new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 28

Imaging and controlling electron motion and chemical structural dynamics of biological system in real time and space

Ultrafast electron microscopy (UEM) has found widespread applications in physics, chemistry, and materials science, enabling real-space imaging of dynamics on ultrafast timescales. Recent advances have pushed the temporal resolution of UEM into the attosecond regime, enabling the attomicroscopy technique to directly visualize electron motion. In this work, we extend the capabilities of this powerful imaging tool to investigate ultrafast electron dynamics in a biological system by imaging and controlling light induced electronic and chemical changes in the conductive network of multicellular cable bacteria. Using electron energy loss spectroscopy (EELS), we first observed a laser induced increase in {\pi}-electron density, accompanied by spectral peak broadening and a blueshift features indicative of enhanced conductivity and structural modification. We also traced the effect of ultrafast laser pumping on bulk plasmon electron oscillations by monitoring changes in the plasmon like resonance peak. Additionally, we visualized laser induced chemical structural changes in cable bacteria in real space. The imaging results revealed carbon enrichment alongside a depletion of nitrogen and oxygen, highlighting the controllability of chemical dynamics. Moreover, time resolved EELS measurements further revealed a picosecond scale decay and recovery of both {\pi}-electron and plasmonic features, attributed to electron phonon coupling. In addition to shedding light on the mechanism of electron motion in cable bacteria, these findings demonstrate ultrafast modulation and switching of conductivity, underscoring their potential as bio-optoelectronic components operating on ultrafast timescales.

  • 7 authors
·
Oct 2

Creation of single vacancies in hBN with electron irradiation

Understanding electron irradiation effects is vital not only for reliable transmission electron microscopy characterization, but increasingly also for the controlled manipulation of two-dimensional materials. The displacement cross sections of monolayer hBN are measured using aberration-corrected scanning transmission electron microscopy in near ultra-high vacuum at primary beam energies between 50 and 90 keV. Damage rates below 80 keV are up to three orders of magnitude lower than previously measured at edges under poorer residual vacuum conditions where chemical etching appears to have been dominant. Notably, is possible to create single vacancies in hBN using electron irradiation, with boron almost twice as likely as nitrogen to be ejected below 80 keV. Moreover, any damage at such low energies cannot be explained by elastic knock-on, even when accounting for vibrations of the atoms. A theoretical description is developed to account for lowering of the displacement threshold due to valence ionization resulting from inelastic scattering of probe electrons, modelled using charge-constrained density functional theory molecular dynamics. Although significant reductions are found depending on the constrained charge, quantitative predictions for realistic ionization states are currently not possible. Nonetheless, there is potential for defect-engineering of hBN at the level of single vacancies using electron irradiation.

  • 9 authors
·
Mar 1, 2023

Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach

The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.

  • 4 authors
·
May 27, 2024

Automated Extraction of Material Properties using LLM-based AI Agents

The rapid discovery of materials is constrained by the lack of large, machine-readable datasets that couple performance metrics with structural context. Existing databases are either small, manually curated, or biased toward first principles results, leaving experimental literature underexploited. We present an agentic, large language model (LLM)-driven workflow that autonomously extracts thermoelectric and structural-properties from about 10,000 full-text scientific articles. The pipeline integrates dynamic token allocation, zeroshot multi-agent extraction, and conditional table parsing to balance accuracy against computational cost. Benchmarking on 50 curated papers shows that GPT-4.1 achieves the highest accuracy (F1 = 0.91 for thermoelectric properties and 0.82 for structural fields), while GPT-4.1 Mini delivers nearly comparable performance (F1 = 0.89 and 0.81) at a fraction of the cost, enabling practical large scale deployment. Applying this workflow, we curated 27,822 temperature resolved property records with normalized units, spanning figure of merit (ZT), Seebeck coefficient, conductivity, resistivity, power factor, and thermal conductivity, together with structural attributes such as crystal class, space group, and doping strategy. Dataset analysis reproduces known thermoelectric trends, such as the superior performance of alloys over oxides and the advantage of p-type doping, while also surfacing broader structure-property correlations. To facilitate community access, we release an interactive web explorer with semantic filters, numeric queries, and CSV export. This study delivers the largest LLM-curated thermoelectric dataset to date, provides a reproducible and cost-profiled extraction pipeline, and establishes a foundation for scalable, data-driven materials discovery beyond thermoelectrics.

