new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 8

Production of Categorical Data Verifying Differential Privacy: Conception and Applications to Machine Learning

Private and public organizations regularly collect and analyze digitalized data about their associates, volunteers, clients, etc. However, because most personal data are sensitive, there is a key challenge in designing privacy-preserving systems. To tackle privacy concerns, research communities have proposed different methods to preserve privacy, with Differential privacy (DP) standing out as a formal definition that allows quantifying the privacy-utility trade-off. Besides, with the local DP (LDP) model, users can sanitize their data locally before transmitting it to the server. The objective of this thesis is thus two-fold: O_1) To improve the utility and privacy in multiple frequency estimates under LDP guarantees, which is fundamental to statistical learning. And O_2) To assess the privacy-utility trade-off of machine learning (ML) models trained over differentially private data. For O_1, we first tackled the problem from two "multiple" perspectives, i.e., multiple attributes and multiple collections throughout time, while focusing on utility. Secondly, we focused our attention on the multiple attributes aspect only, in which we proposed a solution focusing on privacy while preserving utility. In both cases, we demonstrate through analytical and experimental validations the advantages of our proposed solutions over state-of-the-art LDP protocols. For O_2, we empirically evaluated ML-based solutions designed to solve real-world problems while ensuring DP guarantees. Indeed, we mainly used the input data perturbation setting from the privacy-preserving ML literature. This is the situation in which the whole dataset is sanitized independently and, thus, we implemented LDP algorithms from the perspective of the centralized data owner. In all cases, we concluded that differentially private ML models achieve nearly the same utility metrics as non-private ones.

  • 1 authors
·
Apr 2, 2022

The Sum Leaks More Than Its Parts: Compositional Privacy Risks and Mitigations in Multi-Agent Collaboration

As large language models (LLMs) become integral to multi-agent systems, new privacy risks emerge that extend beyond memorization, direct inference, or single-turn evaluations. In particular, seemingly innocuous responses, when composed across interactions, can cumulatively enable adversaries to recover sensitive information, a phenomenon we term compositional privacy leakage. We present the first systematic study of such compositional privacy leaks and possible mitigation methods in multi-agent LLM systems. First, we develop a framework that models how auxiliary knowledge and agent interactions jointly amplify privacy risks, even when each response is benign in isolation. Next, to mitigate this, we propose and evaluate two defense strategies: (1) Theory-of-Mind defense (ToM), where defender agents infer a questioner's intent by anticipating how their outputs may be exploited by adversaries, and (2) Collaborative Consensus Defense (CoDef), where responder agents collaborate with peers who vote based on a shared aggregated state to restrict sensitive information spread. Crucially, we balance our evaluation across compositions that expose sensitive information and compositions that yield benign inferences. Our experiments quantify how these defense strategies differ in balancing the privacy-utility trade-off. We find that while chain-of-thought alone offers limited protection to leakage (~39% sensitive blocking rate), our ToM defense substantially improves sensitive query blocking (up to 97%) but can reduce benign task success. CoDef achieves the best balance, yielding the highest Balanced Outcome (79.8%), highlighting the benefit of combining explicit reasoning with defender collaboration. Together, our results expose a new class of risks in collaborative LLM deployments and provide actionable insights for designing safeguards against compositional, context-driven privacy leakage.

  • 3 authors
·
Sep 16 2

Rethinking Privacy in Machine Learning Pipelines from an Information Flow Control Perspective

Modern machine learning systems use models trained on ever-growing corpora. Typically, metadata such as ownership, access control, or licensing information is ignored during training. Instead, to mitigate privacy risks, we rely on generic techniques such as dataset sanitization and differentially private model training, with inherent privacy/utility trade-offs that hurt model performance. Moreover, these techniques have limitations in scenarios where sensitive information is shared across multiple participants and fine-grained access control is required. By ignoring metadata, we therefore miss an opportunity to better address security, privacy, and confidentiality challenges. In this paper, we take an information flow control perspective to describe machine learning systems, which allows us to leverage metadata such as access control policies and define clear-cut privacy and confidentiality guarantees with interpretable information flows. Under this perspective, we contrast two different approaches to achieve user-level non-interference: 1) fine-tuning per-user models, and 2) retrieval augmented models that access user-specific datasets at inference time. We compare these two approaches to a trivially non-interfering zero-shot baseline using a public model and to a baseline that fine-tunes this model on the whole corpus. We evaluate trained models on two datasets of scientific articles and demonstrate that retrieval augmented architectures deliver the best utility, scalability, and flexibility while satisfying strict non-interference guarantees.

  • 9 authors
·
Nov 27, 2023

A Parallel Region-Adaptive Differential Privacy Framework for Image Pixelization

The widespread deployment of high-resolution visual sensing systems, coupled with the rise of foundation models, has amplified privacy risks in video-based applications. Differentially private pixelization offers mathematically guaranteed protection for visual data through grid-based noise addition, but challenges remain in preserving task-relevant fidelity, achieving scalability, and enabling efficient real-time deployment. To address this, we propose a novel parallel, region-adaptive pixelization framework that combines the theoretical rigor of differential privacy with practical efficiency. Our method adaptively adjusts grid sizes and noise scales based on regional complexity, leveraging GPU parallelism to achieve significant runtime acceleration compared to the classical baseline. A lightweight storage scheme is introduced by retaining only essential noisy statistics, significantly reducing space overhead. Formal privacy analysis is provided under the Laplace mechanism and parallel composition theorem. Extensive experiments on the PETS, Venice-2, and PPM-100 datasets demonstrate favorable privacy-utility trade-offs and significant runtime/storage reductions. A face re-identification attack experiment on CelebA further confirms the method's effectiveness in preventing identity inference. This validates its suitability for real-time privacy-critical applications such as elderly care, smart home monitoring, driver behavior analysis, and crowd behavior monitoring.

