new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 25

Parabolic-elliptic and indirect-direct simplifications in chemotaxis systems driven by indirect signalling

Singular limits for the following indirect signalling chemotaxis system align* \left\{ array{lllllll} \partial_t n = \Delta n - \nabla \cdot (n \nabla c ) & in \Omega\times(0,\infty) , \varepsilon \partial_t c = \Delta c - c + w & in \Omega\times(0,\infty), \varepsilon \partial_t w = \tau \Delta w - w + n & in \Omega\times (0,\infty), \partial_\nu n = \partial_\nu c = \partial_\nu w = 0, &on \partial\Omega\times (0,\infty) %(n,c,w)_{t=0} = (n_0,c_0,w_0) & on \Omega, array \right. align* are investigated. More precisely, we study parabolic-elliptic simplification, or PES, varepsilonto 0^+ with fixed tau>0 up to the critical dimension N=4, and indirect-direct simplification, or IDS, (varepsilon,tau)to (0^+,0^+) up to the critical dimension N=2. These are relevant in biological situations where the signalling process is on a much faster time scale compared to the species diffusion and all interactions. Showing singular limits in critical dimensions is challenging. To deal with the PES, we carefully combine the entropy function, an Adam-type inequality, the regularisation of slow evolution, and an energy equation method to obtain strong convergence in representative spaces. For the IDS, a bootstrap argument concerning the L^p-energy function is devised, which allows us to obtain suitable uniform bounds for the singular limits. Moreover, in both scenarios, we also present the convergence rates, where the effect of the initial layer and the convergence to the critical manifold are also revealed.

  • 4 authors
·
Aug 2

An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass

In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.

  • 3 authors
·
Nov 20, 2024

State and parameter learning with PaRIS particle Gibbs

Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.

  • 5 authors
·
Jan 2, 2023

The Rayleigh-Boltzmann equation with shear deformations in the hyperbolic-dominated regime

In this paper we consider a particular class of solutions of the Rayleigh-Boltzmann equation, known in the nonlinear setting as homoenergetic solutions, which have the form gleft( x,v,t right) =fleft( v-Lleft( tright)x,tright) where the matrix L(t) describes a shear flow deformation. We began this analysis in [22] where we rigorously proved the existence of a stationary non-equilibrium solution and established the different behaviour of the solutions for small and large values of the shear parameter, for cut-off collision kernels with homogeneity parameter 0leq gamma <1, including Maxwell molecules and hard potentials. In this paper, we concentrate in the case where the deformation term dominates the collision term for large times (hyperbolic-dominated regime). This occurs for collision kernels with gamma < 0 and in particular we focus on gamma in (-1,0). In such a hyperbolic-dominated regime, it appears challenging to provide a clear description of the long-term asymptotics of the solutions. Here we present a formal analysis of the long-time asymptotics for the distribution of velocities and provide the explicit form for the asymptotic profile. Additionally, we discuss the different asymptotic behaviour expected in the case of homogeneity gamma < -1. Furthermore, we provide a probabilistic interpretation describing a stochastic process consisting in a combination of collisions and shear flows. The tagged particle velocity {v(t)}_{tgeq 0} is a Markov process that arises from the combination of free flights in a shear flow along with random jumps caused by collisions.

  • 3 authors
·
Jun 18

Kernel Density Estimators in Large Dimensions

This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.

  • 2 authors
·
Aug 11, 2024

Predicting Rare Events by Shrinking Towards Proportional Odds

Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.

  • 2 authors
·
May 29, 2023

Linear statistics for Coulomb gases: higher order cumulants

We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.

  • 4 authors
·
Oct 25, 2023

AutoNumerics-Zero: Automated Discovery of State-of-the-Art Mathematical Functions

Computers calculate transcendental functions by approximating them through the composition of a few limited-precision instructions. For example, an exponential can be calculated with a Taylor series. These approximation methods were developed over the centuries by mathematicians, who emphasized the attainability of arbitrary precision. Computers, however, operate on few limited precision types, such as the popular float32. In this study, we show that when aiming for limited precision, existing approximation methods can be outperformed by programs automatically discovered from scratch by a simple evolutionary algorithm. In particular, over real numbers, our method can approximate the exponential function reaching orders of magnitude more precision for a given number of operations when compared to previous approaches. More practically, over float32 numbers and constrained to less than 1 ULP of error, the same method attains a speedup over baselines by generating code that triggers better XLA/LLVM compilation paths. In other words, in both cases, evolution searched a vast space of possible programs, without knowledge of mathematics, to discover previously unknown optimized approximations to high precision, for the first time. We also give evidence that these results extend beyond the exponential. The ubiquity of transcendental functions suggests that our method has the potential to reduce the cost of scientific computing applications.

  • 10 authors
·
Dec 13, 2023

Faster Rates of Convergence to Stationary Points in Differentially Private Optimization

We study the problem of approximating stationary points of Lipschitz and smooth functions under (varepsilon,delta)-differential privacy (DP) in both the finite-sum and stochastic settings. A point w is called an alpha-stationary point of a function F:R^drightarrowR if |nabla F(w)|leq alpha. We provide a new efficient algorithm that finds an Obig(big[sqrt{d}{nvarepsilon}big]^{2/3}big)-stationary point in the finite-sum setting, where n is the number of samples. This improves on the previous best rate of Obig(big[sqrt{d}{nvarepsilon}big]^{1/2}big). We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a Obig(1{n^{1/3}} + big[sqrt{d}{nvarepsilon}big]^{1/2}big)-stationary point of the population risk in time linear in n. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is tilde Thetabig(1{n}+sqrt{d}{nvarepsilon}big). Finally, we show that our methods can be used to provide dimension-independent rates of Obig(1{n}+minbig(big[sqrt{rank}{nvarepsilon}big]^{2/3},1{(nvarepsilon)^{2/5}}big)big) on population stationarity for Generalized Linear Models (GLM), where rank is the rank of the design matrix, which improves upon the previous best known rate.

