, the guarantees derived and reported in this work are valid for any reward satisfying the Lipschitzness condition, nothing is specific to imitation. As such, these may be of independent interest.
The Policy Cliff: A Theoretical Analysis of Reward-Policy Maps in Large Language Models
Reinforcement learning (RL) plays a crucial role in shaping the behavior of large language and reasoning models (LLMs/LRMs). However, it often produces brittle and unstable policies, leading to critical failures such as spurious reasoning, deceptive alignment, and instruction disobedience that undermine the trustworthiness and safety of LLMs/LRMs. Currently, these issues lack a unified theoretical explanation and are typically addressed using ad-hoc heuristics. This paper presents a rigorous mathematical framework for analyzing the stability of the mapping from a reward function to the optimal policy. We show that policy brittleness often stems from non-unique optimal actions, a common occurrence when multiple valid traces exist in a reasoning task. This theoretical lens provides a unified explanation for a range of seemingly disparate failures, reframing them as rational outcomes of optimizing rewards that may be incomplete or noisy, especially in the presence of action degeneracy. We extend this analysis from the fundamental single-reward setting to the more realistic multi-reward RL across diverse domains, showing how stability is governed by an "effective reward" aggregation mechanism. We also prove that entropy regularization restores policy stability at the cost of increased stochasticity. Our framework provides a unified explanation for recent empirical findings on deceptive reasoning, instruction-following trade-offs, and RLHF-induced sophistry, and is further validated through perturbation experiments in multi-reward RL. This work advances policy-stability analysis from empirical heuristics towards a principled theory, offering essential insights for designing safer and more trustworthy AI systems.
Utility-Learning Tension in Self-Modifying Agents
As systems trend toward superintelligence, a natural modeling premise is that agents can self-improve along every facet of their own design. We formalize this with a five-axis decomposition and a decision layer, separating incentives from learning behavior and analyzing axes in isolation. Our central result identifies and introduces a sharp utility--learning tension, the structural conflict in self-modifying systems whereby utility-driven changes that improve immediate or expected performance can also erode the statistical preconditions for reliable learning and generalization. Our findings show that distribution-free guarantees are preserved iff the policy-reachable model family is uniformly capacity-bounded; when capacity can grow without limit, utility-rational self-changes can render learnable tasks unlearnable. Under standard assumptions common in practice, these axes reduce to the same capacity criterion, yielding a single boundary for safe self-modification. Numerical experiments across several axes validate the theory by comparing destructive utility policies against our proposed two-gate policies that preserve learnability.
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL
Most existing works focus on direct perturbations to the victim's state/action or the underlying transition dynamics to demonstrate the vulnerability of reinforcement learning agents to adversarial attacks. However, such direct manipulations may not be always realizable. In this paper, we consider a multi-agent setting where a well-trained victim agent nu is exploited by an attacker controlling another agent alpha with an adversarial policy. Previous models do not account for the possibility that the attacker may only have partial control over alpha or that the attack may produce easily detectable "abnormal" behaviors. Furthermore, there is a lack of provably efficient defenses against these adversarial policies. To address these limitations, we introduce a generalized attack framework that has the flexibility to model to what extent the adversary is able to control the agent, and allows the attacker to regulate the state distribution shift and produce stealthier adversarial policies. Moreover, we offer a provably efficient defense with polynomial convergence to the most robust victim policy through adversarial training with timescale separation. This stands in sharp contrast to supervised learning, where adversarial training typically provides only empirical defenses. Using the Robosumo competition experiments, we show that our generalized attack formulation results in much stealthier adversarial policies when maintaining the same winning rate as baselines. Additionally, our adversarial training approach yields stable learning dynamics and less exploitable victim policies.
Fast and Knowledge-Free Deep Learning for General Game Playing (Student Abstract)
We develop a method of adapting the AlphaZero model to General Game Playing (GGP) that focuses on faster model generation and requires less knowledge to be extracted from the game rules. The dataset generation uses MCTS playing instead of self-play; only the value network is used, and attention layers replace the convolutional ones. This allows us to abandon any assumptions about the action space and board topology. We implement the method within the Regular Boardgames GGP system and show that we can build models outperforming the UCT baseline for most games efficiently.
Explaining Reinforcement Learning with Shapley Values
For reinforcement learning systems to be widely adopted, their users must understand and trust them. We present a theoretical analysis of explaining reinforcement learning using Shapley values, following a principled approach from game theory for identifying the contribution of individual players to the outcome of a cooperative game. We call this general framework Shapley Values for Explaining Reinforcement Learning (SVERL). Our analysis exposes the limitations of earlier uses of Shapley values in reinforcement learning. We then develop an approach that uses Shapley values to explain agent performance. In a variety of domains, SVERL produces meaningful explanations that match and supplement human intuition.
Mechanisms that play a game, not toss a coin
Randomized mechanisms can have good normative properties compared to their deterministic counterparts. However, randomized mechanisms are problematic in several ways such as in their verifiability. We propose here to derandomize such mechanisms by having agents play a game instead of tossing a coin. The game is designed so an agent's best action is to play randomly, and this play then injects ``randomness'' into the mechanism. This derandomization retains many of the good normative properties of the original randomized mechanism but gives a mechanism that is deterministic and easy, for instance, to audit. We consider three related methods to derandomize randomized mechanism in six different domains: voting, facility location, task allocation, school choice, peer selection, and resource allocation. We propose a number of novel derandomized mechanisms for these six domains with good normative properties. Each mechanism has a mixed Nash equilibrium in which agents play a modular arithmetic game with an uniform mixed strategy. In all but one mixed Nash equilibrium, agents report their preferences over the original problem sincerely. The derandomized methods are thus ``quasi-strategy proof''. In one domain, we additionally show that a new and desirable normative property emerges as a result of derandomization.
On the convergence of single-call stochastic extra-gradient methods
Variational inequalities have recently attracted considerable interest in machine learning as a flexible paradigm for models that go beyond ordinary loss function minimization (such as generative adversarial networks and related deep learning systems). In this setting, the optimal O(1/t) convergence rate for solving smooth monotone variational inequalities is achieved by the Extra-Gradient (EG) algorithm and its variants. Aiming to alleviate the cost of an extra gradient step per iteration (which can become quite substantial in deep learning applications), several algorithms have been proposed as surrogates to Extra-Gradient with a single oracle call per iteration. In this paper, we develop a synthetic view of such algorithms, and we complement the existing literature by showing that they retain a O(1/t) ergodic convergence rate in smooth, deterministic problems. Subsequently, beyond the monotone deterministic case, we also show that the last iterate of single-call, stochastic extra-gradient methods still enjoys a O(1/t) local convergence rate to solutions of non-monotone variational inequalities that satisfy a second-order sufficient condition.