  • 1 authors
·
Nov 6

DualTAP: A Dual-Task Adversarial Protector for Mobile MLLM Agents

The reliance of mobile GUI agents on Multimodal Large Language Models (MLLMs) introduces a severe privacy vulnerability: screenshots containing Personally Identifiable Information (PII) are often sent to untrusted, third-party routers. These routers can exploit their own MLLMs to mine this data, violating user privacy. Existing privacy perturbations fail the critical dual challenge of this scenario: protecting PII from the router's MLLM while simultaneously preserving task utility for the agent's MLLM. To address this gap, we propose the Dual-Task Adversarial Protector (DualTAP), a novel framework that, for the first time, explicitly decouples these conflicting objectives. DualTAP trains a lightweight generator using two key innovations: (i) a contrastive attention module that precisely identifies and targets only the PII-sensitive regions, and (ii) a dual-task adversarial objective that simultaneously minimizes a task-preservation loss (to maintain agent utility) and a privacy-interference loss (to suppress PII leakage). To facilitate this study, we introduce PrivScreen, a new dataset of annotated mobile screenshots designed specifically for this dual-task evaluation. Comprehensive experiments on six diverse MLLMs (e.g., GPT-5) demonstrate DualTAP's state-of-the-art protection. It reduces the average privacy leakage rate by 31.6 percentage points (a 3.0x relative improvement) while, critically, maintaining an 80.8% task success rate - a negligible drop from the 83.6% unprotected baseline. DualTAP presents the first viable solution to the privacy-utility trade-off in mobile MLLM agents.

  • 9 authors
·
Nov 17

Efficiently Computing Similarities to Private Datasets

Many methods in differentially private model training rely on computing the similarity between a query point (such as public or synthetic data) and private data. We abstract out this common subroutine and study the following fundamental algorithmic problem: Given a similarity function f and a large high-dimensional private dataset X subset R^d, output a differentially private (DP) data structure which approximates sum_{x in X} f(x,y) for any query y. We consider the cases where f is a kernel function, such as f(x,y) = e^{-|x-y|_2^2/sigma^2} (also known as DP kernel density estimation), or a distance function such as f(x,y) = |x-y|_2, among others. Our theoretical results improve upon prior work and give better privacy-utility trade-offs as well as faster query times for a wide range of kernels and distance functions. The unifying approach behind our results is leveraging `low-dimensional structures' present in the specific functions f that we study, using tools such as provable dimensionality reduction, approximation theory, and one-dimensional decomposition of the functions. Our algorithms empirically exhibit improved query times and accuracy over prior state of the art. We also present an application to DP classification. Our experiments demonstrate that the simple methodology of classifying based on average similarity is orders of magnitude faster than prior DP-SGD based approaches for comparable accuracy.

  • 5 authors
·
Mar 13, 2024

A New Federated Learning Framework Against Gradient Inversion Attacks

Federated Learning (FL) aims to protect data privacy by enabling clients to collectively train machine learning models without sharing their raw data. However, recent studies demonstrate that information exchanged during FL is subject to Gradient Inversion Attacks (GIA) and, consequently, a variety of privacy-preserving methods have been integrated into FL to thwart such attacks, such as Secure Multi-party Computing (SMC), Homomorphic Encryption (HE), and Differential Privacy (DP). Despite their ability to protect data privacy, these approaches inherently involve substantial privacy-utility trade-offs. By revisiting the key to privacy exposure in FL under GIA, which lies in the frequent sharing of model gradients that contain private data, we take a new perspective by designing a novel privacy preserve FL framework that effectively ``breaks the direct connection'' between the shared parameters and the local private data to defend against GIA. Specifically, we propose a Hypernetwork Federated Learning (HyperFL) framework that utilizes hypernetworks to generate the parameters of the local model and only the hypernetwork parameters are uploaded to the server for aggregation. Theoretical analyses demonstrate the convergence rate of the proposed HyperFL, while extensive experimental results show the privacy-preserving capability and comparable performance of HyperFL. Code is available at https://github.com/Pengxin-Guo/HyperFL.

  • 7 authors
·
Dec 9, 2024 2

TeD-SPAD: Temporal Distinctiveness for Self-supervised Privacy-preservation for video Anomaly Detection

Video anomaly detection (VAD) without human monitoring is a complex computer vision task that can have a positive impact on society if implemented successfully. While recent advances have made significant progress in solving this task, most existing approaches overlook a critical real-world concern: privacy. With the increasing popularity of artificial intelligence technologies, it becomes crucial to implement proper AI ethics into their development. Privacy leakage in VAD allows models to pick up and amplify unnecessary biases related to people's personal information, which may lead to undesirable decision making. In this paper, we propose TeD-SPAD, a privacy-aware video anomaly detection framework that destroys visual private information in a self-supervised manner. In particular, we propose the use of a temporally-distinct triplet loss to promote temporally discriminative features, which complements current weakly-supervised VAD methods. Using TeD-SPAD, we achieve a positive trade-off between privacy protection and utility anomaly detection performance on three popular weakly supervised VAD datasets: UCF-Crime, XD-Violence, and ShanghaiTech. Our proposed anonymization model reduces private attribute prediction by 32.25% while only reducing frame-level ROC AUC on the UCF-Crime anomaly detection dataset by 3.69%. Project Page: https://joefioresi718.github.io/TeD-SPAD_webpage/

  • 3 authors
·
Aug 21, 2023

Auditing and Generating Synthetic Data with Controllable Trust Trade-offs

Data collected from the real world tends to be biased, unbalanced, and at risk of exposing sensitive and private information. This reality has given rise to the idea of creating synthetic datasets to alleviate risk, bias, harm, and privacy concerns inherent in the real data. This concept relies on Generative AI models to produce unbiased, privacy-preserving synthetic data while being true to the real data. In this new paradigm, how can we tell if this approach delivers on its promises? We present an auditing framework that offers a holistic assessment of synthetic datasets and AI models trained on them, centered around bias and discrimination prevention, fidelity to the real data, utility, robustness, and privacy preservation. We showcase our framework by auditing multiple generative models on diverse use cases, including education, healthcare, banking, human resources, and across different modalities, from tabular, to time-series, to natural language. Our use cases demonstrate the importance of a holistic assessment in order to ensure compliance with socio-technical safeguards that regulators and policymakers are increasingly enforcing. For this purpose, we introduce the trust index that ranks multiple synthetic datasets based on their prescribed safeguards and their desired trade-offs. Moreover, we devise a trust-index-driven model selection and cross-validation procedure via auditing in the training loop that we showcase on a class of transformer models that we dub TrustFormers, across different modalities. This trust-driven model selection allows for controllable trust trade-offs in the resulting synthetic data. We instrument our auditing framework with workflows that connect different stakeholders from model development to audit and certification via a synthetic data auditing report.