  • 6 authors
·
Jun 1, 2022

PFGM++: Unlocking the Potential of Physics-Inspired Generative Models

We introduce a new family of physics-inspired generative models termed PFGM++ that unifies diffusion models and Poisson Flow Generative Models (PFGM). These models realize generative trajectories for N dimensional data by embedding paths in N{+}D dimensional space while still controlling the progression with a simple scalar norm of the D additional variables. The new models reduce to PFGM when D{=}1 and to diffusion models when D{to}infty. The flexibility of choosing D allows us to trade off robustness against rigidity as increasing D results in more concentrated coupling between the data and the additional variable norms. We dispense with the biased large batch field targets used in PFGM and instead provide an unbiased perturbation-based objective similar to diffusion models. To explore different choices of D, we provide a direct alignment method for transferring well-tuned hyperparameters from diffusion models (D{to} infty) to any finite D values. Our experiments show that models with finite D can be superior to previous state-of-the-art diffusion models on CIFAR-10/FFHQ 64{times}64 datasets, with FID scores of 1.91/2.43 when D{=}2048/128. In class-conditional setting, D{=}2048 yields current state-of-the-art FID of 1.74 on CIFAR-10. In addition, we demonstrate that models with smaller D exhibit improved robustness against modeling errors. Code is available at https://github.com/Newbeeer/pfgmpp

  • 6 authors
·
Feb 8, 2023

A Flexible Parametric Modelling Framework for Survival Analysis

We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.

  • 3 authors
·
Jan 10, 2019

Weighted least-squares approximation with determinantal point processes and generalized volume sampling

We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.

  • 2 authors
·
Dec 21, 2023

Symmetries and Asymptotically Flat Space

The construction of a theory of quantum gravity is an outstanding problem that can benefit from better understanding the laws of nature that are expected to hold in regimes currently inaccessible to experiment. Such fundamental laws can be found by considering the classical counterparts of a quantum theory. For example, conservation laws in a quantum theory often stem from conservation laws of the corresponding classical theory. In order to construct such laws, this thesis is concerned with the interplay between symmetries and conservation laws of classical field theories and their application to asymptotically flat spacetimes. This work begins with an explanation of symmetries in field theories with a focus on variational symmetries and their associated conservation laws. Boundary conditions for general relativity are then formulated on three-dimensional asymptotically flat spacetimes at null infinity using the method of conformal completion. Conserved quantities related to asymptotic symmetry transformations are derived and their properties are studied. This is done in a manifestly coordinate independent manner. In a separate step a coordinate system is introduced, such that the results can be compared to existing literature. Next, asymptotically flat spacetimes which contain both future as well as past null infinity are considered. Asymptotic symmetries occurring at these disjoint regions of three-dimensional asymptotically flat spacetimes are linked and the corresponding conserved quantities are matched. Finally, it is shown how asymptotic symmetries lead to the notion of distinct Minkowski spaces that can be differentiated by conserved quantities.

  • 1 authors
·
Mar 16, 2020

Explaining Neural Scaling Laws

The population loss of trained deep neural networks often follows precise power-law scaling relations with either the size of the training dataset or the number of parameters in the network. We propose a theory that explains the origins of and connects these scaling laws. We identify variance-limited and resolution-limited scaling behavior for both dataset and model size, for a total of four scaling regimes. The variance-limited scaling follows simply from the existence of a well-behaved infinite data or infinite width limit, while the resolution-limited regime can be explained by positing that models are effectively resolving a smooth data manifold. In the large width limit, this can be equivalently obtained from the spectrum of certain kernels, and we present evidence that large width and large dataset resolution-limited scaling exponents are related by a duality. We exhibit all four scaling regimes in the controlled setting of large random feature and pretrained models and test the predictions empirically on a range of standard architectures and datasets. We also observe several empirical relationships between datasets and scaling exponents under modifications of task and architecture aspect ratio. Our work provides a taxonomy for classifying different scaling regimes, underscores that there can be different mechanisms driving improvements in loss, and lends insight into the microscopic origins of and relationships between scaling exponents.

  • 5 authors
·
Feb 12, 2021

Strategyproof and Proportionally Fair Facility Location

We focus on a simple, one-dimensional collective decision problem (often referred to as the facility location problem) and explore issues of strategyproofness and proportionality-based fairness. We introduce and analyze a hierarchy of proportionality-based fairness axioms of varying strength: Individual Fair Share (IFS), Unanimous Fair Share (UFS), Proportionality (as in Freeman et al, 2021), and Proportional Fairness (PF). For each axiom, we characterize the family of mechanisms that satisfy the axiom and strategyproofness. We show that imposing strategyproofness renders many of the axioms to be equivalent: the family of mechanisms that satisfy proportionality, unanimity, and strategyproofness is equivalent to the family of mechanisms that satisfy UFS and strategyproofness, which, in turn, is equivalent to the family of mechanisms that satisfy PF and strategyproofness. Furthermore, there is a unique such mechanism: the Uniform Phantom mechanism, which is studied in Freeman et al. (2021). We also characterize the outcomes of the Uniform Phantom mechanism as the unique (pure) equilibrium outcome for any mechanism that satisfies continuity, strict monotonicity, and UFS. Finally, we analyze the approximation guarantees, in terms of optimal social welfare and minimum total cost, obtained by mechanisms that are strategyproof and satisfy each proportionality-based fairness axiom. We show that the Uniform Phantom mechanism provides the best approximation of the optimal social welfare (and also minimum total cost) among all mechanisms that satisfy UFS.

