new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 31

HoloBeam: Learning Optimal Beamforming in Far-Field Holographic Metasurface Transceivers

Holographic Metasurface Transceivers (HMTs) are emerging as cost-effective substitutes to large antenna arrays for beamforming in Millimeter and TeraHertz wave communication. However, to achieve desired channel gains through beamforming in HMT, phase-shifts of a large number of elements need to be appropriately set, which is challenging. Also, these optimal phase-shifts depend on the location of the receivers, which could be unknown. In this work, we develop a learning algorithm using a {\it fixed-budget multi-armed bandit framework} to beamform and maximize received signal strength at the receiver for far-field regions. Our algorithm, named \Algo exploits the parametric form of channel gains of the beams, which can be expressed in terms of two {\it phase-shifting parameters}. Even after parameterization, the problem is still challenging as phase-shifting parameters take continuous values. To overcome this, {\it\HB} works with the discrete values of phase-shifting parameters and exploits their unimodal relations with channel gains to learn the optimal values faster. We upper bound the probability of {\it\HB} incorrectly identifying the (discrete) optimal phase-shift parameters in terms of the number of pilots used in learning. We show that this probability decays exponentially with the number of pilot signals. We demonstrate that {\it\HB} outperforms state-of-the-art algorithms through extensive simulations.

  • 3 authors
·
Dec 29, 2023

Scaling & Shifting Your Features: A New Baseline for Efficient Model Tuning

Existing fine-tuning methods either tune all parameters of the pre-trained model (full fine-tuning), which is not efficient, or only tune the last linear layer (linear probing), which suffers a significant accuracy drop compared to the full fine-tuning. In this paper, we propose a new parameter-efficient fine-tuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance of full fine-tuning. In this way, SSF also surprisingly outperforms other parameter-efficient fine-tuning approaches even with a smaller number of tunable parameters. Furthermore, different from some existing parameter-efficient fine-tuning methods (e.g., Adapter or VPT) that introduce the extra parameters and computational cost in the training and inference stages, SSF only adds learnable parameters during the training stage, and these additional parameters can be merged into the original pre-trained model weights via re-parameterization in the inference phase. With the proposed SSF, our model obtains 2.46% (90.72% vs. 88.54%) and 11.48% (73.10% vs. 65.57%) performance improvement on FGVC and VTAB-1k in terms of Top-1 accuracy compared to the full fine-tuning but only fine-tuning about 0.3M parameters. We also conduct amounts of experiments in various model families (CNNs, Transformers, and MLPs) and datasets. Results on 26 image classification datasets in total and 3 robustness & out-of-distribution datasets show the effectiveness of SSF. Code is available at https://github.com/dongzelian/SSF.

  • 4 authors
·
Oct 17, 2022

TempoRL: laser pulse temporal shape optimization with Deep Reinforcement Learning

High Power Laser's (HPL) optimal performance is essential for the success of a wide variety of experimental tasks related to light-matter interactions. Traditionally, HPL parameters are optimised in an automated fashion relying on black-box numerical methods. However, these can be demanding in terms of computational resources and usually disregard transient and complex dynamics. Model-free Deep Reinforcement Learning (DRL) offers a promising alternative framework for optimising HPL performance since it allows to tune the control parameters as a function of system states subject to nonlinear temporal dynamics without requiring an explicit dynamics model of those. Furthermore, DRL aims to find an optimal control policy rather than a static parameter configuration, particularly suitable for dynamic processes involving sequential decision-making. This is particularly relevant as laser systems are typically characterised by dynamic rather than static traits. Hence the need for a strategy to choose the control applied based on the current context instead of one single optimal control configuration. This paper investigates the potential of DRL in improving the efficiency and safety of HPL control systems. We apply this technique to optimise the temporal profile of laser pulses in the L1 pump laser hosted at the ELI Beamlines facility. We show how to adapt DRL to the setting of spectral phase control by solely tuning dispersion coefficients of the spectral phase and reaching pulses similar to transform limited with full-width at half-maximum (FWHM) of ca1.6 ps.

  • 5 authors
·
Apr 20, 2023

Phemenological Modeling of Eclipsing Binary Stars

We review the method NAV (New Algol Variable) first introduced in 2012Ap.....55..536A, which uses the locally-dependent shapes of eclipses in an addition to the trigonometric polynomial of the second order (which typically describes the "out-of-eclipse" part of the light curve with effects of reflection, ellipticity and O'Connell). Eclipsing binary stars are believed to show distinct eclipses only if belonging to the EA type. With a decreasing eclipse width, the statistically optimal value of the trigonometric polynomial s (2003ASPC..292..391A) drastically increases from ~2 for elliptic (EL) variables without eclipses, ~6-8 for EW and up to ~30-50 for some EA with narrow eclipses. In this case of large number of parameters, the smoothing curve becomes very noisy and apparent waves (the Gibbs phenomenon) may be seen. The NAV set of the parameters may be used for classification in the GCVS, VSX and similar catalogs. The maximal number of parameters is m=12, which corresponds to s=5, if correcting both the period and the initial epoch. We have applied the method to few stars, also in a case of multi-color photometry (2015JASS...32..127A), when it is possible to use the phenomenological parameters from the NAV fit to estimate physical parameters using statistical dependencies. We conclude that the NAV approximation is better than the TP one even for the case of EW-type stars with much wider eclipses. It may also be used to determine timings (see 2005ASPC..335...37A for a review of methods) or to determine parameters in the case of variable period, using a complete light curve modeling the phase variations. The method is illustrated on 2MASS J11080447-6143290 (EA-type), USNO-B1.0 1265-0306001 and USNO-B1.0 1266-0313413 (EW-type) and compared to various other methods from the literature.

  • 3 authors
·
Feb 12, 2016

Phemenological Modelling of a Group of Eclipsing Binary Stars

Phenomenological modeling of variable stars allows determination of a set of the parameters, which are needed for classification in the "General Catalogue of Variable Stars" and similar catalogs. We apply a recent method NAV ("New Algol Variable") to eclipsing binary stars of different types. Although all periodic functions may be represented as Fourier series with an infinite number of coefficients, this is impossible for a finite number of the observations. Thus one may use a restricted Fourier series, i.e. a trigonometric polynomial (TP) of order s either for fitting the light curve, or to make a periodogram analysis. However, the number of parameters needed drastically increases with decreasing width of minimum. In the NAV algorithm, the special shape of minimum is used, so the number of parameters is limited to 10 (if the period and initial epoch are fixed) or 12 (not fixed). We illustrate the NAV method by application to a recently discovered Algol-type eclipsing variable 2MASS J11080308-6145589 (in the field of previously known variable star RS Car) and compare results to that obtained using the TP fits. For this system, the statistically optimal number of parameters is 44, but the fit is still worse than that of the NAV fit. Application to the system GSC 3692-00624 argues that the NAV fit is better than the TP one even for the case of EW-type stars with much wider eclipses. Model parameters are listed.

  • 3 authors
·
Sep 17, 2015

Revision of the Phenomenological Characteristics of the Algol-Type Stars Using the NAV Algorithm

Phenomenological characteristics of the sample of the Algol-type stars are revised using a recently developed NAV ("New Algol Variable") algorithm (2012Ap.....55..536A, 2012arXiv 1212.6707A) and compared to that obtained using common methods of Trigonometric Polynomial Fit (TP) or local Algebraic Polynomial (A) fit of a fixed or (alternately) statistically optimal degree (1994OAP.....7...49A, 2003ASPC..292..391A). The computer program NAV is introduced, which allows to determine the best fit with 7 "linear" and 5 "non-linear" parameters and their error estimates. The number of parameters is much smaller than for the TP fit (typically 20-40, depending on the width of the eclipse, and is much smaller (5-20) for the W UMa and beta Lyrae - type stars. This causes more smooth approximation taking into account the reflection and ellipsoidal effects (TP2) and generally different shapes of the primary and secondary eclipses. An application of the method to two-color CCD photometry to the recently discovered eclipsing variable 2MASS J18024395 + 4003309 = VSX J180243.9 +400331 (2015JASS...32..101A) allowed to make estimates of the physical parameters of the binary system based on the phenomenological parameters of the light curve. The phenomenological parameters of the light curves were determined for the sample of newly discovered EA and EW - type stars (VSX J223429.3+552903, VSX J223421.4+553013, VSX J223416.2+553424, US-NO-B1.0 1347-0483658, UCAC3-191-085589, VSX J180755.6+074711= UCAC3 196-166827). Despite we have used original observations published by the discoverers, the accuracy estimates of the period using the NAV method are typically better than the original ones.

  • 3 authors
·
Nov 30, 2015

Polarization aberrations in next-generation Giant Segmented Mirror Telescopes (GSMTs). II. Influence of segment-to-segment coating variations on high-contrast imaging and polarimetry

Direct exo-Earth imaging is a key science goal for astronomy in the next decade. This ambitious task imposes a target contrast of ~10^-7 at wavelengths from I to J-band. In our prior study, we determined that polarization aberrations can limit the achievable contrast to 10^-5 to 10^-6 in the infrared. However, these results assumed a perfect coronagraph coupled to a telescope with an ideal coating on each of the mirrors. In this study we seek to understand the influence of polarization aberrations from segment-to-segment coating variations on coronagraphy and polarimetry. We use the Poke open-source polarization ray tracing package to compute the Jones pupil of each GSMT with spatially-varying coatings applied to the segments. The influence of the resultant polarization aberrations is simulated by propagating the Jones pupil through physical optics models of coronagraphs using HCIPy. After applying wavefront control from an ideal adaptive optics system, we determine that the segment-to-segment variations applied limit the performance of coronagraphy to a raw contrast of approximately 10^-8 in I-band, which is 2-3 orders of magnitude lower the target performance for high-contrast imaging systems on the ground. This is a negligible addition to the nominal polarization aberrations for ground-based systems. We further observe negligible degradation in polarimetric imaging of debris disks from segment-to-segment aberrations above and beyond the impact of nominal polarization aberration.

