1 Dr.V: A Hierarchical Perception-Temporal-Cognition Framework to Diagnose Video Hallucination by Fine-grained Spatial-Temporal Grounding Recent advancements in large video models (LVMs) have significantly enhance video understanding. However, these models continue to suffer from hallucinations, producing content that conflicts with input videos. To address this issue, we propose Dr.V, a hierarchical framework covering perceptive, temporal, and cognitive levels to diagnose video hallucination by fine-grained spatial-temporal grounding. Dr.V comprises of two key components: a benchmark dataset Dr.V-Bench and a satellite video agent Dr.V-Agent. Dr.V-Bench includes 10k instances drawn from 4,974 videos spanning diverse tasks, each enriched with detailed spatial-temporal annotation. Dr.V-Agent detects hallucinations in LVMs by systematically applying fine-grained spatial-temporal grounding at the perceptive and temporal levels, followed by cognitive level reasoning. This step-by-step pipeline mirrors human-like video comprehension and effectively identifies hallucinations. Extensive experiments demonstrate that Dr.V-Agent is effective in diagnosing hallucination while enhancing interpretability and reliability, offering a practical blueprint for robust video understanding in real-world scenarios. All our data and code are available at https://github.com/Eurekaleo/Dr.V. 15 authors · Sep 15 2
4 Deep Video Discovery: Agentic Search with Tool Use for Long-form Video Understanding Long-form video understanding presents significant challenges due to extensive temporal-spatial complexity and the difficulty of question answering under such extended contexts. While Large Language Models (LLMs) have demonstrated considerable advancements in video analysis capabilities and long context handling, they continue to exhibit limitations when processing information-dense hour-long videos. To overcome such limitations, we propose the Deep Video Discovery agent to leverage an agentic search strategy over segmented video clips. Different from previous video agents manually designing a rigid workflow, our approach emphasizes the autonomous nature of agents. By providing a set of search-centric tools on multi-granular video database, our DVD agent leverages the advanced reasoning capability of LLM to plan on its current observation state, strategically selects tools, formulates appropriate parameters for actions, and iteratively refines its internal reasoning in light of the gathered information. We perform comprehensive evaluation on multiple long video understanding benchmarks that demonstrates the advantage of the entire system design. Our DVD agent achieves SOTA performance, significantly surpassing prior works by a large margin on the challenging LVBench dataset. Comprehensive ablation studies and in-depth tool analyses are also provided, yielding insights to further advance intelligent agents tailored for long-form video understanding tasks. The code will be released later. 7 authors · May 23 2
13 VideoAgent: A Memory-augmented Multimodal Agent for Video Understanding We explore how reconciling several foundation models (large language models and vision-language models) with a novel unified memory mechanism could tackle the challenging video understanding problem, especially capturing the long-term temporal relations in lengthy videos. In particular, the proposed multimodal agent VideoAgent: 1) constructs a structured memory to store both the generic temporal event descriptions and object-centric tracking states of the video; 2) given an input task query, it employs tools including video segment localization and object memory querying along with other visual foundation models to interactively solve the task, utilizing the zero-shot tool-use ability of LLMs. VideoAgent demonstrates impressive performances on several long-horizon video understanding benchmarks, an average increase of 6.6% on NExT-QA and 26.0% on EgoSchema over baselines, closing the gap between open-sourced models and private counterparts including Gemini 1.5 Pro. 7 authors · Mar 18, 2024 1
37 VideoAgent: Long-form Video Understanding with Large Language Model as Agent Long-form video understanding represents a significant challenge within computer vision, demanding a model capable of reasoning over long multi-modal sequences. Motivated by the human cognitive process for long-form video understanding, we emphasize interactive reasoning and planning over the ability to process lengthy visual inputs. We introduce a novel agent-based system, VideoAgent, that employs a large language model as a central agent to iteratively identify and compile crucial information to answer a question, with vision-language foundation models serving as tools to translate and retrieve visual information. Evaluated on the challenging EgoSchema and NExT-QA benchmarks, VideoAgent achieves 54.1% and 71.3% zero-shot accuracy with only 8.4 and 8.2 frames used on average. These results demonstrate superior effectiveness and efficiency of our method over the current state-of-the-art methods, highlighting the potential of agent-based approaches in advancing long-form video understanding. 4 authors · Mar 15, 2024 2
1 Search-TTA: A Multimodal Test-Time Adaptation Framework for Visual Search in the Wild To perform autonomous visual search for environmental monitoring, a robot may leverage satellite imagery as a prior map. This can help inform coarse, high-level search and exploration strategies, even when such images lack sufficient resolution to allow fine-grained, explicit visual recognition of targets. However, there are some challenges to overcome with using satellite images to direct visual search. For one, targets that are unseen in satellite images are underrepresented (compared to ground images) in most existing datasets, and thus vision models trained on these datasets fail to reason effectively based on indirect visual cues. Furthermore, approaches which leverage large Vision Language Models (VLMs) for generalization may yield inaccurate outputs due to hallucination, leading to inefficient search. To address these challenges, we introduce Search-TTA, a multimodal test-time adaptation framework that can accept text and/or image input. First, we pretrain a remote sensing image encoder to align with CLIP's visual encoder to output probability distributions of target presence used for visual search. Second, our framework dynamically refines CLIP's predictions during search using a test-time adaptation mechanism. Through a feedback loop inspired by Spatial Poisson Point Processes, gradient updates (weighted by uncertainty) are used to correct (potentially inaccurate) predictions and improve search performance. To validate Search-TTA's performance, we curate a visual search dataset based on internet-scale ecological data. We find that Search-TTA improves planner performance by up to 9.7%, particularly in cases with poor initial CLIP predictions. It also achieves comparable performance to state-of-the-art VLMs. Finally, we deploy Search-TTA on a real UAV via hardware-in-the-loop testing, by simulating its operation within a large-scale simulation that provides onboard sensing. 11 authors · May 16 1