  • 4 authors
·
Nov 2, 2021

Improving equilibrium propagation without weight symmetry through Jacobian homeostasis

Equilibrium propagation (EP) is a compelling alternative to the backpropagation of error algorithm (BP) for computing gradients of neural networks on biological or analog neuromorphic substrates. Still, the algorithm requires weight symmetry and infinitesimal equilibrium perturbations, i.e., nudges, to estimate unbiased gradients efficiently. Both requirements are challenging to implement in physical systems. Yet, whether and how weight asymmetry affects its applicability is unknown because, in practice, it may be masked by biases introduced through the finite nudge. To address this question, we study generalized EP, which can be formulated without weight symmetry, and analytically isolate the two sources of bias. For complex-differentiable non-symmetric networks, we show that the finite nudge does not pose a problem, as exact derivatives can still be estimated via a Cauchy integral. In contrast, weight asymmetry introduces bias resulting in low task performance due to poor alignment of EP's neuronal error vectors compared to BP. To mitigate this issue, we present a new homeostatic objective that directly penalizes functional asymmetries of the Jacobian at the network's fixed point. This homeostatic objective dramatically improves the network's ability to solve complex tasks such as ImageNet 32x32. Our results lay the theoretical groundwork for studying and mitigating the adverse effects of imperfections of physical networks on learning algorithms that rely on the substrate's relaxation dynamics.

  • 2 authors
·
Sep 5, 2023

Beating the average: how to generate profit by exploiting the inefficiencies of soccer betting

In economy, markets are denoted as efficient when it is impossible to systematically generate profits which outperform the average. In the past years, the concept has been tested in other domains such as the growing sports betting market. Surprisingly, despite its large size and its level of maturity, sports betting shows traits of inefficiency. The anomalies indicate the existence of strategies which shift betting from a game of chance towards a game of skill. This article shows an example for an inefficiency detected in the German soccer betting TOTO 13er Wette, which is operated by state-run lottery agencies. Gamblers have to guess the outcome (win, draw, loss) of 13 soccer matches listed on a lottery tip. Applying stochastic methods, a recipe is presented to determine hit rates for single match outcomes. More important, the recipe provides the number of lottery tips required to achieve a specific number of strikes (number of correct match forecasts per lottery tip) for any given level of safety. An approximation is derived to cope with large numbers in hypergeometric distributions, valid under certain constraints. Overall, the strategy does lead to returns exceeding the aggregated lottery fees, resulting in moderate, but consistent profits. It is briefly discussed if lessions learned from soccer betting can be transferred back to financial markets, because gamblers and retail investors face similar challenges and opportunities.

  • 1 authors
·
Mar 12, 2023

Analytic Solution for the Helicity Evolution Equations at Small x and Large N_c&N_f

We construct an exact analytic solution of the revised small-x helicity evolution equations, where the contributions of the quark-to-gluon and gluon-to-quark transition operators were newly included. These evolution equations are written in the large-N_c&N_f limit and are double-logarithmic, resumming powers of alpha_sln^2(1/x). Here N_c and N_f are the numbers of quark colors and flavors, while alpha_s is the strong coupling constant and x is the Bjorken-x variable. Using our solution, we obtain analytic expressions for the flavor singlet quark and gluon helicity parton distribution functions (PDFs) and for the g_1 structure function as double-inverse Laplace transforms. We also extract analytic expressions for the four DGLAP polarized anomalous dimensions Delta gamma_{qq}, Delta gamma_{qG}, Delta gamma_{Gq}, and Delta gamma_{GG}: these expressions resum powers of alpha_s/omega^2 to all orders at large-N_c&N_f (with omega the Mellin moment variable). We extract the leading small-x growth of the helicity distributions, align \Delta\Sigma(x,Q^2) \sim \Delta G(x,Q^2)\sim g_1(x,Q^2) \sim \left(1{x}\right)^{\alpha_h}, align where the intercept alpha_h satisfies an algebraic equation. We determine alpha_h numerically for various values of N_c and N_f. We further obtain the explicit asymptotic expressions for the helicity distributions, which yield numerical values for the ratio of the gluon helicity PDF to the flavor singlet quark helicity PDF in the small-x asymptotic limit (for different N_f/N_c). We find that all our predictions for polarized DGLAP anomalous dimensions are fully consistent with the existing finite-order calculations. Similar to the large-N_c case, our intercept alpha_h exhibits a very slight disagreement with the predictions made within the infrared evolution equations framework.

  • 2 authors
·
Jul 31

MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--

For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.

  • 1 authors
·
May 19, 2021

Beyond the Mean: Limit Theory and Tests for Infinite-Mean Autoregressive Conditional Durations

Integrated autoregressive conditional duration (ACD) models serve as natural counterparts to the well-known integrated GARCH models used for financial returns. However, despite their resemblance, asymptotic theory for ACD is challenging and also not complete, in particular for integrated ACD. Central challenges arise from the facts that (i) integrated ACD processes imply durations with infinite expectation, and (ii) even in the non-integrated case, conventional asymptotic approaches break down due to the randomness in the number of durations within a fixed observation period. Addressing these challenges, we provide here unified asymptotic theory for the (quasi-) maximum likelihood estimator for ACD models; a unified theory which includes integrated ACD models. Based on the new results, we also provide a novel framework for hypothesis testing in duration models, enabling inference on a key empirical question: whether durations possess a finite or infinite expectation. We apply our results to high-frequency cryptocurrency ETF trading data. Motivated by parameter estimates near the integrated ACD boundary, we assess whether durations between trades in these markets have finite expectation, an assumption often made implicitly in the literature on point process models. Our empirical findings indicate infinite-mean durations for all the five cryptocurrencies examined, with the integrated ACD hypothesis rejected -- against alternatives with tail index less than one -- for four out of the five cryptocurrencies considered.