  • 14 authors
·
Apr 21, 2023

Life of PII -- A PII Obfuscation Transformer

Protecting sensitive information is crucial in today's world of Large Language Models (LLMs) and data-driven services. One common method used to preserve privacy is by using data perturbation techniques to reduce overreaching utility of (sensitive) Personal Identifiable Information (PII) data while maintaining its statistical and semantic properties. Data perturbation methods often result in significant information loss, making them impractical for use. In this paper, we propose 'Life of PII', a novel Obfuscation Transformer framework for transforming PII into faux-PII while preserving the original information, intent, and context as much as possible. Our approach includes an API to interface with the given document, a configuration-based obfuscator, and a model based on the Transformer architecture, which has shown high context preservation and performance in natural language processing tasks and LLMs. Our Transformer-based approach learns mapping between the original PII and its transformed faux-PII representation, which we call "obfuscated" data. Our experiments demonstrate that our method, called Life of PII, outperforms traditional data perturbation techniques in terms of both utility preservation and privacy protection. We show that our approach can effectively reduce utility loss while preserving the original information, offering greater flexibility in the trade-off between privacy protection and data utility. Our work provides a solution for protecting PII in various real-world applications.

  • 3 authors
·
May 16, 2023

Fair Play for Individuals, Foul Play for Groups? Auditing Anonymization's Impact on ML Fairness

Machine learning (ML) algorithms are heavily based on the availability of training data, which, depending on the domain, often includes sensitive information about data providers. This raises critical privacy concerns. Anonymization techniques have emerged as a practical solution to address these issues by generalizing features or suppressing data to make it more difficult to accurately identify individuals. Although recent studies have shown that privacy-enhancing technologies can influence ML predictions across different subgroups, thus affecting fair decision-making, the specific effects of anonymization techniques, such as k-anonymity, ell-diversity, and t-closeness, on ML fairness remain largely unexplored. In this work, we systematically audit the impact of anonymization techniques on ML fairness, evaluating both individual and group fairness. Our quantitative study reveals that anonymization can degrade group fairness metrics by up to fourfold. Conversely, similarity-based individual fairness metrics tend to improve under stronger anonymization, largely as a result of increased input homogeneity. By analyzing varying levels of anonymization across diverse privacy settings and data distributions, this study provides critical insights into the trade-offs between privacy, fairness, and utility, offering actionable guidelines for responsible AI development. Our code is publicly available at: https://github.com/hharcolezi/anonymity-impact-fairness.

  • 4 authors
·
May 12

Dropout is NOT All You Need to Prevent Gradient Leakage

Gradient inversion attacks on federated learning systems reconstruct client training data from exchanged gradient information. To defend against such attacks, a variety of defense mechanisms were proposed. However, they usually lead to an unacceptable trade-off between privacy and model utility. Recent observations suggest that dropout could mitigate gradient leakage and improve model utility if added to neural networks. Unfortunately, this phenomenon has not been systematically researched yet. In this work, we thoroughly analyze the effect of dropout on iterative gradient inversion attacks. We find that state of the art attacks are not able to reconstruct the client data due to the stochasticity induced by dropout during model training. Nonetheless, we argue that dropout does not offer reliable protection if the dropout induced stochasticity is adequately modeled during attack optimization. Consequently, we propose a novel Dropout Inversion Attack (DIA) that jointly optimizes for client data and dropout masks to approximate the stochastic client model. We conduct an extensive systematic evaluation of our attack on four seminal model architectures and three image classification datasets of increasing complexity. We find that our proposed attack bypasses the protection seemingly induced by dropout and reconstructs client data with high fidelity. Our work demonstrates that privacy inducing changes to model architectures alone cannot be assumed to reliably protect from gradient leakage and therefore should be combined with complementary defense mechanisms.

  • 3 authors
·
Aug 12, 2022

Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset

Machine unlearning has emerged as an effective strategy for forgetting specific information in the training data. However, with the increasing integration of visual data, privacy concerns in Vision Language Models (VLMs) remain underexplored. To address this, we introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms under the Right to be Forgotten setting. Specifically, we formulate the VLM unlearning task via constructing the Fictitious Facial Identity VQA dataset and apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels. In terms of evaluation, since VLM supports various forms of ways to ask questions with the same semantic meaning, we also provide robust evaluation metrics including membership inference attacks and carefully designed adversarial privacy attacks to evaluate the performance of algorithms. Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance, with significant trade-offs between model utility and forget quality. Furthermore, our findings also highlight the importance of privacy attacks for robust evaluations. We hope FIUBench will drive progress in developing more effective VLM unlearning algorithms.

  • 13 authors
·
Nov 5, 2024

DP-BREM: Differentially-Private and Byzantine-Robust Federated Learning with Client Momentum

Federated Learning (FL) allows multiple participating clients to train machine learning models collaboratively while keeping their datasets local and only exchanging the gradient or model updates with a coordinating server. Existing FL protocols are vulnerable to attacks that aim to compromise data privacy and/or model robustness. Recently proposed defenses focused on ensuring either privacy or robustness, but not both. In this paper, we focus on simultaneously achieving differential privacy (DP) and Byzantine robustness for cross-silo FL, based on the idea of learning from history. The robustness is achieved via client momentum, which averages the updates of each client over time, thus reducing the variance of the honest clients and exposing the small malicious perturbations of Byzantine clients that are undetectable in a single round but accumulate over time. In our initial solution DP-BREM, DP is achieved by adding noise to the aggregated momentum, and we account for the privacy cost from the momentum, which is different from the conventional DP-SGD that accounts for the privacy cost from the gradient. Since DP-BREM assumes a trusted server (who can obtain clients' local models or updates), we further develop the final solution called DP-BREM+, which achieves the same DP and robustness properties as DP-BREM without a trusted server by utilizing secure aggregation techniques, where DP noise is securely and jointly generated by the clients. Both theoretical analysis and experimental results demonstrate that our proposed protocols achieve better privacy-utility tradeoff and stronger Byzantine robustness than several baseline methods, under different DP budgets and attack settings.