Statistical mechanics of continual learning: variational principle and mean-field potential
An obstacle to artificial general intelligence is set by continual learning of multiple tasks of different nature. Recently, various heuristic tricks, both from machine learning and from neuroscience angles, were proposed, but they lack a unified theory ground. Here, we focus on continual learning in single-layered and multi-layered neural networks of binary weights. A variational Bayesian learning setting is thus proposed, where the neural networks are trained in a field-space, rather than gradient-ill-defined discrete-weight space, and furthermore, weight uncertainty is naturally incorporated, and modulates synaptic resources among tasks. From a physics perspective, we translate the variational continual learning into Franz-Parisi thermodynamic potential framework, where previous task knowledge acts as a prior and a reference as well. We thus interpret the continual learning of the binary perceptron in a teacher-student setting as a Franz-Parisi potential computation. The learning performance can then be analytically studied with mean-field order parameters, whose predictions coincide with numerical experiments using stochastic gradient descent methods. Based on the variational principle and Gaussian field approximation of internal preactivations in hidden layers, we also derive the learning algorithm considering weight uncertainty, which solves the continual learning with binary weights using multi-layered neural networks, and performs better than the currently available metaplasticity algorithm. Our proposed principled frameworks also connect to elastic weight consolidation, weight-uncertainty modulated learning, and neuroscience inspired metaplasticity, providing a theory-grounded method for the real-world multi-task learning with deep networks.
Variational Bayesian Last Layers
We introduce a deterministic variational formulation for training Bayesian last layer neural networks. This yields a sampling-free, single-pass model and loss that effectively improves uncertainty estimation. Our variational Bayesian last layer (VBLL) can be trained and evaluated with only quadratic complexity in last layer width, and is thus (nearly) computationally free to add to standard architectures. We experimentally investigate VBLLs, and show that they improve predictive accuracy, calibration, and out of distribution detection over baselines across both regression and classification. Finally, we investigate combining VBLL layers with variational Bayesian feature learning, yielding a lower variance collapsed variational inference method for Bayesian neural networks.
Cooperation or Competition: Avoiding Player Domination for Multi-Target Robustness via Adaptive Budgets
Despite incredible advances, deep learning has been shown to be susceptible to adversarial attacks. Numerous approaches have been proposed to train robust networks both empirically and certifiably. However, most of them defend against only a single type of attack, while recent work takes steps forward in defending against multiple attacks. In this paper, to understand multi-target robustness, we view this problem as a bargaining game in which different players (adversaries) negotiate to reach an agreement on a joint direction of parameter updating. We identify a phenomenon named player domination in the bargaining game, namely that the existing max-based approaches, such as MAX and MSD, do not converge. Based on our theoretical analysis, we design a novel framework that adjusts the budgets of different adversaries to avoid any player dominance. Experiments on standard benchmarks show that employing the proposed framework to the existing approaches significantly advances multi-target robustness.
Can Large Language Models Serve as Rational Players in Game Theory? A Systematic Analysis
Game theory, as an analytical tool, is frequently utilized to analyze human behavior in social science research. With the high alignment between the behavior of Large Language Models (LLMs) and humans, a promising research direction is to employ LLMs as substitutes for humans in game experiments, enabling social science research. However, despite numerous empirical researches on the combination of LLMs and game theory, the capability boundaries of LLMs in game theory remain unclear. In this research, we endeavor to systematically analyze LLMs in the context of game theory. Specifically, rationality, as the fundamental principle of game theory, serves as the metric for evaluating players' behavior -- building a clear desire, refining belief about uncertainty, and taking optimal actions. Accordingly, we select three classical games (dictator game, Rock-Paper-Scissors, and ring-network game) to analyze to what extent LLMs can achieve rationality in these three aspects. The experimental results indicate that even the current state-of-the-art LLM (GPT-4) exhibits substantial disparities compared to humans in game theory. For instance, LLMs struggle to build desires based on uncommon preferences, fail to refine belief from many simple patterns, and may overlook or modify refined belief when taking actions. Therefore, we consider that introducing LLMs into game experiments in the field of social science should be approached with greater caution.
The Three Regimes of Offline-to-Online Reinforcement Learning
Offline-to-online reinforcement learning (RL) has emerged as a practical paradigm that leverages offline datasets for pretraining and online interactions for fine-tuning. However, its empirical behavior is highly inconsistent: design choices of online-fine tuning that work well in one setting can fail completely in another. We propose a stability--plasticity principle that can explain this inconsistency: we should preserve the knowledge of pretrained policy or offline dataset during online fine-tuning, whichever is better, while maintaining sufficient plasticity. This perspective identifies three regimes of online fine-tuning, each requiring distinct stability properties. We validate this framework through a large-scale empirical study, finding that the results strongly align with its predictions in 45 of 63 cases. This work provides a principled framework for guiding design choices in offline-to-online RL based on the relative performance of the offline dataset and the pretrained policy.
Unbounded: A Generative Infinite Game of Character Life Simulation
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models. Inspired by James P. Carse's distinction between finite and infinite games, we leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models. Specifically, Unbounded draws inspiration from sandbox life simulations and allows you to interact with your autonomous virtual character in a virtual world by feeding, playing with and guiding it - with open-ended mechanics generated by an LLM, some of which can be emergent. In order to develop Unbounded, we propose technical innovations in both the LLM and visual generation domains. Specifically, we present: (1) a specialized, distilled large language model (LLM) that dynamically generates game mechanics, narratives, and character interactions in real-time, and (2) a new dynamic regional image prompt Adapter (IP-Adapter) for vision models that ensures consistent yet flexible visual generation of a character across multiple environments. We evaluate our system through both qualitative and quantitative analysis, showing significant improvements in character life simulation, user instruction following, narrative coherence, and visual consistency for both characters and the environments compared to traditional related approaches.
Bridging Theory and Practice in Quantum Game Theory: Optimized Implementation of the Battle of the Sexes with Error Mitigation on NISQ Hardware
Implementing quantum game theory on real hardware is challenging due to noise, decoherence, and limited qubit connectivity, yet such demonstrations are essential to validate theoretical predictions. We present one of the first full experimental realizations of the Battle of the Sexes game under the Eisert-Wilkens-Lewenstein (EWL) framework on IBM Quantum's ibm sherbrooke superconducting processor. Four quantum strategies (I, H, R(pi/4), R(pi)) were evaluated across 31 entanglement values gamma in [0, pi] using 2048 shots per configuration, enabling a direct comparison between analytical predictions and hardware execution. To mitigate noise and variability, we introduce a Guided Circuit Mapping (GCM) method that dynamically selects qubit pairs and optimizes routing based on real-time topology and calibration data. The analytical model forecasts up to 108% payoff improvement over the classical equilibrium, and despite hardware-induced deviations, experimental results with GCM preserve the expected payoff trends within 3.5%-12% relative error. These findings show that quantum advantages in strategic coordination can persist under realistic NISQ conditions, providing a pathway toward practical applications of quantum game theory in multi-agent, economic, and distributed decision-making systems.
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
We study variance-dependent regret bounds for Markov decision processes (MDPs). Algorithms with variance-dependent regret guarantees can automatically exploit environments with low variance (e.g., enjoying constant regret on deterministic MDPs). The existing algorithms are either variance-independent or suboptimal. We first propose two new environment norms to characterize the fine-grained variance properties of the environment. For model-based methods, we design a variant of the MVP algorithm (Zhang et al., 2021a). We apply new analysis techniques to demonstrate that this algorithm enjoys variance-dependent bounds with respect to the norms we propose. In particular, this bound is simultaneously minimax optimal for both stochastic and deterministic MDPs, the first result of its kind. We further initiate the study on model-free algorithms with variance-dependent regret bounds by designing a reference-function-based algorithm with a novel capped-doubling reference update schedule. Lastly, we also provide lower bounds to complement our upper bounds.