  • 4 authors
·
May 9

On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties

In this work, we focus on a fractional differential equation in Riesz form discretized by a polynomial B-spline collocation method. For an arbitrary polynomial degree p, we show that the resulting coefficient matrices possess a Toeplitz-like structure. We investigate their spectral properties via their symbol and we prove that, like for second order differential problems, also in this case the given matrices are ill-conditioned both in the low and high frequencies for large p. More precisely, in the fractional scenario the symbol has a single zero at 0 of order α, with α the fractional derivative order that ranges from 1 to 2, and it presents an exponential decay to zero at π for increasing p that becomes faster as α approaches 1. This translates in a mitigated conditioning in the low frequencies and in a deterioration in the high frequencies when compared to second order problems. Furthermore, the derivation of the symbol reveals another similarity of our problem with a classical diffusion problem. Since the entries of the coefficient matrices are defined as evaluations of fractional derivatives of the B-spline basis at the collocation points, we are able to express the central entries of the coefficient matrix as inner products of two fractional derivatives of cardinal B-splines. Finally, we perform a numerical study of the approximation behavior of polynomial B-spline collocation. This study suggests that, in line with non-fractional diffusion problems, the approximation order for smooth solutions in the fractional case is p+2-α for even p, and p+1-α for odd p.

  • 4 authors
·
Jun 28, 2021

Solving High Frequency and Multi-Scale PDEs with Gaussian Processes

Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We apply the inverse Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. Next, we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to promote computational efficiency and scalability, without low-rank approximations. We show the advantage of our method in systematic experiments. The code is released at https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.

  • 6 authors
·
Nov 8, 2023

Respecting causality is all you need for training physics-informed neural networks

While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.

  • 3 authors
·
Mar 14, 2022

Model scale versus domain knowledge in statistical forecasting of chaotic systems

Chaos and unpredictability are traditionally synonymous, yet large-scale machine learning methods recently have demonstrated a surprising ability to forecast chaotic systems well beyond typical predictability horizons. However, recent works disagree on whether specialized methods grounded in dynamical systems theory, such as reservoir computers or neural ordinary differential equations, outperform general-purpose large-scale learning methods such as transformers or recurrent neural networks. These prior studies perform comparisons on few individually-chosen chaotic systems, thereby precluding robust quantification of how statistical modeling choices and dynamical invariants of different chaotic systems jointly determine empirical predictability. Here, we perform the largest to-date comparative study of forecasting methods on the classical problem of forecasting chaos: we benchmark 24 state-of-the-art forecasting methods on a crowdsourced database of 135 low-dimensional systems with 17 forecast metrics. We find that large-scale, domain-agnostic forecasting methods consistently produce predictions that remain accurate up to two dozen Lyapunov times, thereby accessing a new long-horizon forecasting regime well beyond classical methods. We find that, in this regime, accuracy decorrelates with classical invariant measures of predictability like the Lyapunov exponent. However, in data-limited settings outside the long-horizon regime, we find that physics-based hybrid methods retain a comparative advantage due to their strong inductive biases.

  • 1 authors
·
Mar 12, 2023

The Slepian model based independent interval approximation of persistency and zero-level exceedance distributions

In physics and engineering literature, the distribution of the excursion-above-zero time distribution (exceedance distribution) for a stationary Gaussian process has been approximated by a stationary switching process with independently distributed switching times. The approach matched the covariance of the clipped Gaussian process with the one for the stationary switching process and the distribution of the latter was used as the so-called independent interval approximation (IIA). The approach successfully assessed the persistency exponent for many physically important processes but left an unanswered question when such an approach leads to a mathematically meaningful and proper exceedance distribution. Here we address this question by proposing an alternative matching of the expected values of the clipped Slepian process and the corresponding switched process initiated at the origin. The method has allowed resolving the mathematical correctness of the matching method for a large subclass of the Gaussian processes with monotonic covariance, for which we provide a sufficient condition for the validity of the IIA. Within this class, the IIA produces a valid distribution for the excursion time and is represented in an explicit stochastic form that connects directly to the covariance of the underlying Gaussian process. We compare the excursion level distributions as well as the corresponding persistency exponents obtained through the IIA method with numerically computed exact distributions, and the simulated distribution for several important Gaussian models. We also argue that for stationary Gaussian processes with a non-monotonic covariance, the IIA fails and should not be used.

  • 2 authors
·
Jan 3, 2024

Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning

In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27].

  • 2 authors
·
Sep 29, 2024

Poseidon: Efficient Foundation Models for PDEs

We introduce Poseidon, a foundation model for learning the solution operators of PDEs. It is based on a multiscale operator transformer, with time-conditioned layer norms that enable continuous-in-time evaluations. A novel training strategy leveraging the semi-group property of time-dependent PDEs to allow for significant scaling-up of the training data is also proposed. Poseidon is pretrained on a diverse, large scale dataset for the governing equations of fluid dynamics. It is then evaluated on a suite of 15 challenging downstream tasks that include a wide variety of PDE types and operators. We show that Poseidon exhibits excellent performance across the board by outperforming baselines significantly, both in terms of sample efficiency and accuracy. Poseidon also generalizes very well to new physics that is not seen during pretraining. Moreover, Poseidon scales with respect to model and data size, both for pretraining and for downstream tasks. Taken together, our results showcase the surprising ability of Poseidon to learn effective representations from a very small set of PDEs during pretraining in order to generalize well to unseen and unrelated PDEs downstream, demonstrating its potential as an effective, general purpose PDE foundation model. Finally, the Poseidon model as well as underlying pretraining and downstream datasets are open sourced, with code being available at https://github.com/camlab-ethz/poseidon and pretrained models and datasets at https://huggingface.co/camlab-ethz.

  • 7 authors
·
May 29, 2024

Offline Planning and Online Learning under Recovering Rewards

Motivated by emerging applications such as live-streaming e-commerce, promotions and recommendations, we introduce and solve a general class of non-stationary multi-armed bandit problems that have the following two features: (i) the decision maker can pull and collect rewards from up to K,(ge 1) out of N different arms in each time period; (ii) the expected reward of an arm immediately drops after it is pulled, and then non-parametrically recovers as the arm's idle time increases. With the objective of maximizing the expected cumulative reward over T time periods, we design a class of ``Purely Periodic Policies'' that jointly set a period to pull each arm. For the proposed policies, we prove performance guarantees for both the offline problem and the online problems. For the offline problem when all model parameters are known, the proposed periodic policy obtains an approximation ratio that is at the order of 1-mathcal O(1/K), which is asymptotically optimal when K grows to infinity. For the online problem when the model parameters are unknown and need to be dynamically learned, we integrate the offline periodic policy with the upper confidence bound procedure to construct on online policy. The proposed online policy is proved to approximately have mathcal O(NT) regret against the offline benchmark. Our framework and policy design may shed light on broader offline planning and online learning applications with non-stationary and recovering rewards.