  • 2 authors
·
Sep 23

CHGNet: Pretrained universal neural network potential for charge-informed atomistic modeling

The simulation of large-scale systems with complex electron interactions remains one of the greatest challenges for the atomistic modeling of materials. Although classical force fields often fail to describe the coupling between electronic states and ionic rearrangements, the more accurate ab-initio molecular dynamics suffers from computational complexity that prevents long-time and large-scale simulations, which are essential to study many technologically relevant phenomena, such as reactions, ion migrations, phase transformations, and degradation. In this work, we present the Crystal Hamiltonian Graph neural Network (CHGNet) as a novel machine-learning interatomic potential (MLIP), using a graph-neural-network-based force field to model a universal potential energy surface. CHGNet is pretrained on the energies, forces, stresses, and magnetic moments from the Materials Project Trajectory Dataset, which consists of over 10 years of density functional theory static and relaxation trajectories of sim 1.5 million inorganic structures. The explicit inclusion of magnetic moments enables CHGNet to learn and accurately represent the orbital occupancy of electrons, enhancing its capability to describe both atomic and electronic degrees of freedom. We demonstrate several applications of CHGNet in solid-state materials, including charge-informed molecular dynamics in Li_xMnO_2, the finite temperature phase diagram for Li_xFePO_4 and Li diffusion in garnet conductors. We critically analyze the significance of including charge information for capturing appropriate chemistry, and we provide new insights into ionic systems with additional electronic degrees of freedom that can not be observed by previous MLIPs.

  • 7 authors
·
Feb 27, 2023

Potential and Limitation of High-Frequency Cores and Caches

This paper explores the potential of cryogenic semiconductor computing and superconductor electronics as promising alternatives to traditional semiconductor devices. As semiconductor devices face challenges such as increased leakage currents and reduced performance at higher temperatures, these novel technologies offer high performance and low power computation. Conventional semiconductor electronics operating at cryogenic temperatures (below -150{\deg}C or 123.15 K) can benefit from reduced leakage currents and improved electron mobility. On the other hand, superconductor electronics, operating below 10 K, allow electrons to flow without resistance, offering the potential for ultra-low-power, high-speed computation. This study presents a comprehensive performance modeling and analysis of these technologies and provides insights into their potential benefits and limitations. We implement models of in-order and out-of-order cores operating at high clock frequencies associated with superconductor electronics and cryogenic semiconductor computing in gem5. We evaluate the performance of these components using workloads representative of real-world applications like NPB, SPEC CPU2006, and GAPBS. Our results show the potential speedups achievable by these components and the limitations posed by cache bandwidth. This work provides valuable insights into the performance implications and design trade-offs associated with cryogenic and superconductor technologies, laying the foundation for future research in this field using gem5.

  • 3 authors
·
Aug 6, 2024

On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity

The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}.

  • 9 authors
·
Aug 8, 2021

Nonequilibrium Phenomena in Driven and Active Coulomb Field Theories

The classical Coulomb gas model has served as one of the most versatile frameworks in statistical physics, connecting a vast range of phenomena across many different areas. Nonequilibrium generalisations of this model have so far been studied much more scarcely. With the abundance of contemporary research into active and driven systems, one would naturally expect that such generalisations of systems with long-ranged Coulomb-like interactions will form a fertile playground for interesting developments. Here, we present two examples of novel macroscopic behaviour that arise from nonequilibrium fluctuations in long-range interacting systems, namely (1) unscreened long-ranged correlations in strong electrolytes driven by an external electric field and the associated fluctuation-induced forces in the confined Casimir geometry, and (2) out-of-equilibrium critical behaviour in self-chemotactic models that incorporate the particle polarity in the chemotactic response of the cells. Both of these systems have nonlocal Coulomb-like interactions among their constituent particles, namely, the electrostatic interactions in the case of the driven electrolyte, and the chemotactic forces mediated by fast-diffusing signals in the case of self-chemotactic systems. The results presented here hint to the rich phenomenology of nonequilibrium effects that can arise from strong fluctuations in Coulomb interacting systems, and a rich variety of potential future directions, which are discussed.