  • 11 authors
·
Jan 7

Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise

In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.

  • 5 authors
·
Apr 3, 2023

Model-agnostic search for the quasinormal modes of gravitational wave echoes

Post-merger gravitational wave echoes provide a unique opportunity to probe the near-horizon structure of astrophysical black holes, that may be modified due to non-perturbative quantum gravity phenomena. However, since the waveform is subject to large theoretical uncertainties, it is necessary to develop model-agnostic search methods for detecting echoes from observational data. A promising strategy is to identify the characteristic quasinormal modes (QNMs) associated with echoes, {\it in frequency space}, which complements existing searches of quasiperiodic pulses in time. In this study, we build upon our previous work targeting these modes by incorporating relative phase information to optimize the Bayesian search algorithm. Using a new phase-marginalized likelihood, the performance can be significantly improved for well-resolved QNMs. This enables an efficient model-agnostic search for QNMs of different shapes by using a simple search template. To demonstrate the robustness of the search algorithm, we construct four complementary benchmarks for the echo waveform that span a diverse range of different theoretical possibilities for the near-horizon structure. We then validate our Bayesian search algorithms by injecting the benchmark models into different realizations of Gaussian noise. Using two types of phase-marginalized likelihoods, we find that the search algorithm can efficiently detect the corresponding QNMs. Therefore, our search strategy provides a concrete Bayesian and model-agnostic approach to "quantum black hole seismology".

  • 4 authors
·
Aug 2, 2023

Estimation of Classical Cepheid's Physical Parameters from NIR Light Curves

Recent space-borne and ground-based observations provide photometric measurements as time series. The effect of interstellar dust extinction in the near-infrared range is only 10% of that measured in the V band. However, the sensitivity of the light curve shape to the physical parameters in the near-infrared is much lower. So, interpreting these types of data sets requires new approaches like the different large-scale surveys, which create similar problems with big data. Using a selected data set, we provide a method for applying routines implemented in R to extract most information of measurements to determine physical parameters, which can also be used in automatic classification schemes and pipeline processing. We made a multivariate classification of 131 Cepheid light curves (LC) in J, H, and K colors, where all the LCs were represented in 20D parameter space in these colors separately. Performing a Principal Component Analysis (PCA), we got an orthogonal coordinate system and squared Euclidean distances between LCs, with 6 significant eigenvalues, reducing the 20-dimension to 6. We also estimated the optimal number of partitions of similar objects and found it to be equal to 7 in each color; their dependence on the period, absolute magnitude, amplitude, and metallicity are also discussed. We computed the Spearman rank correlations, showing that periods and absolute magnitudes correlate with the first three PCs significantly. The first two PC are also found to have a relationship with the amplitude, but the metallicity effects are only marginal. The method shown can be generalized and implemented in unsupervised classification schemes and analysis of mixed and biased samples. The analysis of our Classical Cepheid near-infrared LC sample showed that the J, H, K curves are insufficient for determination of stellar metallicity, with mass being the key factor shaping them.

  • 2 authors
·
Dec 9, 2024

Planck 2018 results. V. CMB power spectra and likelihoods

This paper describes the 2018 Planck CMB likelihoods, following a hybrid approach similar to the 2015 one, with different approximations at low and high multipoles, and implementing several methodological and analysis refinements. With more realistic simulations, and better correction and modelling of systematics, we can now make full use of the High Frequency Instrument polarization data. The low-multipole 100x143 GHz EE cross-spectrum constrains the reionization optical-depth parameter tau to better than 15% (in combination with with the other low- and high-ell likelihoods). We also update the 2015 baseline low-ell joint TEB likelihood based on the Low Frequency Instrument data, which provides a weaker tau constraint. At high multipoles, a better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (polarization efficiency or PE) allow us to fully use the polarization spectra, improving the constraints on the LambdaCDM parameters by 20 to 30% compared to TT-only constraints. Tests on the modelling of the polarization demonstrate good consistency, with some residual modelling uncertainties, the accuracy of the PE modelling being the main limitation. Using our various tests, simulations, and comparison between different high-ell implementations, we estimate the consistency of the results to be better than the 0.5sigma level. Minor curiosities already present before (differences between ell<800 and ell>800 parameters or the preference for more smoothing of the C_ell peaks) are shown to be driven by the TT power spectrum and are not significantly modified by the inclusion of polarization. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations. (Abridged)

  • 168 authors
·
Jul 30, 2019

Separating source-intrinsic and Lorentz invariance violation induced delays in the very high energy emission of blazar flares

Aims: The aim of the present study is to explore how to disentangle energy-dependent time delays due to a possible Lorentz invariance violation (LIV) at Planck scale from intrinsic delays expected in standard blazar flares. Methods: We first characterise intrinsic time delays in BL Lacs and Flat Spectrum Radio Quasars in standard one-zone time-dependent synchrotron self-Compton or external Compton models, during flares produced by particle acceleration and cooling processes. We simulate families of flares with both intrinsic and external LIV-induced energy-dependent delays. Discrimination between intrinsic and LIV delays is then investigated in two different ways. A technique based on Euclidean distance calculation between delays obtained in the synchrotron and in the inverse-Compton spectral bumps is used to assess their degree of correlation. A complementary study is performed using spectral hardness versus intensity diagrams in both energy ranges. Results: We show that the presence of non-negligible LIV effects, which essentially act only at very high energies (VHE), can drastically reduce the strong correlation expected between the X-ray and the VHE gamma-ray emission in leptonic scenarios. The LIV phenomenon can then be hinted at measuring the Euclidean distance d_{E} from simultaneous X-ray and gamma-ray flare monitoring. Large values of minimal distance d_{E,min} would directly indicate the influence of non-intrinsic time delays possibly due to LIV in SSC flares. LIV effects can also significantly modify the VHE hysteresis patterns in hardness-intensity diagrams and even change their direction of rotation as compared to the X-ray behaviour. Both observables could be used to discriminate between LIV and intrinsic delays, provided high quality flare observations are available.

  • 3 authors
·
Jun 3, 2024

Explicit Estimation of Magnitude and Phase Spectra in Parallel for High-Quality Speech Enhancement

Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network that explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet comprises a Transformer-embedded encoder-decoder architecture. The encoder aims to encode the input distorted magnitude and phase spectra into time-frequency representations, which are further fed into time-frequency Transformers for alternatively capturing time and frequency dependencies. The decoder comprises a magnitude mask decoder and a phase decoder, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude masking architecture and a phase parallel estimation architecture, respectively. Multi-level loss functions explicitly defined on the magnitude spectra, wrapped phase spectra, and short-time complex spectra are adopted to jointly train the MP-SENet model. A metric discriminator is further employed to compensate for the incomplete correlation between these losses and human auditory perception. Experimental results demonstrate that our proposed MP-SENet achieves state-of-the-art performance across multiple speech enhancement tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it further mitigates the compensation effect between the magnitude and phase by explicit phase estimation, elevating the perceptual quality of enhanced speech.

  • 3 authors
·
Aug 17, 2023

Self-Calibration and Bilinear Inverse Problems via Linear Least Squares

Whenever we use devices to take measurements, calibration is indispensable. While the purpose of calibration is to reduce bias and uncertainty in the measurements, it can be quite difficult, expensive, and sometimes even impossible to implement. We study a challenging problem called self-calibration, i.e., the task of designing an algorithm for devices so that the algorithm is able to perform calibration automatically. More precisely, we consider the setup y = A(d) x + epsilon where only partial information about the sensing matrix A(d) is known and where A(d) linearly depends on d. The goal is to estimate the calibration parameter d (resolve the uncertainty in the sensing process) and the signal/object of interests x simultaneously. For three different models of practical relevance, we show how such a bilinear inverse problem, including blind deconvolution as an important example, can be solved via a simple linear least squares approach. As a consequence, the proposed algorithms are numerically extremely efficient, thus potentially allowing for real-time deployment. We also present a variation of the least squares approach, which leads to a~spectral method, where the solution to the bilinear inverse problem can be found by computing the singular vector associated with the smallest singular value of a certain matrix derived from the bilinear system. Explicit theoretical guarantees and stability theory are derived for both techniques; and the number of sampling complexity is nearly optimal (up to a poly-log factor). Applications in imaging sciences and signal processing are discussed and numerical simulations are presented to demonstrate the effectiveness and efficiency of our approach.

  • 2 authors
·
Nov 13, 2016

Mapping gravitational-wave backgrounds in modified theories of gravity using pulsar timing arrays

We extend our previous work on applying CMB techniques to the mapping of gravitational-wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results are presented in the context of pulsar-timing array observations, but the overarching methods are general, and can be easily applied to LIGO or eLISA observations using appropriately modified response functions. Analytic expressions for the pulsar-timing response to gravitational waves with non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition of the background, which permit the signal to be mapped across the sky to any desired resolution. We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations, finding analytic forms for anisotropic backgrounds with scalar-transverse ("breathing") and vector-longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-curl modes for a vector-longitudinal background.

  • 3 authors
·
Jun 29, 2015

Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations

State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.