Neural Contractive Dynamical Systems
Stability guarantees are crucial when ensuring a fully autonomous robot does not take undesirable or potentially harmful actions. Unfortunately, global stability guarantees are hard to provide in dynamical systems learned from data, especially when the learned dynamics are governed by neural networks. We propose a novel methodology to learn neural contractive dynamical systems, where our neural architecture ensures contraction, and hence, global stability. To efficiently scale the method to high-dimensional dynamical systems, we develop a variant of the variational autoencoder that learns dynamics in a low-dimensional latent representation space while retaining contractive stability after decoding. We further extend our approach to learning contractive systems on the Lie group of rotations to account for full-pose end-effector dynamic motions. The result is the first highly flexible learning architecture that provides contractive stability guarantees with capability to perform obstacle avoidance. Empirically, we demonstrate that our approach encodes the desired dynamics more accurately than the current state-of-the-art, which provides less strong stability guarantees.
Sample-Efficient Multi-Agent RL: An Optimization Perspective
We study multi-agent reinforcement learning (MARL) for the general-sum Markov Games (MGs) under the general function approximation. In order to find the minimum assumption for sample-efficient learning, we introduce a novel complexity measure called the Multi-Agent Decoupling Coefficient (MADC) for general-sum MGs. Using this measure, we propose the first unified algorithmic framework that ensures sample efficiency in learning Nash Equilibrium, Coarse Correlated Equilibrium, and Correlated Equilibrium for both model-based and model-free MARL problems with low MADC. We also show that our algorithm provides comparable sublinear regret to the existing works. Moreover, our algorithm combines an equilibrium-solving oracle with a single objective optimization subprocedure that solves for the regularized payoff of each deterministic joint policy, which avoids solving constrained optimization problems within data-dependent constraints (Jin et al. 2020; Wang et al. 2023) or executing sampling procedures with complex multi-objective optimization problems (Foster et al. 2023), thus being more amenable to empirical implementation.
Domain Adversarial Training: A Game Perspective
The dominant line of work in domain adaptation has focused on learning invariant representations using domain-adversarial training. In this paper, we interpret this approach from a game theoretical perspective. Defining optimal solutions in domain-adversarial training as a local Nash equilibrium, we show that gradient descent in domain-adversarial training can violate the asymptotic convergence guarantees of the optimizer, oftentimes hindering the transfer performance. Our analysis leads us to replace gradient descent with high-order ODE solvers (i.e., Runge-Kutta), for which we derive asymptotic convergence guarantees. This family of optimizers is significantly more stable and allows more aggressive learning rates, leading to high performance gains when used as a drop-in replacement over standard optimizers. Our experiments show that in conjunction with state-of-the-art domain-adversarial methods, we achieve up to 3.5% improvement with less than of half training iterations. Our optimizers are easy to implement, free of additional parameters, and can be plugged into any domain-adversarial framework.
Online Learning in Stackelberg Games with an Omniscient Follower
We study the problem of online learning in a two-player decentralized cooperative Stackelberg game. In each round, the leader first takes an action, followed by the follower who takes their action after observing the leader's move. The goal of the leader is to learn to minimize the cumulative regret based on the history of interactions. Differing from the traditional formulation of repeated Stackelberg games, we assume the follower is omniscient, with full knowledge of the true reward, and that they always best-respond to the leader's actions. We analyze the sample complexity of regret minimization in this repeated Stackelberg game. We show that depending on the reward structure, the existence of the omniscient follower may change the sample complexity drastically, from constant to exponential, even for linear cooperative Stackelberg games. This poses unique challenges for the learning process of the leader and the subsequent regret analysis.
Generalized Munchausen Reinforcement Learning using Tsallis KL Divergence
Many policy optimization approaches in reinforcement learning incorporate a Kullback-Leilbler (KL) divergence to the previous policy, to prevent the policy from changing too quickly. This idea was initially proposed in a seminal paper on Conservative Policy Iteration, with approximations given by algorithms like TRPO and Munchausen Value Iteration (MVI). We continue this line of work by investigating a generalized KL divergence -- called the Tsallis KL divergence -- which use the q-logarithm in the definition. The approach is a strict generalization, as q = 1 corresponds to the standard KL divergence; q > 1 provides a range of new options. We characterize the types of policies learned under the Tsallis KL, and motivate when q >1 could be beneficial. To obtain a practical algorithm that incorporates Tsallis KL regularization, we extend MVI, which is one of the simplest approaches to incorporate KL regularization. We show that this generalized MVI(q) obtains significant improvements over the standard MVI(q = 1) across 35 Atari games.
Regularization and Variance-Weighted Regression Achieves Minimax Optimality in Linear MDPs: Theory and Practice
Mirror descent value iteration (MDVI), an abstraction of Kullback-Leibler (KL) and entropy-regularized reinforcement learning (RL), has served as the basis for recent high-performing practical RL algorithms. However, despite the use of function approximation in practice, the theoretical understanding of MDVI has been limited to tabular Markov decision processes (MDPs). We study MDVI with linear function approximation through its sample complexity required to identify an varepsilon-optimal policy with probability 1-delta under the settings of an infinite-horizon linear MDP, generative model, and G-optimal design. We demonstrate that least-squares regression weighted by the variance of an estimated optimal value function of the next state is crucial to achieving minimax optimality. Based on this observation, we present Variance-Weighted Least-Squares MDVI (VWLS-MDVI), the first theoretical algorithm that achieves nearly minimax optimal sample complexity for infinite-horizon linear MDPs. Furthermore, we propose a practical VWLS algorithm for value-based deep RL, Deep Variance Weighting (DVW). Our experiments demonstrate that DVW improves the performance of popular value-based deep RL algorithms on a set of MinAtar benchmarks.
Memory-Based Dual Gaussian Processes for Sequential Learning
Sequential learning with Gaussian processes (GPs) is challenging when access to past data is limited, for example, in continual and active learning. In such cases, errors can accumulate over time due to inaccuracies in the posterior, hyperparameters, and inducing points, making accurate learning challenging. Here, we present a method to keep all such errors in check using the recently proposed dual sparse variational GP. Our method enables accurate inference for generic likelihoods and improves learning by actively building and updating a memory of past data. We demonstrate its effectiveness in several applications involving Bayesian optimization, active learning, and continual learning.
Is RLHF More Difficult than Standard RL?
Reinforcement learning from Human Feedback (RLHF) learns from preference signals, while standard Reinforcement Learning (RL) directly learns from reward signals. Preferences arguably contain less information than rewards, which makes preference-based RL seemingly more difficult. This paper theoretically proves that, for a wide range of preference models, we can solve preference-based RL directly using existing algorithms and techniques for reward-based RL, with small or no extra costs. Specifically, (1) for preferences that are drawn from reward-based probabilistic models, we reduce the problem to robust reward-based RL that can tolerate small errors in rewards; (2) for general arbitrary preferences where the objective is to find the von Neumann winner, we reduce the problem to multiagent reward-based RL which finds Nash equilibria for factored Markov games under a restricted set of policies. The latter case can be further reduce to adversarial MDP when preferences only depend on the final state. We instantiate all reward-based RL subroutines by concrete provable algorithms, and apply our theory to a large class of models including tabular MDPs and MDPs with generic function approximation. We further provide guarantees when K-wise comparisons are available.