  • 3 authors
·
Jun 21, 2023

SoK: Can Synthetic Images Replace Real Data? A Survey of Utility and Privacy of Synthetic Image Generation

Advances in generative models have transformed the field of synthetic image generation for privacy-preserving data synthesis (PPDS). However, the field lacks a comprehensive survey and comparison of synthetic image generation methods across diverse settings. In particular, when we generate synthetic images for the purpose of training a classifier, there is a pipeline of generation-sampling-classification which takes private training as input and outputs the final classifier of interest. In this survey, we systematically categorize existing image synthesis methods, privacy attacks, and mitigations along this generation-sampling-classification pipeline. To empirically compare diverse synthesis approaches, we provide a benchmark with representative generative methods and use model-agnostic membership inference attacks (MIAs) as a measure of privacy risk. Through this study, we seek to answer critical questions in PPDS: Can synthetic data effectively replace real data? Which release strategy balances utility and privacy? Do mitigations improve the utility-privacy tradeoff? Which generative models perform best across different scenarios? With a systematic evaluation of diverse methods, our study provides actionable insights into the utility-privacy tradeoffs of synthetic data generation methods and guides the decision on optimal data releasing strategies for real-world applications.

  • 4 authors
·
Jun 24

Mind the Third Eye! Benchmarking Privacy Awareness in MLLM-powered Smartphone Agents

Smartphones bring significant convenience to users but also enable devices to extensively record various types of personal information. Existing smartphone agents powered by Multimodal Large Language Models (MLLMs) have achieved remarkable performance in automating different tasks. However, as the cost, these agents are granted substantial access to sensitive users' personal information during this operation. To gain a thorough understanding of the privacy awareness of these agents, we present the first large-scale benchmark encompassing 7,138 scenarios to the best of our knowledge. In addition, for privacy context in scenarios, we annotate its type (e.g., Account Credentials), sensitivity level, and location. We then carefully benchmark seven available mainstream smartphone agents. Our results demonstrate that almost all benchmarked agents show unsatisfying privacy awareness (RA), with performance remaining below 60% even with explicit hints. Overall, closed-source agents show better privacy ability than open-source ones, and Gemini 2.0-flash achieves the best, achieving an RA of 67%. We also find that the agents' privacy detection capability is highly related to scenario sensitivity level, i.e., the scenario with a higher sensitivity level is typically more identifiable. We hope the findings enlighten the research community to rethink the unbalanced utility-privacy tradeoff about smartphone agents. Our code and benchmark are available at https://zhixin-l.github.io/SAPA-Bench.

  • 6 authors
·
Aug 26 6

Improving Robustness to Model Inversion Attacks via Mutual Information Regularization

This paper studies defense mechanisms against model inversion (MI) attacks -- a type of privacy attacks aimed at inferring information about the training data distribution given the access to a target machine learning model. Existing defense mechanisms rely on model-specific heuristics or noise injection. While being able to mitigate attacks, existing methods significantly hinder model performance. There remains a question of how to design a defense mechanism that is applicable to a variety of models and achieves better utility-privacy tradeoff. In this paper, we propose the Mutual Information Regularization based Defense (MID) against MI attacks. The key idea is to limit the information about the model input contained in the prediction, thereby limiting the ability of an adversary to infer the private training attributes from the model prediction. Our defense principle is model-agnostic and we present tractable approximations to the regularizer for linear regression, decision trees, and neural networks, which have been successfully attacked by prior work if not attached with any defenses. We present a formal study of MI attacks by devising a rigorous game-based definition and quantifying the associated information leakage. Our theoretical analysis sheds light on the inefficacy of DP in defending against MI attacks, which has been empirically observed in several prior works. Our experiments demonstrate that MID leads to state-of-the-art performance for a variety of MI attacks, target models and datasets.

  • 3 authors
·
Sep 11, 2020

A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic Data

Recent advances in synthetic data generation (SDG) have been hailed as a solution to the difficult problem of sharing sensitive data while protecting privacy. SDG aims to learn statistical properties of real data in order to generate "artificial" data that are structurally and statistically similar to sensitive data. However, prior research suggests that inference attacks on synthetic data can undermine privacy, but only for specific outlier records. In this work, we introduce a new attribute inference attack against synthetic data. The attack is based on linear reconstruction methods for aggregate statistics, which target all records in the dataset, not only outliers. We evaluate our attack on state-of-the-art SDG algorithms, including Probabilistic Graphical Models, Generative Adversarial Networks, and recent differentially private SDG mechanisms. By defining a formal privacy game, we show that our attack can be highly accurate even on arbitrary records, and that this is the result of individual information leakage (as opposed to population-level inference). We then systematically evaluate the tradeoff between protecting privacy and preserving statistical utility. Our findings suggest that current SDG methods cannot consistently provide sufficient privacy protection against inference attacks while retaining reasonable utility. The best method evaluated, a differentially private SDG mechanism, can provide both protection against inference attacks and reasonable utility, but only in very specific settings. Lastly, we show that releasing a larger number of synthetic records can improve utility but at the cost of making attacks far more effective.

  • 3 authors
·
Jan 24, 2023

Efficient Differentially Private Fine-Tuning of LLMs via Reinforcement Learning

The tension between data privacy and model utility has become the defining bottleneck for the practical deployment of large language models (LLMs) trained on sensitive corpora including healthcare. Differentially private stochastic gradient descent (DP-SGD) guarantees formal privacy, yet it does so at a pronounced cost: gradients are forcibly clipped and perturbed with noise, degrading sample efficiency and final accuracy. Numerous variants have been proposed to soften this trade-off, but they all share a handicap: their control knobs are hard-coded, global, and oblivious to the evolving optimization landscape. Consequently, practitioners are forced either to over-spend privacy budget in pursuit of utility, or to accept mediocre models in order to stay within privacy constraints. We present RLDP, the first framework to cast DP optimization itself as a closed-loop control problem amenable to modern deep reinforcement learning (RL). RLDP continuously senses rich statistics of the learning dynamics and acts by selecting fine-grained per parameter gradient-clipping thresholds as well as the magnitude of injected Gaussian noise. A soft actor-critic (SAC) hyper-policy is trained online during language model fine-tuning; it learns, from scratch, how to allocate the privacy budget where it matters and when it matters. Across more than 1,600 ablation experiments on GPT2-small, Llama-1B, Llama-3B, and Mistral-7B, RLDP delivers perplexity reductions of 1.3-30.5% (mean 5.4%) and an average 5.6% downstream utility gain. RLDP reaches each baseline's final utility after only 13-43% of the gradient-update budget (mean speed-up 71%), all while honoring the same (epsilon, delta)-DP contract and exhibiting equal or lower susceptibility to membership-inference and canary-extraction attacks.

