Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCoPAL: Corrective Planning of Robot Actions with Large Language Models
In the pursuit of fully autonomous robotic systems capable of taking over tasks traditionally performed by humans, the complexity of open-world environments poses a considerable challenge. Addressing this imperative, this study contributes to the field of Large Language Models (LLMs) applied to task and motion planning for robots. We propose a system architecture that orchestrates a seamless interplay between multiple cognitive levels, encompassing reasoning, planning, and motion generation. At its core lies a novel replanning strategy that handles physically grounded, logical, and semantic errors in the generated plans. We demonstrate the efficacy of the proposed feedback architecture, particularly its impact on executability, correctness, and time complexity via empirical evaluation in the context of a simulation and two intricate real-world scenarios: blocks world, barman and pizza preparation.
RePLan: Robotic Replanning with Perception and Language Models
Advancements in large language models (LLMs) have demonstrated their potential in facilitating high-level reasoning, logical reasoning and robotics planning. Recently, LLMs have also been able to generate reward functions for low-level robot actions, effectively bridging the interface between high-level planning and low-level robot control. However, the challenge remains that even with syntactically correct plans, robots can still fail to achieve their intended goals. This failure can be attributed to imperfect plans proposed by LLMs or to unforeseeable environmental circumstances that hinder the execution of planned subtasks due to erroneous assumptions about the state of objects. One way to prevent these challenges is to rely on human-provided step-by-step instructions, limiting the autonomy of robotic systems. Vision Language Models (VLMs) have shown remarkable success in tasks such as visual question answering and image captioning. Leveraging the capabilities of VLMs, we present a novel framework called Robotic Replanning with Perception and Language Models (RePLan) that enables real-time replanning capabilities for long-horizon tasks. This framework utilizes the physical grounding provided by a VLM's understanding of the world's state to adapt robot actions when the initial plan fails to achieve the desired goal. We test our approach within four environments containing seven long-horizion tasks. We find that RePLan enables a robot to successfully adapt to unforeseen obstacles while accomplishing open-ended, long-horizon goals, where baseline models cannot. Find more information at https://replan-lm.github.io/replan.github.io/
Manipulate-to-Navigate: Reinforcement Learning with Visual Affordances and Manipulability Priors
Mobile manipulation in dynamic environments is challenging due to movable obstacles blocking the robot's path. Traditional methods, which treat navigation and manipulation as separate tasks, often fail in such 'manipulate-to-navigate' scenarios, as obstacles must be removed before navigation. In these cases, active interaction with the environment is required to clear obstacles while ensuring sufficient space for movement. To address the manipulate-to-navigate problem, we propose a reinforcement learning-based approach for learning manipulation actions that facilitate subsequent navigation. Our method combines manipulability priors to focus the robot on high manipulability body positions with affordance maps for selecting high-quality manipulation actions. By focusing on feasible and meaningful actions, our approach reduces unnecessary exploration and allows the robot to learn manipulation strategies more effectively. We present two new manipulate-to-navigate simulation tasks called Reach and Door with the Boston Dynamics Spot robot. The first task tests whether the robot can select a good hand position in the target area such that the robot base can move effectively forward while keeping the end effector position fixed. The second task requires the robot to move a door aside in order to clear the navigation path. Both of these tasks need first manipulation and then navigating the base forward. Results show that our method allows a robot to effectively interact with and traverse dynamic environments. Finally, we transfer the learned policy to a real Boston Dynamics Spot robot, which successfully performs the Reach task.
DexH2R: Task-oriented Dexterous Manipulation from Human to Robots
Dexterous manipulation is a critical aspect of human capability, enabling interaction with a wide variety of objects. Recent advancements in learning from human demonstrations and teleoperation have enabled progress for robots in such ability. However, these approaches either require complex data collection such as costly human effort for eye-robot contact, or suffer from poor generalization when faced with novel scenarios. To solve both challenges, we propose a framework, DexH2R, that combines human hand motion retargeting with a task-oriented residual action policy, improving task performance by bridging the embodiment gap between human and robotic dexterous hands. Specifically, DexH2R learns the residual policy directly from retargeted primitive actions and task-oriented rewards, eliminating the need for labor-intensive teleoperation systems. Moreover, we incorporate test-time guidance for novel scenarios by taking in desired trajectories of human hands and objects, allowing the dexterous hand to acquire new skills with high generalizability. Extensive experiments in both simulation and real-world environments demonstrate the effectiveness of our work, outperforming prior state-of-the-arts by 40% across various settings.
ODYSSEY: Open-World Quadrupeds Exploration and Manipulation for Long-Horizon Tasks
Language-guided long-horizon mobile manipulation has long been a grand challenge in embodied semantic reasoning, generalizable manipulation, and adaptive locomotion. Three fundamental limitations hinder progress: First, although large language models have improved spatial reasoning and task planning through semantic priors, existing implementations remain confined to tabletop scenarios, failing to address the constrained perception and limited actuation ranges of mobile platforms. Second, current manipulation strategies exhibit insufficient generalization when confronted with the diverse object configurations encountered in open-world environments. Third, while crucial for practical deployment, the dual requirement of maintaining high platform maneuverability alongside precise end-effector control in unstructured settings remains understudied. In this work, we present ODYSSEY, a unified mobile manipulation framework for agile quadruped robots equipped with manipulators, which seamlessly integrates high-level task planning with low-level whole-body control. To address the challenge of egocentric perception in language-conditioned tasks, we introduce a hierarchical planner powered by a vision-language model, enabling long-horizon instruction decomposition and precise action execution. At the control level, our novel whole-body policy achieves robust coordination across challenging terrains. We further present the first benchmark for long-horizon mobile manipulation, evaluating diverse indoor and outdoor scenarios. Through successful sim-to-real transfer, we demonstrate the system's generalization and robustness in real-world deployments, underscoring the practicality of legged manipulators in unstructured environments. Our work advances the feasibility of generalized robotic assistants capable of complex, dynamic tasks. Our project page: https://kaijwang.github.io/odyssey.github.io/
Skill Transformer: A Monolithic Policy for Mobile Manipulation
We present Skill Transformer, an approach for solving long-horizon robotic tasks by combining conditional sequence modeling and skill modularity. Conditioned on egocentric and proprioceptive observations of a robot, Skill Transformer is trained end-to-end to predict both a high-level skill (e.g., navigation, picking, placing), and a whole-body low-level action (e.g., base and arm motion), using a transformer architecture and demonstration trajectories that solve the full task. It retains the composability and modularity of the overall task through a skill predictor module while reasoning about low-level actions and avoiding hand-off errors, common in modular approaches. We test Skill Transformer on an embodied rearrangement benchmark and find it performs robust task planning and low-level control in new scenarios, achieving a 2.5x higher success rate than baselines in hard rearrangement problems.
Visual Dexterity: In-Hand Reorientation of Novel and Complex Object Shapes
In-hand object reorientation is necessary for performing many dexterous manipulation tasks, such as tool use in less structured environments that remain beyond the reach of current robots. Prior works built reorientation systems assuming one or many of the following: reorienting only specific objects with simple shapes, limited range of reorientation, slow or quasistatic manipulation, simulation-only results, the need for specialized and costly sensor suites, and other constraints which make the system infeasible for real-world deployment. We present a general object reorientation controller that does not make these assumptions. It uses readings from a single commodity depth camera to dynamically reorient complex and new object shapes by any rotation in real-time, with the median reorientation time being close to seven seconds. The controller is trained using reinforcement learning in simulation and evaluated in the real world on new object shapes not used for training, including the most challenging scenario of reorienting objects held in the air by a downward-facing hand that must counteract gravity during reorientation. Our hardware platform only uses open-source components that cost less than five thousand dollars. Although we demonstrate the ability to overcome assumptions in prior work, there is ample scope for improving absolute performance. For instance, the challenging duck-shaped object not used for training was dropped in 56 percent of the trials. When it was not dropped, our controller reoriented the object within 0.4 radians (23 degrees) 75 percent of the time. Videos are available at: https://taochenshh.github.io/projects/visual-dexterity.
RE-MOVE: An Adaptive Policy Design Approach for Dynamic Environments via Language-Based Feedback
Reinforcement learning-based policies for continuous control robotic navigation tasks often fail to adapt to changes in the environment during real-time deployment, which may result in catastrophic failures. To address this limitation, we propose a novel approach called RE-MOVE (REquest help and MOVE on), which uses language-based feedback to adjust trained policies to real-time changes in the environment. In this work, we enable the trained policy to decide when to ask for feedback and how to incorporate feedback into trained policies. RE-MOVE incorporates epistemic uncertainty to determine the optimal time to request feedback from humans and uses language-based feedback for real-time adaptation. We perform extensive synthetic and real-world evaluations to demonstrate the benefits of our proposed approach in several test-time dynamic navigation scenarios. Our approach enable robots to learn from human feedback and adapt to previously unseen adversarial situations.
Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Generators(BTMG) Approach for Failure Management
In dynamic operational environments, particularly in collaborative robotics, the inevitability of failures necessitates robust and adaptable recovery strategies. Traditional automated recovery strategies, while effective for predefined scenarios, often lack the flexibility required for on-the-fly task management and adaptation to expected failures. Addressing this gap, we propose a novel approach that models recovery behaviors as adaptable robotic skills, leveraging the Behavior Trees and Motion Generators~(BTMG) framework for policy representation. This approach distinguishes itself by employing reinforcement learning~(RL) to dynamically refine recovery behavior parameters, enabling a tailored response to a wide array of failure scenarios with minimal human intervention. We assess our methodology through a series of progressively challenging scenarios within a peg-in-a-hole task, demonstrating the approach's effectiveness in enhancing operational efficiency and task success rates in collaborative robotics settings. We validate our approach using a dual-arm KUKA robot.
Interactive Task Planning with Language Models
An interactive robot framework accomplishes long-horizon task planning and can easily generalize to new goals or distinct tasks, even during execution. However, most traditional methods require predefined module design, which makes it hard to generalize to different goals. Recent large language model based approaches can allow for more open-ended planning but often require heavy prompt engineering or domain-specific pretrained models. To tackle this, we propose a simple framework that achieves interactive task planning with language models. Our system incorporates both high-level planning and low-level function execution via language. We verify the robustness of our system in generating novel high-level instructions for unseen objectives and its ease of adaptation to different tasks by merely substituting the task guidelines, without the need for additional complex prompt engineering. Furthermore, when the user sends a new request, our system is able to replan accordingly with precision based on the new request, task guidelines and previously executed steps. Please check more details on our https://wuphilipp.github.io/itp_site and https://youtu.be/TrKLuyv26_g.
High-density Electromyography for Effective Gesture-based Control of Physically Assistive Mobile Manipulators
Injury to the cervical spinal cord can cause quadriplegia, impairing muscle function in all four limbs. People with impaired hand function and mobility encounter significant difficulties in carrying out essential self-care and household tasks. Despite the impairment of their neural drive, their volitional myoelectric activity is often partially preserved. High-density electromyography (HDEMG) can detect this myoelectric activity, which can serve as control inputs to assistive devices. Previous HDEMG-controlled robotic interfaces have primarily been limited to controlling table-mounted robot arms. These have constrained reach capabilities. Instead, the ability to control mobile manipulators, which have no such workspace constraints, could allow individuals with quadriplegia to perform a greater variety of assistive tasks, thus restoring independence and reducing caregiver workload. In this study, we introduce a non-invasive wearable HDEMG interface with real-time myoelectric hand gesture recognition, enabling both coarse and fine control over the intricate mobility and manipulation functionalities of an 8 degree-of-freedom mobile manipulator. Our evaluation, involving 13 participants engaging in challenging self-care and household activities, demonstrates the potential of our wearable HDEMG system to profoundly enhance user independence by enabling non-invasive control of a mobile manipulator.
Learning H-Infinity Locomotion Control
Stable locomotion in precipitous environments is an essential capability of quadruped robots, demanding the ability to resist various external disturbances. However, recent learning-based policies only use basic domain randomization to improve the robustness of learned policies, which cannot guarantee that the robot has adequate disturbance resistance capabilities. In this paper, we propose to model the learning process as an adversarial interaction between the actor and a newly introduced disturber and ensure their optimization with H_{infty} constraint. In contrast to the actor that maximizes the discounted overall reward, the disturber is responsible for generating effective external forces and is optimized by maximizing the error between the task reward and its oracle, i.e., "cost" in each iteration. To keep joint optimization between the actor and the disturber stable, our H_{infty} constraint mandates the bound of ratio between the cost to the intensity of the external forces. Through reciprocal interaction throughout the training phase, the actor can acquire the capability to navigate increasingly complex physical disturbances. We verify the robustness of our approach on quadrupedal locomotion tasks with Unitree Aliengo robot, and also a more challenging task with Unitree A1 robot, where the quadruped is expected to perform locomotion merely on its hind legs as if it is a bipedal robot. The simulated quantitative results show improvement against baselines, demonstrating the effectiveness of the method and each design choice. On the other hand, real-robot experiments qualitatively exhibit how robust the policy is when interfering with various disturbances on various terrains, including stairs, high platforms, slopes, and slippery terrains. All code, checkpoints, and real-world deployment guidance will be made public.
Barkour: Benchmarking Animal-level Agility with Quadruped Robots
Animals have evolved various agile locomotion strategies, such as sprinting, leaping, and jumping. There is a growing interest in developing legged robots that move like their biological counterparts and show various agile skills to navigate complex environments quickly. Despite the interest, the field lacks systematic benchmarks to measure the performance of control policies and hardware in agility. We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots. Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism. This encourages researchers to develop controllers that not only move fast, but do so in a controllable and versatile way. To set strong baselines, we present two methods for tackling the benchmark. In the first approach, we train specialist locomotion skills using on-policy reinforcement learning methods and combine them with a high-level navigation controller. In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived environment and robot states. Using a custom-built quadruped robot, we demonstrate that our method can complete the course at half the speed of a dog. We hope that our work represents a step towards creating controllers that enable robots to reach animal-level agility.
Extending Activation Steering to Broad Skills and Multiple Behaviours
Current large language models have dangerous capabilities, which are likely to become more problematic in the future. Activation steering techniques can be used to reduce risks from these capabilities. In this paper, we investigate the efficacy of activation steering for broad skills and multiple behaviours. First, by comparing the effects of reducing performance on general coding ability and Python-specific ability, we find that steering broader skills is competitive to steering narrower skills. Second, we steer models to become more or less myopic and wealth-seeking, among other behaviours. In our experiments, combining steering vectors for multiple different behaviours into one steering vector is largely unsuccessful. On the other hand, injecting individual steering vectors at different places in a model simultaneously is promising.
Helpful DoggyBot: Open-World Object Fetching using Legged Robots and Vision-Language Models
Learning-based methods have achieved strong performance for quadrupedal locomotion. However, several challenges prevent quadrupeds from learning helpful indoor skills that require interaction with environments and humans: lack of end-effectors for manipulation, limited semantic understanding using only simulation data, and low traversability and reachability in indoor environments. We present a system for quadrupedal mobile manipulation in indoor environments. It uses a front-mounted gripper for object manipulation, a low-level controller trained in simulation using egocentric depth for agile skills like climbing and whole-body tilting, and pre-trained vision-language models (VLMs) with a third-person fisheye and an egocentric RGB camera for semantic understanding and command generation. We evaluate our system in two unseen environments without any real-world data collection or training. Our system can zero-shot generalize to these environments and complete tasks, like following user's commands to fetch a randomly placed stuff toy after climbing over a queen-sized bed, with a 60% success rate. Project website: https://helpful-doggybot.github.io/
GrASP: Gradient-Based Affordance Selection for Planning
Planning with a learned model is arguably a key component of intelligence. There are several challenges in realizing such a component in large-scale reinforcement learning (RL) problems. One such challenge is dealing effectively with continuous action spaces when using tree-search planning (e.g., it is not feasible to consider every action even at just the root node of the tree). In this paper we present a method for selecting affordances useful for planning -- for learning which small number of actions/options from a continuous space of actions/options to consider in the tree-expansion process during planning. We consider affordances that are goal-and-state-conditional mappings to actions/options as well as unconditional affordances that simply select actions/options available in all states. Our selection method is gradient based: we compute gradients through the planning procedure to update the parameters of the function that represents affordances. Our empirical work shows that it is feasible to learn to select both primitive-action and option affordances, and that simultaneously learning to select affordances and planning with a learned value-equivalent model can outperform model-free RL.
REAL: Resilience and Adaptation using Large Language Models on Autonomous Aerial Robots
Large Language Models (LLMs) pre-trained on internet-scale datasets have shown impressive capabilities in code understanding, synthesis, and general purpose question-and-answering. Key to their performance is the substantial prior knowledge acquired during training and their ability to reason over extended sequences of symbols, often presented in natural language. In this work, we aim to harness the extensive long-term reasoning, natural language comprehension, and the available prior knowledge of LLMs for increased resilience and adaptation in autonomous mobile robots. We introduce REAL, an approach for REsilience and Adaptation using LLMs. REAL provides a strategy to employ LLMs as a part of the mission planning and control framework of an autonomous robot. The LLM employed by REAL provides (i) a source of prior knowledge to increase resilience for challenging scenarios that the system had not been explicitly designed for; (ii) a way to interpret natural-language and other log/diagnostic information available in the autonomy stack, for mission planning; (iii) a way to adapt the control inputs using minimal user-provided prior knowledge about the dynamics/kinematics of the robot. We integrate REAL in the autonomy stack of a real multirotor, querying onboard an offboard LLM at 0.1-1.0 Hz as part the robot's mission planning and control feedback loops. We demonstrate in real-world experiments the ability of the LLM to reduce the position tracking errors of a multirotor under the presence of (i) errors in the parameters of the controller and (ii) unmodeled dynamics. We also show (iii) decision making to avoid potentially dangerous scenarios (e.g., robot oscillates) that had not been explicitly accounted for in the initial prompt design.
Extreme Parkour with Legged Robots
Humans can perform parkour by traversing obstacles in a highly dynamic fashion requiring precise eye-muscle coordination and movement. Getting robots to do the same task requires overcoming similar challenges. Classically, this is done by independently engineering perception, actuation, and control systems to very low tolerances. This restricts them to tightly controlled settings such as a predetermined obstacle course in labs. In contrast, humans are able to learn parkour through practice without significantly changing their underlying biology. In this paper, we take a similar approach to developing robot parkour on a small low-cost robot with imprecise actuation and a single front-facing depth camera for perception which is low-frequency, jittery, and prone to artifacts. We show how a single neural net policy operating directly from a camera image, trained in simulation with large-scale RL, can overcome imprecise sensing and actuation to output highly precise control behavior end-to-end. We show our robot can perform a high jump on obstacles 2x its height, long jump across gaps 2x its length, do a handstand and run across tilted ramps, and generalize to novel obstacle courses with different physical properties. Parkour videos at https://extreme-parkour.github.io/
Towards continuous control of flippers for a multi-terrain robot using deep reinforcement learning
In this paper we focus on developing a control algorithm for multi-terrain tracked robots with flippers using a reinforcement learning (RL) approach. The work is based on the deep deterministic policy gradient (DDPG) algorithm, proven to be very successful in simple simulation environments. The algorithm works in an end-to-end fashion in order to control the continuous position of the flippers. This end-to-end approach makes it easy to apply the controller to a wide array of circumstances, but the huge flexibility comes to the cost of an increased difficulty of solution. The complexity of the task is enlarged even more by the fact that real multi-terrain robots move in partially observable environments. Notwithstanding these complications, being able to smoothly control a multi-terrain robot can produce huge benefits in impaired people daily lives or in search and rescue situations.
Multi-Modal Grounded Planning and Efficient Replanning For Learning Embodied Agents with A Few Examples
Learning a perception and reasoning module for robotic assistants to plan steps to perform complex tasks based on natural language instructions often requires large free-form language annotations, especially for short high-level instructions. To reduce the cost of annotation, large language models (LLMs) are used as a planner with few data. However, when elaborating the steps, even the state-of-the-art planner that uses LLMs mostly relies on linguistic common sense, often neglecting the status of the environment at command reception, resulting in inappropriate plans. To generate plans grounded in the environment, we propose FLARE (Few-shot Language with environmental Adaptive Replanning Embodied agent), which improves task planning using both language command and environmental perception. As language instructions often contain ambiguities or incorrect expressions, we additionally propose to correct the mistakes using visual cues from the agent. The proposed scheme allows us to use a few language pairs thanks to the visual cues and outperforms state-of-the-art approaches. Our code is available at https://github.com/snumprlab/flare.
OmniRetarget: Interaction-Preserving Data Generation for Humanoid Whole-Body Loco-Manipulation and Scene Interaction
A dominant paradigm for teaching humanoid robots complex skills is to retarget human motions as kinematic references to train reinforcement learning (RL) policies. However, existing retargeting pipelines often struggle with the significant embodiment gap between humans and robots, producing physically implausible artifacts like foot-skating and penetration. More importantly, common retargeting methods neglect the rich human-object and human-environment interactions essential for expressive locomotion and loco-manipulation. To address this, we introduce OmniRetarget, an interaction-preserving data generation engine based on an interaction mesh that explicitly models and preserves the crucial spatial and contact relationships between an agent, the terrain, and manipulated objects. By minimizing the Laplacian deformation between the human and robot meshes while enforcing kinematic constraints, OmniRetarget generates kinematically feasible trajectories. Moreover, preserving task-relevant interactions enables efficient data augmentation, from a single demonstration to different robot embodiments, terrains, and object configurations. We comprehensively evaluate OmniRetarget by retargeting motions from OMOMO, LAFAN1, and our in-house MoCap datasets, generating over 8-hour trajectories that achieve better kinematic constraint satisfaction and contact preservation than widely used baselines. Such high-quality data enables proprioceptive RL policies to successfully execute long-horizon (up to 30 seconds) parkour and loco-manipulation skills on a Unitree G1 humanoid, trained with only 5 reward terms and simple domain randomization shared by all tasks, without any learning curriculum.
Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning
Skilled robotic manipulation benefits from complex synergies between non-prehensile (e.g. pushing) and prehensile (e.g. grasping) actions: pushing can help rearrange cluttered objects to make space for arms and fingers; likewise, grasping can help displace objects to make pushing movements more precise and collision-free. In this work, we demonstrate that it is possible to discover and learn these synergies from scratch through model-free deep reinforcement learning. Our method involves training two fully convolutional networks that map from visual observations to actions: one infers the utility of pushes for a dense pixel-wise sampling of end effector orientations and locations, while the other does the same for grasping. Both networks are trained jointly in a Q-learning framework and are entirely self-supervised by trial and error, where rewards are provided from successful grasps. In this way, our policy learns pushing motions that enable future grasps, while learning grasps that can leverage past pushes. During picking experiments in both simulation and real-world scenarios, we find that our system quickly learns complex behaviors amid challenging cases of clutter, and achieves better grasping success rates and picking efficiencies than baseline alternatives after only a few hours of training. We further demonstrate that our method is capable of generalizing to novel objects. Qualitative results (videos), code, pre-trained models, and simulation environments are available at http://vpg.cs.princeton.edu
RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
Hierarchical Affordance Discovery using Intrinsic Motivation
To be capable of lifelong learning in a real-life environment, robots have to tackle multiple challenges. Being able to relate physical properties they may observe in their environment to possible interactions they may have is one of them. This skill, named affordance learning, is strongly related to embodiment and is mastered through each person's development: each individual learns affordances differently through their own interactions with their surroundings. Current methods for affordance learning usually use either fixed actions to learn these affordances or focus on static setups involving a robotic arm to be operated. In this article, we propose an algorithm using intrinsic motivation to guide the learning of affordances for a mobile robot. This algorithm is capable to autonomously discover, learn and adapt interrelated affordances without pre-programmed actions. Once learned, these affordances may be used by the algorithm to plan sequences of actions in order to perform tasks of various difficulties. We then present one experiment and analyse our system before comparing it with other approaches from reinforcement learning and affordance learning.
MoRE: Mixture of Residual Experts for Humanoid Lifelike Gaits Learning on Complex Terrains
Humanoid robots have demonstrated robust locomotion capabilities using Reinforcement Learning (RL)-based approaches. Further, to obtain human-like behaviors, existing methods integrate human motion-tracking or motion prior in the RL framework. However, these methods are limited in flat terrains with proprioception only, restricting their abilities to traverse challenging terrains with human-like gaits. In this work, we propose a novel framework using a mixture of latent residual experts with multi-discriminators to train an RL policy, which is capable of traversing complex terrains in controllable lifelike gaits with exteroception. Our two-stage training pipeline first teaches the policy to traverse complex terrains using a depth camera, and then enables gait-commanded switching between human-like gait patterns. We also design gait rewards to adjust human-like behaviors like robot base height. Simulation and real-world experiments demonstrate that our framework exhibits exceptional performance in traversing complex terrains, and achieves seamless transitions between multiple human-like gait patterns.
Transformers are Meta-Reinforcement Learners
The transformer architecture and variants presented remarkable success across many machine learning tasks in recent years. This success is intrinsically related to the capability of handling long sequences and the presence of context-dependent weights from the attention mechanism. We argue that these capabilities suit the central role of a Meta-Reinforcement Learning algorithm. Indeed, a meta-RL agent needs to infer the task from a sequence of trajectories. Furthermore, it requires a fast adaptation strategy to adapt its policy for a new task -- which can be achieved using the self-attention mechanism. In this work, we present TrMRL (Transformers for Meta-Reinforcement Learning), a meta-RL agent that mimics the memory reinstatement mechanism using the transformer architecture. It associates the recent past of working memories to build an episodic memory recursively through the transformer layers. We show that the self-attention computes a consensus representation that minimizes the Bayes Risk at each layer and provides meaningful features to compute the best actions. We conducted experiments in high-dimensional continuous control environments for locomotion and dexterous manipulation. Results show that TrMRL presents comparable or superior asymptotic performance, sample efficiency, and out-of-distribution generalization compared to the baselines in these environments.
WildLMa: Long Horizon Loco-Manipulation in the Wild
`In-the-wild' mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf.
Situationally-aware Path Planning Exploiting 3D Scene Graphs
3D Scene Graphs integrate both metric and semantic information, yet their structure remains underutilized for improving path planning efficiency and interpretability. In this work, we present S-Path, a situationally-aware path planner that leverages the metric-semantic structure of indoor 3D Scene Graphs to significantly enhance planning efficiency. S-Path follows a two-stage process: it first performs a search over a semantic graph derived from the scene graph to yield a human-understandable high-level path. This also identifies relevant regions for planning, which later allows the decomposition of the problem into smaller, independent subproblems that can be solved in parallel. We also introduce a replanning mechanism that, in the event of an infeasible path, reuses information from previously solved subproblems to update semantic heuristics and prioritize reuse to further improve the efficiency of future planning attempts. Extensive experiments on both real-world and simulated environments show that S-Path achieves average reductions of 5.7x in planning time while maintaining comparable path optimality to classical sampling-based planners and surpassing them in complex scenarios, making it an efficient and interpretable path planner for environments represented by indoor 3D Scene Graphs.
Learning Vision-Guided Quadrupedal Locomotion End-to-End with Cross-Modal Transformers
We propose to address quadrupedal locomotion tasks using Reinforcement Learning (RL) with a Transformer-based model that learns to combine proprioceptive information and high-dimensional depth sensor inputs. While learning-based locomotion has made great advances using RL, most methods still rely on domain randomization for training blind agents that generalize to challenging terrains. Our key insight is that proprioceptive states only offer contact measurements for immediate reaction, whereas an agent equipped with visual sensory observations can learn to proactively maneuver environments with obstacles and uneven terrain by anticipating changes in the environment many steps ahead. In this paper, we introduce LocoTransformer, an end-to-end RL method that leverages both proprioceptive states and visual observations for locomotion control. We evaluate our method in challenging simulated environments with different obstacles and uneven terrain. We transfer our learned policy from simulation to a real robot by running it indoors and in the wild with unseen obstacles and terrain. Our method not only significantly improves over baselines, but also achieves far better generalization performance, especially when transferred to the real robot. Our project page with videos is at https://rchalyang.github.io/LocoTransformer/ .
Safe-To-Explore State Spaces: Ensuring Safe Exploration in Policy Search with Hierarchical Task Optimization
Policy search reinforcement learning allows robots to acquire skills by themselves. However, the learning procedure is inherently unsafe as the robot has no a-priori way to predict the consequences of the exploratory actions it takes. Therefore, exploration can lead to collisions with the potential to harm the robot and/or the environment. In this work we address the safety aspect by constraining the exploration to happen in safe-to-explore state spaces. These are formed by decomposing target skills (e.g., grasping) into higher ranked sub-tasks (e.g., collision avoidance, joint limit avoidance) and lower ranked movement tasks (e.g., reaching). Sub-tasks are defined as concurrent controllers (policies) in different operational spaces together with associated Jacobians representing their joint-space mapping. Safety is ensured by only learning policies corresponding to lower ranked sub-tasks in the redundant null space of higher ranked ones. As a side benefit, learning in sub-manifolds of the state-space also facilitates sample efficiency. Reaching skills performed in simulation and grasping skills performed on a real robot validate the usefulness of the proposed approach.
Learning Humanoid Locomotion over Challenging Terrain
Humanoid robots can, in principle, use their legs to go almost anywhere. Developing controllers capable of traversing diverse terrains, however, remains a considerable challenge. Classical controllers are hard to generalize broadly while the learning-based methods have primarily focused on gentle terrains. Here, we present a learning-based approach for blind humanoid locomotion capable of traversing challenging natural and man-made terrain. Our method uses a transformer model to predict the next action based on the history of proprioceptive observations and actions. The model is first pre-trained on a dataset of flat-ground trajectories with sequence modeling, and then fine-tuned on uneven terrain using reinforcement learning. We evaluate our model on a real humanoid robot across a variety of terrains, including rough, deformable, and sloped surfaces. The model demonstrates robust performance, in-context adaptation, and emergent terrain representations. In real-world case studies, our humanoid robot successfully traversed over 4 miles of hiking trails in Berkeley and climbed some of the steepest streets in San Francisco.
Learning Long-Horizon Robot Manipulation Skills via Privileged Action
Long-horizon contact-rich tasks are challenging to learn with reinforcement learning, due to ineffective exploration of high-dimensional state spaces with sparse rewards. The learning process often gets stuck in local optimum and demands task-specific reward fine-tuning for complex scenarios. In this work, we propose a structured framework that leverages privileged actions with curriculum learning, enabling the policy to efficiently acquire long-horizon skills without relying on extensive reward engineering or reference trajectories. Specifically, we use privileged actions in simulation with a general training procedure that would be infeasible to implement in real-world scenarios. These privileges include relaxed constraints and virtual forces that enhance interaction and exploration with objects. Our results successfully achieve complex multi-stage long-horizon tasks that naturally combine non-prehensile manipulation with grasping to lift objects from non-graspable poses. We demonstrate generality by maintaining a parsimonious reward structure and showing convergence to diverse and robust behaviors across various environments. Additionally, real-world experiments further confirm that the skills acquired using our approach are transferable to real-world environments, exhibiting robust and intricate performance. Our approach outperforms state-of-the-art methods in these tasks, converging to solutions where others fail.
Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions
Recent advances in large language model (LLM) reasoning have shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL). However, despite these successes, RL in its current form remains insufficient to induce capabilities that exceed the limitations of the base model, as it is primarily optimized based on existing knowledge of the model rather than facilitating the acquisition of new information. To address this limitation, we employ supervised fine-tuning (SFT) to learn what RL cannot, which enables the incorporation of new knowledge and reasoning patterns by leveraging high-quality demonstration data. We analyze the training dynamics of RL and SFT for LLM reasoning and find that RL excels at maintaining and improving performance on questions within the model's original capabilities, while SFT is more effective at enabling progress on questions beyond the current scope of the model. Motivated by the complementary strengths of RL and SFT, we introduce a novel training approach, ReLIFT (Reinforcement Learning Interleaved with Online Fine-Tuning). In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternates between RL and fine-tuning to enhance the model's reasoning abilities. ReLIFT achieves an average improvement of over +5.2 points across five competition-level benchmarks and one out-of-distribution benchmark compared to other zero-RL models. Furthermore, we demonstrate that ReLIFT outperforms both RL and SFT while using only 13\% of the detailed demonstration data, highlighting its scalability. These results provide compelling evidence that ReLIFT overcomes the fundamental limitations of RL and underscores the significant potential.
SkillBlender: Towards Versatile Humanoid Whole-Body Loco-Manipulation via Skill Blending
Humanoid robots hold significant potential in accomplishing daily tasks across diverse environments thanks to their flexibility and human-like morphology. Recent works have made significant progress in humanoid whole-body control and loco-manipulation leveraging optimal control or reinforcement learning. However, these methods require tedious task-specific tuning for each task to achieve satisfactory behaviors, limiting their versatility and scalability to diverse tasks in daily scenarios. To that end, we introduce SkillBlender, a novel hierarchical reinforcement learning framework for versatile humanoid loco-manipulation. SkillBlender first pretrains goal-conditioned task-agnostic primitive skills, and then dynamically blends these skills to accomplish complex loco-manipulation tasks with minimal task-specific reward engineering. We also introduce SkillBench, a parallel, cross-embodiment, and diverse simulated benchmark containing three embodiments, four primitive skills, and eight challenging loco-manipulation tasks, accompanied by a set of scientific evaluation metrics balancing accuracy and feasibility. Extensive simulated experiments show that our method significantly outperforms all baselines, while naturally regularizing behaviors to avoid reward hacking, resulting in more accurate and feasible movements for diverse loco-manipulation tasks in our daily scenarios. Our code and benchmark will be open-sourced to the community to facilitate future research. Project page: https://usc-gvl.github.io/SkillBlender-web/.
Dexplore: Scalable Neural Control for Dexterous Manipulation from Reference-Scoped Exploration
Hand-object motion-capture (MoCap) repositories offer large-scale, contact-rich demonstrations and hold promise for scaling dexterous robotic manipulation. Yet demonstration inaccuracies and embodiment gaps between human and robot hands limit the straightforward use of these data. Existing methods adopt a three-stage workflow, including retargeting, tracking, and residual correction, which often leaves demonstrations underused and compound errors across stages. We introduce Dexplore, a unified single-loop optimization that jointly performs retargeting and tracking to learn robot control policies directly from MoCap at scale. Rather than treating demonstrations as ground truth, we use them as soft guidance. From raw trajectories, we derive adaptive spatial scopes, and train with reinforcement learning to keep the policy in-scope while minimizing control effort and accomplishing the task. This unified formulation preserves demonstration intent, enables robot-specific strategies to emerge, improves robustness to noise, and scales to large demonstration corpora. We distill the scaled tracking policy into a vision-based, skill-conditioned generative controller that encodes diverse manipulation skills in a rich latent representation, supporting generalization across objects and real-world deployment. Taken together, these contributions position Dexplore as a principled bridge that transforms imperfect demonstrations into effective training signals for dexterous manipulation.
Spatial Policy: Guiding Visuomotor Robotic Manipulation with Spatial-Aware Modeling and Reasoning
Vision-centric hierarchical embodied models have demonstrated strong potential for long-horizon robotic control. However, existing methods lack spatial awareness capabilities, limiting their effectiveness in bridging visual plans to actionable control in complex environments. To address this problem, we propose Spatial Policy (SP), a unified spatial-aware visuomotor robotic manipulation framework via explicit spatial modeling and reasoning. Specifically, we first design a spatial-conditioned embodied video generation module to model spatially guided predictions through a spatial plan table. Then, we propose a spatial-based action prediction module to infer executable actions with coordination. Finally, we propose a spatial reasoning feedback policy to refine the spatial plan table via dual-stage replanning. Extensive experiments show that SP significantly outperforms state-of-the-art baselines, achieving a 33.0% average improvement over the best baseline. With an 86.7% average success rate across 11 diverse tasks, SP substantially enhances the practicality of embodied models for robotic control applications. Code and checkpoints are maintained at https://plantpotatoonmoon.github.io/SpatialPolicy/.
FunGrasp: Functional Grasping for Diverse Dexterous Hands
Functional grasping is essential for humans to perform specific tasks, such as grasping scissors by the finger holes to cut materials or by the blade to safely hand them over. Enabling dexterous robot hands with functional grasping capabilities is crucial for their deployment to accomplish diverse real-world tasks. Recent research in dexterous grasping, however, often focuses on power grasps while overlooking task- and object-specific functional grasping poses. In this paper, we introduce FunGrasp, a system that enables functional dexterous grasping across various robot hands and performs one-shot transfer to unseen objects. Given a single RGBD image of functional human grasping, our system estimates the hand pose and transfers it to different robotic hands via a human-to-robot (H2R) grasp retargeting module. Guided by the retargeted grasping poses, a policy is trained through reinforcement learning in simulation for dynamic grasping control. To achieve robust sim-to-real transfer, we employ several techniques including privileged learning, system identification, domain randomization, and gravity compensation. In our experiments, we demonstrate that our system enables diverse functional grasping of unseen objects using single RGBD images, and can be successfully deployed across various dexterous robot hands. The significance of the components is validated through comprehensive ablation studies. Project page: https://hly-123.github.io/FunGrasp/ .
Curriculum-Based Reinforcement Learning for Quadrupedal Jumping: A Reference-free Design
Deep reinforcement learning (DRL) has emerged as a promising solution to mastering explosive and versatile quadrupedal jumping skills. However, current DRL-based frameworks usually rely on pre-existing reference trajectories obtained by capturing animal motions or transferring experience from existing controllers. This work aims to prove that learning dynamic jumping is possible without relying on imitating a reference trajectory by leveraging a curriculum design. Starting from a vertical in-place jump, we generalize the learned policy to forward and diagonal jumps and, finally, we learn to jump across obstacles. Conditioned on the desired landing location, orientation, and obstacle dimensions, the proposed approach yields a wide range of omnidirectional jumping motions in real-world experiments. Particularly we achieve a 90cm forward jump, exceeding all previous records for similar robots reported in the existing literature. Additionally, the robot can reliably execute continuous jumping on soft grassy grounds, which is especially remarkable as such conditions were not included in the training stage. A supplementary video can be found on: https://www.youtube.com/watch?v=nRaMCrwU5X8. The code associated with this work can be found on: https://github.com/Vassil17/Curriculum-Quadruped-Jumping-DRL.
No-frills Dynamic Planning using Static Planners
In this paper, we address the task of interacting with dynamic environments where the changes in the environment are independent of the agent. We study this through the context of trapping a moving ball with a UR5 robotic arm. Our key contribution is an approach to utilize a static planner for dynamic tasks using a Dynamic Planning add-on; that is, if we can successfully solve a task with a static target, then our approach can solve the same task when the target is moving. Our approach has three key components: an off-the-shelf static planner, a trajectory forecasting network, and a network to predict robot's estimated time of arrival at any location. We demonstrate the generalization of our approach across environments. More information and videos at https://mlevy2525.github.io/DynamicAddOn.
TERL: Large-Scale Multi-Target Encirclement Using Transformer-Enhanced Reinforcement Learning
Pursuit-evasion (PE) problem is a critical challenge in multi-robot systems (MRS). While reinforcement learning (RL) has shown its promise in addressing PE tasks, research has primarily focused on single-target pursuit, with limited exploration of multi-target encirclement, particularly in large-scale settings. This paper proposes a Transformer-Enhanced Reinforcement Learning (TERL) framework for large-scale multi-target encirclement. By integrating a transformer-based policy network with target selection, TERL enables robots to adaptively prioritize targets and safely coordinate robots. Results show that TERL outperforms existing RL-based methods in terms of encirclement success rate and task completion time, while maintaining good performance in large-scale scenarios. Notably, TERL, trained on small-scale scenarios (15 pursuers, 4 targets), generalizes effectively to large-scale settings (80 pursuers, 20 targets) without retraining, achieving a 100% success rate.
HOVER: Versatile Neural Whole-Body Controller for Humanoid Robots
Humanoid whole-body control requires adapting to diverse tasks such as navigation, loco-manipulation, and tabletop manipulation, each demanding a different mode of control. For example, navigation relies on root velocity tracking, while tabletop manipulation prioritizes upper-body joint angle tracking. Existing approaches typically train individual policies tailored to a specific command space, limiting their transferability across modes. We present the key insight that full-body kinematic motion imitation can serve as a common abstraction for all these tasks and provide general-purpose motor skills for learning multiple modes of whole-body control. Building on this, we propose HOVER (Humanoid Versatile Controller), a multi-mode policy distillation framework that consolidates diverse control modes into a unified policy. HOVER enables seamless transitions between control modes while preserving the distinct advantages of each, offering a robust and scalable solution for humanoid control across a wide range of modes. By eliminating the need for policy retraining for each control mode, our approach improves efficiency and flexibility for future humanoid applications.
DexterityGen: Foundation Controller for Unprecedented Dexterity
Teaching robots dexterous manipulation skills, such as tool use, presents a significant challenge. Current approaches can be broadly categorized into two strategies: human teleoperation (for imitation learning) and sim-to-real reinforcement learning. The first approach is difficult as it is hard for humans to produce safe and dexterous motions on a different embodiment without touch feedback. The second RL-based approach struggles with the domain gap and involves highly task-specific reward engineering on complex tasks. Our key insight is that RL is effective at learning low-level motion primitives, while humans excel at providing coarse motion commands for complex, long-horizon tasks. Therefore, the optimal solution might be a combination of both approaches. In this paper, we introduce DexterityGen (DexGen), which uses RL to pretrain large-scale dexterous motion primitives, such as in-hand rotation or translation. We then leverage this learned dataset to train a dexterous foundational controller. In the real world, we use human teleoperation as a prompt to the controller to produce highly dexterous behavior. We evaluate the effectiveness of DexGen in both simulation and real world, demonstrating that it is a general-purpose controller that can realize input dexterous manipulation commands and significantly improves stability by 10-100x measured as duration of holding objects across diverse tasks. Notably, with DexGen we demonstrate unprecedented dexterous skills including diverse object reorientation and dexterous tool use such as pen, syringe, and screwdriver for the first time.
AgentGen: Enhancing Planning Abilities for Large Language Model based Agent via Environment and Task Generation
Large Language Model (LLM) based agents have garnered significant attention and are becoming increasingly popular. Furthermore, planning ability is a crucial component of an LLM-based agent, involving interaction with the environment and executing actions to complete a planning task, which generally entails achieving a desired goal from an initial state. This paper investigates enhancing the planning abilities of LLMs through instruction tuning, referred to as agent training. Recent studies have demonstrated that utilizing expert-level trajectory for instruction-tuning LLMs effectively enhances their planning capabilities. However, existing work primarily focuses on synthesizing trajectories from manually designed planning tasks and environments. The labor-intensive nature of creating these environments and tasks impedes the generation of sufficiently varied and extensive trajectories. To address this limitation, this paper explores the automated synthesis of diverse environments and a gradual range of planning tasks, from easy to difficult. We introduce a framework, AgentGen, that leverages LLMs first to generate environments and subsequently generate planning tasks conditioned on these environments. Specifically, to improve environmental diversity, we propose using an inspiration corpus composed of various domain-specific text segments as the context for synthesizing environments. Moreover, to increase the difficulty diversity of generated planning tasks, we propose a bidirectional evolution method, Bi-Evol, that evolves planning tasks from easier and harder directions to synthesize a task set with a smoother difficulty curve. The evaluation results derived from AgentBoard show that AgentGen greatly improves LLMs' planning ability, e.g., the AgentGen instruction-tuned Llama-3 8B surpasses GPT-3.5 in overall performance. Moreover, in certain tasks, it even outperforms GPT-4.