  • 6 authors
·
Nov 8, 2024

Planck 2018 results. VI. Cosmological parameters

We present cosmological parameter results from the final full-mission Planck measurements of the CMB anisotropies. We find good consistency with the standard spatially-flat 6-parameter LambdaCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted "base LambdaCDM" in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Omega_c h^2 = 0.120pm 0.001, baryon density Omega_b h^2 = 0.0224pm 0.0001, scalar spectral index n_s = 0.965pm 0.004, and optical depth tau = 0.054pm 0.007 (in this abstract we quote 68,% confidence regions on measured parameters and 95,% on upper limits). The angular acoustic scale is measured to 0.03,% precision, with 100theta_*=1.0411pm 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-LambdaCDM cosmology, the inferred late-Universe parameters are: Hubble constant H_0 = (67.4pm 0.5)km/s/Mpc; matter density parameter Omega_m = 0.315pm 0.007; and matter fluctuation amplitude sigma_8 = 0.811pm 0.006. We find no compelling evidence for extensions to the base-LambdaCDM model. Combining with BAO we constrain the effective extra relativistic degrees of freedom to be N_{rm eff} = 2.99pm 0.17, and the neutrino mass is tightly constrained to sum m_nu< 0.12eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base -LambdaCDM at over 2,sigma, which pulls some parameters that affect the lensing amplitude away from the base-LambdaCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. (Abridged)

  • 182 authors
·
Jul 17, 2018

KIC 4150611: A quadruply eclipsing heptuple star system with a g-mode period-spacing pattern Asteroseismic modelling of the g-mode period-spacing pattern

In this work, we aim to estimate the stellar parameters of the primary (Aa) by performing asteroseismic analysis on its period-spacing pattern. We use the C-3PO neural network to perform asteroseismic modelling of the g-mode period-spacing pattern of Aa, discussing the interplay of this information with external constraints from spectroscopy (T_{rm eff} and log(g)) and eclipse modelling (R). To estimate the level of uncertainty due to different frequency extraction and pattern identification processes, we consider four different variations on the period-spacing patterns. To better understand the correlations between and the uncertainty structure of our parameter estimates, we also employed a classical, parameter-based MCMC grid search on four different stellar grids. The best-fitting, externally constrained model to the period-spacing pattern arrives at estimates of the stellar properties for Aa of: M=1.51 pm 0.05 M_odot, X_c =0.43 pm 0.04, R=1.66 pm 0.1 R_odot, f_{rm ov}=0.010, Omega_c=1.58 pm 0.01 d^{-1} with rigid rotation to within the measurement errors, log(T_{rm eff})=3.856 pm 0.008 dex, log(g)=4.18 pm 0.04 dex, and log(L)=0.809 pm 0.005 dex, which agree well with previous measurements from eclipse modelling, spectroscopy, and the Gaia DR3 luminosity. We find that the near-core properties of the best-fitting asteroseismic models are consistent with external constraints from eclipse modelling and spectroscopy. Aa appears to be a typical example of a gamma Dor star, fitting well within existing populations. We find that Aa is quasi-rigidly rotating to within the uncertainties, and note that the asteroseismic age estimate for Aa (1100 pm 100 Myr) is considerably older than the young (35 Myr) age implied by previous isochrone fits to the B binary in the literature. Our MCMC parameter-based grid-search agrees well with our pattern-modelling approach.

  • 10 authors
·
Nov 27, 2024

Indirect measurement of atomic magneto-optical rotation via Hilbert transform

The Kramers-Kronig relations are a pivotal foundation of linear optics and atomic physics, embedding a physical connection between the real and imaginary components of any causal response function. A mathematically equivalent, but simpler, approach instead utilises the Hilbert transform. In a previous study, the Hilbert transform was applied to absorption spectra in order to infer the sole refractive index of an atomic medium in the absence of an external magnetic field. The presence of a magnetic field causes the medium to become birefringent and dichroic, and therefore it is instead characterised by two refractive indices. In this study, we apply the same Hilbert transform technique to independently measure both refractive indices of a birefringent atomic medium, leading to an indirect measurement of atomic magneto-optical rotation. Key to this measurement is the insight that inputting specific light polarisations into an atomic medium induces absorption associated with only one of the refractive indices. We show this is true in two configurations, commonly referred to in literature as the Faraday and Voigt geometries, which differ by the magnetic field orientation with respect to the light wavevector. For both cases, we measure the two refractive indices independently for a Rb thermal vapour in a 0.6 T magnetic field, finding excellent agreement with theory. This study further emphasises the application of the Hilbert transform to the field of quantum and atomic optics in the linear regime.

  • 4 authors
·
Mar 1, 2024

The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes

We present the requirements, design and evaluation of the cryogenic continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO). SO is a cosmic microwave background (CMB) polarization experiment at Parque Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular scales using both small (0.42 m) and large (6 m) aperture telescopes. In particular, the small aperture telescopes (SATs) focus on large angular scales for primordial B-mode polarization. To this end, the SATs employ a CHWP to modulate the polarization of the incident light at 8 Hz, suppressing atmospheric 1/f noise and mitigating systematic uncertainties that would otherwise arise due to the differential response of detectors sensitive to orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down to sim50 K to reduce detector thermal loading. Under normal operation the HWP is suspended by a superconducting magnetic bearing and rotates with a constant 2 Hz frequency, controlled by an electromagnetic synchronous motor. We find that the number of superconductors and magnets that make up the superconducting magnetic bearing are important design parameters, especially for the rotation mechanism's vibration performance. The rotation angle is detected through an angular encoder with a noise level of 0.07 muradmathrm{s}. During a cooldown, the rotor is held in place by a grip-and-release mechanism that serves as both an alignment device and a thermal path. In this paper we provide an overview of the SO SAT CHWP: its requirements, hardware design, and laboratory performance.

  • 27 authors
·
Sep 26, 2023

Sound propagation in realistic interactive 3D scenes with parameterized sources using deep neural operators

We address the challenge of sound propagation simulations in 3D virtual rooms with moving sources, which have applications in virtual/augmented reality, game audio, and spatial computing. Solutions to the wave equation can describe wave phenomena such as diffraction and interference. However, simulating them using conventional numerical discretization methods with hundreds of source and receiver positions is intractable, making stimulating a sound field with moving sources impractical. To overcome this limitation, we propose using deep operator networks to approximate linear wave-equation operators. This enables the rapid prediction of sound propagation in realistic 3D acoustic scenes with moving sources, achieving millisecond-scale computations. By learning a compact surrogate model, we avoid the offline calculation and storage of impulse responses for all relevant source/listener pairs. Our experiments, including various complex scene geometries, show good agreement with reference solutions, with root mean squared errors ranging from 0.02 Pa to 0.10 Pa. Notably, our method signifies a paradigm shift as no prior machine learning approach has achieved precise predictions of complete wave fields within realistic domains. We anticipate that our findings will drive further exploration of deep neural operator methods, advancing research in immersive user experiences within virtual environments.

  • 5 authors
·
Aug 9, 2023

On the Sensing Performance of OFDM-based ISAC under the Influence of Oscillator Phase Noise

Integrated sensing and communication (ISAC) is a novel capability expected for sixth generation (6G) cellular networks. To that end, several challenges must be addressed to enable both mono- and bistatic sensing in existing deployments. A common impairment in both architectures is oscillator phase noise (PN), which not only degrades communication performance, but also severely impairs radar sensing. To enable a broader understanding of orthogonal-frequency division multiplexing (OFDM)-based sensing impaired by PN, this article presents an analysis of sensing peformance in OFDM-based ISAC for different waveform parameter choices and settings in both mono- and bistatic architectures. In this context, the distortion of the adopted digital constellation modulation is analyzed and the resulting PN-induced effects in range-Doppler radar images are investigated both without and with PN compensation. These effects include peak power loss of target reflections and higher sidelobe levels, especially in the Doppler shift direction. In the conducted analysis, these effects are measured by the peak power loss ratio, peak-to-sidelobe level ratio, and integrated sidelobe level ratio parameters, the two latter being evaluated in both range and Doppler shift directions. In addition, the signal-to-interference ratio is analyzed to allow not only quantifying the distortion of a target reflection, but also measuring the interference floor level in a radar image. The achieved results allow to quantify not only the PN-induced impairments to a single target, but also how the induced degradation may impair the sensing performance of OFDM-based ISAC systems in multi-target scenarios.

  • 6 authors
·
Oct 17, 2024

Zero-Shot Hyperspectral Pansharpening Using Hysteresis-Based Tuning for Spectral Quality Control

Hyperspectral pansharpening has received much attention in recent years due to technological and methodological advances that open the door to new application scenarios. However, research on this topic is only now gaining momentum. The most popular methods are still borrowed from the more mature field of multispectral pansharpening and often overlook the unique challenges posed by hyperspectral data fusion, such as i) the very large number of bands, ii) the overwhelming noise in selected spectral ranges, iii) the significant spectral mismatch between panchromatic and hyperspectral components, iv) a typically high resolution ratio. Imprecise data modeling especially affects spectral fidelity. Even state-of-the-art methods perform well in certain spectral ranges and much worse in others, failing to ensure consistent quality across all bands, with the risk of generating unreliable results. Here, we propose a hyperspectral pansharpening method that explicitly addresses this problem and ensures uniform spectral quality. To this end, a single lightweight neural network is used, with weights that adapt on the fly to each band. During fine-tuning, the spatial loss is turned on and off to ensure a fast convergence of the spectral loss to the desired level, according to a hysteresis-like dynamic. Furthermore, the spatial loss itself is appropriately redefined to account for nonlinear dependencies between panchromatic and spectral bands. Overall, the proposed method is fully unsupervised, with no prior training on external data, flexible, and low-complexity. Experiments on a recently published benchmarking toolbox show that it ensures excellent sharpening quality, competitive with the state-of-the-art, consistently across all bands. The software code and the full set of results are shared online on https://github.com/giu-guarino/rho-PNN.

  • 5 authors
·
May 22

Non-convex optimization for self-calibration of direction-dependent effects in radio interferometric imaging

Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as CLEAN. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the SKA, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, i.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. MATLAB code is available on GitHub.

