new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 14

U-Bench: A Comprehensive Understanding of U-Net through 100-Variant Benchmarking

Over the past decade, U-Net has been the dominant architecture in medical image segmentation, leading to the development of thousands of U-shaped variants. Despite its widespread adoption, there is still no comprehensive benchmark to systematically evaluate their performance and utility, largely because of insufficient statistical validation and limited consideration of efficiency and generalization across diverse datasets. To bridge this gap, we present U-Bench, the first large-scale, statistically rigorous benchmark that evaluates 100 U-Net variants across 28 datasets and 10 imaging modalities. Our contributions are threefold: (1) Comprehensive Evaluation: U-Bench evaluates models along three key dimensions: statistical robustness, zero-shot generalization, and computational efficiency. We introduce a novel metric, U-Score, which jointly captures the performance-efficiency trade-off, offering a deployment-oriented perspective on model progress. (2) Systematic Analysis and Model Selection Guidance: We summarize key findings from the large-scale evaluation and systematically analyze the impact of dataset characteristics and architectural paradigms on model performance. Based on these insights, we propose a model advisor agent to guide researchers in selecting the most suitable models for specific datasets and tasks. (3) Public Availability: We provide all code, models, protocols, and weights, enabling the community to reproduce our results and extend the benchmark with future methods. In summary, U-Bench not only exposes gaps in previous evaluations but also establishes a foundation for fair, reproducible, and practically relevant benchmarking in the next decade of U-Net-based segmentation models. The project can be accessed at: https://fenghetan9.github.io/ubench. Code is available at: https://github.com/FengheTan9/U-Bench.

Evaluating Cognitive Maps and Planning in Large Language Models with CogEval

Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.

  • 8 authors
·
Sep 24, 2023 1

Robust Distortion-free Watermarks for Language Models

We propose a methodology for planting watermarks in text from an autoregressive language model that are robust to perturbations without changing the distribution over text up to a certain maximum generation budget. We generate watermarked text by mapping a sequence of random numbers -- which we compute using a randomized watermark key -- to a sample from the language model. To detect watermarked text, any party who knows the key can align the text to the random number sequence. We instantiate our watermark methodology with two sampling schemes: inverse transform sampling and exponential minimum sampling. We apply these watermarks to three language models -- OPT-1.3B, LLaMA-7B and Alpaca-7B -- to experimentally validate their statistical power and robustness to various paraphrasing attacks. Notably, for both the OPT-1.3B and LLaMA-7B models, we find we can reliably detect watermarked text (p leq 0.01) from 35 tokens even after corrupting between 40-50\% of the tokens via random edits (i.e., substitutions, insertions or deletions). For the Alpaca-7B model, we conduct a case study on the feasibility of watermarking responses to typical user instructions. Due to the lower entropy of the responses, detection is more difficult: around 25% of the responses -- whose median length is around 100 tokens -- are detectable with p leq 0.01, and the watermark is also less robust to certain automated paraphrasing attacks we implement.

  • 4 authors
·
Jul 28, 2023

From Robustness to Privacy and Back

We study the relationship between two desiderata of algorithms in statistical inference and machine learning: differential privacy and robustness to adversarial data corruptions. Their conceptual similarity was first observed by Dwork and Lei (STOC 2009), who observed that private algorithms satisfy robustness, and gave a general method for converting robust algorithms to private ones. However, all general methods for transforming robust algorithms into private ones lead to suboptimal error rates. Our work gives the first black-box transformation that converts any adversarially robust algorithm into one that satisfies pure differential privacy. Moreover, we show that for any low-dimensional estimation task, applying our transformation to an optimal robust estimator results in an optimal private estimator. Thus, we conclude that for any low-dimensional task, the optimal error rate for varepsilon-differentially private estimators is essentially the same as the optimal error rate for estimators that are robust to adversarially corrupting 1/varepsilon training samples. We apply our transformation to obtain new optimal private estimators for several high-dimensional tasks, including Gaussian (sparse) linear regression and PCA. Finally, we present an extension of our transformation that leads to approximate differentially private algorithms whose error does not depend on the range of the output space, which is impossible under pure differential privacy.