A Single Goal is All You Need: Skills and Exploration Emerge from Contrastive RL without Rewards, Demonstrations, or Subgoals
In this paper, we present empirical evidence of skills and directed exploration emerging from a simple RL algorithm long before any successful trials are observed. For example, in a manipulation task, the agent is given a single observation of the goal state and learns skills, first for moving its end-effector, then for pushing the block, and finally for picking up and placing the block. These skills emerge before the agent has ever successfully placed the block at the goal location and without the aid of any reward functions, demonstrations, or manually-specified distance metrics. Once the agent has learned to reach the goal state reliably, exploration is reduced. Implementing our method involves a simple modification of prior work and does not require density estimates, ensembles, or any additional hyperparameters. Intuitively, the proposed method seems like it should be terrible at exploration, and we lack a clear theoretical understanding of why it works so effectively, though our experiments provide some hints.
ReProHRL: Towards Multi-Goal Navigation in the Real World using Hierarchical Agents
Robots have been successfully used to perform tasks with high precision. In real-world environments with sparse rewards and multiple goals, learning is still a major challenge and Reinforcement Learning (RL) algorithms fail to learn good policies. Training in simulation environments and then fine-tuning in the real world is a common approach. However, adapting to the real-world setting is a challenge. In this paper, we present a method named Ready for Production Hierarchical RL (ReProHRL) that divides tasks with hierarchical multi-goal navigation guided by reinforcement learning. We also use object detectors as a pre-processing step to learn multi-goal navigation and transfer it to the real world. Empirical results show that the proposed ReProHRL method outperforms the state-of-the-art baseline in simulation and real-world environments in terms of both training time and performance. Although both methods achieve a 100% success rate in a simple environment for single goal-based navigation, in a more complex environment and multi-goal setting, the proposed method outperforms the baseline by 18% and 5%, respectively. For the real-world implementation and proof of concept demonstration, we deploy the proposed method on a nano-drone named Crazyflie with a front camera to perform multi-goal navigation experiments.
RESPRECT: Speeding-up Multi-fingered Grasping with Residual Reinforcement Learning
Deep Reinforcement Learning (DRL) has proven effective in learning control policies using robotic grippers, but much less practical for solving the problem of grasping with dexterous hands -- especially on real robotic platforms -- due to the high dimensionality of the problem. In this work, we focus on the multi-fingered grasping task with the anthropomorphic hand of the iCub humanoid. We propose the RESidual learning with PREtrained CriTics (RESPRECT) method that, starting from a policy pre-trained on a large set of objects, can learn a residual policy to grasp a novel object in a fraction (sim 5 times faster) of the timesteps required to train a policy from scratch, without requiring any task demonstration. To our knowledge, this is the first Residual Reinforcement Learning (RRL) approach that learns a residual policy on top of another policy pre-trained with DRL. We exploit some components of the pre-trained policy during residual learning that further speed-up the training. We benchmark our results in the iCub simulated environment, and we show that RESPRECT can be effectively used to learn a multi-fingered grasping policy on the real iCub robot. The code to reproduce the experiments is released together with the paper with an open source license.
Learning Dexterous In-Hand Manipulation
We use reinforcement learning (RL) to learn dexterous in-hand manipulation policies which can perform vision-based object reorientation on a physical Shadow Dexterous Hand. The training is performed in a simulated environment in which we randomize many of the physical properties of the system like friction coefficients and an object's appearance. Our policies transfer to the physical robot despite being trained entirely in simulation. Our method does not rely on any human demonstrations, but many behaviors found in human manipulation emerge naturally, including finger gaiting, multi-finger coordination, and the controlled use of gravity. Our results were obtained using the same distributed RL system that was used to train OpenAI Five. We also include a video of our results: https://youtu.be/jwSbzNHGflM
Collaborating with language models for embodied reasoning
Reasoning in a complex and ambiguous environment is a key goal for Reinforcement Learning (RL) agents. While some sophisticated RL agents can successfully solve difficult tasks, they require a large amount of training data and often struggle to generalize to new unseen environments and new tasks. On the other hand, Large Scale Language Models (LSLMs) have exhibited strong reasoning ability and the ability to to adapt to new tasks through in-context learning. However, LSLMs do not inherently have the ability to interrogate or intervene on the environment. In this work, we investigate how to combine these complementary abilities in a single system consisting of three parts: a Planner, an Actor, and a Reporter. The Planner is a pre-trained language model that can issue commands to a simple embodied agent (the Actor), while the Reporter communicates with the Planner to inform its next command. We present a set of tasks that require reasoning, test this system's ability to generalize zero-shot and investigate failure cases, and demonstrate how components of this system can be trained with reinforcement-learning to improve performance.
A Mobile Manipulation System for One-Shot Teaching of Complex Tasks in Homes
We describe a mobile manipulation hardware and software system capable of autonomously performing complex human-level tasks in real homes, after being taught the task with a single demonstration from a person in virtual reality. This is enabled by a highly capable mobile manipulation robot, whole-body task space hybrid position/force control, teaching of parameterized primitives linked to a robust learned dense visual embeddings representation of the scene, and a task graph of the taught behaviors. We demonstrate the robustness of the approach by presenting results for performing a variety of tasks, under different environmental conditions, in multiple real homes. Our approach achieves 85% overall success rate on three tasks that consist of an average of 45 behaviors each.
Efficient Reinforcement Learning for Jumping Monopods
In this work, we consider the complex control problem of making a monopod reach a target with a jump. The monopod can jump in any direction and the terrain underneath its foot can be uneven. This is a template of a much larger class of problems, which are extremely challenging and computationally expensive to solve using standard optimisation-based techniques. Reinforcement Learning (RL) could be an interesting alternative, but the application of an end-to-end approach in which the controller must learn everything from scratch, is impractical. The solution advocated in this paper is to guide the learning process within an RL framework by injecting physical knowledge. This expedient brings to widespread benefits, such as a drastic reduction of the learning time, and the ability to learn and compensate for possible errors in the low-level controller executing the motion. We demonstrate the advantage of our approach with respect to both optimization-based and end-to-end RL approaches.
Multi-critic Learning for Whole-body End-effector Twist Tracking
Learning whole-body control for locomotion and arm motions in a single policy has challenges, as the two tasks have conflicting goals. For instance, efficient locomotion typically favors a horizontal base orientation, while end-effector tracking may benefit from base tilting to extend reachability. Additionally, current Reinforcement Learning (RL) approaches using a pose-based task specification lack the ability to directly control the end-effector velocity, making smoothly executing trajectories very challenging. To address these limitations, we propose an RL-based framework that allows for dynamic, velocity-aware whole-body end-effector control. Our method introduces a multi-critic actor architecture that decouples the reward signals for locomotion and manipulation, simplifying reward tuning and allowing the policy to resolve task conflicts more effectively. Furthermore, we design a twist-based end-effector task formulation that can track both discrete poses and motion trajectories. We validate our approach through a set of simulation and hardware experiments using a quadruped robot equipped with a robotic arm. The resulting controller can simultaneously walk and move its end-effector and shows emergent whole-body behaviors, where the base assists the arm in extending the workspace, despite a lack of explicit formulations.
Multi-Stage Cable Routing through Hierarchical Imitation Learning
We study the problem of learning to perform multi-stage robotic manipulation tasks, with applications to cable routing, where the robot must route a cable through a series of clips. This setting presents challenges representative of complex multi-stage robotic manipulation scenarios: handling deformable objects, closing the loop on visual perception, and handling extended behaviors consisting of multiple steps that must be executed successfully to complete the entire task. In such settings, learning individual primitives for each stage that succeed with a high enough rate to perform a complete temporally extended task is impractical: if each stage must be completed successfully and has a non-negligible probability of failure, the likelihood of successful completion of the entire task becomes negligible. Therefore, successful controllers for such multi-stage tasks must be able to recover from failure and compensate for imperfections in low-level controllers by smartly choosing which controllers to trigger at any given time, retrying, or taking corrective action as needed. To this end, we describe an imitation learning system that uses vision-based policies trained from demonstrations at both the lower (motor control) and the upper (sequencing) level, present a system for instantiating this method to learn the cable routing task, and perform evaluations showing great performance in generalizing to very challenging clip placement variations. Supplementary videos, datasets, and code can be found at https://sites.google.com/view/cablerouting.
Learning Getting-Up Policies for Real-World Humanoid Robots
Automatic fall recovery is a crucial prerequisite before humanoid robots can be reliably deployed. Hand-designing controllers for getting up is difficult because of the varied configurations a humanoid can end up in after a fall and the challenging terrains humanoid robots are expected to operate on. This paper develops a learning framework to produce controllers that enable humanoid robots to get up from varying configurations on varying terrains. Unlike previous successful applications of humanoid locomotion learning, the getting-up task involves complex contact patterns, which necessitates accurately modeling the collision geometry and sparser rewards. We address these challenges through a two-phase approach that follows a curriculum. The first stage focuses on discovering a good getting-up trajectory under minimal constraints on smoothness or speed / torque limits. The second stage then refines the discovered motions into deployable (i.e. smooth and slow) motions that are robust to variations in initial configuration and terrains. We find these innovations enable a real-world G1 humanoid robot to get up from two main situations that we considered: a) lying face up and b) lying face down, both tested on flat, deformable, slippery surfaces and slopes (e.g., sloppy grass and snowfield). To the best of our knowledge, this is the first successful demonstration of learned getting-up policies for human-sized humanoid robots in the real world. Project page: https://humanoid-getup.github.io/
Controllability-Aware Unsupervised Skill Discovery
One of the key capabilities of intelligent agents is the ability to discover useful skills without external supervision. However, the current unsupervised skill discovery methods are often limited to acquiring simple, easy-to-learn skills due to the lack of incentives to discover more complex, challenging behaviors. We introduce a novel unsupervised skill discovery method, Controllability-aware Skill Discovery (CSD), which actively seeks complex, hard-to-control skills without supervision. The key component of CSD is a controllability-aware distance function, which assigns larger values to state transitions that are harder to achieve with the current skills. Combined with distance-maximizing skill discovery, CSD progressively learns more challenging skills over the course of training as our jointly trained distance function reduces rewards for easy-to-achieve skills. Our experimental results in six robotic manipulation and locomotion environments demonstrate that CSD can discover diverse complex skills including object manipulation and locomotion skills with no supervision, significantly outperforming prior unsupervised skill discovery methods. Videos and code are available at https://seohong.me/projects/csd/
Dexterous Legged Locomotion in Confined 3D Spaces with Reinforcement Learning
Recent advances of locomotion controllers utilizing deep reinforcement learning (RL) have yielded impressive results in terms of achieving rapid and robust locomotion across challenging terrain, such as rugged rocks, non-rigid ground, and slippery surfaces. However, while these controllers primarily address challenges underneath the robot, relatively little research has investigated legged mobility through confined 3D spaces, such as narrow tunnels or irregular voids, which impose all-around constraints. The cyclic gait patterns resulted from existing RL-based methods to learn parameterized locomotion skills characterized by motion parameters, such as velocity and body height, may not be adequate to navigate robots through challenging confined 3D spaces, requiring both agile 3D obstacle avoidance and robust legged locomotion. Instead, we propose to learn locomotion skills end-to-end from goal-oriented navigation in confined 3D spaces. To address the inefficiency of tracking distant navigation goals, we introduce a hierarchical locomotion controller that combines a classical planner tasked with planning waypoints to reach a faraway global goal location, and an RL-based policy trained to follow these waypoints by generating low-level motion commands. This approach allows the policy to explore its own locomotion skills within the entire solution space and facilitates smooth transitions between local goals, enabling long-term navigation towards distant goals. In simulation, our hierarchical approach succeeds at navigating through demanding confined 3D environments, outperforming both pure end-to-end learning approaches and parameterized locomotion skills. We further demonstrate the successful real-world deployment of our simulation-trained controller on a real robot.
MResT: Multi-Resolution Sensing for Real-Time Control with Vision-Language Models
Leveraging sensing modalities across diverse spatial and temporal resolutions can improve performance of robotic manipulation tasks. Multi-spatial resolution sensing provides hierarchical information captured at different spatial scales and enables both coarse and precise motions. Simultaneously multi-temporal resolution sensing enables the agent to exhibit high reactivity and real-time control. In this work, we propose a framework, MResT (Multi-Resolution Transformer), for learning generalizable language-conditioned multi-task policies that utilize sensing at different spatial and temporal resolutions using networks of varying capacities to effectively perform real time control of precise and reactive tasks. We leverage off-the-shelf pretrained vision-language models to operate on low-frequency global features along with small non-pretrained models to adapt to high frequency local feedback. Through extensive experiments in 3 domains (coarse, precise and dynamic manipulation tasks), we show that our approach significantly improves (2X on average) over recent multi-task baselines. Further, our approach generalizes well to visual and geometric variations in target objects and to varying interaction forces.
RH20T-P: A Primitive-Level Robotic Dataset Towards Composable Generalization Agents
Achieving generalizability in solving out-of-distribution tasks is one of the ultimate goals of learning robotic manipulation. Recent progress of Vision-Language Models (VLMs) has shown that VLM-based task planners can alleviate the difficulty of solving novel tasks, by decomposing the compounded tasks as a plan of sequentially executing primitive-level skills that have been already mastered. It is also promising for robotic manipulation to adapt such composable generalization ability, in the form of composable generalization agents (CGAs). However, the community lacks of reliable design of primitive skills and a sufficient amount of primitive-level data annotations. Therefore, we propose RH20T-P, a primitive-level robotic manipulation dataset, which contains about 38k video clips covering 67 diverse manipulation tasks in real-world scenarios. Each clip is manually annotated according to a set of meticulously designed primitive skills that are common in robotic manipulation. Furthermore, we standardize a plan-execute CGA paradigm and implement an exemplar baseline called RA-P on our RH20T-P, whose positive performance on solving unseen tasks validates that the proposed dataset can offer composable generalization ability to robotic manipulation agents.
BEHAVIOR Robot Suite: Streamlining Real-World Whole-Body Manipulation for Everyday Household Activities
Real-world household tasks present significant challenges for mobile manipulation robots. An analysis of existing robotics benchmarks reveals that successful task performance hinges on three key whole-body control capabilities: bimanual coordination, stable and precise navigation, and extensive end-effector reachability. Achieving these capabilities requires careful hardware design, but the resulting system complexity further complicates visuomotor policy learning. To address these challenges, we introduce the BEHAVIOR Robot Suite (BRS), a comprehensive framework for whole-body manipulation in diverse household tasks. Built on a bimanual, wheeled robot with a 4-DoF torso, BRS integrates a cost-effective whole-body teleoperation interface for data collection and a novel algorithm for learning whole-body visuomotor policies. We evaluate BRS on five challenging household tasks that not only emphasize the three core capabilities but also introduce additional complexities, such as long-range navigation, interaction with articulated and deformable objects, and manipulation in confined spaces. We believe that BRS's integrated robotic embodiment, data collection interface, and learning framework mark a significant step toward enabling real-world whole-body manipulation for everyday household tasks. BRS is open-sourced at https://behavior-robot-suite.github.io/
Learning to Assist Humans without Inferring Rewards
Assistive agents should make humans' lives easier. Classically, such assistance is studied through the lens of inverse reinforcement learning, where an assistive agent (e.g., a chatbot, a robot) infers a human's intention and then selects actions to help the human reach that goal. This approach requires inferring intentions, which can be difficult in high-dimensional settings. We build upon prior work that studies assistance through the lens of empowerment: an assistive agent aims to maximize the influence of the human's actions such that they exert a greater control over the environmental outcomes and can solve tasks in fewer steps. We lift the major limitation of prior work in this area--scalability to high-dimensional settings--with contrastive successor representations. We formally prove that these representations estimate a similar notion of empowerment to that studied by prior work and provide a ready-made mechanism for optimizing it. Empirically, our proposed method outperforms prior methods on synthetic benchmarks, and scales to Overcooked, a cooperative game setting. Theoretically, our work connects ideas from information theory, neuroscience, and reinforcement learning, and charts a path for representations to play a critical role in solving assistive problems.
Evaluation of Large Language Models for Decision Making in Autonomous Driving
Various methods have been proposed for utilizing Large Language Models (LLMs) in autonomous driving. One strategy of using LLMs for autonomous driving involves inputting surrounding objects as text prompts to the LLMs, along with their coordinate and velocity information, and then outputting the subsequent movements of the vehicle. When using LLMs for such purposes, capabilities such as spatial recognition and planning are essential. In particular, two foundational capabilities are required: (1) spatial-aware decision making, which is the ability to recognize space from coordinate information and make decisions to avoid collisions, and (2) the ability to adhere to traffic rules. However, quantitative research has not been conducted on how accurately different types of LLMs can handle these problems. In this study, we quantitatively evaluated these two abilities of LLMs in the context of autonomous driving. Furthermore, to conduct a Proof of Concept (POC) for the feasibility of implementing these abilities in actual vehicles, we developed a system that uses LLMs to drive a vehicle.
Cross Anything: General Quadruped Robot Navigation through Complex Terrains
The application of vision-language models (VLMs) has achieved impressive success in various robotics tasks, but there are few explorations for foundation models used in quadruped robot navigation. We introduce Cross Anything System (CAS), an innovative system composed of a high-level reasoning module and a low-level control policy, enabling the robot to navigate across complex 3D terrains and reach the goal position. For high-level reasoning and motion planning, we propose a novel algorithmic system taking advantage of a VLM, with a design of task decomposition and a closed-loop sub-task execution mechanism. For low-level locomotion control, we utilize the Probability Annealing Selection (PAS) method to train a control policy by reinforcement learning. Numerous experiments show that our whole system can accurately and robustly navigate across complex 3D terrains, and its strong generalization ability ensures the applications in diverse indoor and outdoor scenarios and terrains. Project page: https://cross-anything.github.io/
Odyssey: Empowering Agents with Open-World Skills
Recent studies have delved into constructing generalist agents for open-world embodied environments like Minecraft. Despite the encouraging results, existing efforts mainly focus on solving basic programmatic tasks, e.g., material collection and tool-crafting following the Minecraft tech-tree, treating the ObtainDiamond task as the ultimate goal. This limitation stems from the narrowly defined set of actions available to agents, requiring them to learn effective long-horizon strategies from scratch. Consequently, discovering diverse gameplay opportunities in the open world becomes challenging. In this work, we introduce ODYSSEY, a new framework that empowers Large Language Model (LLM)-based agents with open-world skills to explore the vast Minecraft world. ODYSSEY comprises three key parts: (1) An interactive agent with an open-world skill library that consists of 40 primitive skills and 183 compositional skills. (2) A fine-tuned LLaMA-3 model trained on a large question-answering dataset with 390k+ instruction entries derived from the Minecraft Wiki. (3) A new open-world benchmark includes thousands of long-term planning tasks, tens of dynamic-immediate planning tasks, and one autonomous exploration task. Extensive experiments demonstrate that the proposed ODYSSEY framework can effectively evaluate the planning and exploration capabilities of agents. All datasets, model weights, and code are publicly available to motivate future research on more advanced autonomous agent solutions.
HERMES: Human-to-Robot Embodied Learning from Multi-Source Motion Data for Mobile Dexterous Manipulation
Leveraging human motion data to impart robots with versatile manipulation skills has emerged as a promising paradigm in robotic manipulation. Nevertheless, translating multi-source human hand motions into feasible robot behaviors remains challenging, particularly for robots equipped with multi-fingered dexterous hands characterized by complex, high-dimensional action spaces. Moreover, existing approaches often struggle to produce policies capable of adapting to diverse environmental conditions. In this paper, we introduce HERMES, a human-to-robot learning framework for mobile bimanual dexterous manipulation. First, HERMES formulates a unified reinforcement learning approach capable of seamlessly transforming heterogeneous human hand motions from multiple sources into physically plausible robotic behaviors. Subsequently, to mitigate the sim2real gap, we devise an end-to-end, depth image-based sim2real transfer method for improved generalization to real-world scenarios. Furthermore, to enable autonomous operation in varied and unstructured environments, we augment the navigation foundation model with a closed-loop Perspective-n-Point (PnP) localization mechanism, ensuring precise alignment of visual goals and effectively bridging autonomous navigation and dexterous manipulation. Extensive experimental results demonstrate that HERMES consistently exhibits generalizable behaviors across diverse, in-the-wild scenarios, successfully performing numerous complex mobile bimanual dexterous manipulation tasks. Project Page:https://gemcollector.github.io/HERMES/.
ManipLLM: Embodied Multimodal Large Language Model for Object-Centric Robotic Manipulation
Robot manipulation relies on accurately predicting contact points and end-effector directions to ensure successful operation. However, learning-based robot manipulation, trained on a limited category within a simulator, often struggles to achieve generalizability, especially when confronted with extensive categories. Therefore, we introduce an innovative approach for robot manipulation that leverages the robust reasoning capabilities of Multimodal Large Language Models (MLLMs) to enhance the stability and generalization of manipulation. By fine-tuning the injected adapters, we preserve the inherent common sense and reasoning ability of the MLLMs while equipping them with the ability for manipulation. The fundamental insight lies in the introduced fine-tuning paradigm, encompassing object category understanding, affordance prior reasoning, and object-centric pose prediction to stimulate the reasoning ability of MLLM in manipulation. During inference, our approach utilizes an RGB image and text prompt to predict the end effector's pose in chain of thoughts. After the initial contact is established, an active impedance adaptation policy is introduced to plan the upcoming waypoints in a closed-loop manner. Moreover, in real world, we design a test-time adaptation (TTA) strategy for manipulation to enable the model better adapt to the current real-world scene configuration. Experiments in simulator and real-world show the promising performance of ManipLLM. More details and demonstrations can be found at https://sites.google.com/view/manipllm.
Learning coordinated badminton skills for legged manipulators
Coordinating the motion between lower and upper limbs and aligning limb control with perception are substantial challenges in robotics, particularly in dynamic environments. To this end, we introduce an approach for enabling legged mobile manipulators to play badminton, a task that requires precise coordination of perception, locomotion, and arm swinging. We propose a unified reinforcement learning-based control policy for whole-body visuomotor skills involving all degrees of freedom to achieve effective shuttlecock tracking and striking. This policy is informed by a perception noise model that utilizes real-world camera data, allowing for consistent perception error levels between simulation and deployment and encouraging learned active perception behaviors. Our method includes a shuttlecock prediction model, constrained reinforcement learning for robust motion control, and integrated system identification techniques to enhance deployment readiness. Extensive experimental results in a variety of environments validate the robot's capability to predict shuttlecock trajectories, navigate the service area effectively, and execute precise strikes against human players, demonstrating the feasibility of using legged mobile manipulators in complex and dynamic sports scenarios.