  • 2 authors
·
Jul 1, 2022

Multi-property directed generative design of inorganic materials through Wyckoff-augmented transfer learning

Accelerated materials discovery is an urgent demand to drive advancements in fields such as energy conversion, storage, and catalysis. Property-directed generative design has emerged as a transformative approach for rapidly discovering new functional inorganic materials with multiple desired properties within vast and complex search spaces. However, this approach faces two primary challenges: data scarcity for functional properties and the multi-objective optimization required to balance competing tasks. Here, we present a multi-property-directed generative framework designed to overcome these limitations and enhance site symmetry-compliant crystal generation beyond P1 (translational) symmetry. By incorporating Wyckoff-position-based data augmentation and transfer learning, our framework effectively handles sparse and small functional datasets, enabling the generation of new stable materials simultaneously conditioned on targeted space group, band gap, and formation energy. Using this approach, we identified previously unknown thermodynamically and lattice-dynamically stable semiconductors in tetragonal, trigonal, and cubic systems, with bandgaps ranging from 0.13 to 2.20 eV, as validated by density functional theory (DFT) calculations. Additionally, we assessed their thermoelectric descriptors using DFT, indicating their potential suitability for thermoelectric applications. We believe our integrated framework represents a significant step forward in generative design of inorganic materials.

  • 6 authors
·
Mar 20

Standardized Benchmark Dataset for Localized Exposure to a Realistic Source at 10-90 GHz

The lack of freely available standardized datasets represents an aggravating factor during the development and testing the performance of novel computational techniques in exposure assessment and dosimetry research. This hinders progress as researchers are required to generate numerical data (field, power and temperature distribution) anew using simulation software for each exposure scenario. Other than being time consuming, this approach is highly susceptible to errors that occur during the configuration of the electromagnetic model. To address this issue, in this paper, the limited available data on the incident power density and resultant maximum temperature rise on the skin surface considering various steady-state exposure scenarios at 10-90 GHz have been statistically modeled. The synthetic data have been sampled from the fitted statistical multivariate distribution with respect to predetermined dosimetric constraints. We thus present a comprehensive and open-source dataset compiled of the high-fidelity numerical data considering various exposures to a realistic source. Furthermore, different surrogate models for predicting maximum temperature rise on the skin surface were fitted based on the synthetic dataset. All surrogate models were tested on the originally available data where satisfactory predictive performance has been demonstrated. A simple technique of combining quadratic polynomial and tensor-product spline surrogates, each operating on its own cluster of data, has achieved the lowest mean absolute error of 0.058 {\deg}C. Therefore, overall experimental results indicate the validity of the proposed synthetic dataset.

  • 3 authors
·
May 3, 2023

Robust Binding Energy Distribution Sampling on Amorphous Solid Water Models. Method testing and validation with NH3, CO and CH4

This work aims to develop a method based on a structurally reliable ice model and a statistically and physico-chemically robust approach for BE distribution inference, with the aim to be applicable to various relevant interstellar species. A multiscale computational approach is presented, with a Molecular Dynamics (MD) Heat & Quench protocol for the amorphous water ice model, and an ONIOM(B3LYP-D3(BJ)/6-311+G**:GFN2-xtb) scheme for the BE inference, with a prime emphasis onto the BE/real system size convergence. The sampling of the binding configurations is twofold, exploring both regularly spaced binding sites, as well as various adsorbate-to-substrate orientations on each locally distinct site. This second source of BE diversity accounts for the local roughness of the potential energy landscape of the substrate. Three different adsorbate test cases are considered, i.e. NH3, CO and CH4, owing to their significance in dust icy mantles, and their distinct binding behavior with water ices. The BE distributions for NH3, CO and CH4 have been inferred, with converged statistics. The distribution for NH3 is better represented by a double Gaussian component profile. Three starting adsorbate orientations per site are required to reach convergence for both Gaussian components of NH3, while 2 orientations are sufficient for CO, and one unique for CH4 (symmetric). Further geometrical and molecular surrounding insights have been provided. These results encompass previously reported results.