  • 3 authors
·
Feb 3, 2023

Trans-EnV: A Framework for Evaluating the Linguistic Robustness of LLMs Against English Varieties

Large Language Models (LLMs) are predominantly evaluated on Standard American English (SAE), often overlooking the diversity of global English varieties. This narrow focus may raise fairness concerns as degraded performance on non-standard varieties can lead to unequal benefits for users worldwide. Therefore, it is critical to extensively evaluate the linguistic robustness of LLMs on multiple non-standard English varieties. We introduce Trans-EnV, a framework that automatically transforms SAE datasets into multiple English varieties to evaluate the linguistic robustness. Our framework combines (1) linguistics expert knowledge to curate variety-specific features and transformation guidelines from linguistic literature and corpora, and (2) LLM-based transformations to ensure both linguistic validity and scalability. Using Trans-EnV, we transform six benchmark datasets into 38 English varieties and evaluate seven state-of-the-art LLMs. Our results reveal significant performance disparities, with accuracy decreasing by up to 46.3% on non-standard varieties. These findings highlight the importance of comprehensive linguistic robustness evaluation across diverse English varieties. Each construction of Trans-EnV was validated through rigorous statistical testing and consultation with a researcher in the field of second language acquisition, ensuring its linguistic validity. Our code and datasets are publicly available at https://github.com/jiyounglee-0523/TransEnV and https://huggingface.co/collections/jiyounglee0523/transenv-681eadb3c0c8cf363b363fb1.

  • 7 authors
·
May 27

Certified Robustness to Word Substitution Ranking Attack for Neural Ranking Models

Neural ranking models (NRMs) have achieved promising results in information retrieval. NRMs have also been shown to be vulnerable to adversarial examples. A typical Word Substitution Ranking Attack (WSRA) against NRMs was proposed recently, in which an attacker promotes a target document in rankings by adding human-imperceptible perturbations to its text. This raises concerns when deploying NRMs in real-world applications. Therefore, it is important to develop techniques that defend against such attacks for NRMs. In empirical defenses adversarial examples are found during training and used to augment the training set. However, such methods offer no theoretical guarantee on the models' robustness and may eventually be broken by other sophisticated WSRAs. To escape this arms race, rigorous and provable certified defense methods for NRMs are needed. To this end, we first define the Certified Top-K Robustness for ranking models since users mainly care about the top ranked results in real-world scenarios. A ranking model is said to be Certified Top-K Robust on a ranked list when it is guaranteed to keep documents that are out of the top K away from the top K under any attack. Then, we introduce a Certified Defense method, named CertDR, to achieve certified top-K robustness against WSRA, based on the idea of randomized smoothing. Specifically, we first construct a smoothed ranker by applying random word substitutions on the documents, and then leverage the ranking property jointly with the statistical property of the ensemble to provably certify top-K robustness. Extensive experiments on two representative web search datasets demonstrate that CertDR can significantly outperform state-of-the-art empirical defense methods for ranking models.

  • 7 authors
·
Sep 14, 2022

CSI-4CAST: A Hybrid Deep Learning Model for CSI Prediction with Comprehensive Robustness and Generalization Testing

Channel state information (CSI) prediction is a promising strategy for ensuring reliable and efficient operation of massive multiple-input multiple-output (mMIMO) systems by providing timely downlink (DL) CSI. While deep learning-based methods have advanced beyond conventional model-driven and statistical approaches, they remain limited in robustness to practical non-Gaussian noise, generalization across diverse channel conditions, and computational efficiency. This paper introduces CSI-4CAST, a hybrid deep learning architecture that integrates 4 key components, i.e., Convolutional neural network residuals, Adaptive correction layers, ShuffleNet blocks, and Transformers, to efficiently capture both local and long-range dependencies in CSI prediction. To enable rigorous evaluation, this work further presents a comprehensive benchmark, CSI-RRG for Regular, Robustness and Generalization testing, which includes more than 300,000 samples across 3,060 realistic scenarios for both TDD and FDD systems. The dataset spans multiple channel models, a wide range of delay spreads and user velocities, and diverse noise types and intensity degrees. Experimental results show that CSI-4CAST achieves superior prediction accuracy with substantially lower computational cost, outperforming baselines in 88.9% of TDD scenarios and 43.8% of FDD scenario, the best performance among all evaluated models, while reducing FLOPs by 5x and 3x compared to LLM4CP, the strongest baseline. In addition, evaluation over CSI-RRG provides valuable insights into how different channel factors affect the performance and generalization capability of deep learning models. Both the dataset (https://huggingface.co/CSI-4CAST) and evaluation protocols (https://github.com/AI4OPT/CSI-4CAST) are publicly released to establish a standardized benchmark and to encourage further research on robust and efficient CSI prediction.