ALPINE: Unveiling the Planning Capability of Autoregressive Learning in Language Models
In this paper, we present the findings of our Project ALPINE which stands for ``Autoregressive Learning for Planning In NEtworks." Project ALPINE initiates a theoretical investigation into the development of planning capabilities in Transformer-based language models through their autoregressive learning mechanisms, aiming to identify any potential limitations in their planning abilities. We abstract planning as a network path-finding task where the objective is to generate a valid path from a specified source node to a designated target node. In terms of expressiveness, we show that the Transformer is capable of executing path-finding by embedding the adjacency and reachability matrices within its weights. Our theoretical analysis of the gradient-based learning dynamic of the Transformer reveals that the Transformer is capable of learning both the adjacency matrix and a limited form of the reachability matrix. These theoretical insights are then validated through experiments, which demonstrate that the Transformer indeed learns the adjacency matrix and an incomplete reachability matrix, which aligns with the predictions made in our theoretical analysis. Additionally, when applying our methodology to a real-world planning benchmark, called Blocksworld, our observations remain consistent. Our theoretical and empirical analyses further unveil a potential limitation of Transformer in path-finding: it cannot identify reachability relationships through transitivity, and thus would fail when path concatenation is needed to generate a path. In summary, our findings shed new light on how the internal mechanisms of autoregressive learning enable planning in networks. This study may contribute to our understanding of the general planning capabilities in other related domains.
DemoDiffusion: One-Shot Human Imitation using pre-trained Diffusion Policy
We propose DemoDiffusion, a simple and scalable method for enabling robots to perform manipulation tasks in natural environments by imitating a single human demonstration. Our approach is based on two key insights. First, the hand motion in a human demonstration provides a useful prior for the robot's end-effector trajectory, which we can convert into a rough open-loop robot motion trajectory via kinematic retargeting. Second, while this retargeted motion captures the overall structure of the task, it may not align well with plausible robot actions in-context. To address this, we leverage a pre-trained generalist diffusion policy to modify the trajectory, ensuring it both follows the human motion and remains within the distribution of plausible robot actions. Our approach avoids the need for online reinforcement learning or paired human-robot data, enabling robust adaptation to new tasks and scenes with minimal manual effort. Experiments in both simulation and real-world settings show that DemoDiffusion outperforms both the base policy and the retargeted trajectory, enabling the robot to succeed even on tasks where the pre-trained generalist policy fails entirely. Project page: https://demodiffusion.github.io/
Accurately and Efficiently Interpreting Human-Robot Instructions of Varying Granularities
Humans can ground natural language commands to tasks at both abstract and fine-grained levels of specificity. For instance, a human forklift operator can be instructed to perform a high-level action, like "grab a pallet" or a low-level action like "tilt back a little bit." While robots are also capable of grounding language commands to tasks, previous methods implicitly assume that all commands and tasks reside at a single, fixed level of abstraction. Additionally, methods that do not use multiple levels of abstraction encounter inefficient planning and execution times as they solve tasks at a single level of abstraction with large, intractable state-action spaces closely resembling real world complexity. In this work, by grounding commands to all the tasks or subtasks available in a hierarchical planning framework, we arrive at a model capable of interpreting language at multiple levels of specificity ranging from coarse to more granular. We show that the accuracy of the grounding procedure is improved when simultaneously inferring the degree of abstraction in language used to communicate the task. Leveraging hierarchy also improves efficiency: our proposed approach enables a robot to respond to a command within one second on 90% of our tasks, while baselines take over twenty seconds on half the tasks. Finally, we demonstrate that a real, physical robot can ground commands at multiple levels of abstraction allowing it to efficiently plan different subtasks within the same planning hierarchy.
Actionable Recourse in Linear Classification
Machine learning models are increasingly used to automate decisions that affect humans - deciding who should receive a loan, a job interview, or a social service. In such applications, a person should have the ability to change the decision of a model. When a person is denied a loan by a credit score, for example, they should be able to alter its input variables in a way that guarantees approval. Otherwise, they will be denied the loan as long as the model is deployed. More importantly, they will lack the ability to influence a decision that affects their livelihood. In this paper, we frame these issues in terms of recourse, which we define as the ability of a person to change the decision of a model by altering actionable input variables (e.g., income vs. age or marital status). We present integer programming tools to ensure recourse in linear classification problems without interfering in model development. We demonstrate how our tools can inform stakeholders through experiments on credit scoring problems. Our results show that recourse can be significantly affected by standard practices in model development, and motivate the need to evaluate recourse in practice.
Empowering Large Language Models on Robotic Manipulation with Affordance Prompting
While large language models (LLMs) are successful in completing various language processing tasks, they easily fail to interact with the physical world by generating control sequences properly. We find that the main reason is that LLMs are not grounded in the physical world. Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies, making it hard to adapt to new tasks. In contrast, we aim to address this problem and explore the possibility to prompt pre-trained LLMs to accomplish a series of robotic manipulation tasks in a training-free paradigm. Accordingly, we propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner (that generates high-level plans) and the motion controller (that generates low-level control sequences). To ground these plans and control sequences on the physical world, we develop the affordance prompting technique that stimulates the LLM to 1) predict the consequences of generated plans and 2) generate affordance values for relevant objects. Empirically, we evaluate the effectiveness of LLM+A in various language-conditioned robotic manipulation tasks, which show that our approach substantially improves performance by enhancing the feasibility of generated plans and control and can easily generalize to different environments.
Closed-loop Long-horizon Robotic Planning via Equilibrium Sequence Modeling
In the endeavor to make autonomous robots take actions, task planning is a major challenge that requires translating high-level task descriptions into long-horizon action sequences. Despite recent advances in language model agents, they remain prone to planning errors and limited in their ability to plan ahead. To address these limitations in robotic planning, we advocate a self-refining scheme that iteratively refines a draft plan until an equilibrium is reached. Remarkably, this process can be optimized end-to-end from an analytical perspective without the need to curate additional verifiers or reward models, allowing us to train self-refining planners in a simple supervised learning fashion. Meanwhile, a nested equilibrium sequence modeling procedure is devised for efficient closed-loop planning that incorporates useful feedback from the environment (or an internal world model). Our method is evaluated on the VirtualHome-Env benchmark, showing advanced performance with better scaling for inference computation. Code is available at https://github.com/Singularity0104/equilibrium-planner.
Do As I Can, Not As I Say: Grounding Language in Robotic Affordances
Large language models can encode a wealth of semantic knowledge about the world. Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language. However, a significant weakness of language models is that they lack real-world experience, which makes it difficult to leverage them for decision making within a given embodiment. For example, asking a language model to describe how to clean a spill might result in a reasonable narrative, but it may not be applicable to a particular agent, such as a robot, that needs to perform this task in a particular environment. We propose to provide real-world grounding by means of pretrained skills, which are used to constrain the model to propose natural language actions that are both feasible and contextually appropriate. The robot can act as the language model's "hands and eyes," while the language model supplies high-level semantic knowledge about the task. We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions, while value functions associated with these skills provide the grounding necessary to connect this knowledge to a particular physical environment. We evaluate our method on a number of real-world robotic tasks, where we show the need for real-world grounding and that this approach is capable of completing long-horizon, abstract, natural language instructions on a mobile manipulator. The project's website and the video can be found at https://say-can.github.io/.
RaC: Robot Learning for Long-Horizon Tasks by Scaling Recovery and Correction
Modern paradigms for robot imitation train expressive policy architectures on large amounts of human demonstration data. Yet performance on contact-rich, deformable-object, and long-horizon tasks plateau far below perfect execution, even with thousands of expert demonstrations. This is due to the inefficiency of existing ``expert'' data collection procedures based on human teleoperation. To address this issue, we introduce RaC, a new phase of training on human-in-the-loop rollouts after imitation learning pre-training. In RaC, we fine-tune a robotic policy on human intervention trajectories that illustrate recovery and correction behaviors. Specifically, during a policy rollout, human operators intervene when failure appears imminent, first rewinding the robot back to a familiar, in-distribution state and then providing a corrective segment that completes the current sub-task. Training on this data composition expands the robotic skill repertoire to include retry and adaptation behaviors, which we show are crucial for boosting both efficiency and robustness on long-horizon tasks. Across three real-world bimanual control tasks: shirt hanging, airtight container lid sealing, takeout box packing, and a simulated assembly task, RaC outperforms the prior state-of-the-art using 10times less data collection time and samples. We also show that RaC enables test-time scaling: the performance of the trained RaC policy scales linearly in the number of recovery maneuvers it exhibits. Videos of the learned policy are available at https://rac-scaling-robot.github.io/.
Spatial-Language Attention Policies for Efficient Robot Learning
Despite great strides in language-guided manipulation, existing work has been constrained to table-top settings. Table-tops allow for perfect and consistent camera angles, properties are that do not hold in mobile manipulation. Task plans that involve moving around the environment must be robust to egocentric views and changes in the plane and angle of grasp. A further challenge is ensuring this is all true while still being able to learn skills efficiently from limited data. We propose Spatial-Language Attention Policies (SLAP) as a solution. SLAP uses three-dimensional tokens as the input representation to train a single multi-task, language-conditioned action prediction policy. Our method shows an 80% success rate in the real world across eight tasks with a single model, and a 47.5% success rate when unseen clutter and unseen object configurations are introduced, even with only a handful of examples per task. This represents an improvement of 30% over prior work (20% given unseen distractors and configurations). We see a 4x improvement over baseline in mobile manipulation setting. In addition, we show how SLAPs robustness allows us to execute Task Plans from open-vocabulary instructions using a large language model for multi-step mobile manipulation. For videos, see the website: https://robotslap.github.io
Capability-Based Scaling Laws for LLM Red-Teaming
As large language models grow in capability and agency, identifying vulnerabilities through red-teaming becomes vital for safe deployment. However, traditional prompt-engineering approaches may prove ineffective once red-teaming turns into a weak-to-strong problem, where target models surpass red-teamers in capabilities. To study this shift, we frame red-teaming through the lens of the capability gap between attacker and target. We evaluate more than 500 attacker-target pairs using LLM-based jailbreak attacks that mimic human red-teamers across diverse families, sizes, and capability levels. Three strong trends emerge: (i) more capable models are better attackers, (ii) attack success drops sharply once the target's capability exceeds the attacker's, and (iii) attack success rates correlate with high performance on social science splits of the MMLU-Pro benchmark. From these trends, we derive a jailbreaking scaling law that predicts attack success for a fixed target based on attacker-target capability gap. These findings suggest that fixed-capability attackers (e.g., humans) may become ineffective against future models, increasingly capable open-source models amplify risks for existing systems, and model providers must accurately measure and control models' persuasive and manipulative abilities to limit their effectiveness as attackers.
Multi-Objective Decision Transformers for Offline Reinforcement Learning
Offline Reinforcement Learning (RL) is structured to derive policies from static trajectory data without requiring real-time environment interactions. Recent studies have shown the feasibility of framing offline RL as a sequence modeling task, where the sole aim is to predict actions based on prior context using the transformer architecture. However, the limitation of this single task learning approach is its potential to undermine the transformer model's attention mechanism, which should ideally allocate varying attention weights across different tokens in the input context for optimal prediction. To address this, we reformulate offline RL as a multi-objective optimization problem, where the prediction is extended to states and returns. We also highlight a potential flaw in the trajectory representation used for sequence modeling, which could generate inaccuracies when modeling the state and return distributions. This is due to the non-smoothness of the action distribution within the trajectory dictated by the behavioral policy. To mitigate this issue, we introduce action space regions to the trajectory representation. Our experiments on D4RL benchmark locomotion tasks reveal that our propositions allow for more effective utilization of the attention mechanism in the transformer model, resulting in performance that either matches or outperforms current state-of-the art methods.
One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL
While reinforcement learning algorithms can learn effective policies for complex tasks, these policies are often brittle to even minor task variations, especially when variations are not explicitly provided during training. One natural approach to this problem is to train agents with manually specified variation in the training task or environment. However, this may be infeasible in practical situations, either because making perturbations is not possible, or because it is unclear how to choose suitable perturbation strategies without sacrificing performance. The key insight of this work is that learning diverse behaviors for accomplishing a task can directly lead to behavior that generalizes to varying environments, without needing to perform explicit perturbations during training. By identifying multiple solutions for the task in a single environment during training, our approach can generalize to new situations by abandoning solutions that are no longer effective and adopting those that are. We theoretically characterize a robustness set of environments that arises from our algorithm and empirically find that our diversity-driven approach can extrapolate to various changes in the environment and task.
Sim-to-Real Transfer for Mobile Robots with Reinforcement Learning: from NVIDIA Isaac Sim to Gazebo and Real ROS 2 Robots
Unprecedented agility and dexterous manipulation have been demonstrated with controllers based on deep reinforcement learning (RL), with a significant impact on legged and humanoid robots. Modern tooling and simulation platforms, such as NVIDIA Isaac Sim, have been enabling such advances. This article focuses on demonstrating the applications of Isaac in local planning and obstacle avoidance as one of the most fundamental ways in which a mobile robot interacts with its environments. Although there is extensive research on proprioception-based RL policies, the article highlights less standardized and reproducible approaches to exteroception. At the same time, the article aims to provide a base framework for end-to-end local navigation policies and how a custom robot can be trained in such simulation environment. We benchmark end-to-end policies with the state-of-the-art Nav2, navigation stack in Robot Operating System (ROS). We also cover the sim-to-real transfer process by demonstrating zero-shot transferability of policies trained in the Isaac simulator to real-world robots. This is further evidenced by the tests with different simulated robots, which show the generalization of the learned policy. Finally, the benchmarks demonstrate comparable performance to Nav2, opening the door to quick deployment of state-of-the-art end-to-end local planners for custom robot platforms, but importantly furthering the possibilities by expanding the state and action spaces or task definitions for more complex missions. Overall, with this article we introduce the most important steps, and aspects to consider, in deploying RL policies for local path planning and obstacle avoidance with Isaac Sim training, Gazebo testing, and ROS 2 for real-time inference in real robots. The code is available at https://github.com/sahars93/RL-Navigation.
COMPASS: Cross-embodiment Mobility Policy via Residual RL and Skill Synthesis
As robots are increasingly deployed in diverse application domains, generalizable cross-embodiment mobility policies are increasingly essential. While classical mobility stacks have proven effective on specific robot platforms, they pose significant challenges when scaling to new embodiments. Learning-based methods, such as imitation learning (IL) and reinforcement learning (RL), offer alternative solutions but suffer from covariate shift, sparse sampling in large environments, and embodiment-specific constraints. This paper introduces COMPASS, a novel workflow for developing cross-embodiment mobility policies by integrating IL, residual RL, and policy distillation. We begin with IL on a mobile robot, leveraging easily accessible teacher policies to train a foundational model that combines a world model with a mobility policy. Building on this base, we employ residual RL to fine-tune embodiment-specific policies, exploiting pre-trained representations to improve sampling efficiency in handling various physical constraints and sensor modalities. Finally, policy distillation merges these embodiment-specialist policies into a single robust cross-embodiment policy. We empirically demonstrate that COMPASS scales effectively across diverse robot platforms while maintaining adaptability to various environment configurations, achieving a generalist policy with a success rate approximately 5X higher than the pre-trained IL policy. The resulting framework offers an efficient, scalable solution for cross-embodiment mobility, enabling robots with different designs to navigate safely and efficiently in complex scenarios.
Text2Motion: From Natural Language Instructions to Feasible Plans
We propose Text2Motion, a language-based planning framework enabling robots to solve sequential manipulation tasks that require long-horizon reasoning. Given a natural language instruction, our framework constructs both a task- and motion-level plan that is verified to reach inferred symbolic goals. Text2Motion uses feasibility heuristics encoded in Q-functions of a library of skills to guide task planning with Large Language Models. Whereas previous language-based planners only consider the feasibility of individual skills, Text2Motion actively resolves geometric dependencies spanning skill sequences by performing geometric feasibility planning during its search. We evaluate our method on a suite of problems that require long-horizon reasoning, interpretation of abstract goals, and handling of partial affordance perception. Our experiments show that Text2Motion can solve these challenging problems with a success rate of 82%, while prior state-of-the-art language-based planning methods only achieve 13%. Text2Motion thus provides promising generalization characteristics to semantically diverse sequential manipulation tasks with geometric dependencies between skills.
Towards Affordance-Aware Robotic Dexterous Grasping with Human-like Priors
A dexterous hand capable of generalizable grasping objects is fundamental for the development of general-purpose embodied AI. However, previous methods focus narrowly on low-level grasp stability metrics, neglecting affordance-aware positioning and human-like poses which are crucial for downstream manipulation. To address these limitations, we propose AffordDex, a novel framework with two-stage training that learns a universal grasping policy with an inherent understanding of both motion priors and object affordances. In the first stage, a trajectory imitator is pre-trained on a large corpus of human hand motions to instill a strong prior for natural movement. In the second stage, a residual module is trained to adapt these general human-like motions to specific object instances. This refinement is critically guided by two components: our Negative Affordance-aware Segmentation (NAA) module, which identifies functionally inappropriate contact regions, and a privileged teacher-student distillation process that ensures the final vision-based policy is highly successful. Extensive experiments demonstrate that AffordDex not only achieves universal dexterous grasping but also remains remarkably human-like in posture and functionally appropriate in contact location. As a result, AffordDex significantly outperforms state-of-the-art baselines across seen objects, unseen instances, and even entirely novel categories.
Learning Coverage Paths in Unknown Environments with Deep Reinforcement Learning
Coverage path planning (CPP) is the problem of finding a path that covers the entire free space of a confined area, with applications ranging from robotic lawn mowing to search-and-rescue. When the environment is unknown, the path needs to be planned online while mapping the environment, which cannot be addressed by offline planning methods that do not allow for a flexible path space. We investigate how suitable reinforcement learning is for this challenging problem, and analyze the involved components required to efficiently learn coverage paths, such as action space, input feature representation, neural network architecture, and reward function. We propose a computationally feasible egocentric map representation based on frontiers, and a novel reward term based on total variation to promote complete coverage. Through extensive experiments, we show that our approach surpasses the performance of both previous RL-based approaches and highly specialized methods across multiple CPP variations.
Impedance Matching: Enabling an RL-Based Running Jump in a Quadruped Robot
Replicating the remarkable athleticism seen in animals has long been a challenge in robotics control. Although Reinforcement Learning (RL) has demonstrated significant progress in dynamic legged locomotion control, the substantial sim-to-real gap often hinders the real-world demonstration of truly dynamic movements. We propose a new framework to mitigate this gap through frequency-domain analysis-based impedance matching between simulated and real robots. Our framework offers a structured guideline for parameter selection and the range for dynamics randomization in simulation, thus facilitating a safe sim-to-real transfer. The learned policy using our framework enabled jumps across distances of 55 cm and heights of 38 cm. The results are, to the best of our knowledge, one of the highest and longest running jumps demonstrated by an RL-based control policy in a real quadruped robot. Note that the achieved jumping height is approximately 85% of that obtained from a state-of-the-art trajectory optimization method, which can be seen as the physical limit for the given robot hardware. In addition, our control policy accomplished stable walking at speeds up to 2 m/s in the forward and backward directions, and 1 m/s in the sideway direction.
STAR: Learning Diverse Robot Skill Abstractions through Rotation-Augmented Vector Quantization
Transforming complex actions into discrete skill abstractions has demonstrated strong potential for robotic manipulation. Existing approaches mainly leverage latent variable models, e.g., VQ-VAE, to learn skill abstractions through learned vectors (codebooks), while they suffer from codebook collapse and modeling the causal relationship between learned skills. To address these limitations, we present Skill Training with Augmented Rotation (STAR), a framework that advances both skill learning and composition to complete complex behaviors. Specifically, to prevent codebook collapse, we devise rotation-augmented residual skill quantization (RaRSQ). It encodes relative angles between encoder outputs into the gradient flow by rotation-based gradient mechanism. Points within the same skill code are forced to be either pushed apart or pulled closer together depending on gradient directions. Further, to capture the causal relationship between skills, we present causal skill transformer (CST) which explicitly models dependencies between skill representations through an autoregressive mechanism for coherent action generation. Extensive experiments demonstrate the superiority of STAR on both LIBERO benchmark and realworld tasks, with around 12\% improvement over the baselines.
Large Language Model Situational Awareness Based Planning
This work pioneers evaluating emergent planning capabilities based on situational awareness in large language models. We contribute (i) novel benchmarks and metrics for standardized assessment; (ii) a unique dataset to spur progress; and (iii) demonstrations that prompting and multi-agent schemes significantly enhance planning performance in context-sensitive planning tasks. Positioning this within a situated agent and automated planning research, we highlight inherent reliability challenges--efficiently mapping world states to actions without environmental guidance remains open despite simulated domain advances. Although out-of-scope, limitations around validation methodology and data availability indicate exciting directions, including fine-tuning on expanded planning corpora and optimizations for triggering fast latent planning. By conclusively demonstrating current methods' promise and limitations via rigorous comparison, we catalyze investigating reliable goal-directed reasoning for situated agents.