Do Large Language Models Learn Human-Like Strategic Preferences?
In this paper, we evaluate whether LLMs learn to make human-like preference judgements in strategic scenarios as compared with known empirical results. Solar and Mistral are shown to exhibit stable value-based preference consistent with humans and exhibit human-like preference for cooperation in the prisoner's dilemma (including stake-size effect) and traveler's dilemma (including penalty-size effect). We establish a relationship between model size, value-based preference, and superficiality. Finally, results here show that models tending to be less brittle have relied on sliding window attention suggesting a potential link. Additionally, we contribute a novel method for constructing preference relations from arbitrary LLMs and support for a hypothesis regarding human behavior in the traveler's dilemma.
Fast Rates for Maximum Entropy Exploration
We address the challenge of exploration in reinforcement learning (RL) when the agent operates in an unknown environment with sparse or no rewards. In this work, we study the maximum entropy exploration problem of two different types. The first type is visitation entropy maximization previously considered by Hazan et al.(2019) in the discounted setting. For this type of exploration, we propose a game-theoretic algorithm that has mathcal{O}(H^3S^2A/varepsilon^2) sample complexity thus improving the varepsilon-dependence upon existing results, where S is a number of states, A is a number of actions, H is an episode length, and varepsilon is a desired accuracy. The second type of entropy we study is the trajectory entropy. This objective function is closely related to the entropy-regularized MDPs, and we propose a simple algorithm that has a sample complexity of order mathcal{O}(poly(S,A,H)/varepsilon). Interestingly, it is the first theoretical result in RL literature that establishes the potential statistical advantage of regularized MDPs for exploration. Finally, we apply developed regularization techniques to reduce sample complexity of visitation entropy maximization to mathcal{O}(H^2SA/varepsilon^2), yielding a statistical separation between maximum entropy exploration and reward-free exploration.
PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas Hold'em via Large Language Model
Poker, also known as Texas Hold'em, has always been a typical research target within imperfect information games (IIGs). IIGs have long served as a measure of artificial intelligence (AI) development. Representative prior works, such as DeepStack and Libratus heavily rely on counterfactual regret minimization (CFR) to tackle heads-up no-limit Poker. However, it is challenging for subsequent researchers to learn CFR from previous models and apply it to other real-world applications due to the expensive computational cost of CFR iterations. Additionally, CFR is difficult to apply to multi-player games due to the exponential growth of the game tree size. In this work, we introduce PokerGPT, an end-to-end solver for playing Texas Hold'em with arbitrary number of players and gaining high win rates, established on a lightweight large language model (LLM). PokerGPT only requires simple textual information of Poker games for generating decision-making advice, thus guaranteeing the convenient interaction between AI and humans. We mainly transform a set of textual records acquired from real games into prompts, and use them to fine-tune a lightweight pre-trained LLM using reinforcement learning human feedback technique. To improve fine-tuning performance, we conduct prompt engineering on raw data, including filtering useful information, selecting behaviors of players with high win rates, and further processing them into textual instruction using multiple prompt engineering techniques. Through the experiments, we demonstrate that PokerGPT outperforms previous approaches in terms of win rate, model size, training time, and response speed, indicating the great potential of LLMs in solving IIGs.
MMR1: Enhancing Multimodal Reasoning with Variance-Aware Sampling and Open Resources
Large multimodal reasoning models have achieved rapid progress, but their advancement is constrained by two major limitations: the absence of open, large-scale, high-quality long chain-of-thought (CoT) data, and the instability of reinforcement learning (RL) algorithms in post-training. Group Relative Policy Optimization (GRPO), the standard framework for RL fine-tuning, is prone to gradient vanishing when reward variance is low, which weakens optimization signals and impairs convergence. This work makes three contributions: (1) We propose Variance-Aware Sampling (VAS), a data selection strategy guided by Variance Promotion Score (VPS) that combines outcome variance and trajectory diversity to promote reward variance and stabilize policy optimization. (2) We release large-scale, carefully curated resources containing ~1.6M long CoT cold-start data and ~15k RL QA pairs, designed to ensure quality, difficulty, and diversity, along with a fully reproducible end-to-end training codebase. (3) We open-source a family of multimodal reasoning models in multiple scales, establishing standardized baselines for the community. Experiments across mathematical reasoning benchmarks demonstrate the effectiveness of both the curated data and the proposed VAS. Comprehensive ablation studies and analyses provide further insight into the contributions of each component. In addition, we theoretically establish that reward variance lower-bounds the expected policy gradient magnitude, with VAS serving as a practical mechanism to realize this guarantee. Our code, data, and checkpoints are available at https://github.com/LengSicong/MMR1.
Risk-sensitive Reinforcement Learning Based on Convex Scoring Functions
We propose a reinforcement learning (RL) framework under a broad class of risk objectives, characterized by convex scoring functions. This class covers many common risk measures, such as variance, Expected Shortfall, entropic Value-at-Risk, and mean-risk utility. To resolve the time-inconsistency issue, we consider an augmented state space and an auxiliary variable and recast the problem as a two-state optimization problem. We propose a customized Actor-Critic algorithm and establish some theoretical approximation guarantees. A key theoretical contribution is that our results do not require the Markov decision process to be continuous. Additionally, we propose an auxiliary variable sampling method inspired by the alternating minimization algorithm, which is convergent under certain conditions. We validate our approach in simulation experiments with a financial application in statistical arbitrage trading, demonstrating the effectiveness of the algorithm.
Variational Inference with Normalizing Flows
The choice of approximate posterior distribution is one of the core problems in variational inference. Most applications of variational inference employ simple families of posterior approximations in order to allow for efficient inference, focusing on mean-field or other simple structured approximations. This restriction has a significant impact on the quality of inferences made using variational methods. We introduce a new approach for specifying flexible, arbitrarily complex and scalable approximate posterior distributions. Our approximations are distributions constructed through a normalizing flow, whereby a simple initial density is transformed into a more complex one by applying a sequence of invertible transformations until a desired level of complexity is attained. We use this view of normalizing flows to develop categories of finite and infinitesimal flows and provide a unified view of approaches for constructing rich posterior approximations. We demonstrate that the theoretical advantages of having posteriors that better match the true posterior, combined with the scalability of amortized variational approaches, provides a clear improvement in performance and applicability of variational inference.
EPO: Entropy-regularized Policy Optimization for LLM Agents Reinforcement Learning
Training LLM agents in multi-turn environments with sparse rewards, where completing a single task requires 30+ turns of interaction within an episode, presents a fundamental challenge for reinforcement learning. We identify a critical failure mode unique to this setting: the exploration-exploitation cascade failure. This cascade begins with early-stage policy premature convergence, where sparse feedback causes agents to commit to flawed, low-entropy strategies. Subsequently, agents enter late-stage policy collapse, where conventional entropy regularization becomes counterproductive, promoting chaotic exploration that destabilizes training. We propose Entropy-regularized Policy Optimization (EPO), a general framework that breaks this failure cycle through three synergistic mechanisms: (1) adopting entropy regularization in multi-turn settings to enhance exploration, (2) an entropy smoothing regularizer that bounds policy entropy within historical averages to prevent abrupt fluctuations, and (3) adaptive phase-based weighting that balances exploration and exploitation across training. Our analysis justifies that EPO guarantees monotonically decreasing entropy variance while maintaining convergence. EPO achieves up to 152% performance improvement on ScienceWorld and up to 19.8% on ALFWorld. Our work demonstrates that multi-turn sparse-reward settings require fundamentally different entropy control than traditional RL, with broad implications for LLM agent training.