  • 4 authors
·
Jan 13, 2017

Deblur e-NeRF: NeRF from Motion-Blurred Events under High-speed or Low-light Conditions

The stark contrast in the design philosophy of an event camera makes it particularly ideal for operating under high-speed, high dynamic range and low-light conditions, where standard cameras underperform. Nonetheless, event cameras still suffer from some amount of motion blur, especially under these challenging conditions, in contrary to what most think. This is attributed to the limited bandwidth of the event sensor pixel, which is mostly proportional to the light intensity. Thus, to ensure that event cameras can truly excel in such conditions where it has an edge over standard cameras, it is crucial to account for event motion blur in downstream applications, especially reconstruction. However, none of the recent works on reconstructing Neural Radiance Fields (NeRFs) from events, nor event simulators, have considered the full effects of event motion blur. To this end, we propose, Deblur e-NeRF, a novel method to directly and effectively reconstruct blur-minimal NeRFs from motion-blurred events generated under high-speed motion or low-light conditions. The core component of this work is a physically-accurate pixel bandwidth model proposed to account for event motion blur under arbitrary speed and lighting conditions. We also introduce a novel threshold-normalized total variation loss to improve the regularization of large textureless patches. Experiments on real and novel realistically simulated sequences verify our effectiveness. Our code, event simulator and synthetic event dataset will be open-sourced.

  • 2 authors
·
Sep 26, 2024

European Pulsar Timing Array Limits On An Isotropic Stochastic Gravitational-Wave Background

We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95% upper limit on the dimensionless strain amplitude A of the background of A<3.0times 10^{-15} at a reference frequency of 1yr^{-1} and a spectral index of 13/3, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to Omega_gw(f)h^2 < 1.1times10^{-9} at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of sim 5times10^{-9}~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95% upper limits on the string tension, Gmu/c^2, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit Gmu/c^2<1.3times10^{-7}, identical to that set by the {\it Planck} Collaboration, when combining {\it Planck} and high-ell Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of Omega^relic_gw(f)h^2<1.2 times10^{-9}, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.

  • 36 authors
·
Apr 14, 2015

Testing the extended corona model with the optical/UV reverberation mapping of the accretion disk

The illumination of the accretion disks is frequently studied assuming that the incident X-ray flux is a point-like source. The approach is referred as lamppost model.The most recent computations of the X-ray reprocessing by the disk take into account the departure from the simple lamppost models. However, in computations of the incident flux thermalization and subsequent re-emission in the optical-UV band the lamppost approximation is most frequently assumed. We test if the UV-optical reverberation mapping and time delay measurements are sensitive to this assumption. We assume that the incident radiation originates from a region extended along the symmetry axis. To model this, we adopt a simple setup by representing the emission as two lamps irradiating the disk simultaneously from two different heights. We then compare the resulting predictions with those obtained for a single lamppost located at an intermediate height. We show at the basis of the transfer function that the deviation of the wavelength-dependent delay curve shows at most a difference of 20% in comparison to a single lamppost, assuming the black hole mass of 10^8 M_{odot}, Eddington ratio 1, and the location of the lamps at 5 and 100 rg. The maximum deviation happens for the lamp luminosity ratio sim3. When simulating light curves for a two-lamp setup and a standard lamppost with the same black hole mass and a sampling rate of 0.1 days, we find no measurable differences in the ICCF profiles between the two setups. Larger black hole mass and considerably lower Eddington ratio would allow to see larger differences between a single lamppost and a two-lampost model. UV/optical reverberation mapping is not very sensitive to the vertical extension of the corona.

  • 2 authors
·
Jan 1

Pansharpening by convolutional neural networks in the full resolution framework

In recent years, there has been a growing interest in deep learning-based pansharpening. Thus far, research has mainly focused on architectures. Nonetheless, model training is an equally important issue. A first problem is the absence of ground truths, unavoidable in pansharpening. This is often addressed by training networks in a reduced resolution domain and using the original data as ground truth, relying on an implicit scale invariance assumption. However, on full resolution images results are often disappointing, suggesting such invariance not to hold. A further problem is the scarcity of training data, which causes a limited generalization ability and a poor performance on off-training test images. In this paper, we propose a full-resolution training framework for deep learning-based pansharpening. The framework is fully general and can be used for any deep learning-based pansharpening model. Training takes place in the high-resolution domain, relying only on the original data, thus avoiding any loss of information. To ensure spectral and spatial fidelity, a suitable two-component loss is defined. The spectral component enforces consistency between the pansharpened output and the low-resolution multispectral input. The spatial component, computed at high-resolution, maximizes the local correlation between each pansharpened band and the panchromatic input. At testing time, the target-adaptive operating modality is adopted, achieving good generalization with a limited computational overhead. Experiments carried out on WorldView-3, WorldView-2, and GeoEye-1 images show that methods trained with the proposed framework guarantee a pretty good performance in terms of both full-resolution numerical indexes and visual quality.

  • 5 authors
·
Nov 16, 2021

Möbius Transform for Mitigating Perspective Distortions in Representation Learning

Perspective distortion (PD) causes unprecedented changes in shape, size, orientation, angles, and other spatial relationships of visual concepts in images. Precisely estimating camera intrinsic and extrinsic parameters is a challenging task that prevents synthesizing perspective distortion. Non-availability of dedicated training data poses a critical barrier to developing robust computer vision methods. Additionally, distortion correction methods make other computer vision tasks a multi-step approach and lack performance. In this work, we propose mitigating perspective distortion (MPD) by employing a fine-grained parameter control on a specific family of M\"obius transform to model real-world distortion without estimating camera intrinsic and extrinsic parameters and without the need for actual distorted data. Also, we present a dedicated perspectively distorted benchmark dataset, ImageNet-PD, to benchmark the robustness of deep learning models against this new dataset. The proposed method outperforms existing benchmarks, ImageNet-E and ImageNet-X. Additionally, it significantly improves performance on ImageNet-PD while consistently performing on standard data distribution. Notably, our method shows improved performance on three PD-affected real-world applications crowd counting, fisheye image recognition, and person re-identification and one PD-affected challenging CV task: object detection. The source code, dataset, and models are available on the project webpage at https://prakashchhipa.github.io/projects/mpd.

  • 6 authors
·
Mar 7, 2024

Coordinate-Aware Modulation for Neural Fields

Neural fields, mapping low-dimensional input coordinates to corresponding signals, have shown promising results in representing various signals. Numerous methodologies have been proposed, and techniques employing MLPs and grid representations have achieved substantial success. MLPs allow compact and high expressibility, yet often suffer from spectral bias and slow convergence speed. On the other hand, methods using grids are free from spectral bias and achieve fast training speed, however, at the expense of high spatial complexity. In this work, we propose a novel way for exploiting both MLPs and grid representations in neural fields. Unlike the prevalent methods that combine them sequentially (extract features from the grids first and feed them to the MLP), we inject spectral bias-free grid representations into the intermediate features in the MLP. More specifically, we suggest a Coordinate-Aware Modulation (CAM), which modulates the intermediate features using scale and shift parameters extracted from the grid representations. This can maintain the strengths of MLPs while mitigating any remaining potential biases, facilitating the rapid learning of high-frequency components. In addition, we empirically found that the feature normalizations, which have not been successful in neural filed literature, proved to be effective when applied in conjunction with the proposed CAM. Experimental results demonstrate that CAM enhances the performance of neural representation and improves learning stability across a range of signals. Especially in the novel view synthesis task, we achieved state-of-the-art performance with the least number of parameters and fast training speed for dynamic scenes and the best performance under 1MB memory for static scenes. CAM also outperforms the best-performing video compression methods using neural fields by a large margin.

  • 5 authors
·
Nov 25, 2023

Estimating constraints on cosmological parameters via the canonical and the differential redshift drift with SKA HI 21-cm observations

Redshift drift effect, an observational probe that indenpendent of cosmological models, presents unique applications in specific cosmological epoch. By quantifying redshift drift signal , researchers can determine the rate of the Universe's accelerated expansion and impose constraints on cosmological models and parameters. This study evaluates the precision in cosmological parameters estimation derived from this signal via HI 21cm signal, that observed by the Square Kilometre Array (SKA) telescope, with spectral resolutions of 0.001 Hz and 0.002 Hz over an observational period of Delta T = 0.5 year, utilizing two established techniques: the canonical redshift drift and the differential redshift drift method. The primary objective of this project is to ascertain the rate of cosmic acceleration and establish a solid foundation for real-time cosmology. The results reveal that both the two methods impose highly precise constraints on cosmological parameters, with accuracy reaching the level of millimeter per second (mm/s) or better. However, the canonical method provides relatively less stringent compared to the differential approach. Furthermore, when solely constraining the matter density parameter Omega_m, the strategy can be adapted to the canonical method. Nonetheless, the differential method exhibits clear advantages when simultaneously constraining the matter density parameter Omega_m and the equation of state of dark energy. These findings validate SKA's capability in detecting redshift drift and refining observational cosmology and indicates the effect can offer superior diagnostic capabilities compared to other techniques, provided that appropriate observational equipment or sufficient observational time is employed.

  • 4 authors
·
Apr 18

Robust e-NeRF: NeRF from Sparse & Noisy Events under Non-Uniform Motion

Event cameras offer many advantages over standard cameras due to their distinctive principle of operation: low power, low latency, high temporal resolution and high dynamic range. Nonetheless, the success of many downstream visual applications also hinges on an efficient and effective scene representation, where Neural Radiance Field (NeRF) is seen as the leading candidate. Such promise and potential of event cameras and NeRF inspired recent works to investigate on the reconstruction of NeRF from moving event cameras. However, these works are mainly limited in terms of the dependence on dense and low-noise event streams, as well as generalization to arbitrary contrast threshold values and camera speed profiles. In this work, we propose Robust e-NeRF, a novel method to directly and robustly reconstruct NeRFs from moving event cameras under various real-world conditions, especially from sparse and noisy events generated under non-uniform motion. It consists of two key components: a realistic event generation model that accounts for various intrinsic parameters (e.g. time-independent, asymmetric threshold and refractory period) and non-idealities (e.g. pixel-to-pixel threshold variation), as well as a complementary pair of normalized reconstruction losses that can effectively generalize to arbitrary speed profiles and intrinsic parameter values without such prior knowledge. Experiments on real and novel realistically simulated sequences verify our effectiveness. Our code, synthetic dataset and improved event simulator are public.