GraspXL: Generating Grasping Motions for Diverse Objects at Scale
Human hands possess the dexterity to interact with diverse objects such as grasping specific parts of the objects and/or approaching them from desired directions. More importantly, humans can grasp objects of any shape without object-specific skills. Recent works synthesize grasping motions following single objectives such as a desired approach heading direction or a grasping area. Moreover, they usually rely on expensive 3D hand-object data during training and inference, which limits their capability to synthesize grasping motions for unseen objects at scale. In this paper, we unify the generation of hand-object grasping motions across multiple motion objectives, diverse object shapes and dexterous hand morphologies in a policy learning framework GraspXL. The objectives are composed of the graspable area, heading direction during approach, wrist rotation, and hand position. Without requiring any 3D hand-object interaction data, our policy trained with 58 objects can robustly synthesize diverse grasping motions for more than 500k unseen objects with a success rate of 82.2%. At the same time, the policy adheres to objectives, which enables the generation of diverse grasps per object. Moreover, we show that our framework can be deployed to different dexterous hands and work with reconstructed or generated objects. We quantitatively and qualitatively evaluate our method to show the efficacy of our approach. Our model, code, and the large-scale generated motions are available at https://eth-ait.github.io/graspxl/.
ReCode: Unify Plan and Action for Universal Granularity Control
Real-world tasks require decisions at varying granularities, and humans excel at this by leveraging a unified cognitive representation where planning is fundamentally understood as a high-level form of action. However, current Large Language Model (LLM)-based agents lack this crucial capability to operate fluidly across decision granularities. This limitation stems from existing paradigms that enforce a rigid separation between high-level planning and low-level action, which impairs dynamic adaptability and limits generalization. We propose ReCode (Recursive Code Generation), a novel paradigm that addresses this limitation by unifying planning and action within a single code representation. In this representation, ReCode treats high-level plans as abstract placeholder functions, which the agent then recursively decomposes into finer-grained sub-functions until reaching primitive actions. This recursive approach dissolves the rigid boundary between plan and action, enabling the agent to dynamically control its decision granularity. Furthermore, the recursive structure inherently generates rich, multi-granularity training data, enabling models to learn hierarchical decision-making processes. Extensive experiments show ReCode significantly surpasses advanced baselines in inference performance and demonstrates exceptional data efficiency in training, validating our core insight that unifying planning and action through recursive code generation is a powerful and effective approach to achieving universal granularity control. The code is available at https://github.com/FoundationAgents/ReCode.
Hand-Object Interaction Pretraining from Videos
We present an approach to learn general robot manipulation priors from 3D hand-object interaction trajectories. We build a framework to use in-the-wild videos to generate sensorimotor robot trajectories. We do so by lifting both the human hand and the manipulated object in a shared 3D space and retargeting human motions to robot actions. Generative modeling on this data gives us a task-agnostic base policy. This policy captures a general yet flexible manipulation prior. We empirically demonstrate that finetuning this policy, with both reinforcement learning (RL) and behavior cloning (BC), enables sample-efficient adaptation to downstream tasks and simultaneously improves robustness and generalizability compared to prior approaches. Qualitative experiments are available at: https://hgaurav2k.github.io/hop/.
VLA-OS: Structuring and Dissecting Planning Representations and Paradigms in Vision-Language-Action Models
Recent studies on Vision-Language-Action (VLA) models have shifted from the end-to-end action-generation paradigm toward a pipeline involving task planning followed by action generation, demonstrating improved performance on various complex, long-horizon manipulation tasks. However, existing approaches vary significantly in terms of network architectures, planning paradigms, representations, and training data sources, making it challenging for researchers to identify the precise sources of performance gains and components to be further improved. To systematically investigate the impacts of different planning paradigms and representations isolating from network architectures and training data, in this paper, we introduce VLA-OS, a unified VLA architecture series capable of various task planning paradigms, and design a comprehensive suite of controlled experiments across diverse object categories (rigid and deformable), visual modalities (2D and 3D), environments (simulation and real-world), and end-effectors (grippers and dexterous hands). Our results demonstrate that: 1) visually grounded planning representations are generally better than language planning representations; 2) the Hierarchical-VLA paradigm generally achieves superior or comparable performance than other paradigms on task performance, pretraining, generalization ability, scalability, and continual learning ability, albeit at the cost of slower training and inference speeds.
March in Chat: Interactive Prompting for Remote Embodied Referring Expression
Many Vision-and-Language Navigation (VLN) tasks have been proposed in recent years, from room-based to object-based and indoor to outdoor. The REVERIE (Remote Embodied Referring Expression) is interesting since it only provides high-level instructions to the agent, which are closer to human commands in practice. Nevertheless, this poses more challenges than other VLN tasks since it requires agents to infer a navigation plan only based on a short instruction. Large Language Models (LLMs) show great potential in robot action planning by providing proper prompts. Still, this strategy has not been explored under the REVERIE settings. There are several new challenges. For example, the LLM should be environment-aware so that the navigation plan can be adjusted based on the current visual observation. Moreover, the LLM planned actions should be adaptable to the much larger and more complex REVERIE environment. This paper proposes a March-in-Chat (MiC) model that can talk to the LLM on the fly and plan dynamically based on a newly proposed Room-and-Object Aware Scene Perceiver (ROASP). Our MiC model outperforms the previous state-of-the-art by large margins by SPL and RGSPL metrics on the REVERIE benchmark.
World-Env: Leveraging World Model as a Virtual Environment for VLA Post-Training
Vision-Language-Action (VLA) models trained via imitation learning suffer from significant performance degradation in data-scarce scenarios due to their reliance on large-scale demonstration datasets. Although reinforcement learning (RL)-based post-training has proven effective in addressing data scarcity, its application to VLA models is hindered by the non-resettable nature of real-world environments. This limitation is particularly critical in high-risk domains such as industrial automation, where interactions often induce state changes that are costly or infeasible to revert. Furthermore, existing VLA approaches lack a reliable mechanism for detecting task completion, leading to redundant actions that reduce overall task success rates. To address these challenges, we propose World-Env, an RL-based post-training framework that replaces physical interaction with a low-cost, world model-based virtual simulator. World-Env consists of two key components: (1) a video-based world simulator that generates temporally consistent future visual observations, and (2) a vision-language model (VLM)-guided instant reflector that provides continuous reward signals and predicts action termination. This simulated environment enables VLA models to safely explore and generalize beyond their initial imitation learning distribution. Our method achieves notable performance gains with as few as five expert demonstrations per task. Experiments on complex robotic manipulation tasks demonstrate that World-Env effectively overcomes the data inefficiency, safety constraints, and inefficient execution of conventional VLA models that rely on real-world interaction, offering a practical and scalable solution for post-training in resource-constrained settings.
Gemini Robotics: Bringing AI into the Physical World
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning
Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic manipulation skills, but realizing this potential in real-world settings has been challenging. We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements. Videos and code are available at our project website https://hil-serl.github.io/.
HiPlan: Hierarchical Planning for LLM-Based Agents with Adaptive Global-Local Guidance
Large language model (LLM)-based agents have demonstrated remarkable capabilities in decision-making tasks, but struggle significantly with complex, long-horizon planning scenarios. This arises from their lack of macroscopic guidance, causing disorientation and failures in complex tasks, as well as insufficient continuous oversight during execution, rendering them unresponsive to environmental changes and prone to deviations. To tackle these challenges, we introduce HiPlan, a hierarchical planning framework that provides adaptive global-local guidance to boost LLM-based agents'decision-making. HiPlan decomposes complex tasks into milestone action guides for general direction and step-wise hints for detailed actions. During the offline phase, we construct a milestone library from expert demonstrations, enabling structured experience reuse by retrieving semantically similar tasks and milestones. In the execution phase, trajectory segments from past milestones are dynamically adapted to generate step-wise hints that align current observations with the milestone objectives, bridging gaps and correcting deviations. Extensive experiments across two challenging benchmarks demonstrate that HiPlan substantially outperforms strong baselines, and ablation studies validate the complementary benefits of its hierarchical components.
RoboCerebra: A Large-scale Benchmark for Long-horizon Robotic Manipulation Evaluation
Recent advances in vision-language models (VLMs) have enabled instruction-conditioned robotic systems with improved generalization. However, most existing work focuses on reactive System 1 policies, underutilizing VLMs' strengths in semantic reasoning and long-horizon planning. These System 2 capabilities-characterized by deliberative, goal-directed thinking-remain under explored due to the limited temporal scale and structural complexity of current benchmarks. To address this gap, we introduce RoboCerebra, a benchmark for evaluating high-level reasoning in long-horizon robotic manipulation. RoboCerebra includes: (1) a large-scale simulation dataset with extended task horizons and diverse subtask sequences in household environments; (2) a hierarchical framework combining a high-level VLM planner with a low-level vision-language-action (VLA) controller; and (3) an evaluation protocol targeting planning, reflection, and memory through structured System 1-System 2 interaction. The dataset is constructed via a top-down pipeline, where GPT generates task instructions and decomposes them into subtask sequences. Human operators execute the subtasks in simulation, yielding high-quality trajectories with dynamic object variations. Compared to prior benchmarks, RoboCerebra features significantly longer action sequences and denser annotations. We further benchmark state-of-the-art VLMs as System 2 modules and analyze their performance across key cognitive dimensions, advancing the development of more capable and generalizable robotic planners.
Foundation Model Driven Robotics: A Comprehensive Review
The rapid emergence of foundation models, particularly Large Language Models (LLMs) and Vision-Language Models (VLMs), has introduced a transformative paradigm in robotics. These models offer powerful capabilities in semantic understanding, high-level reasoning, and cross-modal generalization, enabling significant advances in perception, planning, control, and human-robot interaction. This critical review provides a structured synthesis of recent developments, categorizing applications across simulation-driven design, open-world execution, sim-to-real transfer, and adaptable robotics. Unlike existing surveys that emphasize isolated capabilities, this work highlights integrated, system-level strategies and evaluates their practical feasibility in real-world environments. Key enabling trends such as procedural scene generation, policy generalization, and multimodal reasoning are discussed alongside core bottlenecks, including limited embodiment, lack of multimodal data, safety risks, and computational constraints. Through this lens, this paper identifies both the architectural strengths and critical limitations of foundation model-based robotics, highlighting open challenges in real-time operation, grounding, resilience, and trust. The review concludes with a roadmap for future research aimed at bridging semantic reasoning and physical intelligence through more robust, interpretable, and embodied models.
Agile Continuous Jumping in Discontinuous Terrains
We focus on agile, continuous, and terrain-adaptive jumping of quadrupedal robots in discontinuous terrains such as stairs and stepping stones. Unlike single-step jumping, continuous jumping requires accurately executing highly dynamic motions over long horizons, which is challenging for existing approaches. To accomplish this task, we design a hierarchical learning and control framework, which consists of a learned heightmap predictor for robust terrain perception, a reinforcement-learning-based centroidal-level motion policy for versatile and terrain-adaptive planning, and a low-level model-based leg controller for accurate motion tracking. In addition, we minimize the sim-to-real gap by accurately modeling the hardware characteristics. Our framework enables a Unitree Go1 robot to perform agile and continuous jumps on human-sized stairs and sparse stepping stones, for the first time to the best of our knowledge. In particular, the robot can cross two stair steps in each jump and completes a 3.5m long, 2.8m high, 14-step staircase in 4.5 seconds. Moreover, the same policy outperforms baselines in various other parkour tasks, such as jumping over single horizontal or vertical discontinuities. Experiment videos can be found at https://yxyang.github.io/jumping\_cod/.
LLM Augmented Hierarchical Agents
Solving long-horizon, temporally-extended tasks using Reinforcement Learning (RL) is challenging, compounded by the common practice of learning without prior knowledge (or tabula rasa learning). Humans can generate and execute plans with temporally-extended actions and quickly learn to perform new tasks because we almost never solve problems from scratch. We want autonomous agents to have this same ability. Recently, LLMs have been shown to encode a tremendous amount of knowledge about the world and to perform impressive in-context learning and reasoning. However, using LLMs to solve real world problems is hard because they are not grounded in the current task. In this paper we exploit the planning capabilities of LLMs while using RL to provide learning from the environment, resulting in a hierarchical agent that uses LLMs to solve long-horizon tasks. Instead of completely relying on LLMs, they guide a high-level policy, making learning significantly more sample efficient. This approach is evaluated in simulation environments such as MiniGrid, SkillHack, and Crafter, and on a real robot arm in block manipulation tasks. We show that agents trained using our approach outperform other baselines methods and, once trained, don't need access to LLMs during deployment.
Gaitor: Learning a Unified Representation Across Gaits for Real-World Quadruped Locomotion
The current state-of-the-art in quadruped locomotion is able to produce a variety of complex motions. These methods either rely on switching between a discrete set of skills or learn a distribution across gaits using complex black-box models. Alternatively, we present Gaitor, which learns a disentangled and 2D representation across locomotion gaits. This learnt representation forms a planning space for closed-loop control delivering continuous gait transitions and perceptive terrain traversal. Gaitor's latent space is readily interpretable and we discover that during gait transitions, novel unseen gaits emerge. The latent space is disentangled with respect to footswing heights and lengths. This means that these gait characteristics can be varied independently in the 2D latent representation. Together with a simple terrain encoding and a learnt planner operating in the latent space, Gaitor can take motion commands including desired gait type and swing characteristics all while reacting to uneven terrain. We evaluate Gaitor in both simulation and the real world on the ANYmal C platform. To the best of our knowledge, this is the first work learning a unified and interpretable latent space for multiple gaits, resulting in continuous blending between different locomotion modes on a real quadruped robot. An overview of the methods and results in this paper is found at https://youtu.be/eVFQbRyilCA.
Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning
Robotic manipulation is often challenging due to the long-horizon tasks and the complex object relationships. A common solution is to develop a task and motion planning framework that integrates planning for high-level task and low-level motion. Recently, inspired by the powerful reasoning ability of Large Language Models (LLMs), LLM-based planning approaches have achieved remarkable progress. However, these methods still heavily rely on expert-specific knowledge, often generating invalid plans for unseen and unfamiliar tasks. To address this issue, we propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization. It is the first expert-free planning framework since we combine the world knowledge from LLMs with formal reasoning, resulting in improved generalization capability to new tasks. Specifically, differ to most existing work, our LM-SymOpt employs LLMs to translate natural language instructions into symbolic representations, thereby representing actions as high-level symbols and reducing the search space for planning. Next, after evaluating the action probability of completing the task using LLMs, a weighted random sampling method is introduced to generate candidate plans. Their feasibility is assessed through symbolic reasoning and their cost efficiency is then evaluated using trajectory optimization for selecting the optimal planning. Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
Meta-Learning Parameterized Skills
We propose a novel parameterized skill-learning algorithm that aims to learn transferable parameterized skills and synthesize them into a new action space that supports efficient learning in long-horizon tasks. We propose to leverage off-policy Meta-RL combined with a trajectory-centric smoothness term to learn a set of parameterized skills. Our agent can use these learned skills to construct a three-level hierarchical framework that models a Temporally-extended Parameterized Action Markov Decision Process. We empirically demonstrate that the proposed algorithms enable an agent to solve a set of difficult long-horizon (obstacle-course and robot manipulation) tasks.
Choreographer: Learning and Adapting Skills in Imagination
Unsupervised skill learning aims to learn a rich repertoire of behaviors without external supervision, providing artificial agents with the ability to control and influence the environment. However, without appropriate knowledge and exploration, skills may provide control only over a restricted area of the environment, limiting their applicability. Furthermore, it is unclear how to leverage the learned skill behaviors for adapting to downstream tasks in a data-efficient manner. We present Choreographer, a model-based agent that exploits its world model to learn and adapt skills in imagination. Our method decouples the exploration and skill learning processes, being able to discover skills in the latent state space of the model. During adaptation, the agent uses a meta-controller to evaluate and adapt the learned skills efficiently by deploying them in parallel in imagination. Choreographer is able to learn skills both from offline data, and by collecting data simultaneously with an exploration policy. The skills can be used to effectively adapt to downstream tasks, as we show in the URL benchmark, where we outperform previous approaches from both pixels and states inputs. The learned skills also explore the environment thoroughly, finding sparse rewards more frequently, as shown in goal-reaching tasks from the DMC Suite and Meta-World. Website and code: https://skillchoreographer.github.io/
Sequential Dexterity: Chaining Dexterous Policies for Long-Horizon Manipulation
Many real-world manipulation tasks consist of a series of subtasks that are significantly different from one another. Such long-horizon, complex tasks highlight the potential of dexterous hands, which possess adaptability and versatility, capable of seamlessly transitioning between different modes of functionality without the need for re-grasping or external tools. However, the challenges arise due to the high-dimensional action space of dexterous hand and complex compositional dynamics of the long-horizon tasks. We present Sequential Dexterity, a general system based on reinforcement learning (RL) that chains multiple dexterous policies for achieving long-horizon task goals. The core of the system is a transition feasibility function that progressively finetunes the sub-policies for enhancing chaining success rate, while also enables autonomous policy-switching for recovery from failures and bypassing redundant stages. Despite being trained only in simulation with a few task objects, our system demonstrates generalization capability to novel object shapes and is able to zero-shot transfer to a real-world robot equipped with a dexterous hand. More details and video results could be found at https://sequential-dexterity.github.io
RoboCat: A Self-Improving Foundation Agent for Robotic Manipulation
The ability to leverage heterogeneous robotic experience from different robots and tasks to quickly master novel skills and embodiments has the potential to transform robot learning. Inspired by recent advances in foundation models for vision and language, we propose a foundation agent for robotic manipulation. This agent, named RoboCat, is a visual goal-conditioned decision transformer capable of consuming multi-embodiment action-labelled visual experience. This data spans a large repertoire of motor control skills from simulated and real robotic arms with varying sets of observations and actions. With RoboCat, we demonstrate the ability to generalise to new tasks and robots, both zero-shot as well as through adaptation using only 100--1000 examples for the target task. We also show how a trained model itself can be used to generate data for subsequent training iterations, thus providing a basic building block for an autonomous improvement loop. We investigate the agent's capabilities, with large-scale evaluations both in simulation and on three different real robot embodiments. We find that as we grow and diversify its training data, RoboCat not only shows signs of cross-task transfer, but also becomes more efficient at adapting to new tasks.
PAC Bench: Do Foundation Models Understand Prerequisites for Executing Manipulation Policies?
Vision-Language Models (VLMs) are increasingly pivotal for generalist robot manipulation, enabling tasks such as physical reasoning, policy generation, and failure detection. However, their proficiency in these high-level applications often assumes a deep understanding of low-level physical prerequisites, a capability that remains largely unverified. For robots to perform actions reliably, they must comprehend intrinsic object properties (e.g., material, weight), action affordances (e.g., graspable, stackable), and physical constraints (e.g., stability, reachability, or an object's state, such as being closed). Despite the widespread use of VLMs in manipulation tasks, we argue that off-the-shelf models may lack this granular, physically grounded understanding, as such prerequisites are often overlooked during training. To address this critical gap, we introduce PAC Bench, a comprehensive benchmark designed to systematically evaluate VLMs on their understanding of core Properties, Affordances, and Constraints (PAC) from a task executability perspective. PAC Bench features a diverse dataset with over 30,000 annotations, comprising 673 real-world images (115 object classes, 15 property types, and 1 to 3 affordances defined per class), 100 real-world humanoid-view scenarios, and 120 unique simulated constraint scenarios across four tasks. Our evaluations reveal significant gaps in the ability of current VLMs to grasp fundamental physical concepts, highlighting limitations in their suitability for reliable robot manipulation and pointing to key areas for targeted research. PAC Bench also serves as a standardized benchmark for rigorously evaluating physical reasoning in VLMs and guiding the development of more robust, physically grounded models for robotic applications. Project Page: https://pacbench.github.io/
RL + Transformer = A General-Purpose Problem Solver
What if artificial intelligence could not only solve problems for which it was trained but also learn to teach itself to solve new problems (i.e., meta-learn)? In this study, we demonstrate that a pre-trained transformer fine-tuned with reinforcement learning over multiple episodes develops the ability to solve problems that it has never encountered before - an emergent ability called In-Context Reinforcement Learning (ICRL). This powerful meta-learner not only excels in solving unseen in-distribution environments with remarkable sample efficiency, but also shows strong performance in out-of-distribution environments. In addition, we show that it exhibits robustness to the quality of its training data, seamlessly stitches together behaviors from its context, and adapts to non-stationary environments. These behaviors demonstrate that an RL-trained transformer can iteratively improve upon its own solutions, making it an excellent general-purpose problem solver.
Cross-Embodiment Dexterous Grasping with Reinforcement Learning
Dexterous hands exhibit significant potential for complex real-world grasping tasks. While recent studies have primarily focused on learning policies for specific robotic hands, the development of a universal policy that controls diverse dexterous hands remains largely unexplored. In this work, we study the learning of cross-embodiment dexterous grasping policies using reinforcement learning (RL). Inspired by the capability of human hands to control various dexterous hands through teleoperation, we propose a universal action space based on the human hand's eigengrasps. The policy outputs eigengrasp actions that are then converted into specific joint actions for each robot hand through a retargeting mapping. We simplify the robot hand's proprioception to include only the positions of fingertips and the palm, offering a unified observation space across different robot hands. Our approach demonstrates an 80% success rate in grasping objects from the YCB dataset across four distinct embodiments using a single vision-based policy. Additionally, our policy exhibits zero-shot generalization to two previously unseen embodiments and significant improvement in efficient finetuning. For further details and videos, visit our project page https://sites.google.com/view/crossdex.
Reflective Planning: Vision-Language Models for Multi-Stage Long-Horizon Robotic Manipulation
Solving complex long-horizon robotic manipulation problems requires sophisticated high-level planning capabilities, the ability to reason about the physical world, and reactively choose appropriate motor skills. Vision-language models (VLMs) pretrained on Internet data could in principle offer a framework for tackling such problems. However, in their current form, VLMs lack both the nuanced understanding of intricate physics required for robotic manipulation and the ability to reason over long horizons to address error compounding issues. In this paper, we introduce a novel test-time computation framework that enhances VLMs' physical reasoning capabilities for multi-stage manipulation tasks. At its core, our approach iteratively improves a pretrained VLM with a "reflection" mechanism - it uses a generative model to imagine future world states, leverages these predictions to guide action selection, and critically reflects on potential suboptimalities to refine its reasoning. Experimental results demonstrate that our method significantly outperforms several state-of-the-art commercial VLMs as well as other post-training approaches such as Monte Carlo Tree Search (MCTS). Videos are available at https://reflect-vlm.github.io.