  • 4 authors
·
Apr 25

The X-ray Integral Field Unit at the end of the Athena reformulation phase

The Athena mission entered a redefinition phase in July 2022, driven by the imperative to reduce the mission cost at completion for the European Space Agency below an acceptable target, while maintaining the flagship nature of its science return. This notably called for a complete redesign of the X-ray Integral Field Unit (X-IFU) cryogenic architecture towards a simpler active cooling chain. Passive cooling via successive radiative panels at spacecraft level is now used to provide a 50 K thermal environment to an X-IFU owned cryostat. 4.5 K cooling is achieved via a single remote active cryocooler unit, while a multi-stage Adiabatic Demagnetization Refrigerator ensures heat lift down to the 50 mK required by the detectors. Amidst these changes, the core concept of the readout chain remains robust, employing Transition Edge Sensor microcalorimeters and a SQUID-based Time-Division Multiplexing scheme. Noteworthy is the introduction of a slower pixel. This enables an increase in the multiplexing factor (from 34 to 48) without compromising the instrument energy resolution, hence keeping significant system margins to the new 4 eV resolution requirement. This allows reducing the number of channels by more than a factor two, and thus the resource demands on the system, while keeping a 4' field of view (compared to 5' before). In this article, we will give an overview of this new architecture, before detailing its anticipated performances. Finally, we will present the new X-IFU schedule, with its short term focus on demonstration activities towards a mission adoption in early 2027.

  • 282 authors
·
Feb 15

Accurate Chemistry Collection: Coupled cluster atomization energies for broad chemical space

Accurate thermochemical data with sub-chemical accuracy (i.e., within pm1 kcal mol^{-1} from sufficiently accurate experimental or theoretical reference data) is essential for the development and improvement of computational chemistry methods. Challenging thermochemical properties such as heats of formation and total atomization energies (TAEs) are of particular interest because they rigorously test the ability of computational chemistry methods to accurately describe complex chemical transformations involving multiple bond rearrangements. Yet, existing thermochemical datasets that confidently reach this level of accuracy are limited in either size or scope. Datasets with highly accurate reference values include a small number of data points, and larger datasets provide less accurate data or only cover a narrow portion of the chemical space. The existing datasets are therefore insufficient for developing data-driven methods with predictive accuracy over a large chemical space. The Microsoft Research Accurate Chemistry Collection (MSR-ACC) will address this challenge. Here, it offers the MSR-ACC/TAE25 dataset of 76,879 total atomization energies obtained at the CCSD(T)/CBS level via the W1-F12 thermochemical protocol. The dataset is constructed to exhaustively cover chemical space for all elements up to argon by enumerating and sampling chemical graphs, thus avoiding bias towards any particular subspace of the chemical space (such as drug-like, organic, or experimentally observed molecules). With this first dataset in MSR-ACC, we enable data-driven approaches for developing predictive computational chemistry methods with unprecedented accuracy and scope.

  • 13 authors
·
Jun 17

The survival of aromatic molecules in protoplanetary disks

Aromaticity is a common chemical functionalities in bioactive molecules. In interstellar and circumstellar environments benzene and other small aromatics are considered the precursor for more complex prebiotic molecules and they have shown to potentially have rich ice-phase photochemistry. The availability of small organic molecules in prebiotic networks depends on their photostability in astrophysical environments preceding planet formation, particularly during the protoplanetary disk stage, as the disk composition is linked to the chemical make-up of planets and planetesimals. We study the ultraviolet (UV) photodestruction (120-160 nm) of five aromatic molecules in undiluted ices and, for selected cases, in astrophysically relevant ice matrices (H2O, CO, CO2). For each ice, we measure the destruction cross sections as a function of photon exposure. In undiluted ices, aromatic molecules exhibit substantially lower photodestruction cross sections (sigma < 10-19 cm2) than aliphatic hydrocarbons, including cyclohexane, (sigma = 2.8-4x10-18 cm2). Furthermore, neither substituent nature nor size affects the aromatic stability in pure ices, suggesting that the strong intermolecular interactions among aromatic molecules provide protection against VUV exposure, even with small to mid-sized ring substituents. In mixed ices, the photodestruction and reactivity of aromatic molecules (sigma = 2.5-6.1x10-18 cm2) increases by more than an order of magnitude, but are still lower than in the gas-phase. We attribute this to a weaker cage effect and matrix-specific interactions. We use the experimental photodestruction cross sections to estimate the lifetime of aromatic molecules in protoplanetary disks, denileating the disks regions in which aromatic photochemistry is expected to be the most active.