  • 2 authors
·
Sep 15, 2023

Interferometer response characterization algorithm for multi-aperture Fabry-Perot imaging spectrometers

In recent years, the demand for hyperspectral imaging devices has grown significantly, driven by their ability of capturing high-resolution spectral information. Among the several possible optical designs for acquiring hyperspectral images, there is a growing interest in interferometric spectral imaging systems based on division of aperture. These systems have the advantage of capturing snapshot acquisitions while maintaining a compact design. However, they require a careful calibration to operate properly. In this work, we present the interferometer response characterization algorithm (IRCA), a robust three-step procedure designed to characterize the transmittance response of multi-aperture imaging spectrometers based on the interferometry of Fabry-Perot. Additionally, we propose a formulation of the image formation model for such devices suitable to estimate the parameters of interest by considering the model under various regimes of finesse. The proposed algorithm processes the image output obtained from a set of monochromatic light sources and refines the results using nonlinear regression after an ad-hoc initialization. Through experimental analysis conducted on four different prototypes from the Image SPectrometer On Chip (ImSPOC) family, we validate the performance of our approach for characterization. The associated source code for this paper is available at https://github.com/danaroth83/irca.

  • 5 authors
·
Mar 24, 2023

DynamicScaler: Seamless and Scalable Video Generation for Panoramic Scenes

The increasing demand for immersive AR/VR applications and spatial intelligence has heightened the need to generate high-quality scene-level and 360{\deg} panoramic video. However, most video diffusion models are constrained by limited resolution and aspect ratio, which restricts their applicability to scene-level dynamic content synthesis. In this work, we propose the DynamicScaler, addressing these challenges by enabling spatially scalable and panoramic dynamic scene synthesis that preserves coherence across panoramic scenes of arbitrary size. Specifically, we introduce a Offset Shifting Denoiser, facilitating efficient, synchronous, and coherent denoising panoramic dynamic scenes via a diffusion model with fixed resolution through a seamless rotating Window, which ensures seamless boundary transitions and consistency across the entire panoramic space, accommodating varying resolutions and aspect ratios. Additionally, we employ a Global Motion Guidance mechanism to ensure both local detail fidelity and global motion continuity. Extensive experiments demonstrate our method achieves superior content and motion quality in panoramic scene-level video generation, offering a training-free, efficient, and scalable solution for immersive dynamic scene creation with constant VRAM consumption regardless of the output video resolution. Our project page is available at https://dynamic-scaler.pages.dev/.

  • 4 authors
·
Dec 15, 2024 2

Exploring HOD-dependent systematics for the DESI 2024 Full-Shape galaxy clustering analysis

We analyse the robustness of the DESI 2024 cosmological inference from fits to the full shape of the galaxy power spectrum to uncertainties in the Halo Occupation Distribution (HOD) model of the galaxy-halo connection and the choice of priors on nuisance parameters. We assess variations in the recovered cosmological parameters across a range of mocks populated with different HOD models and find that shifts are often greater than 20% of the expected statistical uncertainties from the DESI data. We encapsulate the effect of such shifts in terms of a systematic covariance term, C_{rm HOD}, and an additional diagonal contribution quantifying the impact of our choice of nuisance parameter priors on the ability of the effective field theory (EFT) model to correctly recover the cosmological parameters of the simulations. These two covariance contributions are designed to be added to the usual covariance term, C_{rm stat}, describing the statistical uncertainty in the power spectrum measurement, in order to fairly represent these sources of systematic uncertainty. This approach is more general and robust to choices of model free parameters or additional external datasets used in cosmological fits than the alternative approach of adding systematic uncertainties at the level of the recovered marginalised parameter posteriors. We compare the approaches within the context of a fixed LambdaCDM model and demonstrate that our method gives conservative estimates of the systematic uncertainty that nevertheless have little impact on the final posteriors obtained from DESI data.

  • 42 authors
·
Nov 18, 2024

Flying Triangulation - towards the 3D movie camera

Flying Triangulation sensors enable a free-hand and motion-robust 3D data acquisition of complex shaped objects. The measurement principle is based on a multi-line light-sectioning approach and uses sophisticated algorithms for real-time registration (S. Ettl et al., Appl. Opt. 51 (2012) 281-289). As "single-shot principle", light sectioning enables the option to get surface data from one single camera exposure. But there is a drawback: A pixel-dense measurement is not possible because of fundamental information-theoretical reasons. By "pixel-dense" we understand that each pixel displays individually measured distance information, neither interpolated from its neighbour pixels nor using lateral context information. Hence, for monomodal single-shot principles, the 3D data generated from one 2D raw image display a significantly lower space-bandwidth than the camera permits. This is the price one must pay for motion robustness. Currently, our sensors project about 10 lines (each with 1000 pixels), reaching an considerable lower data efficiency than theoretically possible for a single-shot sensor. Our aim is to push Flying Triangulation to its information-theoretical limits. Therefore, the line density as well as the measurement depth needs to be significantly increased. This causes serious indexing ambiguities. On the road to a single-shot 3D movie camera, we are working on solutions to overcome the problem of false line indexing by utilizing yet unexploited information. We will present several approaches and will discuss profound information-theoretical questions about the information efficiency of 3D sensors.

  • 4 authors
·
May 17, 2013

A helical magnetic field in quasar NRAO150 revealed by Faraday rotation

Active Galactic Nuclei (AGN) are some of the most luminous and extreme environments in the Universe. The central engines of AGN, believed to be super-massive black-holes, are fed by accretion discs threaded by magnetic fields within a dense magneto-ionic medium. We report our findings from polarimetric Very-long-baseline Interferometry (VLBI) observations of quasar NRAO150 taken in October 2022 using a combined network of the Very Long Baseline Array (VLBA) and Effelsberg 100-m Radio Telescope. These observations are the first co-temporal multi-frequency polarimetric VLBI observations of NRAO150 at frequencies above 15GHz. We use the new VLBI polarization calibration procedure, GPCAL, with polarization observations of frequencies of 12GHz, 15GHz, 24GHz, and 43GHz of NRAO150. From these observations, we measure Faraday rotation. Using our measurement of Faraday rotation, we also derive the intrinsic electric vector position angle (EVPA0) for the source. As a complementary measurement we determine the behavior of polarization as a function of observed frequency. The polarization from NRAO150 only comes from the core region, with a peak polarization intensity occurring at 24GHz. Across the core region of NRAO150 we see clear gradients in Faraday rotation and EVPA0 values that are aligned with the direction of the jet curving around the core region. We find that for the majority of the polarized region the polarization fraction is greater at higher frequencies, with intrinsic polarization fractions in the core 3%. The Faraday rotation gradients and circular patterns in EVPA0 are strong evidence for a helical/toroidal magnetic field, and the presence of low intrinsic polarization fractions indicate that the polarized emission and hence the helical/toroidal magnetic field, occur within the innermost jet.

  • 10 authors
·
Mar 5

HRTFformer: A Spatially-Aware Transformer for Personalized HRTF Upsampling in Immersive Audio Rendering

Personalized Head-Related Transfer Functions (HRTFs) are starting to be introduced in many commercial immersive audio applications and are crucial for realistic spatial audio rendering. However, one of the main hesitations regarding their introduction is that creating personalized HRTFs is impractical at scale due to the complexities of the HRTF measurement process. To mitigate this drawback, HRTF spatial upsampling has been proposed with the aim of reducing measurements required. While prior work has seen success with different machine learning (ML) approaches, these models often struggle with long-range spatial consistency and generalization at high upsampling factors. In this paper, we propose a novel transformer-based architecture for HRTF upsampling, leveraging the attention mechanism to better capture spatial correlations across the HRTF sphere. Working in the spherical harmonic (SH) domain, our model learns to reconstruct high-resolution HRTFs from sparse input measurements with significantly improved accuracy. To enhance spatial coherence, we introduce a neighbor dissimilarity loss that promotes magnitude smoothness, yielding more realistic upsampling. We evaluate our method using both perceptual localization models and objective spectral distortion metrics. Experiments show that our model surpasses leading methods by a substantial margin in generating realistic, high-fidelity HRTFs.

  • 7 authors
·
Oct 2

The implications of stochastic gas torques for asymmetric binaries in the LISA band

Gravitational waves from asymmetric mass-ratio black-hole binaries carry unique information about their astrophysical environment. For instance, the Laser Interferometer Space Antenna (LISA) could potentially measure the amplitude and slope of gas torques in binaries embedded in the accretion disks of Active Galactic Nuclei, helping differentiate competing accretion disk models. However, this relies on simplified analytic models, which do not account for the stochastic variability of torques seen in hydrodynamic simulations. In this work, we use hydrodynamic simulations to create gravitational waveforms for extreme and intermediate mass-ratio inspirals in the LISA band. We then analyze these simulated waveforms using simpler templates that assume analytic torques, without stochastic time variability. By performing realistic Bayesian parameter estimation, we find no bias at 90% confidence in the binary parameters; however, estimates of accretion disk parameters, such as torque amplitude and slope, may be biased. Typically, the posterior distribution is centered around the average value of the torques, but when stochastic variability is large, the posterior can indicate no torques, even though they are present in the simulation. Our results suggest that while simplified analytic torque models work well for estimating binary parameters, caution is needed when using them to infer properties of the accretion disk. This work moves towards a more realistic assessment of one of the LISA science objectives, i.e., probing the properties of the astrophysical environments of black holes.