MyoDex: A Generalizable Prior for Dexterous Manipulation
Human dexterity is a hallmark of motor control. Our hands can rapidly synthesize new behaviors despite the complexity (multi-articular and multi-joints, with 23 joints controlled by more than 40 muscles) of musculoskeletal sensory-motor circuits. In this work, we take inspiration from how human dexterity builds on a diversity of prior experiences, instead of being acquired through a single task. Motivated by this observation, we set out to develop agents that can build upon their previous experience to quickly acquire new (previously unattainable) behaviors. Specifically, our approach leverages multi-task learning to implicitly capture task-agnostic behavioral priors (MyoDex) for human-like dexterity, using a physiologically realistic human hand model - MyoHand. We demonstrate MyoDex's effectiveness in few-shot generalization as well as positive transfer to a large repertoire of unseen dexterous manipulation tasks. Agents leveraging MyoDex can solve approximately 3x more tasks, and 4x faster in comparison to a distillation baseline. While prior work has synthesized single musculoskeletal control behaviors, MyoDex is the first generalizable manipulation prior that catalyzes the learning of dexterous physiological control across a large variety of contact-rich behaviors. We also demonstrate the effectiveness of our paradigms beyond musculoskeletal control towards the acquisition of dexterity in 24 DoF Adroit Hand. Website: https://sites.google.com/view/myodex
RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics
Spatial understanding is a crucial capability for robots to make grounded decisions based on their environment. This foundational skill enables robots not only to perceive their surroundings but also to reason about and interact meaningfully within the world. In modern robotics, these capabilities are taken on by visual language models, and they face significant challenges when applied to spatial reasoning context due to their training data sources. These sources utilize general-purpose image datasets, and they often lack sophisticated spatial scene understanding capabilities. For example, the datasets do not address reference frame comprehension - spatial relationships require clear contextual understanding, whether from an ego-centric, object-centric, or world-centric perspective, which allow for effective real-world interaction. To address this issue, we introduce RoboSpatial, a large-scale spatial understanding dataset consisting of real indoor and tabletop scenes captured as 3D scans and egocentric images, annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5K 3D scans, and 3M annotated spatial relationships, with paired 2D egocentric images and 3D scans to make it both 2D and 3D ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robotics manipulation.
Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills
Building autonomous robotic agents capable of achieving human-level performance in real-world embodied tasks is an ultimate goal in humanoid robot research. Recent advances have made significant progress in high-level cognition with Foundation Models (FMs) and low-level skill development for humanoid robots. However, directly combining these components often results in poor robustness and efficiency due to compounding errors in long-horizon tasks and the varied latency of different modules. We introduce Being-0, a hierarchical agent framework that integrates an FM with a modular skill library. The FM handles high-level cognitive tasks such as instruction understanding, task planning, and reasoning, while the skill library provides stable locomotion and dexterous manipulation for low-level control. To bridge the gap between these levels, we propose a novel Connector module, powered by a lightweight vision-language model (VLM). The Connector enhances the FM's embodied capabilities by translating language-based plans into actionable skill commands and dynamically coordinating locomotion and manipulation to improve task success. With all components, except the FM, deployable on low-cost onboard computation devices, Being-0 achieves efficient, real-time performance on a full-sized humanoid robot equipped with dexterous hands and active vision. Extensive experiments in large indoor environments demonstrate Being-0's effectiveness in solving complex, long-horizon tasks that require challenging navigation and manipulation subtasks. For further details and videos, visit https://beingbeyond.github.io/being-0.
Task and Motion Planning with Large Language Models for Object Rearrangement
Multi-object rearrangement is a crucial skill for service robots, and commonsense reasoning is frequently needed in this process. However, achieving commonsense arrangements requires knowledge about objects, which is hard to transfer to robots. Large language models (LLMs) are one potential source of this knowledge, but they do not naively capture information about plausible physical arrangements of the world. We propose LLM-GROP, which uses prompting to extract commonsense knowledge about semantically valid object configurations from an LLM and instantiates them with a task and motion planner in order to generalize to varying scene geometry. LLM-GROP allows us to go from natural-language commands to human-aligned object rearrangement in varied environments. Based on human evaluations, our approach achieves the highest rating while outperforming competitive baselines in terms of success rate while maintaining comparable cumulative action costs. Finally, we demonstrate a practical implementation of LLM-GROP on a mobile manipulator in real-world scenarios. Supplementary materials are available at: https://sites.google.com/view/llm-grop
ReLEP: A Novel Framework for Real-world Long-horizon Embodied Planning
Real-world long-horizon embodied planning underpins embodied AI. To accomplish long-horizon tasks, agents need to decompose abstract instructions into detailed steps. Prior works mostly rely on GPT-4V for task decomposition into predefined actions, which limits task diversity due to GPT-4V's finite understanding of larger skillsets. Therefore, we present ReLEP, a groundbreaking framework for Real world Long-horizon Embodied Planning, which can accomplish a wide range of daily tasks. At its core lies a fine-tuned large vision language model that formulates plans as sequences of skill functions according to input instruction and scene image. These functions are selected from a carefully designed skill library. ReLEP is also equipped with a Memory module for plan and status recall, and a Robot Configuration module for versatility across robot types. In addition, we propose a semi-automatic data generation pipeline to tackle dataset scarcity. Real-world off-line experiments across eight daily embodied tasks demonstrate that ReLEP is able to accomplish long-horizon embodied tasks and outperforms other state-of-the-art baseline methods.
Hierarchical and Modular Network on Non-prehensile Manipulation in General Environments
For robots to operate in general environments like households, they must be able to perform non-prehensile manipulation actions such as toppling and rolling to manipulate ungraspable objects. However, prior works on non-prehensile manipulation cannot yet generalize across environments with diverse geometries. The main challenge lies in adapting to varying environmental constraints: within a cabinet, the robot must avoid walls and ceilings; to lift objects to the top of a step, the robot must account for the step's pose and extent. While deep reinforcement learning (RL) has demonstrated impressive success in non-prehensile manipulation, accounting for such variability presents a challenge for the generalist policy, as it must learn diverse strategies for each new combination of constraints. To address this, we propose a modular and reconfigurable architecture that adaptively reconfigures network modules based on task requirements. To capture the geometric variability in environments, we extend the contact-based object representation (CORN) to environment geometries, and propose a procedural algorithm for generating diverse environments to train our agent. Taken together, the resulting policy can zero-shot transfer to novel real-world environments and objects despite training entirely within a simulator. We additionally release a simulation-based benchmark featuring nine digital twins of real-world scenes with 353 objects to facilitate non-prehensile manipulation research in realistic domains.
GeoDrive: 3D Geometry-Informed Driving World Model with Precise Action Control
Recent advancements in world models have revolutionized dynamic environment simulation, allowing systems to foresee future states and assess potential actions. In autonomous driving, these capabilities help vehicles anticipate the behavior of other road users, perform risk-aware planning, accelerate training in simulation, and adapt to novel scenarios, thereby enhancing safety and reliability. Current approaches exhibit deficiencies in maintaining robust 3D geometric consistency or accumulating artifacts during occlusion handling, both critical for reliable safety assessment in autonomous navigation tasks. To address this, we introduce GeoDrive, which explicitly integrates robust 3D geometry conditions into driving world models to enhance spatial understanding and action controllability. Specifically, we first extract a 3D representation from the input frame and then obtain its 2D rendering based on the user-specified ego-car trajectory. To enable dynamic modeling, we propose a dynamic editing module during training to enhance the renderings by editing the positions of the vehicles. Extensive experiments demonstrate that our method significantly outperforms existing models in both action accuracy and 3D spatial awareness, leading to more realistic, adaptable, and reliable scene modeling for safer autonomous driving. Additionally, our model can generalize to novel trajectories and offers interactive scene editing capabilities, such as object editing and object trajectory control.
Agentic Knowledgeable Self-awareness
Large Language Models (LLMs) have achieved considerable performance across various agentic planning tasks. However, traditional agent planning approaches adopt a "flood irrigation" methodology that indiscriminately injects gold trajectories, external feedback, and domain knowledge into agent models. This practice overlooks the fundamental human cognitive principle of situational self-awareness during decision-making-the ability to dynamically assess situational demands and strategically employ resources during decision-making. We propose agentic knowledgeable self-awareness to address this gap, a novel paradigm enabling LLM-based agents to autonomously regulate knowledge utilization. Specifically, we propose KnowSelf, a data-centric approach that applies agents with knowledgeable self-awareness like humans. Concretely, we devise a heuristic situation judgement criterion to mark special tokens on the agent's self-explored trajectories for collecting training data. Through a two-stage training process, the agent model can switch between different situations by generating specific special tokens, achieving optimal planning effects with minimal costs. Our experiments demonstrate that KnowSelf can outperform various strong baselines on different tasks and models with minimal use of external knowledge. Code is available at https://github.com/zjunlp/KnowSelf.
Arm-Constrained Curriculum Learning for Loco-Manipulation of the Wheel-Legged Robot
Incorporating a robotic manipulator into a wheel-legged robot enhances its agility and expands its potential for practical applications. However, the presence of potential instability and uncertainties presents additional challenges for control objectives. In this paper, we introduce an arm-constrained curriculum learning architecture to tackle the issues introduced by adding the manipulator. Firstly, we develop an arm-constrained reinforcement learning algorithm to ensure safety and stability in control performance. Additionally, to address discrepancies in reward settings between the arm and the base, we propose a reward-aware curriculum learning method. The policy is first trained in Isaac gym and transferred to the physical robot to do dynamic grasping tasks, including the door-opening task, fan-twitching task and the relay-baton-picking and following task. The results demonstrate that our proposed approach effectively controls the arm-equipped wheel-legged robot to master dynamic grasping skills, allowing it to chase and catch a moving object while in motion. Please refer to our website (https://acodedog.github.io/wheel-legged-loco-manipulation) for the code and supplemental videos.
Skill Expansion and Composition in Parameter Space
Humans excel at reusing prior knowledge to address new challenges and developing skills while solving problems. This paradigm becomes increasingly popular in the development of autonomous agents, as it develops systems that can self-evolve in response to new challenges like human beings. However, previous methods suffer from limited training efficiency when expanding new skills and fail to fully leverage prior knowledge to facilitate new task learning. In this paper, we propose Parametric Skill Expansion and Composition (PSEC), a new framework designed to iteratively evolve the agents' capabilities and efficiently address new challenges by maintaining a manageable skill library. This library can progressively integrate skill primitives as plug-and-play Low-Rank Adaptation (LoRA) modules in parameter-efficient finetuning, facilitating efficient and flexible skill expansion. This structure also enables the direct skill compositions in parameter space by merging LoRA modules that encode different skills, leveraging shared information across skills to effectively program new skills. Based on this, we propose a context-aware module to dynamically activate different skills to collaboratively handle new tasks. Empowering diverse applications including multi-objective composition, dynamics shift, and continual policy shift, the results on D4RL, DSRL benchmarks, and the DeepMind Control Suite show that PSEC exhibits superior capacity to leverage prior knowledge to efficiently tackle new challenges, as well as expand its skill libraries to evolve the capabilities. Project website: https://ltlhuuu.github.io/PSEC/.
Encouraging Good Processes Without the Need for Good Answers: Reinforcement Learning for LLM Agent Planning
The functionality of Large Language Model (LLM) agents is primarily determined by two capabilities: action planning and answer summarization. The former, action planning, is the core capability that dictates an agent's performance. However, prevailing training paradigms employ end-to-end, multi-objective optimization that jointly trains both capabilities. This paradigm faces two critical challenges: imbalanced optimization objective allocation and scarcity of verifiable data, making it difficult to enhance the agent's planning capability. To address these challenges, we propose Reinforcement Learning with Tool-use Rewards (RLTR), a novel framework that decouples the training process to enable a focused, single-objective optimization of the planning module. Crucially, RLTR introduces a reward signal based on tool-use completeness to directly evaluate the quality of tool invocation sequences. This method offers a more direct and reliable training signal than assessing the final response content, thereby obviating the need for verifiable data. Our experiments demonstrate that RLTR achieves an 8%-12% improvement in planning performance compared to end-to-end baselines. Moreover, this enhanced planning capability, in turn, translates to a 5%-6% increase in the final response quality of the overall agent system.
Adaptability in Multi-Agent Reinforcement Learning: A Framework and Unified Review
Multi-Agent Reinforcement Learning (MARL) has shown clear effectiveness in coordinating multiple agents across simulated benchmarks and constrained scenarios. However, its deployment in real-world multi-agent systems (MAS) remains limited, primarily due to the complex and dynamic nature of such environments. These challenges arise from multiple interacting sources of variability, including fluctuating agent populations, evolving task goals, and inconsistent execution conditions. Together, these factors demand that MARL algorithms remain effective under continuously changing system configurations and operational demands. To better capture and assess this capacity for adjustment, we introduce the concept of adaptability as a unified and practically grounded lens through which to evaluate the reliability of MARL algorithms under shifting conditions, broadly referring to any changes in the environment dynamics that may occur during learning or execution. Centred on the notion of adaptability, we propose a structured framework comprising three key dimensions: learning adaptability, policy adaptability, and scenario-driven adaptability. By adopting this adaptability perspective, we aim to support more principled assessments of MARL performance beyond narrowly defined benchmarks. Ultimately, this survey contributes to the development of algorithms that are better suited for deployment in dynamic, real-world multi-agent systems.
MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation. While recent efforts in robotics have leveraged LLMs both for high-level and low-level planning, these approaches often face significant challenges, such as hallucinations in long-horizon tasks and limited adaptability due to the generation of plans in a single pass without real-time feedback. To address these limitations, we propose a novel multi-agent LLM framework, Multi-Agent Large Language Model for Manipulation (MALMM) that distributes high-level planning and low-level control code generation across specialized LLM agents, supervised by an additional agent that dynamically manages transitions. By incorporating observations from the environment after each step, our framework effectively handles intermediate failures and enables adaptive re-planning. Unlike existing methods, our approach does not rely on pre-trained skill policies or in-context learning examples and generalizes to a variety of new tasks. We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting, thereby overcoming key limitations of existing LLM-based manipulation methods.
Vision-Only Robot Navigation in a Neural Radiance World
Neural Radiance Fields (NeRFs) have recently emerged as a powerful paradigm for the representation of natural, complex 3D scenes. NeRFs represent continuous volumetric density and RGB values in a neural network, and generate photo-realistic images from unseen camera viewpoints through ray tracing. We propose an algorithm for navigating a robot through a 3D environment represented as a NeRF using only an on-board RGB camera for localization. We assume the NeRF for the scene has been pre-trained offline, and the robot's objective is to navigate through unoccupied space in the NeRF to reach a goal pose. We introduce a trajectory optimization algorithm that avoids collisions with high-density regions in the NeRF based on a discrete time version of differential flatness that is amenable to constraining the robot's full pose and control inputs. We also introduce an optimization based filtering method to estimate 6DoF pose and velocities for the robot in the NeRF given only an onboard RGB camera. We combine the trajectory planner with the pose filter in an online replanning loop to give a vision-based robot navigation pipeline. We present simulation results with a quadrotor robot navigating through a jungle gym environment, the inside of a church, and Stonehenge using only an RGB camera. We also demonstrate an omnidirectional ground robot navigating through the church, requiring it to reorient to fit through the narrow gap. Videos of this work can be found at https://mikh3x4.github.io/nerf-navigation/ .
RAPTOR: A Foundation Policy for Quadrotor Control
Humans are remarkably data-efficient when adapting to new unseen conditions, like driving a new car. In contrast, modern robotic control systems, like neural network policies trained using Reinforcement Learning (RL), are highly specialized for single environments. Because of this overfitting, they are known to break down even under small differences like the Simulation-to-Reality (Sim2Real) gap and require system identification and retraining for even minimal changes to the system. In this work, we present RAPTOR, a method for training a highly adaptive foundation policy for quadrotor control. Our method enables training a single, end-to-end neural-network policy to control a wide variety of quadrotors. We test 10 different real quadrotors from 32 g to 2.4 kg that also differ in motor type (brushed vs. brushless), frame type (soft vs. rigid), propeller type (2/3/4-blade), and flight controller (PX4/Betaflight/Crazyflie/M5StampFly). We find that a tiny, three-layer policy with only 2084 parameters is sufficient for zero-shot adaptation to a wide variety of platforms. The adaptation through In-Context Learning is made possible by using a recurrence in the hidden layer. The policy is trained through a novel Meta-Imitation Learning algorithm, where we sample 1000 quadrotors and train a teacher policy for each of them using Reinforcement Learning. Subsequently, the 1000 teachers are distilled into a single, adaptive student policy. We find that within milliseconds, the resulting foundation policy adapts zero-shot to unseen quadrotors. We extensively test the capabilities of the foundation policy under numerous conditions (trajectory tracking, indoor/outdoor, wind disturbance, poking, different propellers).
GPT-4V(ision) for Robotics: Multimodal Task Planning from Human Demonstration
We introduce a pipeline that enhances a general-purpose Vision Language Model, GPT-4V(ision), by integrating observations of human actions to facilitate robotic manipulation. This system analyzes videos of humans performing tasks and creates executable robot programs that incorporate affordance insights. The computation starts by analyzing the videos with GPT-4V to convert environmental and action details into text, followed by a GPT-4-empowered task planner. In the following analyses, vision systems reanalyze the video with the task plan. Object names are grounded using an open-vocabulary object detector, while focus on the hand-object relation helps to detect the moment of grasping and releasing. This spatiotemporal grounding allows the vision systems to further gather affordance data (e.g., grasp type, way points, and body postures). Experiments across various scenarios demonstrate this method's efficacy in achieving real robots' operations from human demonstrations in a zero-shot manner. The prompts of GPT-4V/GPT-4 are available at this project page: https://microsoft.github.io/GPT4Vision-Robot-Manipulation-Prompts/
Object-Centric Dexterous Manipulation from Human Motion Data
Manipulating objects to achieve desired goal states is a basic but important skill for dexterous manipulation. Human hand motions demonstrate proficient manipulation capability, providing valuable data for training robots with multi-finger hands. Despite this potential, substantial challenges arise due to the embodiment gap between human and robot hands. In this work, we introduce a hierarchical policy learning framework that uses human hand motion data for training object-centric dexterous robot manipulation. At the core of our method is a high-level trajectory generative model, learned with a large-scale human hand motion capture dataset, to synthesize human-like wrist motions conditioned on the desired object goal states. Guided by the generated wrist motions, deep reinforcement learning is further used to train a low-level finger controller that is grounded in the robot's embodiment to physically interact with the object to achieve the goal. Through extensive evaluation across 10 household objects, our approach not only demonstrates superior performance but also showcases generalization capability to novel object geometries and goal states. Furthermore, we transfer the learned policies from simulation to a real-world bimanual dexterous robot system, further demonstrating its applicability in real-world scenarios. Project website: https://cypypccpy.github.io/obj-dex.github.io/.
Technical Report on: Tripedal Dynamic Gaits for a Quadruped Robot
A vast number of applications for legged robots entail tasks in complex, dynamic environments. But these environments put legged robots at high risk for limb damage. This paper presents an empirical study of fault tolerant dynamic gaits designed for a quadrupedal robot suffering from a single, known "missing" limb. Preliminary data suggests that the featured gait controller successfully anchors a previously developed planar monopedal hopping template in the three-legged spatial machine. This compositional approach offers a useful and generalizable guide to the development of a wider range of tripedal recovery gaits for damaged quadrupedal machines.
SayTap: Language to Quadrupedal Locomotion
Large language models (LLMs) have demonstrated the potential to perform high-level planning. Yet, it remains a challenge for LLMs to comprehend low-level commands, such as joint angle targets or motor torques. This paper proposes an approach to use foot contact patterns as an interface that bridges human commands in natural language and a locomotion controller that outputs these low-level commands. This results in an interactive system for quadrupedal robots that allows the users to craft diverse locomotion behaviors flexibly. We contribute an LLM prompt design, a reward function, and a method to expose the controller to the feasible distribution of contact patterns. The results are a controller capable of achieving diverse locomotion patterns that can be transferred to real robot hardware. Compared with other design choices, the proposed approach enjoys more than 50% success rate in predicting the correct contact patterns and can solve 10 more tasks out of a total of 30 tasks. Our project site is: https://saytap.github.io.
Large Language Models for Robotics: A Survey
The human ability to learn, generalize, and control complex manipulation tasks through multi-modality feedback suggests a unique capability, which we refer to as dexterity intelligence. Understanding and assessing this intelligence is a complex task. Amidst the swift progress and extensive proliferation of large language models (LLMs), their applications in the field of robotics have garnered increasing attention. LLMs possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots. Researchers and engineers in the field of robotics have recognized the immense potential of LLMs in enhancing robot intelligence, human-robot interaction, and autonomy. Therefore, this comprehensive review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning. We first provide an overview of the background and development of LLMs for robotics, followed by a description of the benefits of LLMs for robotics and recent advancements in robotics models based on LLMs. We then delve into the various techniques used in the model, including those employed in perception, decision-making, control, and interaction. Finally, we explore the applications of LLMs in robotics and some potential challenges they may face in the near future. Embodied intelligence is the future of intelligent science, and LLMs-based robotics is one of the promising but challenging paths to achieve this.
Representation Bending for Large Language Model Safety
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks - ranging from harmful content generation to broader societal harms - pose significant challenges. These risks can be amplified by the recent adversarial attacks, fine-tuning vulnerabilities, and the increasing deployment of LLMs in high-stakes environments. Existing safety-enhancing techniques, such as fine-tuning with human feedback or adversarial training, are still vulnerable as they address specific threats and often fail to generalize across unseen attacks, or require manual system-level defenses. This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs, offering a scalable solution to enhance (potentially inherent) safety. RepBend brings the idea of activation steering - simple vector arithmetic for steering model's behavior during inference - to loss-based fine-tuning. Through extensive evaluation, RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates across diverse jailbreak benchmarks, all with negligible reduction in model usability and general capabilities.