Coin Sampling: Gradient-Based Bayesian Inference without Learning Rates
In recent years, particle-based variational inference (ParVI) methods such as Stein variational gradient descent (SVGD) have grown in popularity as scalable methods for Bayesian inference. Unfortunately, the properties of such methods invariably depend on hyperparameters such as the learning rate, which must be carefully tuned by the practitioner in order to ensure convergence to the target measure at a suitable rate. In this paper, we introduce a suite of new particle-based methods for scalable Bayesian inference based on coin betting, which are entirely learning-rate free. We illustrate the performance of our approach on a range of numerical examples, including several high-dimensional models and datasets, demonstrating comparable performance to other ParVI algorithms with no need to tune a learning rate.
Who Needs to Know? Minimal Knowledge for Optimal Coordination
To optimally coordinate with others in cooperative games, it is often crucial to have information about one's collaborators: successful driving requires understanding which side of the road to drive on. However, not every feature of collaborators is strategically relevant: the fine-grained acceleration of drivers may be ignored while maintaining optimal coordination. We show that there is a well-defined dichotomy between strategically relevant and irrelevant information. Moreover, we show that, in dynamic games, this dichotomy has a compact representation that can be efficiently computed via a Bellman backup operator. We apply this algorithm to analyze the strategically relevant information for tasks in both a standard and a partially observable version of the Overcooked environment. Theoretical and empirical results show that our algorithms are significantly more efficient than baselines. Videos are available at https://minknowledge.github.io.
Mitigating Think-Answer Mismatch in LLM Reasoning Through Noise-Aware Advantage Reweighting
Group-Relative Policy Optimization (GRPO) is a key technique for training large reasoning models, yet it suffers from a critical vulnerability: the Think-Answer Mismatch, where noisy reward signals corrupt the learning process. This problem is most severe in unbalanced response groups, paradoxically degrading the signal precisely when it should be most informative. To address this challenge, we propose Stable Group-Relative Policy Optimization (S-GRPO), a principled enhancement that derives optimal, noise-aware advantage weights to stabilize training. Our comprehensive experiments on mathematical reasoning benchmarks demonstrate S-GRPO's effectiveness and robustness. On various models, S-GRPO significantly outperforms DR. GRPO, achieving performance gains of +2.5% on Qwen-Math-7B-Base, +2.2% on Llama-3.2-3B-Base, and +2.4% on Qwen-Math-1.5B-Instruct. Most critically, while standard GRPO fails to learn under 20% synthetic reward noise, S-GRPO maintains stable learning progress. These results highlight S-GRPO's potential for more robust and effective training of large-scale reasoning models. \footnote{Code and data are available at: https://github.com/shenpeijun0212/S-GRPO
Attack Detection in Dynamic Games with Quadratic Measurements
This paper studies attack detection for discrete-time linear systems with stochastic process noise that produce both a vulnerable (i.e., attackable) linear measurement and a secured (i.e., unattackable) quadratic measurement. The motivating application of this model is a dynamic-game setting where the quadratic measurement is interpreted as a system-level utility or reward, and control inputs into the linear system are interpreted as control policies that, once applied, are known to all game participants and which steer the system towards a game-theoretic equilibrium (e.g., Nash equilibrium). To detect attacks on the linear channel, we develop a novel quadratic-utility-aware observer that leverages the secured quadratic output and enforces measurement consistency via a projection step. We establish three properties for this observer: feasibility of the true state, prox-regularity of the quadratic-constraint set, and a monotone error-reduction guarantee in the noise-free case. To detect adversarial manipulation, we compare linear and quadratic observer trajectories using a wild bootstrap maximum mean discrepancy (MMD) test that provides valid inference under temporal dependence. We validate our framework using numerical experiments of a pursuit-evasion game, where the quadratic observer preserves estimation accuracy under linear-sensor attacks, while the statistical test detects distributional divergence between the observers' trajectories.
Adversarial Classification: Necessary conditions and geometric flows
We study a version of adversarial classification where an adversary is empowered to corrupt data inputs up to some distance varepsilon, using tools from variational analysis. In particular, we describe necessary conditions associated with the optimal classifier subject to such an adversary. Using the necessary conditions, we derive a geometric evolution equation which can be used to track the change in classification boundaries as varepsilon varies. This evolution equation may be described as an uncoupled system of differential equations in one dimension, or as a mean curvature type equation in higher dimension. In one dimension, and under mild assumptions on the data distribution, we rigorously prove that one can use the initial value problem starting from varepsilon=0, which is simply the Bayes classifier, in order to solve for the global minimizer of the adversarial problem for small values of varepsilon. In higher dimensions we provide a similar result, albeit conditional to the existence of regular solutions of the initial value problem. In the process of proving our main results we obtain a result of independent interest connecting the original adversarial problem with an optimal transport problem under no assumptions on whether classes are balanced or not. Numerical examples illustrating these ideas are also presented.
A Deep Learning Method for Optimal Investment Under Relative Performance Criteria Among Heterogeneous Agents
Graphon games have been introduced to study games with many players who interact through a weighted graph of interaction. By passing to the limit, a game with a continuum of players is obtained, in which the interactions are through a graphon. In this paper, we focus on a graphon game for optimal investment under relative performance criteria, and we propose a deep learning method. The method builds upon two key ingredients: first, a characterization of Nash equilibria by forward-backward stochastic differential equations and, second, recent advances of machine learning algorithms for stochastic differential games. We provide numerical experiments on two different financial models. In each model, we compare the effect of several graphons, which correspond to different structures of interactions.
Learning Macroeconomic Policies based on Microfoundations: A Stackelberg Mean Field Game Approach
Effective macroeconomic policies play a crucial role in promoting economic growth and social stability. This paper models the optimal macroeconomic policy problem based on the Stackelberg Mean Field Game (SMFG), where the government acts as the leader in policy-making, and large-scale households dynamically respond as followers. This modeling method captures the asymmetric dynamic game between the government and large-scale households, and interpretably evaluates the effects of macroeconomic policies based on microfoundations, which is difficult for existing methods to achieve. We also propose a solution for SMFGs, incorporating pre-training on real data and a model-free Stackelberg mean-field reinforcement learning (SMFRL) algorithm, which operates independently of prior environmental knowledge and transitions. Our experimental results showcase the superiority of the SMFG method over other economic policies in terms of performance, efficiency-equity tradeoff, and SMFG assumption analysis. This paper significantly contributes to the domain of AI for economics by providing a powerful tool for modeling and solving optimal macroeconomic policies.