  • 5 authors
·
Jul 30 2

Trusted Machine Learning Models Unlock Private Inference for Problems Currently Infeasible with Cryptography

We often interact with untrusted parties. Prioritization of privacy can limit the effectiveness of these interactions, as achieving certain goals necessitates sharing private data. Traditionally, addressing this challenge has involved either seeking trusted intermediaries or constructing cryptographic protocols that restrict how much data is revealed, such as multi-party computations or zero-knowledge proofs. While significant advances have been made in scaling cryptographic approaches, they remain limited in terms of the size and complexity of applications they can be used for. In this paper, we argue that capable machine learning models can fulfill the role of a trusted third party, thus enabling secure computations for applications that were previously infeasible. In particular, we describe Trusted Capable Model Environments (TCMEs) as an alternative approach for scaling secure computation, where capable machine learning model(s) interact under input/output constraints, with explicit information flow control and explicit statelessness. This approach aims to achieve a balance between privacy and computational efficiency, enabling private inference where classical cryptographic solutions are currently infeasible. We describe a number of use cases that are enabled by TCME, and show that even some simple classic cryptographic problems can already be solved with TCME. Finally, we outline current limitations and discuss the path forward in implementing them.

  • 7 authors
·
Jan 15 2

CTAB-GAN+: Enhancing Tabular Data Synthesis

While data sharing is crucial for knowledge development, privacy concerns and strict regulation (e.g., European General Data Protection Regulation (GDPR)) limit its full effectiveness. Synthetic tabular data emerges as alternative to enable data sharing while fulfilling regulatory and privacy constraints. State-of-the-art tabular data synthesizers draw methodologies from Generative Adversarial Networks (GAN). As GANs improve the synthesized data increasingly resemble the real data risking to leak privacy. Differential privacy (DP) provides theoretical guarantees on privacy loss but degrades data utility. Striking the best trade-off remains yet a challenging research question. We propose CTAB-GAN+ a novel conditional tabular GAN. CTAB-GAN+ improves upon state-of-the-art by (i) adding downstream losses to conditional GANs for higher utility synthetic data in both classification and regression domains; (ii) using Wasserstein loss with gradient penalty for better training convergence; (iii) introducing novel encoders targeting mixed continuous-categorical variables and variables with unbalanced or skewed data; and (iv) training with DP stochastic gradient descent to impose strict privacy guarantees. We extensively evaluate CTAB-GAN+ on data similarity and analysis utility against state-of-the-art tabular GANs. The results show that CTAB-GAN+ synthesizes privacy-preserving data with at least 48.16% higher utility across multiple datasets and learning tasks under different privacy budgets.

  • 4 authors
·
Apr 1, 2022

DIFF2: Differential Private Optimization via Gradient Differences for Nonconvex Distributed Learning

Differential private optimization for nonconvex smooth objective is considered. In the previous work, the best known utility bound is widetilde O(d/(nvarepsilon_DP)) in terms of the squared full gradient norm, which is achieved by Differential Private Gradient Descent (DP-GD) as an instance, where n is the sample size, d is the problem dimensionality and varepsilon_DP is the differential privacy parameter. To improve the best known utility bound, we propose a new differential private optimization framework called DIFF2 (DIFFerential private optimization via gradient DIFFerences) that constructs a differential private global gradient estimator with possibly quite small variance based on communicated gradient differences rather than gradients themselves. It is shown that DIFF2 with a gradient descent subroutine achieves the utility of widetilde O(d^{2/3}/(nvarepsilon_DP)^{4/3}), which can be significantly better than the previous one in terms of the dependence on the sample size n. To the best of our knowledge, this is the first fundamental result to improve the standard utility widetilde O(d/(nvarepsilon_DP)) for nonconvex objectives. Additionally, a more computational and communication efficient subroutine is combined with DIFF2 and its theoretical analysis is also given. Numerical experiments are conducted to validate the superiority of DIFF2 framework.

  • 2 authors
·
Feb 8, 2023

Improving the utility of locally differentially private protocols for longitudinal and multidimensional frequency estimates

This paper investigates the problem of collecting multidimensional data throughout time (i.e., longitudinal studies) for the fundamental task of frequency estimation under Local Differential Privacy (LDP) guarantees. Contrary to frequency estimation of a single attribute, the multidimensional aspect demands particular attention to the privacy budget. Besides, when collecting user statistics longitudinally, privacy progressively degrades. Indeed, the "multiple" settings in combination (i.e., many attributes and several collections throughout time) impose several challenges, for which this paper proposes the first solution for frequency estimates under LDP. To tackle these issues, we extend the analysis of three state-of-the-art LDP protocols (Generalized Randomized Response -- GRR, Optimized Unary Encoding -- OUE, and Symmetric Unary Encoding -- SUE) for both longitudinal and multidimensional data collections. While the known literature uses OUE and SUE for two rounds of sanitization (a.k.a. memoization), i.e., L-OUE and L-SUE, respectively, we analytically and experimentally show that starting with OUE and then with SUE provides higher data utility (i.e., L-OSUE). Also, for attributes with small domain sizes, we propose Longitudinal GRR (L-GRR), which provides higher utility than the other protocols based on unary encoding. Last, we also propose a new solution named Adaptive LDP for LOngitudinal and Multidimensional FREquency Estimates (ALLOMFREE), which randomly samples a single attribute to be sent with the whole privacy budget and adaptively selects the optimal protocol, i.e., either L-GRR or L-OSUE. As shown in the results, ALLOMFREE consistently and considerably outperforms the state-of-the-art L-SUE and L-OUE protocols in the quality of the frequency estimates.

  • 4 authors
·
Nov 8, 2021

Towards integration of Privacy Enhancing Technologies in Explainable Artificial Intelligence

Explainable Artificial Intelligence (XAI) is a crucial pathway in mitigating the risk of non-transparency in the decision-making process of black-box Artificial Intelligence (AI) systems. However, despite the benefits, XAI methods are found to leak the privacy of individuals whose data is used in training or querying the models. Researchers have demonstrated privacy attacks that exploit explanations to infer sensitive personal information of individuals. Currently there is a lack of defenses against known privacy attacks targeting explanations when vulnerable XAI are used in production and machine learning as a service system. To address this gap, in this article, we explore Privacy Enhancing Technologies (PETs) as a defense mechanism against attribute inference on explanations provided by feature-based XAI methods. We empirically evaluate 3 types of PETs, namely synthetic training data, differentially private training and noise addition, on two categories of feature-based XAI. Our evaluation determines different responses from the mitigation methods and side-effects of PETs on other system properties such as utility and performance. In the best case, PETs integration in explanations reduced the risk of the attack by 49.47%, while maintaining model utility and explanation quality. Through our evaluation, we identify strategies for using PETs in XAI for maximizing benefits and minimizing the success of this privacy attack on sensitive personal information.