  • 3 authors
·
Jun 28, 2021

Parallel Scaling Law for Language Models

It is commonly believed that scaling language models should commit a significant space or time cost, by increasing the parameters (parameter scaling) or output tokens (inference-time scaling). We introduce the third and more inference-efficient scaling paradigm: increasing the model's parallel computation during both training and inference time. We apply P diverse and learnable transformations to the input, execute forward passes of the model in parallel, and dynamically aggregate the P outputs. This method, namely parallel scaling (ParScale), scales parallel computation by reusing existing parameters and can be applied to any model structure, optimization procedure, data, or task. We theoretically propose a new scaling law and validate it through large-scale pre-training, which shows that a model with P parallel streams is similar to scaling the parameters by O(log P) while showing superior inference efficiency. For example, ParScale can use up to 22times less memory increase and 6times less latency increase compared to parameter scaling that achieves the same performance improvement. It can also recycle an off-the-shelf pre-trained model into a parallelly scaled one by post-training on a small amount of tokens, further reducing the training budget. The new scaling law we discovered potentially facilitates the deployment of more powerful models in low-resource scenarios, and provides an alternative perspective for the role of computation in machine learning.

  • 8 authors
·
May 15 3

ScaleDiff: Scaling Difficult Problems for Advanced Mathematical Reasoning

Large Reasoning Models (LRMs) have shown impressive capabilities in complex problem-solving, often benefiting from training on difficult mathematical problems that stimulate intricate reasoning. Recent efforts have explored automated synthesis of mathematical problems by prompting proprietary models or large-scale open-source models from seed data or inherent mathematical concepts. However, scaling up these methods remains challenging due to their high computational/API cost, complexity of prompting, and limited difficulty level of the generated problems. To overcome these limitations, we propose ScaleDiff, a simple yet effective pipeline designed to scale the creation of difficult problems. We efficiently identify difficult problems from existing datasets with only a single forward pass using an adaptive thinking model, which can perceive problem difficulty and automatically switch between "Thinking" and "NoThinking" modes. We then train a specialized difficult problem generator (DiffGen-8B) on this filtered difficult data, which can produce new difficult problems in large scale, eliminating the need for complex, per-instance prompting and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset yields a substantial performance increase of 11.3% compared to the original dataset and achieves a 65.9% average accuracy on AIME'24, AIME'25, HMMT-Feb'25, BRUMO'25, and MATH500, outperforming recent strong LRMs like OpenThinker3. Notably, this performance is achieved using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our pipeline can effectively transfer advanced reasoning capabilities without relying on larger, more expensive teacher models. Furthermore, we observe a clear scaling phenomenon in model performance on difficult benchmarks as the quantity of difficult problems increases. Code: https://github.com/QizhiPei/ScaleDiff.

  • 9 authors
·
Sep 25 2

Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise

In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.

  • 5 authors
·
Apr 3, 2023

Accelerating Distributed Stochastic Optimization via Self-Repellent Random Walks

We study a family of distributed stochastic optimization algorithms where gradients are sampled by a token traversing a network of agents in random-walk fashion. Typically, these random-walks are chosen to be Markov chains that asymptotically sample from a desired target distribution, and play a critical role in the convergence of the optimization iterates. In this paper, we take a novel approach by replacing the standard linear Markovian token by one which follows a nonlinear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined for any given 'base' Markov chain, the SRRW, parameterized by a positive scalar {\alpha}, is less likely to transition to states that were highly visited in the past, thus the name. In the context of MCMC sampling on a graph, a recent breakthrough in Doshi et al. (2023) shows that the SRRW achieves O(1/{\alpha}) decrease in the asymptotic variance for sampling. We propose the use of a 'generalized' version of the SRRW to drive token algorithms for distributed stochastic optimization in the form of stochastic approximation, termed SA-SRRW. We prove that the optimization iterate errors of the resulting SA-SRRW converge to zero almost surely and prove a central limit theorem, deriving the explicit form of the resulting asymptotic covariance matrix corresponding to iterate errors. This asymptotic covariance is always smaller than that of an algorithm driven by the base Markov chain and decreases at rate O(1/{\alpha}^2) - the performance benefit of using SRRW thereby amplified in the stochastic optimization context. Empirical results support our theoretical findings.

  • 3 authors
·
Jan 17, 2024

Lagrangian PINNs: A causality-conforming solution to failure modes of physics-informed neural networks

Physics-informed neural networks (PINNs) leverage neural-networks to find the solutions of partial differential equation (PDE)-constrained optimization problems with initial conditions and boundary conditions as soft constraints. These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here, we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced, and (ii) is closely related to the Kolmogorov n-width associated with problems demonstrating transport, convection, traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence-to-sequence learning. For an important category of PDEs, i.e., governed by non-linear convection-diffusion equation, we propose reformulating PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE-informed solution. A parallel architecture with two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch solves for the low-dimensional characteristics curves. The proposed architecture conforms to the causality innate to the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that the loss landscapes of LPINNs are less sensitive to the so-called "complexity" of the problems, compared to those in the traditional PINNs in the Eulerian framework.