MoDem-V2: Visuo-Motor World Models for Real-World Robot Manipulation
Robotic systems that aspire to operate in uninstrumented real-world environments must perceive the world directly via onboard sensing. Vision-based learning systems aim to eliminate the need for environment instrumentation by building an implicit understanding of the world based on raw pixels, but navigating the contact-rich high-dimensional search space from solely sparse visual reward signals significantly exacerbates the challenge of exploration. The applicability of such systems is thus typically restricted to simulated or heavily engineered environments since agent exploration in the real-world without the guidance of explicit state estimation and dense rewards can lead to unsafe behavior and safety faults that are catastrophic. In this study, we isolate the root causes behind these limitations to develop a system, called MoDem-V2, capable of learning contact-rich manipulation directly in the uninstrumented real world. Building on the latest algorithmic advancements in model-based reinforcement learning (MBRL), demo-bootstrapping, and effective exploration, MoDem-V2 can acquire contact-rich dexterous manipulation skills directly in the real world. We identify key ingredients for leveraging demonstrations in model learning while respecting real-world safety considerations -- exploration centering, agency handover, and actor-critic ensembles. We empirically demonstrate the contribution of these ingredients in four complex visuo-motor manipulation problems in both simulation and the real world. To the best of our knowledge, our work presents the first successful system for demonstration-augmented visual MBRL trained directly in the real world. Visit https://sites.google.com/view/modem-v2 for videos and more details.
Mind the Gap: Improving Success Rate of Vision-and-Language Navigation by Revisiting Oracle Success Routes
Vision-and-Language Navigation (VLN) aims to navigate to the target location by following a given instruction. Unlike existing methods focused on predicting a more accurate action at each step in navigation, in this paper, we make the first attempt to tackle a long-ignored problem in VLN: narrowing the gap between Success Rate (SR) and Oracle Success Rate (OSR). We observe a consistently large gap (up to 9%) on four state-of-the-art VLN methods across two benchmark datasets: R2R and REVERIE. The high OSR indicates the robot agent passes the target location, while the low SR suggests the agent actually fails to stop at the target location at last. Instead of predicting actions directly, we propose to mine the target location from a trajectory given by off-the-shelf VLN models. Specially, we design a multi-module transformer-based model for learning compact discriminative trajectory viewpoint representation, which is used to predict the confidence of being a target location as described in the instruction. The proposed method is evaluated on three widely-adopted datasets: R2R, REVERIE and NDH, and shows promising results, demonstrating the potential for more future research.
Yell At Your Robot: Improving On-the-Fly from Language Corrections
Hierarchical policies that combine language and low-level control have been shown to perform impressively long-horizon robotic tasks, by leveraging either zero-shot high-level planners like pretrained language and vision-language models (LLMs/VLMs) or models trained on annotated robotic demonstrations. However, for complex and dexterous skills, attaining high success rates on long-horizon tasks still represents a major challenge -- the longer the task is, the more likely it is that some stage will fail. Can humans help the robot to continuously improve its long-horizon task performance through intuitive and natural feedback? In this paper, we make the following observation: high-level policies that index into sufficiently rich and expressive low-level language-conditioned skills can be readily supervised with human feedback in the form of language corrections. We show that even fine-grained corrections, such as small movements ("move a bit to the left"), can be effectively incorporated into high-level policies, and that such corrections can be readily obtained from humans observing the robot and making occasional suggestions. This framework enables robots not only to rapidly adapt to real-time language feedback, but also incorporate this feedback into an iterative training scheme that improves the high-level policy's ability to correct errors in both low-level execution and high-level decision-making purely from verbal feedback. Our evaluation on real hardware shows that this leads to significant performance improvement in long-horizon, dexterous manipulation tasks without the need for any additional teleoperation. Videos and code are available at https://yay-robot.github.io/.
Control Transformer: Robot Navigation in Unknown Environments through PRM-Guided Return-Conditioned Sequence Modeling
Learning long-horizon tasks such as navigation has presented difficult challenges for successfully applying reinforcement learning to robotics. From another perspective, under known environments, sampling-based planning can robustly find collision-free paths in environments without learning. In this work, we propose Control Transformer that models return-conditioned sequences from low-level policies guided by a sampling-based Probabilistic Roadmap (PRM) planner. We demonstrate that our framework can solve long-horizon navigation tasks using only local information. We evaluate our approach on partially-observed maze navigation with MuJoCo robots, including Ant, Point, and Humanoid. We show that Control Transformer can successfully navigate through mazes and transfer to unknown environments. Additionally, we apply our method to a differential drive robot (Turtlebot3) and show zero-shot sim2real transfer under noisy observations.
Evaluating Cognitive Maps and Planning in Large Language Models with CogEval
Recently an influx of studies claim emergent cognitive abilities in large language models (LLMs). Yet, most rely on anecdotes, overlook contamination of training sets, or lack systematic Evaluation involving multiple tasks, control conditions, multiple iterations, and statistical robustness tests. Here we make two major contributions. First, we propose CogEval, a cognitive science-inspired protocol for the systematic evaluation of cognitive capacities in Large Language Models. The CogEval protocol can be followed for the evaluation of various abilities. Second, here we follow CogEval to systematically evaluate cognitive maps and planning ability across eight LLMs (OpenAI GPT-4, GPT-3.5-turbo-175B, davinci-003-175B, Google Bard, Cohere-xlarge-52.4B, Anthropic Claude-1-52B, LLaMA-13B, and Alpaca-7B). We base our task prompts on human experiments, which offer both established construct validity for evaluating planning, and are absent from LLM training sets. We find that, while LLMs show apparent competence in a few planning tasks with simpler structures, systematic evaluation reveals striking failure modes in planning tasks, including hallucinations of invalid trajectories and getting trapped in loops. These findings do not support the idea of emergent out-of-the-box planning ability in LLMs. This could be because LLMs do not understand the latent relational structures underlying planning problems, known as cognitive maps, and fail at unrolling goal-directed trajectories based on the underlying structure. Implications for application and future directions are discussed.
LIBERO-Plus: In-depth Robustness Analysis of Vision-Language-Action Models
Visual-Language-Action (VLA) models report impressive success rates on robotic manipulation benchmarks, yet these results may mask fundamental weaknesses in robustness. We perform a systematic vulnerability analysis by introducing controlled perturbations across seven dimensions: objects layout, camera viewpoints, robot initial states, language instructions, light conditions, background textures and sensor noise. We comprehensively analyzed multiple state-of-the-art models and revealed consistent brittleness beneath apparent competence. Our analysis exposes critical weaknesses: models exhibit extreme sensitivity to perturbation factors, including camera viewpoints and robot initial states, with performance dropping from 95% to below 30% under modest perturbations. Surprisingly, models are largely insensitive to language variations, with further experiments revealing that models tend to ignore language instructions completely. Our findings challenge the assumption that high benchmark scores equate to true competency and highlight the need for evaluation practices that assess reliability under realistic variation.
SkillMimic-V2: Learning Robust and Generalizable Interaction Skills from Sparse and Noisy Demonstrations
We address a fundamental challenge in Reinforcement Learning from Interaction Demonstration (RLID): demonstration noise and coverage limitations. While existing data collection approaches provide valuable interaction demonstrations, they often yield sparse, disconnected, and noisy trajectories that fail to capture the full spectrum of possible skill variations and transitions. Our key insight is that despite noisy and sparse demonstrations, there exist infinite physically feasible trajectories that naturally bridge between demonstrated skills or emerge from their neighboring states, forming a continuous space of possible skill variations and transitions. Building upon this insight, we present two data augmentation techniques: a Stitched Trajectory Graph (STG) that discovers potential transitions between demonstration skills, and a State Transition Field (STF) that establishes unique connections for arbitrary states within the demonstration neighborhood. To enable effective RLID with augmented data, we develop an Adaptive Trajectory Sampling (ATS) strategy for dynamic curriculum generation and a historical encoding mechanism for memory-dependent skill learning. Our approach enables robust skill acquisition that significantly generalizes beyond the reference demonstrations. Extensive experiments across diverse interaction tasks demonstrate substantial improvements over state-of-the-art methods in terms of convergence stability, generalization capability, and recovery robustness.
Learning agile and dynamic motor skills for legged robots
Legged robots pose one of the greatest challenges in robotics. Dynamic and agile maneuvers of animals cannot be imitated by existing methods that are crafted by humans. A compelling alternative is reinforcement learning, which requires minimal craftsmanship and promotes the natural evolution of a control policy. However, so far, reinforcement learning research for legged robots is mainly limited to simulation, and only few and comparably simple examples have been deployed on real systems. The primary reason is that training with real robots, particularly with dynamically balancing systems, is complicated and expensive. In the present work, we introduce a method for training a neural network policy in simulation and transferring it to a state-of-the-art legged system, thereby leveraging fast, automated, and cost-effective data generation schemes. The approach is applied to the ANYmal robot, a sophisticated medium-dog-sized quadrupedal system. Using policies trained in simulation, the quadrupedal machine achieves locomotion skills that go beyond what had been achieved with prior methods: ANYmal is capable of precisely and energy-efficiently following high-level body velocity commands, running faster than before, and recovering from falling even in complex configurations.
ManiSkill2: A Unified Benchmark for Generalizable Manipulation Skills
Generalizable manipulation skills, which can be composed to tackle long-horizon and complex daily chores, are one of the cornerstones of Embodied AI. However, existing benchmarks, mostly composed of a suite of simulatable environments, are insufficient to push cutting-edge research works because they lack object-level topological and geometric variations, are not based on fully dynamic simulation, or are short of native support for multiple types of manipulation tasks. To this end, we present ManiSkill2, the next generation of the SAPIEN ManiSkill benchmark, to address critical pain points often encountered by researchers when using benchmarks for generalizable manipulation skills. ManiSkill2 includes 20 manipulation task families with 2000+ object models and 4M+ demonstration frames, which cover stationary/mobile-base, single/dual-arm, and rigid/soft-body manipulation tasks with 2D/3D-input data simulated by fully dynamic engines. It defines a unified interface and evaluation protocol to support a wide range of algorithms (e.g., classic sense-plan-act, RL, IL), visual observations (point cloud, RGBD), and controllers (e.g., action type and parameterization). Moreover, it empowers fast visual input learning algorithms so that a CNN-based policy can collect samples at about 2000 FPS with 1 GPU and 16 processes on a regular workstation. It implements a render server infrastructure to allow sharing rendering resources across all environments, thereby significantly reducing memory usage. We open-source all codes of our benchmark (simulator, environments, and baselines) and host an online challenge open to interdisciplinary researchers.
HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit
Generalizable humanoid loco-manipulation poses significant challenges, requiring coordinated whole-body control and precise, contact-rich object manipulation. To address this, this paper introduces HOMIE, a semi-autonomous teleoperation system that combines a reinforcement learning policy for body control mapped to a pedal, an isomorphic exoskeleton arm for arm control, and motion-sensing gloves for hand control, forming a unified cockpit to freely operate humanoids and establish a data flywheel. The policy incorporates novel designs, including an upper-body pose curriculum, a height-tracking reward, and symmetry utilization. These features enable the system to perform walking and squatting to specific heights while seamlessly adapting to arbitrary upper-body poses. The exoskeleton, by eliminating the reliance on inverse dynamics, delivers faster and more precise arm control. The gloves utilize Hall sensors instead of servos, allowing even compact devices to achieve 15 or more degrees of freedom and freely adapt to any model of dexterous hands. Compared to previous teleoperation systems, HOMIE stands out for its exceptional efficiency, completing tasks in half the time; its expanded working range, allowing users to freely reach high and low areas as well as interact with any objects; and its affordability, with a price of just $500. The system is fully open-source, demos and code can be found in our https://homietele.github.io/.
Continual Vision-and-Language Navigation
In developing Vision-and-Language Navigation (VLN) agents that navigate to a destination using natural language instructions and visual cues, current studies largely assume a train-once-deploy-once strategy. We argue that this kind of strategy is less realistic, as deployed VLN agents are expected to encounter novel environments continuously through their lifetime. To facilitate more realistic setting for VLN agents, we propose Continual Vision-and-Language Navigation (CVLN) paradigm for agents to continually learn and adapt to changing environments. In CVLN, the agents are trained and evaluated incrementally across multiple scene domains (i.e., environments). We present two CVLN learning setups to consider diverse forms of natural language instructions: Initial-instruction based CVLN, focused on navigation via initial-instruction interpretation, and dialogue-based CVLN, designed for navigation through dialogue with other agents. We introduce two simple yet effective baseline methods, tailored to the sequential decision-making needs of CVLN: Perplexity Replay (PerpR) and Episodic Self-Replay (ESR), both employing a rehearsal mechanism. PerpR selects replay episodes based on episode difficulty, while ESR stores and revisits action logits from individual episode steps during training to refine learning. Experimental results indicate that while existing continual learning methods are insufficient for CVLN, PerpR and ESR outperform the comparison methods by effectively utilizing replay memory.
ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models
Recent progress in large language models and access to large-scale robotic datasets has sparked a paradigm shift in robotics models transforming them into generalists able to adapt to various tasks, scenes, and robot modalities. A large step for the community are open Vision Language Action models which showcase strong performance in a wide variety of tasks. In this work, we study the visual generalization capabilities of three existing robotic foundation models, and propose a corresponding evaluation framework. Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios. This is potentially caused by limited variations in the training data and/or catastrophic forgetting, leading to domain limitations in the vision foundation models. We further explore OpenVLA, which uses two pre-trained vision foundation models and is, therefore, expected to generalize to out-of-domain experiments. However, we showcase catastrophic forgetting by DINO-v2 in OpenVLA through its failure to fulfill the task of depth regression. To overcome the aforementioned issue of visual catastrophic forgetting, we propose a gradual backbone reversal approach founded on model merging. This enables OpenVLA which requires the adaptation of the visual backbones during initial training -- to regain its visual generalization ability. Regaining this capability enables our ReVLA model to improve over OpenVLA by a factor of 77% and 66% for grasping and lifting in visual OOD tasks .
LEGATO: Cross-Embodiment Imitation Using a Grasping Tool
Cross-embodiment imitation learning enables policies trained on specific embodiments to transfer across different robots, unlocking the potential for large-scale imitation learning that is both cost-effective and highly reusable. This paper presents LEGATO, a cross-embodiment imitation learning framework for visuomotor skill transfer across varied kinematic morphologies. We introduce a handheld gripper that unifies action and observation spaces, allowing tasks to be defined consistently across robots. We train visuomotor policies on task demonstrations using this gripper through imitation learning, applying transformation to a motion-invariant space for computing the training loss. Gripper motions generated by the policies are retargeted into high-degree-of-freedom whole-body motions using inverse kinematics for deployment across diverse embodiments. Our evaluations in simulation and real-robot experiments highlight the framework's effectiveness in learning and transferring visuomotor skills across various robots. More information can be found on the project page: https://ut-hcrl.github.io/LEGATO.
SAM2Act: Integrating Visual Foundation Model with A Memory Architecture for Robotic Manipulation
Robotic manipulation systems operating in diverse, dynamic environments must exhibit three critical abilities: multitask interaction, generalization to unseen scenarios, and spatial memory. While significant progress has been made in robotic manipulation, existing approaches often fall short in generalization to complex environmental variations and addressing memory-dependent tasks. To bridge this gap, we introduce SAM2Act, a multi-view robotic transformer-based policy that leverages multi-resolution upsampling with visual representations from large-scale foundation model. SAM2Act achieves a state-of-the-art average success rate of 86.8% across 18 tasks in the RLBench benchmark, and demonstrates robust generalization on The Colosseum benchmark, with only a 4.3% performance gap under diverse environmental perturbations. Building on this foundation, we propose SAM2Act+, a memory-based architecture inspired by SAM2, which incorporates a memory bank, an encoder, and an attention mechanism to enhance spatial memory. To address the need for evaluating memory-dependent tasks, we introduce MemoryBench, a novel benchmark designed to assess spatial memory and action recall in robotic manipulation. SAM2Act+ achieves competitive performance on MemoryBench, significantly outperforming existing approaches and pushing the boundaries of memory-enabled robotic systems. Project page: https://sam2act.github.io/
Emma-X: An Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning
Traditional reinforcement learning-based robotic control methods are often task-specific and fail to generalize across diverse environments or unseen objects and instructions. Visual Language Models (VLMs) demonstrate strong scene understanding and planning capabilities but lack the ability to generate actionable policies tailored to specific robotic embodiments. To address this, Visual-Language-Action (VLA) models have emerged, yet they face challenges in long-horizon spatial reasoning and grounded task planning. In this work, we propose the Embodied Multimodal Action Model with Grounded Chain of Thought and Look-ahead Spatial Reasoning, Emma-X. Emma-X leverages our constructed hierarchical embodiment dataset based on BridgeV2, containing 60,000 robot manipulation trajectories auto-annotated with grounded task reasoning and spatial guidance. Additionally, we introduce a trajectory segmentation strategy based on gripper states and motion trajectories, which can help mitigate hallucination in grounding subtask reasoning generation. Experimental results demonstrate that Emma-X achieves superior performance over competitive baselines, particularly in real-world robotic tasks requiring spatial reasoning.
RAP: Retrieval-Augmented Planning with Contextual Memory for Multimodal LLM Agents
Owing to recent advancements, Large Language Models (LLMs) can now be deployed as agents for increasingly complex decision-making applications in areas including robotics, gaming, and API integration. However, reflecting past experiences in current decision-making processes, an innate human behavior, continues to pose significant challenges. Addressing this, we propose Retrieval-Augmented Planning (RAP) framework, designed to dynamically leverage past experiences corresponding to the current situation and context, thereby enhancing agents' planning capabilities. RAP distinguishes itself by being versatile: it excels in both text-only and multimodal environments, making it suitable for a wide range of tasks. Empirical evaluations demonstrate RAP's effectiveness, where it achieves SOTA performance in textual scenarios and notably enhances multimodal LLM agents' performance for embodied tasks. These results highlight RAP's potential in advancing the functionality and applicability of LLM agents in complex, real-world applications.
Interactive Language: Talking to Robots in Real Time
We present a framework for building interactive, real-time, natural language-instructable robots in the real world, and we open source related assets (dataset, environment, benchmark, and policies). Trained with behavioral cloning on a dataset of hundreds of thousands of language-annotated trajectories, a produced policy can proficiently execute an order of magnitude more commands than previous works: specifically we estimate a 93.5% success rate on a set of 87,000 unique natural language strings specifying raw end-to-end visuo-linguo-motor skills in the real world. We find that the same policy is capable of being guided by a human via real-time language to address a wide range of precise long-horizon rearrangement goals, e.g. "make a smiley face out of blocks". The dataset we release comprises nearly 600,000 language-labeled trajectories, an order of magnitude larger than prior available datasets. We hope the demonstrated results and associated assets enable further advancement of helpful, capable, natural-language-interactable robots. See videos at https://interactive-language.github.io.
Can LLM-Reasoning Models Replace Classical Planning? A Benchmark Study
Recent advancements in Large Language Models have sparked interest in their potential for robotic task planning. While these models demonstrate strong generative capabilities, their effectiveness in producing structured and executable plans remains uncertain. This paper presents a systematic evaluation of a broad spectrum of current state of the art language models, each directly prompted using Planning Domain Definition Language domain and problem files, and compares their planning performance with the Fast Downward planner across a variety of benchmarks. In addition to measuring success rates, we assess how faithfully the generated plans translate into sequences of actions that can actually be executed, identifying both strengths and limitations of using these models in this setting. Our findings show that while the models perform well on simpler planning tasks, they continue to struggle with more complex scenarios that require precise resource management, consistent state tracking, and strict constraint compliance. These results underscore fundamental challenges in applying language models to robotic planning in real world environments. By outlining the gaps that emerge during execution, we aim to guide future research toward combined approaches that integrate language models with classical planners in order to enhance the reliability and scalability of planning in autonomous robotics.
Learn from the Past: Language-conditioned Object Rearrangement with Large Language Models
Object rearrangement is a significant task for collaborative robots, where they are directed to manipulate objects into a specified goal state. Determining the placement of objects is a major challenge that influences the efficiency of the rearrangement process. Most current methods heavily rely on pre-collected datasets to train the model for predicting the goal position and are restricted to specific instructions, which limits their broader applicability and effectiveness.In this paper, we propose a framework of language-conditioned object rearrangement based on the Large Language Model (LLM). Particularly, our approach mimics human reasoning by using past successful experiences as a reference to infer the desired goal position. Based on LLM's strong natural language comprehension and inference ability, our method can generalise to handle various everyday objects and free-form language instructions in a zero-shot manner. Experimental results demonstrate that our methods can effectively execute the robotic rearrangement tasks, even those involving long sequential orders.
Whole-body Motion Control of an Omnidirectional Wheel-Legged Mobile Manipulator via Contact-Aware Dynamic Optimization
Wheel-legged robots with integrated manipulators hold great promise for mobile manipulation in logistics, industrial automation, and human-robot collaboration. However, unified control of such systems remains challenging due to the redundancy in degrees of freedom, complex wheel-ground contact dynamics, and the need for seamless coordination between locomotion and manipulation. In this work, we present the design and whole-body motion control of an omnidirectional wheel-legged quadrupedal robot equipped with a dexterous manipulator. The proposed platform incorporates independently actuated steering modules and hub-driven wheels, enabling agile omnidirectional locomotion with high maneuverability in structured environments. To address the challenges of contact-rich interaction, we develop a contact-aware whole-body dynamic optimization framework that integrates point-contact modeling for manipulation with line-contact modeling for wheel-ground interactions. A warm-start strategy is introduced to accelerate online optimization, ensuring real-time feasibility for high-dimensional control. Furthermore, a unified kinematic model tailored for the robot's 4WIS-4WID actuation scheme eliminates the need for mode switching across different locomotion strategies, improving control consistency and robustness. Simulation and experimental results validate the effectiveness of the proposed framework, demonstrating agile terrain traversal, high-speed omnidirectional mobility, and precise manipulation under diverse scenarios, underscoring the system's potential for factory automation, urban logistics, and service robotics in semi-structured environments.