  • 4 authors
·
Jul 6

From Principle to Practice: Vertical Data Minimization for Machine Learning

Aiming to train and deploy predictive models, organizations collect large amounts of detailed client data, risking the exposure of private information in the event of a breach. To mitigate this, policymakers increasingly demand compliance with the data minimization (DM) principle, restricting data collection to only that data which is relevant and necessary for the task. Despite regulatory pressure, the problem of deploying machine learning models that obey DM has so far received little attention. In this work, we address this challenge in a comprehensive manner. We propose a novel vertical DM (vDM) workflow based on data generalization, which by design ensures that no full-resolution client data is collected during training and deployment of models, benefiting client privacy by reducing the attack surface in case of a breach. We formalize and study the corresponding problem of finding generalizations that both maximize data utility and minimize empirical privacy risk, which we quantify by introducing a diverse set of policy-aligned adversarial scenarios. Finally, we propose a range of baseline vDM algorithms, as well as Privacy-aware Tree (PAT), an especially effective vDM algorithm that outperforms all baselines across several settings. We plan to release our code as a publicly available library, helping advance the standardization of DM for machine learning. Overall, we believe our work can help lay the foundation for further exploration and adoption of DM principles in real-world applications.

  • 4 authors
·
Nov 17, 2023

Balancing Transparency and Risk: The Security and Privacy Risks of Open-Source Machine Learning Models

The field of artificial intelligence (AI) has experienced remarkable progress in recent years, driven by the widespread adoption of open-source machine learning models in both research and industry. Considering the resource-intensive nature of training on vast datasets, many applications opt for models that have already been trained. Hence, a small number of key players undertake the responsibility of training and publicly releasing large pre-trained models, providing a crucial foundation for a wide range of applications. However, the adoption of these open-source models carries inherent privacy and security risks that are often overlooked. To provide a concrete example, an inconspicuous model may conceal hidden functionalities that, when triggered by specific input patterns, can manipulate the behavior of the system, such as instructing self-driving cars to ignore the presence of other vehicles. The implications of successful privacy and security attacks encompass a broad spectrum, ranging from relatively minor damage like service interruptions to highly alarming scenarios, including physical harm or the exposure of sensitive user data. In this work, we present a comprehensive overview of common privacy and security threats associated with the use of open-source models. By raising awareness of these dangers, we strive to promote the responsible and secure use of AI systems.

  • 3 authors
·
Aug 18, 2023

A Differentially Private Kaplan-Meier Estimator for Privacy-Preserving Survival Analysis

This paper presents a differentially private approach to Kaplan-Meier estimation that achieves accurate survival probability estimates while safeguarding individual privacy. The Kaplan-Meier estimator is widely used in survival analysis to estimate survival functions over time, yet applying it to sensitive datasets, such as clinical records, risks revealing private information. To address this, we introduce a novel algorithm that applies time-indexed Laplace noise, dynamic clipping, and smoothing to produce a privacy-preserving survival curve while maintaining the cumulative structure of the Kaplan-Meier estimator. By scaling noise over time, the algorithm accounts for decreasing sensitivity as fewer individuals remain at risk, while dynamic clipping and smoothing prevent extreme values and reduce fluctuations, preserving the natural shape of the survival curve. Our results, evaluated on the NCCTG lung cancer dataset, show that the proposed method effectively lowers root mean squared error (RMSE) and enhances accuracy across privacy budgets (epsilon). At epsilon = 10, the algorithm achieves an RMSE as low as 0.04, closely approximating non-private estimates. Additionally, membership inference attacks reveal that higher epsilon values (e.g., epsilon geq 6) significantly reduce influential points, particularly at higher thresholds, lowering susceptibility to inference attacks. These findings confirm that our approach balances privacy and utility, advancing privacy-preserving survival analysis.

  • 3 authors
·
Dec 6, 2024

Random Sampling Plus Fake Data: Multidimensional Frequency Estimates With Local Differential Privacy

With local differential privacy (LDP), users can privatize their data and thus guarantee privacy properties before transmitting it to the server (a.k.a. the aggregator). One primary objective of LDP is frequency (or histogram) estimation, in which the aggregator estimates the number of users for each possible value. In practice, when a study with rich content on a population is desired, the interest is in the multiple attributes of the population, that is to say, in multidimensional data (d geq 2). However, contrary to the problem of frequency estimation of a single attribute (the majority of the works), the multidimensional aspect imposes to pay particular attention to the privacy budget. This one can indeed grow extremely quickly due to the composition theorem. To the authors' knowledge, two solutions seem to stand out for this task: 1) splitting the privacy budget for each attribute, i.e., send each value with fracε{d}-LDP (Spl), and 2) random sampling a single attribute and spend all the privacy budget to send it with ε-LDP (Smp). Although Smp adds additional sampling error, it has proven to provide higher data utility than the former Spl solution. However, we argue that aggregators (who are also seen as attackers) are aware of the sampled attribute and its LDP value, which is protected by a "less strict" e^ε probability bound (rather than e^{ε/d}). This way, we propose a solution named Random Sampling plus Fake Data (RS+FD), which allows creating uncertainty over the sampled attribute by generating fake data for each non-sampled attribute; RS+FD further benefits from amplification by sampling. We theoretically and experimentally validate our proposed solution on both synthetic and real-world datasets to show that RS+FD achieves nearly the same or better utility than the state-of-the-art Smp solution.

  • 4 authors
·
Sep 15, 2021

A False Sense of Safety: Unsafe Information Leakage in 'Safe' AI Responses

Large Language Models (LLMs) are vulnerable to jailbreaksx2013methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.