  • 3 authors
·
May 5, 2022

Language models scale reliably with over-training and on downstream tasks

Scaling laws are useful guides for developing language models, but there are still gaps between current scaling studies and how language models are ultimately trained and evaluated. For instance, scaling is usually studied in the compute-optimal training regime (i.e., "Chinchilla optimal" regime); however, in practice, models are often over-trained to reduce inference costs. Moreover, scaling laws mostly predict loss on next-token prediction, but ultimately models are compared based on downstream task performance. In this paper, we address both shortcomings. To do so, we create a testbed of 104 models with 0.011B to 6.9B parameters trained with various numbers of tokens on three data distributions. First, we investigate scaling in the over-trained regime. We fit scaling laws that extrapolate in both the number of model parameters and the ratio of training tokens to parameters. This enables us to predict the validation loss of a 1.4B parameter, 900B token run (i.e., 32times over-trained) and a 6.9B parameter, 138B token runx2014each from experiments that take 300times less compute. Second, we relate the perplexity of a language model to its downstream task performance via a power law. We use this law to predict top-1 error averaged over downstream tasks for the two aforementioned models using experiments that take 20times less compute. Our experiments are available at https://github.com/mlfoundations/scaling.

  • 23 authors
·
Mar 13, 2024 1

Scale Mixtures of Neural Network Gaussian Processes

Recent works have revealed that infinitely-wide feed-forward or recurrent neural networks of any architecture correspond to Gaussian processes referred to as Neural Network Gaussian Processes (NNGPs). While these works have extended the class of neural networks converging to Gaussian processes significantly, however, there has been little focus on broadening the class of stochastic processes that such neural networks converge to. In this work, inspired by the scale mixture of Gaussian random variables, we propose the scale mixture of NNGPs for which we introduce a prior distribution on the scale of the last-layer parameters. We show that simply introducing a scale prior on the last-layer parameters can turn infinitely-wide neural networks of any architecture into a richer class of stochastic processes. With certain scale priors, we obtain heavy-tailed stochastic processes, and in the case of inverse gamma priors, we recover Student's t processes. We further analyze the distributions of the neural networks initialized with our prior setting and trained with gradient descents and obtain similar results as for NNGPs. We present a practical posterior-inference algorithm for the scale mixture of NNGPs and empirically demonstrate its usefulness on regression and classification tasks. In particular, we show that in both tasks, the heavy-tailed stochastic processes obtained from our framework are robust to out-of-distribution data.

  • 4 authors
·
Jul 3, 2021

PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations

The approximation of Partial Differential Equations (PDEs) using neural networks has seen significant advancements through Physics-Informed Neural Networks (PINNs). Despite their straightforward optimization framework and flexibility in implementing various PDEs, PINNs often suffer from limited accuracy due to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to effectively learn high-frequency and non-linear components. Recently, parametric mesh representations in combination with neural networks have been investigated as a promising approach to eliminate the inductive biases of neural networks. However, they usually require very high-resolution grids and a large number of collocation points to achieve high accuracy while avoiding overfitting issues. In addition, the fixed positions of the mesh parameters restrict their flexibility, making it challenging to accurately approximate complex PDEs. To overcome these limitations, we propose Physics-Informed Gaussians (PIGs), which combine feature embeddings using Gaussian functions with a lightweight neural network. Our approach uses trainable parameters for the mean and variance of each Gaussian, allowing for dynamic adjustment of their positions and shapes during training. This adaptability enables our model to optimally approximate PDE solutions, unlike models with fixed parameter positions. Furthermore, the proposed approach maintains the same optimization framework used in PINNs, allowing us to benefit from their excellent properties. Experimental results show the competitive performance of our model across various PDEs, demonstrating its potential as a robust tool for solving complex PDEs. Our project page is available at https://namgyukang.github.io/Physics-Informed-Gaussians/

  • 4 authors
·
Dec 8, 2024 2

Sparse Linear Regression is Easy on Random Supports

Sparse linear regression is one of the most basic questions in machine learning and statistics. Here, we are given as input a design matrix X in R^{N times d} and measurements or labels {y} in R^N where {y} = {X} {w}^* + {xi}, and {xi} is the noise in the measurements. Importantly, we have the additional constraint that the unknown signal vector {w}^* is sparse: it has k non-zero entries where k is much smaller than the ambient dimension. Our goal is to output a prediction vector {w} that has small prediction error: 1{N}cdot |{X} {w}^* - {X} {w}|^2_2. Information-theoretically, we know what is best possible in terms of measurements: under most natural noise distributions, we can get prediction error at most epsilon with roughly N = O(k log d/epsilon) samples. Computationally, this currently needs d^{Omega(k)} run-time. Alternately, with N = O(d), we can get polynomial-time. Thus, there is an exponential gap (in the dependence on d) between the two and we do not know if it is possible to get d^{o(k)} run-time and o(d) samples. We give the first generic positive result for worst-case design matrices {X}: For any {X}, we show that if the support of {w}^* is chosen at random, we can get prediction error epsilon with N = poly(k, log d, 1/epsilon) samples and run-time poly(d,N). This run-time holds for any design matrix {X} with condition number up to 2^{poly(d)}. Previously, such results were known for worst-case {w}^*, but only for random design matrices from well-behaved families, matrices that have a very low condition number (poly(log d); e.g., as studied in compressed sensing), or those with special structural properties.

  • 3 authors
·
Nov 8

Neural Network Approximations of PDEs Beyond Linearity: A Representational Perspective

A burgeoning line of research leverages deep neural networks to approximate the solutions to high dimensional PDEs, opening lines of theoretical inquiry focused on explaining how it is that these models appear to evade the curse of dimensionality. However, most prior theoretical analyses have been limited to linear PDEs. In this work, we take a step towards studying the representational power of neural networks for approximating solutions to nonlinear PDEs. We focus on a class of PDEs known as nonlinear elliptic variational PDEs, whose solutions minimize an Euler-Lagrange energy functional E(u) = int_Omega L(x, u(x), nabla u(x)) - f(x) u(x)dx. We show that if composing a function with Barron norm b with partial derivatives of L produces a function of Barron norm at most B_L b^p, the solution to the PDE can be epsilon-approximated in the L^2 sense by a function with Barron norm Oleft(left(dB_Lright)^{max{p log(1/ epsilon), p^{log(1/epsilon)}}}right). By a classical result due to Barron [1993], this correspondingly bounds the size of a 2-layer neural network needed to approximate the solution. Treating p, epsilon, B_L as constants, this quantity is polynomial in dimension, thus showing neural networks can evade the curse of dimensionality. Our proof technique involves neurally simulating (preconditioned) gradient in an appropriate Hilbert space, which converges exponentially fast to the solution of the PDE, and such that we can bound the increase of the Barron norm at each iterate. Our results subsume and substantially generalize analogous prior results for linear elliptic PDEs over a unit hypercube.