  • 6 authors
·
Oct 10

Detecting Fermi Surface Nesting Effect for Fermionic Dicke Transition by Trap Induced Localization

Recently, the statistical effect of fermionic superradiance is approved by series of experiments both in free space and in a cavity. The Pauli blocking effect can be visualized by a 1/2 scaling of Dicke transition critical pumping strength against particle number Nat for fermions in a trap. However, the Fermi surface nesting effect, which manifests the enhancement of superradiance by Fermi statistics is still very hard to be identified. Here we studied the influence of localized fermions on the trap edge when both pumping optical lattice and the trap are presented. We find due to localization, the statistical effect in superradiant transition is enhanced. Two new scalings of critical pumping strength are observed as 4/3, and 2/3 for mediate particle number, and the Pauli blocking scaling 1/3 (2d case) in large particle number limit is unaffected. Further, we find the 4/3 scaling is subject to a power law increasing with rising ratio between recoil energy and trap frequency in pumping laser direction. The divergence of this scaling of critical pumping strength against N_{rm at} in E_R/omega_xrightarrow+infty limit can be identified as the Fermi surface nesting effect. Thus we find a practical experimental scheme for visualizing the long-desired Fermi surface nesting effect with the help of trap induced localization in a two-dimensional Fermi gas in a cavity.

  • 2 authors
·
Mar 1, 2023

Drift surface solver for runaway electron current dominant equilibria during the Current Quench

Runaway electron current generated during the Current Quench phase of tokamak disruptions could result in severe damage to future high performance devices. To control and mitigate such runaway electron current, it is important to accurately describe the runaway electron current dominated equilibrium, based on which further stability analysis could be carried out. In this paper, we derive a Grad-Shafranov-like equation solving for the axisymmetric drift surfaces of the runaway electrons for the simple case that all runaway electron share the same parallel momentum. This new equilibrium equation is then numerically solved with simple rectangular wall with ITER-like and MAST-like geometry parameters. The deviation between the drift surfaces and the flux surfaces is readily obtained, and runaway electrons is found to be well confined even in regions with open field lines. The change of the runaway electron parallel momentum is found to result in a horizontal current center displacement without any changes in the total current or the external field. The runaway current density profile is found to affect the susceptibility of such displacement, with flatter profiles result in more displacement by the same momentum change. With up-down asymmetry in the external poloidal field, such displacement is accompanied by a vertical displacement of runaway electron current. It is found that this effect is more pronounced in smaller, compact device and weaker poloidal field cases. The above results demonstrate the dynamics of current center displacement caused by the momentum space change in the runaway electrons, and pave way for future, more sophisticated runaway current equilibrium theory with more realistic consideration on the runaway electron momentum distribution. This new equilibrium theory also provides foundation for future stability analysis of the runaway electron current.

  • 2 authors
·
Mar 2, 2023

Quarks to Cosmos: Particles and Plasma in Cosmological evolution

We describe in the context of the particle physics (PP) standard model (SM) `PP-SM' the understanding of the primordial properties and composition of the Universe in the temperature range 130GeV>T>20keV. The Universe evolution is described using FLRW cosmology. We present a global view on particle content across time and describe the different evolution eras using deceleration parameter q. We follow the arrow of time in the expanding and cooling Universe: After the PP-SM heavies (t, h, W, Z) diminish in abundance below Tsimeq 50GeV, the PP-SM plasma in the Universe is governed by the strongly interacting Quark-Gluon content. Once the temperature drops below Tsimeq 150MeV, quarks and gluons hadronize into strongly interacting matter particles. Rapid disappearance of baryonic antimatter completes at T_B=38.2MeV. We study the ensuing disappearance of strangeness and mesons in general. We show that the different eras defined by particle populations are barely separated from each other with abundance of muons fading out just prior to T=O(2.5)MeV, the era of emergence of the free-streaming neutrinos. We discuss the two relevant fundamental constants controlling the decoupling of neutrinos. We subsequently follow the primordial Universe as it passes through the hot dense electron-positron plasma epoch. The high density of positron antimatter disappears near T=20.3keV: Nuclear reactions occur in the presence of a highly mobile and relatively strongly interacting electron-positron plasma phase. We apply plasma theory methods to describe the strong screening effects between heavy dust particle (nucleons). We analyze the paramagnetic characteristics of the electron-positron plasma when exposed to an external primordial magnetic field.

  • 5 authors
·
Sep 26, 2024

Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries

This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.