  • 5 authors
·
Jul 2, 2024 1

Demystifying Local and Global Fairness Trade-offs in Federated Learning Using Partial Information Decomposition

This work presents an information-theoretic perspective to group fairness trade-offs in federated learning (FL) with respect to sensitive attributes, such as gender, race, etc. Existing works often focus on either global fairness (overall disparity of the model across all clients) or local fairness (disparity of the model at each client), without always considering their trade-offs. There is a lack of understanding regarding the interplay between global and local fairness in FL, particularly under data heterogeneity, and if and when one implies the other. To address this gap, we leverage a body of work in information theory called partial information decomposition (PID), which first identifies three sources of unfairness in FL, namely, Unique Disparity, Redundant Disparity, and Masked Disparity. We demonstrate how these three disparities contribute to global and local fairness using canonical examples. This decomposition helps us derive fundamental limits on the trade-off between global and local fairness, highlighting where they agree or disagree. We introduce the Accuracy and Global-Local Fairness Optimality Problem (AGLFOP), a convex optimization that defines the theoretical limits of accuracy and fairness trade-offs, identifying the best possible performance any FL strategy can attain given a dataset and client distribution. We also present experimental results on synthetic datasets and the ADULT dataset to support our theoretical findings.

  • 2 authors
·
Jul 20, 2023

Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies

Urban assessments often compress diverse needs into single scores, which can obscure minority perspectives. We present a community-centered study in Montreal (n=35; wheelchair users, seniors, LGBTQIA2+ residents, and immigrants). Participants rated 20 streets (accessibility, inclusivity, aesthetics, practicality) and ranked 7 images on 12 interview-elicited criteria. Disagreement patterns were systematic in our sample: wheelchair users diverged most on accessibility and practicality; LGBTQIA2+ participants emphasized inclusion and liveliness; seniors prioritized security. Group discussion reduced information gaps but not value conflicts; ratings conveyed intensity, while rankings forced trade-offs. We then formalize negotiative alignment, a transparent, budget-aware bargaining procedure, and pilot it with role-played stakeholder agents plus a neutral mediator. Relative to the best base design under the same public rubric, the negotiated package increased total utility (21.10 to 24.55), raised the worst-group utility (3.20 to 3.90), improved twentieth percentile satisfaction (0.86 to 1.00; min-max normalized within the scenario), and reduced inequality (Gini 0.036 to 0.025). Treating disagreement as signal and reporting worst-group outcomes alongside totals may help planners and AI practitioners surface trade-offs and preserve minority priorities while maintaining efficiency.

  • 3 authors
·
Mar 16

Learning to Attack: Uncovering Privacy Risks in Sequential Data Releases

Privacy concerns have become increasingly critical in modern AI and data science applications, where sensitive information is collected, analyzed, and shared across diverse domains such as healthcare, finance, and mobility. While prior research has focused on protecting privacy in a single data release, many real-world systems operate under sequential or continuous data publishing, where the same or related data are released over time. Such sequential disclosures introduce new vulnerabilities, as temporal correlations across releases may enable adversaries to infer sensitive information that remains hidden in any individual release. In this paper, we investigate whether an attacker can compromise privacy in sequential data releases by exploiting dependencies between consecutive publications, even when each individual release satisfies standard privacy guarantees. To this end, we propose a novel attack model that captures these sequential dependencies by integrating a Hidden Markov Model with a reinforcement learning-based bi-directional inference mechanism. This enables the attacker to leverage both earlier and later observations in the sequence to infer private information. We instantiate our framework in the context of trajectory data, demonstrating how an adversary can recover sensitive locations from sequential mobility datasets. Extensive experiments on Geolife, Porto Taxi, and SynMob datasets show that our model consistently outperforms baseline approaches that treat each release independently. The results reveal a fundamental privacy risk inherent to sequential data publishing, where individually protected releases can collectively leak sensitive information when analyzed temporally. These findings underscore the need for new privacy-preserving frameworks that explicitly model temporal dependencies, such as time-aware differential privacy or sequential data obfuscation strategies.

  • 3 authors
·
Oct 28

Fixed-Budget Differentially Private Best Arm Identification

We study best arm identification (BAI) in linear bandits in the fixed-budget regime under differential privacy constraints, when the arm rewards are supported on the unit interval. Given a finite budget T and a privacy parameter varepsilon>0, the goal is to minimise the error probability in finding the arm with the largest mean after T sampling rounds, subject to the constraint that the policy of the decision maker satisfies a certain {\em varepsilon-differential privacy} (varepsilon-DP) constraint. We construct a policy satisfying the varepsilon-DP constraint (called {\sc DP-BAI}) by proposing the principle of {\em maximum absolute determinants}, and derive an upper bound on its error probability. Furthermore, we derive a minimax lower bound on the error probability, and demonstrate that the lower and the upper bounds decay exponentially in T, with exponents in the two bounds matching order-wise in (a) the sub-optimality gaps of the arms, (b) varepsilon, and (c) the problem complexity that is expressible as the sum of two terms, one characterising the complexity of standard fixed-budget BAI (without privacy constraints), and the other accounting for the varepsilon-DP constraint. Additionally, we present some auxiliary results that contribute to the derivation of the lower bound on the error probability. These results, we posit, may be of independent interest and could prove instrumental in proving lower bounds on error probabilities in several other bandit problems. Whereas prior works provide results for BAI in the fixed-budget regime without privacy constraints or in the fixed-confidence regime with privacy constraints, our work fills the gap in the literature by providing the results for BAI in the fixed-budget regime under the varepsilon-DP constraint.

  • 4 authors
·
Jan 17, 2024

CryptoNite: Revealing the Pitfalls of End-to-End Private Inference at Scale

The privacy concerns of providing deep learning inference as a service have underscored the need for private inference (PI) protocols that protect users' data and the service provider's model using cryptographic methods. Recently proposed PI protocols have achieved significant reductions in PI latency by moving the computationally heavy homomorphic encryption (HE) parts to an offline/pre-compute phase. Paired with recent optimizations that tailor networks for PI, these protocols have achieved performance levels that are tantalizingly close to being practical. In this paper, we conduct a rigorous end-to-end characterization of PI protocols and optimization techniques and find that the current understanding of PI performance is overly optimistic. Specifically, we find that offline storage costs of garbled circuits (GC), a key cryptographic protocol used in PI, on user/client devices are prohibitively high and force much of the expensive offline HE computation to the online phase, resulting in a 10-1000times increase to PI latency. We propose a modified PI protocol that significantly reduces client-side storage costs for a small increase in online latency. Evaluated end-to-end, the modified protocol outperforms current protocols by reducing the mean PI latency by 4times for ResNet18 on TinyImageNet. We conclude with a discussion of several recently proposed PI optimizations in light of the findings and note many actually increase PI latency when evaluated from an end-to-end perspective.

