new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 19

Parameter-Efficient Fine-Tuning for Foundation Models

This survey delves into the realm of Parameter-Efficient Fine-Tuning (PEFT) within the context of Foundation Models (FMs). PEFT, a cost-effective fine-tuning technique, minimizes parameters and computational complexity while striving for optimal downstream task performance. FMs, like ChatGPT, DALL-E, and LLaVA specialize in language understanding, generative tasks, and multimodal tasks, trained on diverse datasets spanning text, images, and videos. The diversity of FMs guides various adaptation strategies for PEFT. Therefore, this survey aims to provide a comprehensive overview of PEFT techniques applied to diverse FMs and address critical gaps in understanding the techniques, trends, and applications. We start by providing a detailed development of FMs and PEFT. Subsequently, we systematically review the key categories and core mechanisms of PEFT across diverse FMs to offer a comprehensive understanding of trends. We also explore the most recent applications across various FMs to demonstrate the versatility of PEFT, shedding light on the integration of systematic PEFT methods with a range of FMs. Furthermore, we identify potential research and development directions for improving PEFTs in the future. This survey provides a valuable resource for both newcomers and experts seeking to understand and use the power of PEFT across FMs. All reviewed papers are listed at https://github.com/THUDM/Awesome-Parameter-Efficient-Fine-Tuning-for-Foundation-Models.

  • 6 authors
·
Jan 23

Seeing Voices: Generating A-Roll Video from Audio with Mirage

From professional filmmaking to user-generated content, creators and consumers have long recognized that the power of video depends on the harmonious integration of what we hear (the video's audio track) with what we see (the video's image sequence). Current approaches to video generation either ignore sound to focus on general-purpose but silent image sequence generation or address both visual and audio elements but focus on restricted application domains such as re-dubbing. We introduce Mirage, an audio-to-video foundation model that excels at generating realistic, expressive output imagery from scratch given an audio input. When integrated with existing methods for speech synthesis (text-to-speech, or TTS), Mirage results in compelling multimodal video. When trained on audio-video footage of people talking (A-roll) and conditioned on audio containing speech, Mirage generates video of people delivering a believable interpretation of the performance implicit in input audio. Our central technical contribution is a unified method for training self-attention-based audio-to-video generation models, either from scratch or given existing weights. This methodology allows Mirage to retain generality as an approach to audio-to-video generation while producing outputs of superior subjective quality to methods that incorporate audio-specific architectures or loss components specific to people, speech, or details of how images or audio are captured. We encourage readers to watch and listen to the results of Mirage for themselves (see paper and comments for links).

On the Power of the Weisfeiler-Leman Test for Graph Motif Parameters

Seminal research in the field of graph neural networks (GNNs) has revealed a direct correspondence between the expressive capabilities of GNNs and the k-dimensional Weisfeiler-Leman (kWL) test, a widely-recognized method for verifying graph isomorphism. This connection has reignited interest in comprehending the specific graph properties effectively distinguishable by the kWL test. A central focus of research in this field revolves around determining the least dimensionality k, for which kWL can discern graphs with different number of occurrences of a pattern graph P. We refer to such a least k as the WL-dimension of this pattern counting problem. This inquiry traditionally delves into two distinct counting problems related to patterns: subgraph counting and induced subgraph counting. Intriguingly, despite their initial appearance as separate challenges with seemingly divergent approaches, both of these problems are interconnected components of a more comprehensive problem: "graph motif parameters". In this paper, we provide a precise characterization of the WL-dimension of labeled graph motif parameters. As specific instances of this result, we obtain characterizations of the WL-dimension of the subgraph counting and induced subgraph counting problem for every labeled pattern P. We additionally demonstrate that in cases where the kWL test distinguishes between graphs with varying occurrences of a pattern P, the exact number of occurrences of P can be computed uniformly using only local information of the last layer of a corresponding GNN. We finally delve into the challenge of recognizing the WL-dimension of various graph parameters. We give a polynomial time algorithm for determining the WL-dimension of the subgraph counting problem for given pattern P, answering an open question from previous work.

  • 2 authors
·
Sep 29, 2023

Data Justice Stories: A Repository of Case Studies

The idea of "data justice" is of recent academic vintage. It has arisen over the past decade in Anglo-European research institutions as an attempt to bring together a critique of the power dynamics that underlie accelerating trends of datafication with a normative commitment to the principles of social justice-a commitment to the achievement of a society that is equitable, fair, and capable of confronting the root causes of injustice.However, despite the seeming novelty of such a data justice pedigree, this joining up of the critique of the power imbalances that have shaped the digital and "big data" revolutions with a commitment to social equity and constructive societal transformation has a deeper historical, and more geographically diverse, provenance. As the stories of the data justice initiatives, activism, and advocacy contained in this volume well evidence, practices of data justice across the globe have, in fact, largely preceded the elaboration and crystallisation of the idea of data justice in contemporary academic discourse. In telling these data justice stories, we hope to provide the reader with two interdependent tools of data justice thinking: First, we aim to provide the reader with the critical leverage needed to discern those distortions and malformations of data justice that manifest in subtle and explicit forms of power, domination, and coercion. Second, we aim to provide the reader with access to the historically effective forms of normativity and ethical insight that have been marshalled by data justice activists and advocates as tools of societal transformation-so that these forms of normativity and insight can be drawn on, in turn, as constructive resources to spur future transformative data justice practices.

  • 10 authors
·
Apr 6, 2022