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents
While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by 4times and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.
Hierarchical Imitation Learning with Vector Quantized Models
The ability to plan actions on multiple levels of abstraction enables intelligent agents to solve complex tasks effectively. However, learning the models for both low and high-level planning from demonstrations has proven challenging, especially with higher-dimensional inputs. To address this issue, we propose to use reinforcement learning to identify subgoals in expert trajectories by associating the magnitude of the rewards with the predictability of low-level actions given the state and the chosen subgoal. We build a vector-quantized generative model for the identified subgoals to perform subgoal-level planning. In experiments, the algorithm excels at solving complex, long-horizon decision-making problems outperforming state-of-the-art. Because of its ability to plan, our algorithm can find better trajectories than the ones in the training set
UP-VLA: A Unified Understanding and Prediction Model for Embodied Agent
Recent advancements in Vision-Language-Action (VLA) models have leveraged pre-trained Vision-Language Models (VLMs) to improve the generalization capabilities. VLMs, typically pre-trained on vision-language understanding tasks, provide rich semantic knowledge and reasoning abilities. However, prior research has shown that VLMs often focus on high-level semantic content and neglect low-level features, limiting their ability to capture detailed spatial information and understand physical dynamics. These aspects, which are crucial for embodied control tasks, remain underexplored in existing pre-training paradigms. In this paper, we investigate the training paradigm for VLAs, and introduce UP-VLA, a Unified VLA model training with both multi-modal Understanding and future Prediction objectives, enhancing both high-level semantic comprehension and low-level spatial understanding. Experimental results show that UP-VLA achieves a 33% improvement on the Calvin ABC-D benchmark compared to the previous state-of-the-art method. Additionally, UP-VLA demonstrates improved success rates in real-world manipulation tasks, particularly those requiring precise spatial information.
RHINO: Learning Real-Time Humanoid-Human-Object Interaction from Human Demonstrations
Humanoid robots have shown success in locomotion and manipulation. Despite these basic abilities, humanoids are still required to quickly understand human instructions and react based on human interaction signals to become valuable assistants in human daily life. Unfortunately, most existing works only focus on multi-stage interactions, treating each task separately, and neglecting real-time feedback. In this work, we aim to empower humanoid robots with real-time reaction abilities to achieve various tasks, allowing human to interrupt robots at any time, and making robots respond to humans immediately. To support such abilities, we propose a general humanoid-human-object interaction framework, named RHINO, i.e., Real-time Humanoid-human Interaction and Object manipulation. RHINO provides a unified view of reactive motion, instruction-based manipulation, and safety concerns, over multiple human signal modalities, such as languages, images, and motions. RHINO is a hierarchical learning framework, enabling humanoids to learn reaction skills from human-human-object demonstrations and teleoperation data. In particular, it decouples the interaction process into two levels: 1) a high-level planner inferring human intentions from real-time human behaviors; and 2) a low-level controller achieving reactive motion behaviors and object manipulation skills based on the predicted intentions. We evaluate the proposed framework on a real humanoid robot and demonstrate its effectiveness, flexibility, and safety in various scenarios.
Visual Reinforcement Learning with Imagined Goals
For an autonomous agent to fulfill a wide range of user-specified goals at test time, it must be able to learn broadly applicable and general-purpose skill repertoires. Furthermore, to provide the requisite level of generality, these skills must handle raw sensory input such as images. In this paper, we propose an algorithm that acquires such general-purpose skills by combining unsupervised representation learning and reinforcement learning of goal-conditioned policies. Since the particular goals that might be required at test-time are not known in advance, the agent performs a self-supervised "practice" phase where it imagines goals and attempts to achieve them. We learn a visual representation with three distinct purposes: sampling goals for self-supervised practice, providing a structured transformation of raw sensory inputs, and computing a reward signal for goal reaching. We also propose a retroactive goal relabeling scheme to further improve the sample-efficiency of our method. Our off-policy algorithm is efficient enough to learn policies that operate on raw image observations and goals for a real-world robotic system, and substantially outperforms prior techniques.
Redefining Robot Generalization Through Interactive Intelligence
Recent advances in large-scale machine learning have produced high-capacity foundation models capable of adapting to a broad array of downstream tasks. While such models hold great promise for robotics, the prevailing paradigm still portrays robots as single, autonomous decision-makers, performing tasks like manipulation and navigation, with limited human involvement. However, a large class of real-world robotic systems, including wearable robotics (e.g., prostheses, orthoses, exoskeletons), teleoperation, and neural interfaces, are semiautonomous, and require ongoing interactive coordination with human partners, challenging single-agent assumptions. In this position paper, we argue that robot foundation models must evolve to an interactive multi-agent perspective in order to handle the complexities of real-time human-robot co-adaptation. We propose a generalizable, neuroscience-inspired architecture encompassing four modules: (1) a multimodal sensing module informed by sensorimotor integration principles, (2) an ad-hoc teamwork model reminiscent of joint-action frameworks in cognitive science, (3) a predictive world belief model grounded in internal model theories of motor control, and (4) a memory/feedback mechanism that echoes concepts of Hebbian and reinforcement-based plasticity. Although illustrated through the lens of cyborg systems, where wearable devices and human physiology are inseparably intertwined, the proposed framework is broadly applicable to robots operating in semi-autonomous or interactive contexts. By moving beyond single-agent designs, our position emphasizes how foundation models in robotics can achieve a more robust, personalized, and anticipatory level of performance.
Perceive, Reflect, and Plan: Designing LLM Agent for Goal-Directed City Navigation without Instructions
This paper considers a scenario in city navigation: an AI agent is provided with language descriptions of the goal location with respect to some well-known landmarks; By only observing the scene around, including recognizing landmarks and road network connections, the agent has to make decisions to navigate to the goal location without instructions. This problem is very challenging, because it requires agent to establish self-position and acquire spatial representation of complex urban environment, where landmarks are often invisible. In the absence of navigation instructions, such abilities are vital for the agent to make high-quality decisions in long-range city navigation. With the emergent reasoning ability of large language models (LLMs), a tempting baseline is to prompt LLMs to "react" on each observation and make decisions accordingly. However, this baseline has very poor performance that the agent often repeatedly visits same locations and make short-sighted, inconsistent decisions. To address these issues, this paper introduces a novel agentic workflow featured by its abilities to perceive, reflect and plan. Specifically, we find LLaVA-7B can be fine-tuned to perceive the direction and distance of landmarks with sufficient accuracy for city navigation. Moreover, reflection is achieved through a memory mechanism, where past experiences are stored and can be retrieved with current perception for effective decision argumentation. Planning uses reflection results to produce long-term plans, which can avoid short-sighted decisions in long-range navigation. We show the designed workflow significantly improves navigation ability of the LLM agent compared with the state-of-the-art baselines.
Goal-conditioned Imitation Learning
Designing rewards for Reinforcement Learning (RL) is challenging because it needs to convey the desired task, be efficient to optimize, and be easy to compute. The latter is particularly problematic when applying RL to robotics, where detecting whether the desired configuration is reached might require considerable supervision and instrumentation. Furthermore, we are often interested in being able to reach a wide range of configurations, hence setting up a different reward every time might be unpractical. Methods like Hindsight Experience Replay (HER) have recently shown promise to learn policies able to reach many goals, without the need of a reward. Unfortunately, without tricks like resetting to points along the trajectory, HER might require many samples to discover how to reach certain areas of the state-space. In this work we investigate different approaches to incorporate demonstrations to drastically speed up the convergence to a policy able to reach any goal, also surpassing the performance of an agent trained with other Imitation Learning algorithms. Furthermore, we show our method can also be used when the available expert trajectories do not contain the actions, which can leverage kinesthetic or third person demonstration. The code is available at https://sites.google.com/view/goalconditioned-il/.
Language Models as Zero-Shot Trajectory Generators
Large Language Models (LLMs) have recently shown promise as high-level planners for robots when given access to a selection of low-level skills. However, it is often assumed that LLMs do not possess sufficient knowledge to be used for the low-level trajectories themselves. In this work, we address this assumption thoroughly, and investigate if an LLM (GPT-4) can directly predict a dense sequence of end-effector poses for manipulation skills, when given access to only object detection and segmentation vision models. We study how well a single task-agnostic prompt, without any in-context examples, motion primitives, or external trajectory optimisers, can perform across 26 real-world language-based tasks, such as "open the bottle cap" and "wipe the plate with the sponge", and we investigate which design choices in this prompt are the most effective. Our conclusions raise the assumed limit of LLMs for robotics, and we reveal for the first time that LLMs do indeed possess an understanding of low-level robot control sufficient for a range of common tasks, and that they can additionally detect failures and then re-plan trajectories accordingly. Videos, code, and prompts are available at: https://www.robot-learning.uk/language-models-trajectory-generators.
Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs
Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.
Decoupling Skill Learning from Robotic Control for Generalizable Object Manipulation
Recent works in robotic manipulation through reinforcement learning (RL) or imitation learning (IL) have shown potential for tackling a range of tasks e.g., opening a drawer or a cupboard. However, these techniques generalize poorly to unseen objects. We conjecture that this is due to the high-dimensional action space for joint control. In this paper, we take an alternative approach and separate the task of learning 'what to do' from 'how to do it' i.e., whole-body control. We pose the RL problem as one of determining the skill dynamics for a disembodied virtual manipulator interacting with articulated objects. The whole-body robotic kinematic control is optimized to execute the high-dimensional joint motion to reach the goals in the workspace. It does so by solving a quadratic programming (QP) model with robotic singularity and kinematic constraints. Our experiments on manipulating complex articulated objects show that the proposed approach is more generalizable to unseen objects with large intra-class variations, outperforming previous approaches. The evaluation results indicate that our approach generates more compliant robotic motion and outperforms the pure RL and IL baselines in task success rates. Additional information and videos are available at https://kl-research.github.io/decoupskill
HAZARD Challenge: Embodied Decision Making in Dynamically Changing Environments
Recent advances in high-fidelity virtual environments serve as one of the major driving forces for building intelligent embodied agents to perceive, reason and interact with the physical world. Typically, these environments remain unchanged unless agents interact with them. However, in real-world scenarios, agents might also face dynamically changing environments characterized by unexpected events and need to rapidly take action accordingly. To remedy this gap, we propose a new simulated embodied benchmark, called HAZARD, specifically designed to assess the decision-making abilities of embodied agents in dynamic situations. HAZARD consists of three unexpected disaster scenarios, including fire, flood, and wind, and specifically supports the utilization of large language models (LLMs) to assist common sense reasoning and decision-making. This benchmark enables us to evaluate autonomous agents' decision-making capabilities across various pipelines, including reinforcement learning (RL), rule-based, and search-based methods in dynamically changing environments. As a first step toward addressing this challenge using large language models, we further develop an LLM-based agent and perform an in-depth analysis of its promise and challenge of solving these challenging tasks. HAZARD is available at https://vis-www.cs.umass.edu/hazard/.
UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping
We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: https://dexhand.github.io/UniGraspTransformer.
Grasping Diverse Objects with Simulated Humanoids
We present a method for controlling a simulated humanoid to grasp an object and move it to follow an object trajectory. Due to the challenges in controlling a humanoid with dexterous hands, prior methods often use a disembodied hand and only consider vertical lifts or short trajectories. This limited scope hampers their applicability for object manipulation required for animation and simulation. To close this gap, we learn a controller that can pick up a large number (>1200) of objects and carry them to follow randomly generated trajectories. Our key insight is to leverage a humanoid motion representation that provides human-like motor skills and significantly speeds up training. Using only simplistic reward, state, and object representations, our method shows favorable scalability on diverse object and trajectories. For training, we do not need dataset of paired full-body motion and object trajectories. At test time, we only require the object mesh and desired trajectories for grasping and transporting. To demonstrate the capabilities of our method, we show state-of-the-art success rates in following object trajectories and generalizing to unseen objects. Code and models will be released.
Robustness via Retrying: Closed-Loop Robotic Manipulation with Self-Supervised Learning
Prediction is an appealing objective for self-supervised learning of behavioral skills, particularly for autonomous robots. However, effectively utilizing predictive models for control, especially with raw image inputs, poses a number of major challenges. How should the predictions be used? What happens when they are inaccurate? In this paper, we tackle these questions by proposing a method for learning robotic skills from raw image observations, using only autonomously collected experience. We show that even an imperfect model can complete complex tasks if it can continuously retry, but this requires the model to not lose track of the objective (e.g., the object of interest). To enable a robot to continuously retry a task, we devise a self-supervised algorithm for learning image registration, which can keep track of objects of interest for the duration of the trial. We demonstrate that this idea can be combined with a video-prediction based controller to enable complex behaviors to be learned from scratch using only raw visual inputs, including grasping, repositioning objects, and non-prehensile manipulation. Our real-world experiments demonstrate that a model trained with 160 robot hours of autonomously collected, unlabeled data is able to successfully perform complex manipulation tasks with a wide range of objects not seen during training.
Multi-Advisor Reinforcement Learning
We consider tackling a single-agent RL problem by distributing it to n learners. These learners, called advisors, endeavour to solve the problem from a different focus. Their advice, taking the form of action values, is then communicated to an aggregator, which is in control of the system. We show that the local planning method for the advisors is critical and that none of the ones found in the literature is flawless: the egocentric planning overestimates values of states where the other advisors disagree, and the agnostic planning is inefficient around danger zones. We introduce a novel approach called empathic and discuss its theoretical aspects. We empirically examine and validate our theoretical findings on a fruit collection task.
VIRT: Vision Instructed Transformer for Robotic Manipulation
Robotic manipulation, owing to its multi-modal nature, often faces significant training ambiguity, necessitating explicit instructions to clearly delineate the manipulation details in tasks. In this work, we highlight that vision instruction is naturally more comprehensible to recent robotic policies than the commonly adopted text instruction, as these policies are born with some vision understanding ability like human infants. Building on this premise and drawing inspiration from cognitive science, we introduce the robotic imagery paradigm, which realizes large-scale robotic data pre-training without text annotations. Additionally, we propose the robotic gaze strategy that emulates the human eye gaze mechanism, thereby guiding subsequent actions and focusing the attention of the policy on the manipulated object. Leveraging these innovations, we develop VIRT, a fully Transformer-based policy. We design comprehensive tasks using both a physical robot and simulated environments to assess the efficacy of VIRT. The results indicate that VIRT can complete very competitive tasks like ``opening the lid of a tightly sealed bottle'', and the proposed techniques boost the success rates of the baseline policy on diverse challenging tasks from nearly 0% to more than 65%.
Robobench: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models as Embodied Brain
Building robots that can perceive, reason, and act in dynamic, unstructured environments remains a core challenge. Recent embodied systems often adopt a dual-system paradigm, where System 2 handles high-level reasoning while System 1 executes low-level control. In this work, we refer to System 2 as the embodied brain, emphasizing its role as the cognitive core for reasoning and decision-making in manipulation tasks. Given this role, systematic evaluation of the embodied brain is essential. Yet existing benchmarks emphasize execution success, or when targeting high-level reasoning, suffer from incomplete dimensions and limited task realism, offering only a partial picture of cognitive capability. To bridge this gap, we introduce RoboBench, a benchmark that systematically evaluates multimodal large language models (MLLMs) as embodied brains. Motivated by the critical roles across the full manipulation pipeline, RoboBench defines five dimensions-instruction comprehension, perception reasoning, generalized planning, affordance prediction, and failure analysis-spanning 14 capabilities, 25 tasks, and 6092 QA pairs. To ensure realism, we curate datasets across diverse embodiments, attribute-rich objects, and multi-view scenes, drawing from large-scale real robotic data. For planning, RoboBench introduces an evaluation framework, MLLM-as-world-simulator. It evaluate embodied feasibility by simulating whether predicted plans can achieve critical object-state changes. Experiments on 14 MLLMs reveal fundamental limitations: difficulties with implicit instruction comprehension, spatiotemporal reasoning, cross-scenario planning, fine-grained affordance understanding, and execution failure diagnosis. RoboBench provides a comprehensive scaffold to quantify high-level cognition, and guide the development of next-generation embodied MLLMs. The project page is in https://robo-bench.github.io.
Robust Quadrupedal Locomotion via Risk-Averse Policy Learning
The robustness of legged locomotion is crucial for quadrupedal robots in challenging terrains. Recently, Reinforcement Learning (RL) has shown promising results in legged locomotion and various methods try to integrate privileged distillation, scene modeling, and external sensors to improve the generalization and robustness of locomotion policies. However, these methods are hard to handle uncertain scenarios such as abrupt terrain changes or unexpected external forces. In this paper, we consider a novel risk-sensitive perspective to enhance the robustness of legged locomotion. Specifically, we employ a distributional value function learned by quantile regression to model the aleatoric uncertainty of environments, and perform risk-averse policy learning by optimizing the worst-case scenarios via a risk distortion measure. Extensive experiments in both simulation environments and a real Aliengo robot demonstrate that our method is efficient in handling various external disturbances, and the resulting policy exhibits improved robustness in harsh and uncertain situations in legged locomotion. Videos are available at https://risk-averse-locomotion.github.io/.
Understanding and Imitating Human-Robot Motion with Restricted Visual Fields
When working around other agents such as humans, it is important to model their perception capabilities to predict and make sense of their behavior. In this work, we consider agents whose perception capabilities are determined by their limited field of view, viewing range, and the potential to miss objects within their viewing range. By considering the perception capabilities and observation model of agents independently from their motion policy, we show that we can better predict the agents' behavior; i.e., by reasoning about the perception capabilities of other agents, one can better make sense of their actions. We perform a user study where human operators navigate a cluttered scene while scanning the region for obstacles with a limited field of view and range. We show that by reasoning about the limited observation space of humans, a robot can better learn a human's strategy for navigating an environment and navigate with minimal collision with dynamic and static obstacles. We also show that this learned model helps it successfully navigate a physical hardware vehicle in real-time. Code available at https://github.com/labicon/HRMotion-RestrictedView.
RepIt: Representing Isolated Targets to Steer Language Models
While activation steering in large language models (LLMs) is a growing area of research, methods can often incur broader effects than desired. This motivates isolation of purer concept vectors to enable targeted interventions and understand LLM behavior at a more granular level. We present RepIt, a simple and data-efficient framework for isolating concept-specific representations. Across five frontier LLMs, RepIt enables precise interventions: it selectively suppresses refusal on targeted concepts while preserving refusal elsewhere, producing models that answer WMD-related questions while still scoring as safe on standard benchmarks. We further show that the corrective signal localizes to just 100-200 neurons and that robust target representations can be extracted from as few as a dozen examples on a single A6000. This efficiency raises a dual concern: manipulations can be performed with modest compute and data to extend to underrepresented data-scarce topics while evading existing benchmarks. By disentangling refusal vectors with RepIt, this work demonstrates that targeted interventions can counteract overgeneralization, laying the foundation for more granular control of model behavior.
Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning
Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL training instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a curriculum-based self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL framework, where a replay buffer stores self-generated promising trajectories for off-policy update, by gradually steering the policy evolution within a well-balanced range of entropy across stages. Specifically, our approach incorporates a curriculum to manage the exploration process, utilizing intrinsic rewards to foster skill-level exploration and facilitating action-level exploration through SIL. At first, the auxiliary tool call reward plays a critical role in the accumulation of tool-use skills, enabling broad exposure to the unfamiliar distributions of the environment feedback with an upward entropy trend. As training progresses, self-imitation gets strengthened to exploit existing successful patterns from replayed experiences for comparative action-level exploration, accelerating solution iteration without unbounded entropy growth. To further stabilize training, we recalibrate the advantages of experiences in the replay buffer to address the potential policy drift. Reugularizations such as the clipping of tokens with high covariance between probability and advantage are introduced to the trajectory-level entropy control to curb over-confidence.
Agile But Safe: Learning Collision-Free High-Speed Legged Locomotion
Legged robots navigating cluttered environments must be jointly agile for efficient task execution and safe to avoid collisions with obstacles or humans. Existing studies either develop conservative controllers (< 1.0 m/s) to ensure safety, or focus on agility without considering potentially fatal collisions. This paper introduces Agile But Safe (ABS), a learning-based control framework that enables agile and collision-free locomotion for quadrupedal robots. ABS involves an agile policy to execute agile motor skills amidst obstacles and a recovery policy to prevent failures, collaboratively achieving high-speed and collision-free navigation. The policy switch in ABS is governed by a learned control-theoretic reach-avoid value network, which also guides the recovery policy as an objective function, thereby safeguarding the robot in a closed loop. The training process involves the learning of the agile policy, the reach-avoid value network, the recovery policy, and an exteroception representation network, all in simulation. These trained modules can be directly deployed in the real world with onboard sensing and computation, leading to high-speed and collision-free navigation in confined indoor and outdoor spaces with both static and dynamic obstacles.
Mechanistic interpretability for steering vision-language-action models
Vision-Language-Action (VLA) models are a promising path to realizing generalist embodied agents that can quickly adapt to new tasks, modalities, and environments. However, methods for interpreting and steering VLAs fall far short of classical robotics pipelines, which are grounded in explicit models of kinematics, dynamics, and control. This lack of mechanistic insight is a central challenge for deploying learned policies in real-world robotics, where robustness and explainability are critical. Motivated by advances in mechanistic interpretability for large language models, we introduce the first framework for interpreting and steering VLAs via their internal representations, enabling direct intervention in model behavior at inference time. We project feedforward activations within transformer layers onto the token embedding basis, identifying sparse semantic directions - such as speed and direction - that are causally linked to action selection. Leveraging these findings, we introduce a general-purpose activation steering method that modulates behavior in real time, without fine-tuning, reward signals, or environment interaction. We evaluate this method on two recent open-source VLAs, Pi0 and OpenVLA, and demonstrate zero-shot behavioral control in simulation (LIBERO) and on a physical robot (UR5). This work demonstrates that interpretable components of embodied VLAs can be systematically harnessed for control - establishing a new paradigm for transparent and steerable foundation models in robotics.