Sequential Causal Normal Form Games: Theory, Computation, and Strategic Signaling
Can classical game-theoretic frameworks be extended to capture the bounded rationality and causal reasoning of AI agents? We investigate this question by extending Causal Normal Form Games (CNFGs) to sequential settings, introducing Sequential Causal Multi-Agent Systems (S-CMAS) that incorporate Pearl's Causal Hierarchy across leader-follower interactions. While theoretically elegant -- we prove PSPACE-completeness, develop equilibrium refinements, and establish connections to signaling theory -- our comprehensive empirical investigation reveals a critical limitation: S-CNE provides zero welfare improvement over classical Stackelberg equilibrium across all tested scenarios. Through 50+ Monte Carlo simulations and hand-crafted synthetic examples, we demonstrate that backward induction with rational best-response eliminates any strategic advantage from causal layer distinctions. We construct a theoretical example illustrating conditions where benefits could emerge (ε-rational satisficing followers), though implementation confirms that even relaxed rationality assumptions prove insufficient when good instincts align with optimal play. This negative result provides valuable insight: classical game-theoretic extensions grounded in rational choice are fundamentally incompatible with causal reasoning advantages, motivating new theoretical frameworks beyond standard Nash equilibrium for agentic AI.
Auto-Encoding Variational Bayes
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions are two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.
Solving robust MDPs as a sequence of static RL problems
Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.
Iterated Q-Network: Beyond One-Step Bellman Updates in Deep Reinforcement Learning
The vast majority of Reinforcement Learning methods is largely impacted by the computation effort and data requirements needed to obtain effective estimates of action-value functions, which in turn determine the quality of the overall performance and the sample-efficiency of the learning procedure. Typically, action-value functions are estimated through an iterative scheme that alternates the application of an empirical approximation of the Bellman operator and a subsequent projection step onto a considered function space. It has been observed that this scheme can be potentially generalized to carry out multiple iterations of the Bellman operator at once, benefiting the underlying learning algorithm. However, till now, it has been challenging to effectively implement this idea, especially in high-dimensional problems. In this paper, we introduce iterated Q-Network (i-QN), a novel principled approach that enables multiple consecutive Bellman updates by learning a tailored sequence of action-value functions where each serves as the target for the next. We show that i-QN is theoretically grounded and that it can be seamlessly used in value-based and actor-critic methods. We empirically demonstrate the advantages of i-QN in Atari 2600 games and MuJoCo continuous control problems.
A Study of Proxies for Shapley Allocations of Transport Costs
We propose and evaluate a number of solutions to the problem of calculating the cost to serve each location in a single-vehicle transport setting. Such cost to serve analysis has application both strategically and operationally in transportation. The problem is formally given by the traveling salesperson game (TSG), a cooperative total utility game in which agents correspond to locations in a traveling salesperson problem (TSP). The cost to serve a location is an allocated portion of the cost of an optimal tour. The Shapley value is one of the most important normative division schemes in cooperative games, giving a principled and fair allocation both for the TSG and more generally. We consider a number of direct and sampling-based procedures for calculating the Shapley value, and present the first proof that approximating the Shapley value of the TSG within a constant factor is NP-hard. Treating the Shapley value as an ideal baseline allocation, we then develop six proxies for that value which are relatively easy to compute. We perform an experimental evaluation using Synthetic Euclidean games as well as games derived from real-world tours calculated for fast-moving consumer goods scenarios. Our experiments show that several computationally tractable allocation techniques correspond to good proxies for the Shapley value.
Context-Aware Bayesian Network Actor-Critic Methods for Cooperative Multi-Agent Reinforcement Learning
Executing actions in a correlated manner is a common strategy for human coordination that often leads to better cooperation, which is also potentially beneficial for cooperative multi-agent reinforcement learning (MARL). However, the recent success of MARL relies heavily on the convenient paradigm of purely decentralized execution, where there is no action correlation among agents for scalability considerations. In this work, we introduce a Bayesian network to inaugurate correlations between agents' action selections in their joint policy. Theoretically, we establish a theoretical justification for why action dependencies are beneficial by deriving the multi-agent policy gradient formula under such a Bayesian network joint policy and proving its global convergence to Nash equilibria under tabular softmax policy parameterization in cooperative Markov games. Further, by equipping existing MARL algorithms with a recent method of differentiable directed acyclic graphs (DAGs), we develop practical algorithms to learn the context-aware Bayesian network policies in scenarios with partial observability and various difficulty. We also dynamically decrease the sparsity of the learned DAG throughout the training process, which leads to weakly or even purely independent policies for decentralized execution. Empirical results on a range of MARL benchmarks show the benefits of our approach.
Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs
Generating realistic time series data is important for many engineering and scientific applications. Existing work tackles this problem using generative adversarial networks (GANs). However, GANs are often unstable during training, and they can suffer from mode collapse. While variational autoencoders (VAEs) are known to be more robust to these issues, they are (surprisingly) less often considered for time series generation. In this work, we introduce Koopman VAE (KVAE), a new generative framework that is based on a novel design for the model prior, and that can be optimized for either regular and irregular training data. Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map. Our approach enhances generative modeling with two desired features: (i) incorporating domain knowledge can be achieved by leverageing spectral tools that prescribe constraints on the eigenvalues of the linear map; and (ii) studying the qualitative behavior and stablity of the system can be performed using tools from dynamical systems theory. Our results show that KVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks. Whether trained on regular or irregular data, KVAE generates time series that improve both discriminative and predictive metrics. We also present visual evidence suggesting that KVAE learns probability density functions that better approximate empirical ground truth distributions.
Bayesian Evidence Synthesis for Modeling SARS-CoV-2 Transmission
The acute phase of the Covid-19 pandemic has made apparent the need for decision support based upon accurate epidemic modeling. This process is substantially hampered by under-reporting of cases and related data incompleteness issues. In this article we adopt the Bayesian paradigm and synthesize publicly available data via a discrete-time stochastic epidemic modeling framework. The models allow for estimating the total number of infections while accounting for the endemic phase of the pandemic. We assess the prediction of the infection rate utilizing mobility information, notably the principal components of the mobility data. We evaluate variational Bayes in this context and find that Hamiltonian Monte Carlo offers a robust inference alternative for such models. We elaborate upon vector analysis of the epidemic dynamics, thus enriching the traditional tools used for decision making. In particular, we show how certain 2-dimensional plots on the phase plane may yield intuitive information regarding the speed and the type of transmission dynamics. We investigate the potential of a two-stage analysis as a consequence of cutting feedback, for inference on certain functionals of the model parameters. Finally, we show that a point mass on critical parameters is overly restrictive and investigate informative priors as a suitable alternative.
Convergence Rates of Variational Inference in Sparse Deep Learning
Variational inference is becoming more and more popular for approximating intractable posterior distributions in Bayesian statistics and machine learning. Meanwhile, a few recent works have provided theoretical justification and new insights on deep neural networks for estimating smooth functions in usual settings such as nonparametric regression. In this paper, we show that variational inference for sparse deep learning retains the same generalization properties than exact Bayesian inference. In particular, we highlight the connection between estimation and approximation theories via the classical bias-variance trade-off and show that it leads to near-minimax rates of convergence for H\"older smooth functions. Additionally, we show that the model selection framework over the neural network architecture via ELBO maximization does not overfit and adaptively achieves the optimal rate of convergence.