  • 5 authors
·
Feb 14

Precision measurement of the last bound states in H_2 and determination of the H + H scattering length

The binding energies of the five bound rotational levels J=0-4 in the highest vibrational level v=14 in the X^1Sigma_g^+ ground electronic state of H_2 were measured in a three-step ultraviolet-laser experiment. Two-photon UV-photolysis of H_2S produced population in these high-lying bound states, that were subsequently interrogated at high precision via Doppler-free spectroscopy of the F^1Sigma_g^+ - X^1Sigma_g^+ system. A third UV-laser was used for detection through auto-ionizing resonances. The experimentally determined binding energies were found to be in excellent agreement with calculations based on non-adiabatic perturbation theory, also including relativistic and quantum electrodynamical contributions. The s-wave scattering length of the H + H system is derived from the binding energy of the last bound J=0 level via a direct semi-empirical approach, yielding a value of a_s = 0.2724(5) a_0, in good agreement with a result from a previously followed theoretical approach. The subtle effect of the malpha^4 relativity contribution to a_s was found to be significant. In a similar manner a value for the p-wave scattering volume is determined via the J=1 binding energy yielding a_p = -134.0000(6) a_0^3. The binding energy of the last bound state in H_2, the (v=14, J=4) level, is determined at 0.023(4) cm^{-1}, in good agreement with calculation. The effect of the hyperfine substructure caused by the two hydrogen atoms at large internuclear separation, giving rise to three distinct dissociation limits, is discussed.

  • 3 authors
·
Feb 3

TDCOSMO XVII. New time delays in 22 lensed quasars from optical monitoring with the ESO-VST 2.6m and MPG 2.2m telescopes

We present new time delays, the main ingredient of time delay cosmography, for 22 lensed quasars resulting from high-cadence r-band monitoring on the 2.6 m ESO VLT Survey Telescope and Max-Planck-Gesellschaft 2.2 m telescope. Each lensed quasar was typically monitored for one to four seasons, often shared between the two telescopes to mitigate the interruptions forced by the COVID-19 pandemic. The sample of targets consists of 19 quadruply and 3 doubly imaged quasars, which received a total of 1 918 hours of on-sky time split into 21 581 wide-field frames, each 320 seconds long. In a given field, the 5-{\sigma} depth of the combined exposures typically reaches the 27th magnitude, while that of single visits is 24.5 mag - similar to the expected depth of the upcoming Vera-Rubin LSST. The fluxes of the different lensed images of the targets were reliably de-blended, providing not only light curves with photometric precision down to the photon noise limit, but also high-resolution models of the targets whose features and astrometry were systematically confirmed in Hubble Space Telescope imaging. This was made possible thanks to a new photometric pipeline, lightcurver, and the forward modelling method STARRED. Finally, the time delays between pairs of curves and their uncertainties were estimated, taking into account the degeneracy due to microlensing, and for the first time the full covariance matrices of the delay pairs are provided. Of note, this survey, with 13 square degrees, has applications beyond that of time delays, such as the study of the structure function of the multiple high-redshift quasars present in the footprint at a new high in terms of both depth and frequency. The reduced images will be available through the European Southern Observatory Science Portal.

  • 32 authors
·
Apr 3

Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction

Light plays an important role in human well-being. However, most computer vision tasks treat pixels without considering their relationship to physical luminance. To address this shortcoming, we introduce the Laval Photometric Indoor HDR Dataset, the first large-scale photometrically calibrated dataset of high dynamic range 360{\deg} panoramas. Our key contribution is the calibration of an existing, uncalibrated HDR Dataset. We do so by accurately capturing RAW bracketed exposures simultaneously with a professional photometric measurement device (chroma meter) for multiple scenes across a variety of lighting conditions. Using the resulting measurements, we establish the calibration coefficients to be applied to the HDR images. The resulting dataset is a rich representation of indoor scenes which displays a wide range of illuminance and color, and varied types of light sources. We exploit the dataset to introduce three novel tasks, where: per-pixel luminance, per-pixel color and planar illuminance can be predicted from a single input image. Finally, we also capture another smaller photometric dataset with a commercial 360{\deg} camera, to experiment on generalization across cameras. We are optimistic that the release of our datasets and associated code will spark interest in physically accurate light estimation within the community. Dataset and code are available at https://lvsn.github.io/beyondthepixel/.

  • 5 authors
·
Apr 24, 2023

A Comprehensive Perturbative Formalism for Phase Mixing in Perturbed Disks. II. Phase Spirals in an Inhomogeneous Disk Galaxy with a Non-responsive Dark Matter Halo

We develop a linear perturbative formalism to compute the response of an inhomogeneous stellar disk embedded in a non-responsive dark matter halo to perturbations like bars, spiral arms and satellite galaxy encounters. Without self-gravity to reinforce it, the response of a Fourier mode phase mixes away due to an intrinsic spread in the vertical (Omega_z), radial (Omega_r) and azimuthal (Omega_phi) frequencies, giving rise to local phase-space spirals. Collisional diffusion due to scattering of stars by structures like giant molecular clouds causes super-exponential damping of the phase-spiral amplitude. The z-v_z phase-spiral is 1-armed (2-armed) for vertically anti-symmetric (symmetric) bending (breathing) modes. Only transient perturbations with timescales (tau_{P}) comparable to the vertical oscillation period (tau_z sim 1/Omega_z) trigger z-v_z phase-spirals. Each (n,l,m) mode of the response to impulsive (tau_{P}<tau=1/(nOmega_z+lOmega_r+mOmega_phi)) perturbations is power law (sim tau_{P}/tau) suppressed, but that to adiabatic (tau_{P}>tau) perturbations is exponentially weak (sim left[-left(tau_{mathrm{P}/tauright)^alpharight]}) except resonant (tauto infty) modes. Slower (tau_{P}>tau_z) perturbations, e.g., distant encounters with satellite galaxies, induce stronger bending modes. If the Gaia phase-spiral was triggered by a satellite, Sagittarius is the leading contender as it dominates the Solar neighborhood response of the Milky Way disk to satellite encounters. However, survival against collisional damping necessitates that the impact occurred within sim 0.6-0.7 Gyr ago. We discuss how the detailed galactic potential dictates the phase-spiral shape: phase mixing occurs slower and phase-spirals are less wound in the outer disk and in presence of an ambient halo.

  • 3 authors
·
Feb 28, 2023

RayGauss: Volumetric Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis

Differentiable volumetric rendering-based methods made significant progress in novel view synthesis. On one hand, innovative methods have replaced the Neural Radiance Fields (NeRF) network with locally parameterized structures, enabling high-quality renderings in a reasonable time. On the other hand, approaches have used differentiable splatting instead of NeRF's ray casting to optimize radiance fields rapidly using Gaussian kernels, allowing for fine adaptation to the scene. However, differentiable ray casting of irregularly spaced kernels has been scarcely explored, while splatting, despite enabling fast rendering times, is susceptible to clearly visible artifacts. Our work closes this gap by providing a physically consistent formulation of the emitted radiance c and density {\sigma}, decomposed with Gaussian functions associated with Spherical Gaussians/Harmonics for all-frequency colorimetric representation. We also introduce a method enabling differentiable ray casting of irregularly distributed Gaussians using an algorithm that integrates radiance fields slab by slab and leverages a BVH structure. This allows our approach to finely adapt to the scene while avoiding splatting artifacts. As a result, we achieve superior rendering quality compared to the state-of-the-art while maintaining reasonable training times and achieving inference speeds of 25 FPS on the Blender dataset. Project page with videos and code: https://raygauss.github.io/

  • 3 authors
·
Aug 6, 2024 2

Identifying supermassive black hole recoil in elliptical galaxies

We study stellar core growth in simulations of merging massive (M_star>10^{11},M_odot) elliptical galaxies by a supermassive black hole (SMBH) displaced by gravitational wave induced recoil velocity. With controlled, dense sampling of the SMBH recoil velocity, we find the core radius originally formed by SMBH binary scouring can grow by a factor of 2-3 when the recoil velocity exceeds sim50 per cent of the central escape velocity, and the mass deficit grows by up to a factor of sim4. Using Bayesian inference we predict the distribution of stellar core sizes formed through this process to peak at sim1,kpc. An orbital decomposition of stellar particles within the core reveals that radial orbits dominate over tube orbits when the recoil velocity exceeds the velocity dispersion of the core, whereas tube orbits dominate for the lowest recoil kicks. A change in orbital structure is reflected in the anisotropy parameter, with a central tangential bias present only for recoil velocities less than the local stellar velocity dispersion. Emulating current integral field unit observations of the stellar line-of-sight velocity distribution, we uncover a distinct signature in the Gauss-Hermite symmetric deviation coefficient h_4 that uniquely constrains the core size due to binary scouring. This signature is insensitive to the later evolution of the stellar mass distribution due to SMBH recoil. Our results provide a novel method to estimate the SMBH recoil magnitude from observations of local elliptical galaxies, and implies these galaxies primarily experienced recoil velocities less than the stellar velocity dispersion of the core.

  • 11 authors
·
Oct 17, 2024

Astrometric Effects of a Stochastic Gravitational Wave Background

A stochastic gravitational wave background causes the apparent positions of distant sources to fluctuate, with angular deflections of order the characteristic strain amplitude of the gravitational waves. These fluctuations may be detectable with high precision astrometry, as first suggested by Braginsky et al. in 1990. Several researchers have made order of magnitude estimates of the upper limits obtainable on the gravitational wave spectrum \Omega_gw(f), at frequencies of order f ~ 1 yr^-1, both for the future space-based optical interferometry missions GAIA and SIM, and for VLBI interferometry in radio wavelengths with the SKA. For GAIA, tracking N ~ 10^6 quasars over a time of T ~ 1 yr with an angular accuracy of \Delta \theta ~ 10 \mu as would yield a sensitivity level of \Omega_gw ~ (\Delta \theta)^2/(N T^2 H_0^2) ~ 10^-6, which would be comparable with pulsar timing. In this paper we take a first step toward firming up these estimates by computing in detail the statistical properties of the angular deflections caused by a stochastic background. We compute analytically the two point correlation function of the deflections on the sphere, and the spectrum as a function of frequency and angular scale. The fluctuations are concentrated at low frequencies (for a scale invariant stochastic background), and at large angular scales, starting with the quadrupole. The magnetic-type and electric-type pieces of the fluctuations have equal amounts of power.