  • 5 authors
·
Nov 3, 2021

Learning from Aggregate responses: Instance Level versus Bag Level Loss Functions

Due to the rise of privacy concerns, in many practical applications the training data is aggregated before being shared with the learner, in order to protect privacy of users' sensitive responses. In an aggregate learning framework, the dataset is grouped into bags of samples, where each bag is available only with an aggregate response, providing a summary of individuals' responses in that bag. In this paper, we study two natural loss functions for learning from aggregate responses: bag-level loss and the instance-level loss. In the former, the model is learnt by minimizing a loss between aggregate responses and aggregate model predictions, while in the latter the model aims to fit individual predictions to the aggregate responses. In this work, we show that the instance-level loss can be perceived as a regularized form of the bag-level loss. This observation lets us compare the two approaches with respect to bias and variance of the resulting estimators, and introduce a novel interpolating estimator which combines the two approaches. For linear regression tasks, we provide a precise characterization of the risk of the interpolating estimator in an asymptotic regime where the size of the training set grows in proportion to the features dimension. Our analysis allows us to theoretically understand the effect of different factors, such as bag size on the model prediction risk. In addition, we propose a mechanism for differentially private learning from aggregate responses and derive the optimal bag size in terms of prediction risk-privacy trade-off. We also carry out thorough experiments to corroborate our theory and show the efficacy of the interpolating estimator.

  • 5 authors
·
Jan 19, 2024

Differentially Private Sequential Learning

In a differentially private sequential learning setting, agents introduce endogenous noise into their actions to maintain privacy. Applying this to a standard sequential learning model leads to different outcomes for continuous vs. binary signals. For continuous signals with a nonzero privacy budget, we introduce a novel smoothed randomized response mechanism that adapts noise based on distance to a threshold, unlike traditional randomized response, which applies uniform noise. This enables agents' actions to better reflect both private signals and observed history, accelerating asymptotic learning speed to Theta_{epsilon}(log(n)), compared to Theta(log(n)) in the non-private regime where privacy budget is infinite. Moreover, in the non-private setting, the expected stopping time for the first correct decision and the number of incorrect actions diverge, meaning early agents may make mistakes for an unreasonably long period. In contrast, under a finite privacy budget epsilon in (0,1), both remain finite, highlighting a stark contrast between private and non-private learning. Learning with continuous signals in the private regime is more efficient, as smooth randomized response enhances the log-likelihood ratio over time, improving information aggregation. Conversely, for binary signals, differential privacy noise hinders learning, as agents tend to use a constant randomized response strategy before an information cascade forms, reducing action informativeness and hampering the overall process.

  • 2 authors
·
Feb 26

Subject Membership Inference Attacks in Federated Learning

Privacy attacks on Machine Learning (ML) models often focus on inferring the existence of particular data points in the training data. However, what the adversary really wants to know is if a particular individual's (subject's) data was included during training. In such scenarios, the adversary is more likely to have access to the distribution of a particular subject than actual records. Furthermore, in settings like cross-silo Federated Learning (FL), a subject's data can be embodied by multiple data records that are spread across multiple organizations. Nearly all of the existing private FL literature is dedicated to studying privacy at two granularities -- item-level (individual data records), and user-level (participating user in the federation), neither of which apply to data subjects in cross-silo FL. This insight motivates us to shift our attention from the privacy of data records to the privacy of data subjects, also known as subject-level privacy. We propose two novel black-box attacks for subject membership inference, of which one assumes access to a model after each training round. Using these attacks, we estimate subject membership inference risk on real-world data for single-party models as well as FL scenarios. We find our attacks to be extremely potent, even without access to exact training records, and using the knowledge of membership for a handful of subjects. To better understand the various factors that may influence subject privacy risk in cross-silo FL settings, we systematically generate several hundred synthetic federation configurations, varying properties of the data, model design and training, and the federation itself. Finally, we investigate the effectiveness of Differential Privacy in mitigating this threat.

  • 4 authors
·
Jun 7, 2022

Federated Heavy Hitter Analytics with Local Differential Privacy

Federated heavy hitter analytics enables service providers to better understand the preferences of cross-party users by analyzing the most frequent items. As with federated learning, it faces challenges of privacy concerns, statistical heterogeneity, and expensive communication. Local differential privacy (LDP), as the de facto standard for privacy-preserving data collection, solves the privacy challenge by letting each user perturb her data locally and report the sanitized version. However, in federated settings, applying LDP complicates the other two challenges, due to the deteriorated utility by the injected LDP noise or increasing communication/computation costs by perturbation mechanism. To tackle these problems, we propose a novel target-aligning prefix tree mechanism satisfying epsilon-LDP, for federated heavy hitter analytics. In particular, we propose an adaptive extension strategy to address the inconsistencies between covering necessary prefixes and estimating heavy hitters within a party to enhance the utility. We also present a consensus-based pruning strategy that utilizes noisy prior knowledge from other parties to further align the inconsistency between finding heavy hitters in each party and providing reasonable frequency information to identify the global ones. To the best of our knowledge, our study is the first solution to the federated heavy hitter analytics in a cross-party setting while satisfying the stringent epsilon-LDP. Comprehensive experiments on both real-world and synthetic datasets confirm the effectiveness of our proposed mechanism.

  • 3 authors
·
Dec 19, 2024

Generating Private Synthetic Data with Genetic Algorithms

We study the problem of efficiently generating differentially private synthetic data that approximate the statistical properties of an underlying sensitive dataset. In recent years, there has been a growing line of work that approaches this problem using first-order optimization techniques. However, such techniques are restricted to optimizing differentiable objectives only, severely limiting the types of analyses that can be conducted. For example, first-order mechanisms have been primarily successful in approximating statistical queries only in the form of marginals for discrete data domains. In some cases, one can circumvent such issues by relaxing the task's objective to maintain differentiability. However, even when possible, these approaches impose a fundamental limitation in which modifications to the minimization problem become additional sources of error. Therefore, we propose Private-GSD, a private genetic algorithm based on zeroth-order optimization heuristics that do not require modifying the original objective. As a result, it avoids the aforementioned limitations of first-order optimization. We empirically evaluate Private-GSD against baseline algorithms on data derived from the American Community Survey across a variety of statistics--otherwise known as statistical queries--both for discrete and real-valued attributes. We show that Private-GSD outperforms the state-of-the-art methods on non-differential queries while matching accuracy in approximating differentiable ones.

  • 4 authors
·
Jun 5, 2023