Look-ahead Reasoning with a Learned Model in Imperfect Information Games
Test-time reasoning significantly enhances pre-trained AI agents' performance. However, it requires an explicit environment model, often unavailable or overly complex in real-world scenarios. While MuZero enables effective model learning for search in perfect information games, extending this paradigm to imperfect information games presents substantial challenges due to more nuanced look-ahead reasoning techniques and large number of states relevant for individual decisions. This paper introduces an algorithm LAMIR that learns an abstracted model of an imperfect information game directly from the agent-environment interaction. During test time, this trained model is used to perform look-ahead reasoning. The learned abstraction limits the size of each subgame to a manageable size, making theoretically principled look-ahead reasoning tractable even in games where previous methods could not scale. We empirically demonstrate that with sufficient capacity, LAMIR learns the exact underlying game structure, and with limited capacity, it still learns a valuable abstraction, which improves game playing performance of the pre-trained agents even in large games.
Off-Policy Primal-Dual Safe Reinforcement Learning
Primal-dual safe RL methods commonly perform iterations between the primal update of the policy and the dual update of the Lagrange Multiplier. Such a training paradigm is highly susceptible to the error in cumulative cost estimation since this estimation serves as the key bond connecting the primal and dual update processes. We show that this problem causes significant underestimation of cost when using off-policy methods, leading to the failure to satisfy the safety constraint. To address this issue, we propose conservative policy optimization, which learns a policy in a constraint-satisfying area by considering the uncertainty in cost estimation. This improves constraint satisfaction but also potentially hinders reward maximization. We then introduce local policy convexification to help eliminate such suboptimality by gradually reducing the estimation uncertainty. We provide theoretical interpretations of the joint coupling effect of these two ingredients and further verify them by extensive experiments. Results on benchmark tasks show that our method not only achieves an asymptotic performance comparable to state-of-the-art on-policy methods while using much fewer samples, but also significantly reduces constraint violation during training. Our code is available at https://github.com/ZifanWu/CAL.
Scalable Primal-Dual Actor-Critic Method for Safe Multi-Agent RL with General Utilities
We investigate safe multi-agent reinforcement learning, where agents seek to collectively maximize an aggregate sum of local objectives while satisfying their own safety constraints. The objective and constraints are described by {\it general utilities}, i.e., nonlinear functions of the long-term state-action occupancy measure, which encompass broader decision-making goals such as risk, exploration, or imitations. The exponential growth of the state-action space size with the number of agents presents challenges for global observability, further exacerbated by the global coupling arising from agents' safety constraints. To tackle this issue, we propose a primal-dual method utilizing shadow reward and κ-hop neighbor truncation under a form of correlation decay property, where κ is the communication radius. In the exact setting, our algorithm converges to a first-order stationary point (FOSP) at the rate of Oleft(T^{-2/3}right). In the sample-based setting, we demonstrate that, with high probability, our algorithm requires mathcal{O}left(ε^{-3.5}right) samples to achieve an ε-FOSP with an approximation error of O(φ_0^{2κ}), where φ_0in (0,1). Finally, we demonstrate the effectiveness of our model through extensive numerical experiments.
Competition and Diversity in Generative AI
Recent evidence suggests that the use of generative artificial intelligence reduces the diversity of content produced. In this work, we develop a game-theoretic model to explore the downstream consequences of content homogeneity when producers use generative AI to compete with one another. At equilibrium, players indeed produce content that is less diverse than optimal. However, stronger competition mitigates homogeneity and induces more diverse production. Perhaps more surprisingly, we show that a generative AI model that performs well in isolation (i.e., according to a benchmark) may fail to do so when faced with competition, and vice versa. We validate our results empirically by using language models to play Scattergories, a word game in which players are rewarded for producing answers that are both correct and unique. We discuss how the interplay between competition and homogeneity has implications for the development, evaluation, and use of generative AI.
Orchestrated Value Mapping for Reinforcement Learning
We present a general convergent class of reinforcement learning algorithms that is founded on two distinct principles: (1) mapping value estimates to a different space using arbitrary functions from a broad class, and (2) linearly decomposing the reward signal into multiple channels. The first principle enables incorporating specific properties into the value estimator that can enhance learning. The second principle, on the other hand, allows for the value function to be represented as a composition of multiple utility functions. This can be leveraged for various purposes, e.g. dealing with highly varying reward scales, incorporating a priori knowledge about the sources of reward, and ensemble learning. Combining the two principles yields a general blueprint for instantiating convergent algorithms by orchestrating diverse mapping functions over multiple reward channels. This blueprint generalizes and subsumes algorithms such as Q-Learning, Log Q-Learning, and Q-Decomposition. In addition, our convergence proof for this general class relaxes certain required assumptions in some of these algorithms. Based on our theory, we discuss several interesting configurations as special cases. Finally, to illustrate the potential of the design space that our theory opens up, we instantiate a particular algorithm and evaluate its performance on the Atari suite.
Rethinking Entropy Interventions in RLVR: An Entropy Change Perspective
While Reinforcement Learning with Verifiable Rewards (RLVR) can enhance LLM reasoning, its training process poses a critical risk: entropy collapse. This phenomenon is a rapid loss of policy diversity, stemming from the exploration-exploitation imbalance and leading to a lack of generalization. Recent entropy-intervention methods aim to prevent entropy collapse, yet their underlying mechanisms remain unclear. In this paper, we conduct a quantitative analysis to reveal token-level entropy changes and how existing entropy intervention methods help avoid entropy collapse. Our findings point out a fundamental limitation of existing methods: they attempt to control entropy dynamics indirectly. By only affecting related factors, such as the advantage signal and generation probability, their effectiveness is inherently limited and could potentially fail. To address this limitation, we introduce an entropy-change-aware reweighting scheme, namely Stabilizing Token-level Entropy-changE via Reweighting (STEER), that adaptively stabilizes entropy dynamics through fine-grained token-level adjustments. Our approach mitigates over-exploitation while fostering robust exploration. Extensive experiments demonstrate that STEER significantly mitigates entropy collapse, stabilizes entropy dynamics, and achieves stronger downstream performance across various mathematical reasoning benchmarks \footnote{Our code is available at https://github.com/zz-haooo/STEER.
Context-Aware Sparse Deep Coordination Graphs
Learning sparse coordination graphs adaptive to the coordination dynamics among agents is a long-standing problem in cooperative multi-agent learning. This paper studies this problem and proposes a novel method using the variance of payoff functions to construct context-aware sparse coordination topologies. We theoretically consolidate our method by proving that the smaller the variance of payoff functions is, the less likely action selection will change after removing the corresponding edge. Moreover, we propose to learn action representations to effectively reduce the influence of payoff functions' estimation errors on graph construction. To empirically evaluate our method, we present the Multi-Agent COordination (MACO) benchmark by collecting classic coordination problems in the literature, increasing their difficulty, and classifying them into different types. We carry out a case study and experiments on the MACO and StarCraft II micromanagement benchmark to demonstrate the dynamics of sparse graph learning, the influence of graph sparseness, and the learning performance of our method. (The MACO benchmark and codes are publicly available at https://github.com/TonghanWang/CASEC-MACO-benchmark.)