  • 2 authors
·
Sep 21, 2010

Are NeRFs ready for autonomous driving? Towards closing the real-to-simulation gap

Neural Radiance Fields (NeRFs) have emerged as promising tools for advancing autonomous driving (AD) research, offering scalable closed-loop simulation and data augmentation capabilities. However, to trust the results achieved in simulation, one needs to ensure that AD systems perceive real and rendered data in the same way. Although the performance of rendering methods is increasing, many scenarios will remain inherently challenging to reconstruct faithfully. To this end, we propose a novel perspective for addressing the real-to-simulated data gap. Rather than solely focusing on improving rendering fidelity, we explore simple yet effective methods to enhance perception model robustness to NeRF artifacts without compromising performance on real data. Moreover, we conduct the first large-scale investigation into the real-to-simulated data gap in an AD setting using a state-of-the-art neural rendering technique. Specifically, we evaluate object detectors and an online mapping model on real and simulated data, and study the effects of different fine-tuning strategies.Our results show notable improvements in model robustness to simulated data, even improving real-world performance in some cases. Last, we delve into the correlation between the real-to-simulated gap and image reconstruction metrics, identifying FID and LPIPS as strong indicators. See https://research.zenseact.com/publications/closing-real2sim-gap for our project page.

  • 7 authors
·
Mar 24, 2024

Peakbagging the K2 KEYSTONE sample with PBjam: characterising the individual mode frequencies in solar-like oscillators

The pattern of individual mode frequencies in solar-like oscillators provides valuable insight into their properties and interior structures. The identification and characterisation of these modes requires high signal-to-noise and frequency resolution. The KEYSTONE project unlocks the asteroseismic potential of the K2 mission by providing individually reduced, high-quality time series data, global asteroseismic parameters, and spectroscopic analysis for 173 solar-like oscillators. In this work, we build on the KEYSTONE project and present the first analysis of the pattern of individual modes in the oscillation spectra for the K2 KEYSTONE stars. We perform a robust identification and characterisation of the modes through peakbagging methods in the open-source analysis tool PBjam. We present over 6000 mode frequencies, widths, and heights for 168 stars in the sample, covering the HR diagram from FGK dwarfs to sub-giants and the lower red giant branch, providing a significant increase in the number of individual mode frequency detections for main sequence and sub-giant oscillators. This study also presents sample-wide trends of oscillation patterns as a function of the fundamental stellar properties, and improves the precision of the global asteroseismic parameters. These measurements are part of the legacy of the K2 mission, and can be used to perform detailed modelling to improve the precision of fundamental properties of these stars. The results of this analysis provides evidence for the validity of using PBjam to identify and characterise the modes resulting from the observations of the future PLATO mission.

  • 8 authors
·
Oct 24

Progressive Radiance Distillation for Inverse Rendering with Gaussian Splatting

We propose progressive radiance distillation, an inverse rendering method that combines physically-based rendering with Gaussian-based radiance field rendering using a distillation progress map. Taking multi-view images as input, our method starts from a pre-trained radiance field guidance, and distills physically-based light and material parameters from the radiance field using an image-fitting process. The distillation progress map is initialized to a small value, which favors radiance field rendering. During early iterations when fitted light and material parameters are far from convergence, the radiance field fallback ensures the sanity of image loss gradients and avoids local minima that attracts under-fit states. As fitted parameters converge, the physical model gradually takes over and the distillation progress increases correspondingly. In presence of light paths unmodeled by the physical model, the distillation progress never finishes on affected pixels and the learned radiance field stays in the final rendering. With this designed tolerance for physical model limitations, we prevent unmodeled color components from leaking into light and material parameters, alleviating relighting artifacts. Meanwhile, the remaining radiance field compensates for the limitations of the physical model, guaranteeing high-quality novel views synthesis. Experimental results demonstrate that our method significantly outperforms state-of-the-art techniques quality-wise in both novel view synthesis and relighting. The idea of progressive radiance distillation is not limited to Gaussian splatting. We show that it also has positive effects for prominently specular scenes when adapted to a mesh-based inverse rendering method.

  • 3 authors
·
Aug 14, 2024

Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration

Photo-realistic image restoration algorithms are typically evaluated by distortion measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID, NIQE), where the desire is to attain the lowest possible distortion without compromising on perceptual quality. To achieve this goal, current methods typically attempt to sample from the posterior distribution, or to optimize a weighted sum of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Unlike previous works, this paper is concerned specifically with the optimal estimator that minimizes the MSE under a constraint of perfect perceptual index, namely where the distribution of the reconstructed images is equal to that of the ground-truth ones. A recent theoretical result shows that such an estimator can be constructed by optimally transporting the posterior mean prediction (MMSE estimate) to the distribution of the ground-truth images. Inspired by this result, we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effective algorithm that approximates this optimal estimator. In particular, PMRF first predicts the posterior mean, and then transports the result to a high-quality image using a rectified flow model that approximates the desired optimal transport map. We investigate the theoretical utility of PMRF and demonstrate that it consistently outperforms previous methods on a variety of image restoration tasks.

  • 3 authors
·
Oct 1, 2024 3

Wave optics lensing of gravitational waves: theory and phenomenology of triple systems in the LISA band

We study lensing of gravitational waves by a black hole in the deep wave optics regime, i.e. when the wavelength is much larger than the black hole Schwarzschild radius. We apply it to triple systems, with a binary of stellar mass objects in the inspiraling phase orbiting around a central massive black hole. We describe the full polarisation structure of the wave and derive predictions for the polarisation modes of the scattered wave measured by the observer. We show that lensing in the wave optics regime is not helicity preserving, as opposed to lensing in the geometric optics regime. The amplitude of the total wave is modulated due to interference between the directly transmitted and lensed components. The relative amplitude of the modulation is fixed by the lensing geometry and can reach unity in the most favourable settings. This indicates that wave optics lensing is potentially detectable by LISA for sufficiently high SNR systems. Our findings show that in the wave optics regime it is necessary to go beyond the usual lensing description where the amplification factor is assumed to be the same for both helicity modes. While motivated by GW190521 and the AGN formation scenario, our results apply more broadly to stellar-mass binaries orbiting a third body described as a Schwarzschild black hole, with a period comparable to the GW observation time.

  • 4 authors
·
Apr 10, 2024

Deep Synoptic Array Science: Searching for Long Duration Radio Transients with the DSA-110

We describe the design and commissioning tests for the DSA-110 Not-So-Fast Radio Burst (NSFRB) search pipeline, a 1.4 GHz image-plane single-pulse search sensitive to 134 ms-160.8 s radio bursts. Extending the pulse width range of the Fast Radio Burst (FRB) search by 3 orders of magnitude, the NSFRB search is sensitive to the recently-discovered Galactic Long Period Radio Transients (LPRTs). The NSFRB search operates in real-time, utilizing a custom GPU-accelerated search code, cerberus, implemented in Python with JAX. We summarize successful commissioning sensitivity tests with continuum sources and pulsar B0329+54, estimating the 6sigma flux (fluence) threshold to be ~290 mJy (~40 Jy ms). Future tests of recovery of longer timescale transients, e.g. CHIME J1634+44, are planned to supplement injection testing and B0329+54 observations. An offline DSA-110 NSFRB Galactic Plane Survey was conducted to search for LPRTs, covering -3.5^circ<b<5.7^circ and 141^circ<l<225^circ (~770 square degrees) in Galactic coordinates. We estimate an upper limit Poissonian burst rate ~1 hr^{-1} per square degree (~7 hr^{-1} per 3^circtimes3^circ survey grid cell) maximized across the inner |b|<0.25^circ of the surveyed region. By imposing the ~290 mJy flux limit on two representative models (the magnetar plastic flow model and the White Dwarf-M Dwarf binary model), we reject with 95% confidence the presence of White Dwarf-M Dwarf binary LPRTs with periods between ~10-70s within ~95% of the surveyed region. Combined with the prevalence of LPRTs in the Galactic Plane, our results motivate further consideration of both White Dwarf-M Dwarf binary models and isolated magnetar models. We will continue to explore novel LPRT search strategies during real-time operations, such as triggered periodicity searches and additional targeted surveys.

  • 13 authors
·
Oct 20

RISE-SDF: a Relightable Information-Shared Signed Distance Field for Glossy Object Inverse Rendering

In this paper, we propose a novel end-to-end relightable neural inverse rendering system that achieves high-quality reconstruction of geometry and material properties, thus enabling high-quality relighting. The cornerstone of our method is a two-stage approach for learning a better factorization of scene parameters. In the first stage, we develop a reflection-aware radiance field using a neural signed distance field (SDF) as the geometry representation and deploy an MLP (multilayer perceptron) to estimate indirect illumination. In the second stage, we introduce a novel information-sharing network structure to jointly learn the radiance field and the physically based factorization of the scene. For the physically based factorization, to reduce the noise caused by Monte Carlo sampling, we apply a split-sum approximation with a simplified Disney BRDF and cube mipmap as the environment light representation. In the relighting phase, to enhance the quality of indirect illumination, we propose a second split-sum algorithm to trace secondary rays under the split-sum rendering framework. Furthermore, there is no dataset or protocol available to quantitatively evaluate the inverse rendering performance for glossy objects. To assess the quality of material reconstruction and relighting, we have created a new dataset with ground truth BRDF parameters and relighting results. Our experiments demonstrate that our algorithm achieves state-of-the-art performance in inverse rendering and relighting, with particularly strong results in the reconstruction of highly reflective objects.