  • 8 authors
·
Jul 31, 2024

Thermal Desorption Kinetics, Binding Energies, and Entrapment of Methyl Mercaptan Ices

Organosulfur species are potential major carriers of sulfur in the interstellar medium, as well as interesting ingredients in prebiotic chemistry. The most fundamental question regarding these species is under which conditions they reside in the gas versus solid phase. Here, we characterize the thermal desorption kinetics, binding energies, and entrapment of the organosulfur methyl mercaptan (CH_3SH, or MeSH) in different ice environments, comparing them with those of methanol (CH_3OH, or MeOH) ices. The derived multi-layer (pure MeSH-MeSH) and sub-monolayer (layered MeSH-H_2O) binding energies are surprisingly similar, corresponding to snow line locations where the disk midplane temperature is ~105 K. In both H_2O-dominated and more realistic H_2O:CO_2-dominated ices, 100% of the MeSH is entrapped, almost exclusively desorbing at the molecular volcano desorption peak, indicating that MeSH is retained at the water snow line if initially mixed with water ice during formation. Additionally, the presence of MeSH in an ice mixture enhances the entrapment of CO_2 and MeOH (up to 100%) until the onset of volcano desorption; without MeSH, both desorb at their respective pure desorption temperatures and also co-desorb with water. Compared to MeOH, MeSH binds less well to water, explaining why MeSH escapes during water ice crystallization rather than co-desorbing with water. These results show the larger relative size of MeSH compared to MeOH significantly impacts its ability to bind to water and its entrapment efficiency. Therefore, molecular size plays an important role in the adsorption and retention of S-bearing organics and, in turn, other volatiles in ices.

  • 4 authors
·
Apr 1

Modeling transport in weakly collisional plasmas using thermodynamic forcing

How momentum, energy, and magnetic fields are transported in the presence of macroscopic gradients is a fundamental question in plasma physics. Answering this question is especially challenging for weakly collisional, magnetized plasmas, where macroscopic gradients influence the plasma's microphysical structure. In this paper, we introduce thermodynamic forcing, a new method for systematically modeling how macroscopic gradients in magnetized or unmagnetized plasmas shape the distribution functions of constituent particles. In this method, we propose to apply an anomalous force to those particles inducing the anisotropy that would naturally emerge due to macroscopic gradients in weakly collisional plasmas. We implement thermodynamic forcing in particle-in-cell (TF-PIC) simulations using a modified Vay particle pusher and validate it against analytic solutions of the equations of motion. We then carry out a series of simulations of electron-proton plasmas with periodic boundary conditions using TF-PIC. First, we confirm that the properties of two electron-scale kinetic instabilities -- one driven by a temperature gradient and the other by pressure anisotropy -- are consistent with previous results. Then, we demonstrate that in the presence of multiple macroscopic gradients, the saturated state can differ significantly from current expectations. This work enables, for the first time, systematic and self-consistent transport modeling in weakly collisional plasmas, with broad applications in astrophysics, laser-plasma physics, and inertial confinement fusion.

  • 2 authors
·
Apr 18

High-order finite element method for atomic structure calculations

We introduce featom, an open source code that implements a high-order finite element solver for the radial Schr\"odinger, Dirac, and Kohn-Sham equations. The formulation accommodates various mesh types, such as uniform or exponential, and the convergence can be systematically controlled by increasing the number and/or polynomial order of the finite element basis functions. The Dirac equation is solved using a squared Hamiltonian approach to eliminate spurious states. To address the slow convergence of the kappa=pm1 states due to divergent derivatives at the origin, we incorporate known asymptotic forms into the solutions. We achieve a high level of accuracy (10^{-8} Hartree) for total energies and eigenvalues of heavy atoms such as uranium in both Schr\"odinger and Dirac Kohn-Sham solutions. We provide detailed convergence studies and computational parameters required to attain commonly required accuracies. Finally, we compare our results with known analytic results as well as the results of other methods. In particular, we calculate benchmark results for atomic numbers (Z) from 1 to 92, verifying current benchmarks. We demonstrate significant speedup compared to the state-of-the-art shooting solver dftatom. An efficient, modular Fortran 2008 implementation, is provided under an open source, permissive license, including examples and tests, wherein particular emphasis is placed on the independence (no global variables), reusability, and generality of the individual routines.

  • 8 authors
·
Jul 11, 2023