  • 7 authors
·
Oct 14

Share Your Attention: Transformer Weight Sharing via Matrix-based Dictionary Learning

Large language models (LLMs) have revolutionized AI applications, yet their high computational and memory demands hinder their widespread deployment. Existing compression techniques focus on intra-block optimizations (e.g. low-rank approximation, attention head pruning), while the repetitive layered structure of transformers implies significant inter-block redundancy - a dimension largely unexplored beyond key-value (KV) caching. Inspired by dictionary learning in CNNs, we propose a framework for structured weight sharing across transformer layers. Our approach decomposes attention projection matrices into shared dictionary atoms, reducing the attention module's parameters by 66.7% while achieving on-par performance. Unlike complex methods requiring distillation or architectural changes, MASA (Matrix Atom Sharing in Attention) operates as a drop-in replacement - trained with standard optimizers - and represents each layer's weights as linear combinations of shared matrix atoms. Experiments across scales (100M-700M parameters) show that MASA achieves better benchmark accuracy and perplexity than grouped-query attention (GQA), low-rank baselines and recently proposed Repeat-all-over/Sequential sharing at comparable parameter budgets. Ablation studies confirm robustness to the dictionary size and the efficacy of shared representations in capturing cross-layer statistical regularities. Extending to Vision Transformers (ViT), MASA matches performance metrics on image classification and detection tasks with 66.7% fewer attention parameters. By combining dictionary learning strategies with transformer efficiency, MASA offers a scalable blueprint for parameter-efficient models without sacrificing performance. Finally, we investigate the possibility of employing MASA on pretrained LLMs to reduce their number of parameters without experiencing any significant drop in their performance.

  • 4 authors
·
Aug 6

Oscillation-free Quantization for Low-bit Vision Transformers

Weight oscillation is an undesirable side effect of quantization-aware training, in which quantized weights frequently jump between two quantized levels, resulting in training instability and a sub-optimal final model. We discover that the learnable scaling factor, a widely-used de facto setting in quantization aggravates weight oscillation. In this study, we investigate the connection between the learnable scaling factor and quantized weight oscillation and use ViT as a case driver to illustrate the findings and remedies. In addition, we also found that the interdependence between quantized weights in query and key of a self-attention layer makes ViT vulnerable to oscillation. We, therefore, propose three techniques accordingly: statistical weight quantization (rm StatsQ) to improve quantization robustness compared to the prevalent learnable-scale-based method; confidence-guided annealing (rm CGA) that freezes the weights with high confidence and calms the oscillating weights; and query-key reparameterization (rm QKR) to resolve the query-key intertwined oscillation and mitigate the resulting gradient misestimation. Extensive experiments demonstrate that these proposed techniques successfully abate weight oscillation and consistently achieve substantial accuracy improvement on ImageNet. Specifically, our 2-bit DeiT-T/DeiT-S algorithms outperform the previous state-of-the-art by 9.8% and 7.7%, respectively. Code and models are available at: https://github.com/nbasyl/OFQ.

  • 3 authors
·
Feb 4, 2023

Point2SSM: Learning Morphological Variations of Anatomies from Point Cloud

We present Point2SSM, a novel unsupervised learning approach for constructing correspondence-based statistical shape models (SSMs) directly from raw point clouds. SSM is crucial in clinical research, enabling population-level analysis of morphological variation in bones and organs. Traditional methods of SSM construction have limitations, including the requirement of noise-free surface meshes or binary volumes, reliance on assumptions or templates, and prolonged inference times due to simultaneous optimization of the entire cohort. Point2SSM overcomes these barriers by providing a data-driven solution that infers SSMs directly from raw point clouds, reducing inference burdens and increasing applicability as point clouds are more easily acquired. While deep learning on 3D point clouds has seen success in unsupervised representation learning and shape correspondence, its application to anatomical SSM construction is largely unexplored. We conduct a benchmark of state-of-the-art point cloud deep networks on the SSM task, revealing their limited robustness to clinical challenges such as noisy, sparse, or incomplete input and limited training data. Point2SSM addresses these issues through an attention-based module, providing effective correspondence mappings from learned point features. Our results demonstrate that the proposed method significantly outperforms existing networks in terms of accurate surface sampling and correspondence, better capturing population-level statistics.

  • 2 authors
·
May 23, 2023

Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms

This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.

  • 1 authors
·
Jun 5, 2024