MetaModulation: Learning Variational Feature Hierarchies for Few-Shot Learning with Fewer Tasks
Meta-learning algorithms are able to learn a new task using previously learned knowledge, but they often require a large number of meta-training tasks which may not be readily available. To address this issue, we propose a method for few-shot learning with fewer tasks, which we call MetaModulation. The key idea is to use a neural network to increase the density of the meta-training tasks by modulating batch normalization parameters during meta-training. Additionally, we modify parameters at various network levels, rather than just a single layer, to increase task diversity. To account for the uncertainty caused by the limited training tasks, we propose a variational MetaModulation where the modulation parameters are treated as latent variables. We also introduce learning variational feature hierarchies by the variational MetaModulation, which modulates features at all layers and can consider task uncertainty and generate more diverse tasks. The ablation studies illustrate the advantages of utilizing a learnable task modulation at different levels and demonstrate the benefit of incorporating probabilistic variants in few-task meta-learning. Our MetaModulation and its variational variants consistently outperform state-of-the-art alternatives on four few-task meta-learning benchmarks.
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Distributed and federated learning algorithms and techniques associated primarily with minimization problems. However, with the increase of minimax optimization and variational inequality problems in machine learning, the necessity of designing efficient distributed/federated learning approaches for these problems is becoming more apparent. In this paper, we provide a unified convergence analysis of communication-efficient local training methods for distributed variational inequality problems (VIPs). Our approach is based on a general key assumption on the stochastic estimates that allows us to propose and analyze several novel local training algorithms under a single framework for solving a class of structured non-monotone VIPs. We present the first local gradient descent-accent algorithms with provable improved communication complexity for solving distributed variational inequalities on heterogeneous data. The general algorithmic framework recovers state-of-the-art algorithms and their sharp convergence guarantees when the setting is specialized to minimization or minimax optimization problems. Finally, we demonstrate the strong performance of the proposed algorithms compared to state-of-the-art methods when solving federated minimax optimization problems.
Free-Form Variational Inference for Gaussian Process State-Space Models
Gaussian process state-space models (GPSSMs) provide a principled and flexible approach to modeling the dynamics of a latent state, which is observed at discrete-time points via a likelihood model. However, inference in GPSSMs is computationally and statistically challenging due to the large number of latent variables in the model and the strong temporal dependencies between them. In this paper, we propose a new method for inference in Bayesian GPSSMs, which overcomes the drawbacks of previous approaches, namely over-simplified assumptions, and high computational requirements. Our method is based on free-form variational inference via stochastic gradient Hamiltonian Monte Carlo within the inducing-variable formalism. Furthermore, by exploiting our proposed variational distribution, we provide a collapsed extension of our method where the inducing variables are marginalized analytically. We also showcase results when combining our framework with particle MCMC methods. We show that, on six real-world datasets, our approach can learn transition dynamics and latent states more accurately than competing methods.
A Novel Predictive-Coding-Inspired Variational RNN Model for Online Prediction and Recognition
This study introduces PV-RNN, a novel variational RNN inspired by the predictive-coding ideas. The model learns to extract the probabilistic structures hidden in fluctuating temporal patterns by dynamically changing the stochasticity of its latent states. Its architecture attempts to address two major concerns of variational Bayes RNNs: how can latent variables learn meaningful representations and how can the inference model transfer future observations to the latent variables. PV-RNN does both by introducing adaptive vectors mirroring the training data, whose values can then be adapted differently during evaluation. Moreover, prediction errors during backpropagation, rather than external inputs during the forward computation, are used to convey information to the network about the external data. For testing, we introduce error regression for predicting unseen sequences as inspired by predictive coding that leverages those mechanisms. The model introduces a weighting parameter, the meta-prior, to balance the optimization pressure placed on two terms of a lower bound on the marginal likelihood of the sequential data. We test the model on two datasets with probabilistic structures and show that with high values of the meta-prior the network develops deterministic chaos through which the data's randomness is imitated. For low values, the model behaves as a random process. The network performs best on intermediate values, and is able to capture the latent probabilistic structure with good generalization. Analyzing the meta-prior's impact on the network allows to precisely study the theoretical value and practical benefits of incorporating stochastic dynamics in our model. We demonstrate better prediction performance on a robot imitation task with our model using error regression compared to a standard variational Bayes model lacking such a procedure.
Structured Stochastic Gradient MCMC
Stochastic gradient Markov Chain Monte Carlo (SGMCMC) is considered the gold standard for Bayesian inference in large-scale models, such as Bayesian neural networks. Since practitioners face speed versus accuracy tradeoffs in these models, variational inference (VI) is often the preferable option. Unfortunately, VI makes strong assumptions on both the factorization and functional form of the posterior. In this work, we propose a new non-parametric variational approximation that makes no assumptions about the approximate posterior's functional form and allows practitioners to specify the exact dependencies the algorithm should respect or break. The approach relies on a new Langevin-type algorithm that operates on a modified energy function, where parts of the latent variables are averaged over samples from earlier iterations of the Markov chain. This way, statistical dependencies can be broken in a controlled way, allowing the chain to mix faster. This scheme can be further modified in a "dropout" manner, leading to even more scalability. We test our scheme for ResNet-20 on CIFAR-10, SVHN, and FMNIST. In all cases, we find improvements in convergence speed and/or final accuracy compared to SG-MCMC and VI.
Integrated Decision Making and Trajectory Planning for Autonomous Driving Under Multimodal Uncertainties: A Bayesian Game Approach
Modeling the interaction between traffic agents is a key issue in designing safe and non-conservative maneuvers in autonomous driving. This problem can be challenging when multi-modality and behavioral uncertainties are engaged. Existing methods either fail to plan interactively or consider unimodal behaviors that could lead to catastrophic results. In this paper, we introduce an integrated decision-making and trajectory planning framework based on Bayesian game (i.e., game of incomplete information). Human decisions inherently exhibit discrete characteristics and therefore are modeled as types of players in the game. A general solver based on no-regret learning is introduced to obtain a corresponding Bayesian Coarse Correlated Equilibrium, which captures the interaction between traffic agents in the multimodal context. With the attained equilibrium, decision-making and trajectory planning are performed simultaneously, and the resulting interactive strategy is shown to be optimal over the expectation of rivals' driving intentions. Closed-loop simulations on different traffic scenarios are performed to illustrate the generalizability and the effectiveness of the proposed framework.
Making Reliable and Flexible Decisions in Long-tailed Classification
Long-tailed classification is challenging due to its heavy imbalance in class probabilities. While existing methods often focus on overall accuracy or accuracy for tail classes, they overlook a critical aspect: certain types of errors can carry greater risks than others in real-world long-tailed problems. For example, misclassifying patients (a tail class) as healthy individuals (a head class) entails far more serious consequences than the reverse scenario. To address this critical issue, we introduce Making Reliable and Flexible Decisions in Long-tailed Classification (RF-DLC), a novel framework aimed at reliable predictions in long-tailed problems. Leveraging Bayesian Decision Theory, we introduce an integrated gain to seamlessly combine long-tailed data distributions and the decision-making procedure. We further propose an efficient variational optimization strategy for the decision risk objective. Our method adapts readily to diverse utility matrices, which can be designed for specific tasks, ensuring its flexibility for different problem settings. In empirical evaluation, we design a new metric, False Head Rate, to quantify tail-sensitivity risk, along with comprehensive experiments on multiple real-world tasks, including large-scale image classification and uncertainty quantification, to demonstrate the reliability and flexibility of our method.