  • 4 authors
·
Oct 21, 2022

Neural Tangent Kernel: Convergence and Generalization in Neural Networks

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian processes in the infinite-width limit, thus connecting them to kernel methods. We prove that the evolution of an ANN during training can also be described by a kernel: during gradient descent on the parameters of an ANN, the network function f_theta (which maps input vectors to output vectors) follows the kernel gradient of the functional cost (which is convex, in contrast to the parameter cost) w.r.t. a new kernel: the Neural Tangent Kernel (NTK). This kernel is central to describe the generalization features of ANNs. While the NTK is random at initialization and varies during training, in the infinite-width limit it converges to an explicit limiting kernel and it stays constant during training. This makes it possible to study the training of ANNs in function space instead of parameter space. Convergence of the training can then be related to the positive-definiteness of the limiting NTK. We prove the positive-definiteness of the limiting NTK when the data is supported on the sphere and the non-linearity is non-polynomial. We then focus on the setting of least-squares regression and show that in the infinite-width limit, the network function f_theta follows a linear differential equation during training. The convergence is fastest along the largest kernel principal components of the input data with respect to the NTK, hence suggesting a theoretical motivation for early stopping. Finally we study the NTK numerically, observe its behavior for wide networks, and compare it to the infinite-width limit.

  • 3 authors
·
Jun 20, 2018

Improved Analysis of Sparse Linear Regression in Local Differential Privacy Model

In this paper, we revisit the problem of sparse linear regression in the local differential privacy (LDP) model. Existing research in the non-interactive and sequentially local models has focused on obtaining the lower bounds for the case where the underlying parameter is 1-sparse, and extending such bounds to the more general k-sparse case has proven to be challenging. Moreover, it is unclear whether efficient non-interactive LDP (NLDP) algorithms exist. To address these issues, we first consider the problem in the epsilon non-interactive LDP model and provide a lower bound of Omega(sqrt{dklog d}{nepsilon}) on the ell_2-norm estimation error for sub-Gaussian data, where n is the sample size and d is the dimension of the space. We propose an innovative NLDP algorithm, the very first of its kind for the problem. As a remarkable outcome, this algorithm also yields a novel and highly efficient estimator as a valuable by-product. Our algorithm achieves an upper bound of O({dsqrt{k}{nepsilon}}) for the estimation error when the data is sub-Gaussian, which can be further improved by a factor of O(d) if the server has additional public but unlabeled data. For the sequentially interactive LDP model, we show a similar lower bound of Omega({sqrt{dk}{nepsilon}}). As for the upper bound, we rectify a previous method and show that it is possible to achieve a bound of O(ksqrt{d}{nepsilon}). Our findings reveal fundamental differences between the non-private case, central DP model, and local DP model in the sparse linear regression problem.

  • 5 authors
·
Oct 11, 2023

ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark

Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics-such as integration, differential equations, and algebraic simplification. To address this gap, we introduce ASyMOB, a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic `perturbations'. Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems, we identify examples where they fail while LLMs succeed, as well as problems solved only by combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types). Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.

  • 3 authors
·
May 28

A study of a deterministic model for meningitis epidemic

A compartmental deterministic model that allows (1) immunity from two stages of infection and carriage, and (2) disease induced death, is used in studying the dynamics of meningitis epidemic process in a closed population. It allows for difference in the transmission rate of infection to a susceptible by a carrier and an infective. It is generalized to allow a proportion ({\phi}) of those susceptibles infected to progress directly to infectives in stage I. Both models are used in this study. The threshold conditions for the spread of carrier and infectives in stage I are derived for the two models. Sensitivity analysis is performed on the reproductive number derived from the next generation matrix. The case-carrier ratio profile for various parameters and threshold values are shown. So also are the graphs of the total number ever infected as influenced by {\epsilon} and {\phi}. The infection transmission rate (eta), the odds in favor of a carrier, over an infective, in transmitting an infection to a susceptible ({\epsilon}) and the carrier conversion rate ({\phi}) to an infective in stage I, are identified as key parameters that should be subject of attention for any control intervention strategy. The case-carrier ratio profiles provide evidence of a critical case-carrier ratio attained before the number of reported cases grows to an epidemic level. They also provide visual evidence of epidemiological context, in this case, epidemic incidence (in later part of dry season) and endemic incidence (during rainy season). Results from total proportion ever infected suggest that the model, in which {\phi}=0 obtained, can adequately represent, in essence, the generalized model for this study.

  • 2 authors
·
Mar 31, 2023

Individualizing Glioma Radiotherapy Planning by Optimization of Data and Physics-Informed Discrete Loss

Brain tumor growth is unique to each glioma patient and extends beyond what is visible in imaging scans, infiltrating surrounding brain tissue. Understanding these hidden patient-specific progressions is essential for effective therapies. Current treatment plans for brain tumors, such as radiotherapy, typically involve delineating a uniform margin around the visible tumor on pre-treatment scans to target this invisible tumor growth. This "one size fits all" approach is derived from population studies and often fails to account for the nuances of individual patient conditions. We present the GliODIL framework, which infers the full spatial distribution of tumor cell concentration from available multi-modal imaging, leveraging a Fisher-Kolmogorov type physics model to describe tumor growth. This is achieved through the newly introduced method of Optimizing the Discrete Loss (ODIL), where both data and physics-based constraints are softly assimilated into the solution. Our test dataset comprises 152 glioblastoma patients with pre-treatment imaging and post-treatment follow-ups for tumor recurrence monitoring. By blending data-driven techniques with physics-based constraints, GliODIL enhances recurrence prediction in radiotherapy planning, challenging traditional uniform margins and strict adherence to the Fisher-Kolmogorov partial differential equation (PDE) model, which is adapted for complex cases.

  • 10 authors
·
Dec 8, 2023

Closing the ODE-SDE gap in score-based diffusion models through the Fokker-Planck equation

Score-based diffusion models have emerged as one of the most promising frameworks for deep generative modelling, due to their state-of-the art performance in many generation tasks while relying on mathematical foundations such as stochastic differential equations (SDEs) and ordinary differential equations (ODEs). Empirically, it has been reported that ODE based samples are inferior to SDE based samples. In this paper we rigorously describe the range of dynamics and approximations that arise when training score-based diffusion models, including the true SDE dynamics, the neural approximations, the various approximate particle dynamics that result, as well as their associated Fokker--Planck equations and the neural network approximations of these Fokker--Planck equations. We systematically analyse the difference between the ODE and SDE dynamics of score-based diffusion models, and link it to an associated Fokker--Planck equation. We derive a theoretical upper bound on the Wasserstein 2-distance between the ODE- and SDE-induced distributions in terms of a Fokker--Planck residual. We also show numerically that conventional score-based diffusion models can exhibit significant differences between ODE- and SDE-induced distributions which we demonstrate using explicit comparisons. Moreover, we show numerically that reducing the Fokker--Planck residual by adding it as an additional regularisation term leads to closing the gap between ODE- and SDE-induced distributions. Our experiments suggest that this regularisation can improve the distribution generated by the ODE, however that this can come at the cost of degraded SDE sample quality.

  • 5 authors
·
Nov 27, 2023

Scaling Laws for Autoregressive Generative Modeling

We identify empirical scaling laws for the cross-entropy loss in four domains: generative image modeling, video modeling, multimodal imageleftrightarrowtext models, and mathematical problem solving. In all cases autoregressive Transformers smoothly improve in performance as model size and compute budgets increase, following a power-law plus constant scaling law. The optimal model size also depends on the compute budget through a power-law, with exponents that are nearly universal across all data domains. The cross-entropy loss has an information theoretic interpretation as S(True) + D_{KL}(True||Model), and the empirical scaling laws suggest a prediction for both the true data distribution's entropy and the KL divergence between the true and model distributions. With this interpretation, billion-parameter Transformers are nearly perfect models of the YFCC100M image distribution downsampled to an 8times 8 resolution, and we can forecast the model size needed to achieve any given reducible loss (ie D_{KL}) in nats/image for other resolutions. We find a number of additional scaling laws in specific domains: (a) we identify a scaling relation for the mutual information between captions and images in multimodal models, and show how to answer the question "Is a picture worth a thousand words?"; (b) in the case of mathematical problem solving, we identify scaling laws for model performance when extrapolating beyond the training distribution; (c) we finetune generative image models for ImageNet classification and find smooth scaling of the classification loss and error rate, even as the generative loss levels off. Taken together, these results strengthen the case that scaling laws have important implications for neural network performance, including on downstream tasks.

  • 19 authors
·
Oct 27, 2020

Mathematical modelling of flow and adsorption in a gas chromatograph

In this paper, a mathematical model is developed to describe the evolution of the concentration of compounds through a gas chromatography column. The model couples mass balances and kinetic equations for all components. Both single and multiple-component cases are considered with constant or variable velocity. Non-dimensionalisation indicates the small effect of diffusion. The system where diffusion is neglected is analysed using Laplace transforms. In the multiple-component case, it is demonstrated that the competition between the compounds is negligible and the equations may be decoupled. This reduces the problem to solving a single integral equation to determine the concentration profile for all components (since they are scaled versions of each other). For a given analyte, we then only two parameters need to be fitted to the data. To verify this approach, the full governing equations are also solved numerically using the finite difference method and a global adaptive quadrature method to integrate the Laplace transformation. Comparison with the Laplace solution verifies the high degree of accuracy of the simpler Laplace form. The Laplace solution is then verified against experimental data from BTEX chromatography. This novel method, which involves solving a single equation and fitting parameters in pairs for individual components, is highly efficient. It is significantly faster and simpler than the full numerical solution and avoids the computationally expensive methods that would normally be used to fit all curves at the same time.

  • 5 authors
·
Oct 7, 2024

Chaos as an interpretable benchmark for forecasting and data-driven modelling

The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.

  • 1 authors
·
Oct 11, 2021

Stochastic Interpolants: A Unifying Framework for Flows and Diffusions

A class of generative models that unifies flow-based and diffusion-based methods is introduced. These models extend the framework proposed in Albergo & Vanden-Eijnden (2023), enabling the use of a broad class of continuous-time stochastic processes called `stochastic interpolants' to bridge any two arbitrary probability density functions exactly in finite time. These interpolants are built by combining data from the two prescribed densities with an additional latent variable that shapes the bridge in a flexible way. The time-dependent probability density function of the stochastic interpolant is shown to satisfy a first-order transport equation as well as a family of forward and backward Fokker-Planck equations with tunable diffusion coefficient. Upon consideration of the time evolution of an individual sample, this viewpoint immediately leads to both deterministic and stochastic generative models based on probability flow equations or stochastic differential equations with an adjustable level of noise. The drift coefficients entering these models are time-dependent velocity fields characterized as the unique minimizers of simple quadratic objective functions, one of which is a new objective for the score of the interpolant density. We show that minimization of these quadratic objectives leads to control of the likelihood for generative models built upon stochastic dynamics, while likelihood control for deterministic dynamics is more stringent. We also discuss connections with other methods such as score-based diffusion models, stochastic localization processes, probabilistic denoising techniques, and rectifying flows. In addition, we demonstrate that stochastic interpolants recover the Schr\"odinger bridge between the two target densities when explicitly optimizing over the interpolant. Finally, algorithmic aspects are discussed and the approach is illustrated on numerical examples.

  • 3 authors
·
Mar 15, 2023