  • 7 authors
·
Sep 30, 2024

PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method

As the number of seismic sensors grows, it is becoming increasingly difficult for analysts to pick seismic phases manually and comprehensively, yet such efforts are fundamental to earthquake monitoring. Despite years of improvements in automatic phase picking, it is difficult to match the performance of experienced analysts. A more subtle issue is that different seismic analysts may pick phases differently, which can introduce bias into earthquake locations. We present a deep-neural-network-based arrival-time picking method called "PhaseNet" that picks the arrival times of both P and S waves. Deep neural networks have recently made rapid progress in feature learning, and with sufficient training, have achieved super-human performance in many applications. PhaseNet uses three-component seismic waveforms as input and generates probability distributions of P arrivals, S arrivals, and noise as output. We engineer PhaseNet such that peaks in probability provide accurate arrival times for both P and S waves, and have the potential to increase the number of S-wave observations dramatically over what is currently available. This will enable both improved locations and improved shear wave velocity models. PhaseNet is trained on the prodigious available data set provided by analyst-labeled P and S arrival times from the Northern California Earthquake Data Center. The dataset we use contains more than seven million waveform samples extracted from over thirty years of earthquake recordings. We demonstrate that PhaseNet achieves much higher picking accuracy and recall rate than existing methods.

  • 2 authors
·
Mar 8, 2018

Complex-valued neural networks to speed-up MR Thermometry during Hyperthermia using Fourier PD and PDUNet

Hyperthermia (HT) in combination with radio- and/or chemotherapy has become an accepted cancer treatment for distinct solid tumour entities. In HT, tumour tissue is exogenously heated to temperatures between 39 and 43 ^circC for 60 minutes. Temperature monitoring can be performed non-invasively using dynamic magnetic resonance imaging (MRI). However, the slow nature of MRI leads to motion artefacts in the images due to the movements of patients during image acquisition. By discarding parts of the data, the speed of the acquisition can be increased - known as undersampling. However, due to the invalidation of the Nyquist criterion, the acquired images might be blurry and can also produce aliasing artefacts. The aim of this work was, therefore, to reconstruct highly undersampled MR thermometry acquisitions with better resolution and with fewer artefacts compared to conventional methods. The use of deep learning in the medical field has emerged in recent times, and various studies have shown that deep learning has the potential to solve inverse problems such as MR image reconstruction. However, most of the published work only focuses on the magnitude images, while the phase images are ignored, which are fundamental requirements for MR thermometry. This work, for the first time, presents deep learning-based solutions for reconstructing undersampled MR thermometry data. Two different deep learning models have been employed here, the Fourier Primal-Dual network and the Fourier Primal-Dual UNet, to reconstruct highly undersampled complex images of MR thermometry. The method reduced the temperature difference between the undersampled MRIs and the fully sampled MRIs from 1.3 ^circC to 0.6 ^circC in full volume and 0.49 ^circC to 0.06 ^circC in the tumour region for an acceleration factor of 10.

  • 9 authors
·
Oct 2, 2023

Day-to-Night Image Synthesis for Training Nighttime Neural ISPs

Many flagship smartphone cameras now use a dedicated neural image signal processor (ISP) to render noisy raw sensor images to the final processed output. Training nightmode ISP networks relies on large-scale datasets of image pairs with: (1) a noisy raw image captured with a short exposure and a high ISO gain; and (2) a ground truth low-noise raw image captured with a long exposure and low ISO that has been rendered through the ISP. Capturing such image pairs is tedious and time-consuming, requiring careful setup to ensure alignment between the image pairs. In addition, ground truth images are often prone to motion blur due to the long exposure. To address this problem, we propose a method that synthesizes nighttime images from daytime images. Daytime images are easy to capture, exhibit low-noise (even on smartphone cameras) and rarely suffer from motion blur. We outline a processing framework to convert daytime raw images to have the appearance of realistic nighttime raw images with different levels of noise. Our procedure allows us to easily produce aligned noisy and clean nighttime image pairs. We show the effectiveness of our synthesis framework by training neural ISPs for nightmode rendering. Furthermore, we demonstrate that using our synthetic nighttime images together with small amounts of real data (e.g., 5% to 10%) yields performance almost on par with training exclusively on real nighttime images. Our dataset and code are available at https://github.com/SamsungLabs/day-to-night.

  • 5 authors
·
Jun 6, 2022

Characterising gravitational wave stochastic background anisotropy with Pulsar Timing Arrays

Detecting a stochastic gravitational wave background, particularly radiation from individually unresolvable super-massive black hole binary systems, is one of the primary targets for Pulsar Timing Arrays. Increasingly more stringent upper limits are being set on these signals under the assumption that the background radiation is isotropic. However, some level of anisotropy may be present and the characterisation of the power at different angular scales carries important information. We show that the standard analysis for isotropic backgrounds can be generalised in a conceptually straightforward way to the case of generic anisotropic background radiation by decomposing the angular distribution of the gravitational wave power on the sky into multipole moments. We introduce the concept of generalised overlap reduction functions which characterise the effect of the anisotropy multipoles on the correlation of the timing residuals from the pulsars timed by a Pulsar Timing Array. In a search for a signal characterised by a generic anisotropy, the generalised overlap reduction functions play the role of the so-called Hellings and Downs curve used for isotropic radiation. We compute the generalised overlap reduction functions for a generic level of anisotropy and Pulsar Timing Array configuration. We also provide an order of magnitude estimate of the level of anisotropy that can be expected in the background generated by super-massive black hole binary systems.

  • 4 authors
·
Jun 23, 2013

Earth-Adapter: Bridge the Geospatial Domain Gaps with Mixture of Frequency Adaptation

Parameter-Efficient Fine-Tuning (PEFT) is a technique that allows us to adapt powerful Foundation Models (FMs) to diverse downstream tasks while preserving and unleashing their inherent capabilities. However, we have observed that existing PEFT methods, which are often designed with natural imagery in mind, struggle when applied to Remote Sensing (RS) scenarios. This is primarily due to their inability to handle artifact influences, a problem particularly severe in RS image features. To tackle this challenge, we introduce Earth-Adapter, the first PEFT method specifically designed for RS artifacts conquering. Earth-Adapter introduces a novel Mixture of Frequency Adaptation process that combines a Mixture of Adapter (MoA) with Discrete Fourier Transformation (DFT). By utilizing DFT, Earth-Adapter can decompose features into different frequency components, precisely separating artifacts from original features. The MoA then dynamically assigns weights to each adapter expert, allowing for the combination of features across various frequency domains. These simple-yet-effective approaches enable Earth-Adapter to more efficiently overcome the disturbances caused by artifacts than previous PEFT methods, significantly enhancing the FMs' performance on RS scenarios. Experiments on Domain Adaptation (DA), and Domain Generalization (DG) semantic segmentation benchmarks showcase the Earth-Adapter's effectiveness. Compared with baseline Rein, Earth-Adapter significantly improves 9.0% mIoU in DA and 3.1% mIoU in DG benchmarks. Our code will be released at https://github.com/VisionXLab/Earth-Adapter.

  • 6 authors
·
Apr 8

Pattern and Origin for the Extreme γ-ray Flares of 3C 454.3 and 3C 279: An Astrophysical Critical Damper?

We apply a Gaussian process method to the extreme gamma-ray flares of 3C 454.3 and 3C 279 to discover the variable patterns and then to investigate the physical origins of the giant flares. The kernels of stochastically driven damped simple harmonic oscillator (SHO), the damped random-walk (DRW), and Matrm ern-3/2 are respectively used to describe the adaptive-binning gamma-ray light curves of the two flares. Our findings show that both the extreme gamma-ray flares of 3C 454.3 and 3C 279 clearly prefer the SHO kernel in the over-damped mode and the Matrm ern-3/2 kernel over the DRW kernel. The resulted SHO and Matrm ern-3/2 power spectral densities (PSDs) are the same for each object, with the index changing from -4 at high frequencies to 0 at low frequencies. The patterns of the two flares are both approaching the critical damping mode with the quality factor Q approx 0.4 (i.e., the damping ratio eta approx 1.25), but with slightly different damping timescales. The characteristic timescale (corresponding to the broken frequency in the PSD) for 3C 454.3 is 2-3 days and 3-5 days for 3C 279. The variable patterns found here suggest that once the system responds to the energy injection disturbance, the release of the energy in the system is finished abruptly. The obtained timescale provides a constraint on the size of energy dissipation region for each source.

  • 5 authors
·
Feb 28

Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem

Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.

  • 2 authors
·
Feb 18

Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays

The potential of using of millimeter wave (mmWave) frequency for future wireless cellular communication systems has motivated the study of large-scale antenna arrays for achieving highly directional beamforming. However, the conventional fully digital beamforming methods which require one radio frequency (RF) chain per antenna element is not viable for large-scale antenna arrays due to the high cost and high power consumption of RF chain components in high frequencies. To address the challenge of this hardware limitation, this paper considers a hybrid beamforming architecture in which the overall beamformer consists of a low-dimensional digital beamformer followed by an RF beamformer implemented using analog phase shifters. Our aim is to show that such an architecture can approach the performance of a fully digital scheme with much fewer number of RF chains. Specifically, this paper establishes that if the number of RF chains is twice the total number of data streams, the hybrid beamforming structure can realize any fully digital beamformer exactly, regardless of the number of antenna elements. For cases with fewer number of RF chains, this paper further considers the hybrid beamforming design problem for both the transmission scenario of a point-to-point multipleinput multiple-output (MIMO) system and a downlink multiuser multiple-input single-output (MU-MISO) system. For each scenario, we propose a heuristic hybrid beamforming design that achieves a performance close to the performance of the fully digital beamforming baseline. Finally, the proposed algorithms are modified for the more practical setting in which only finite resolution phase shifters are available. Numerical simulations show that the proposed schemes are effective even when phase shifters with very low resolution are used.

  • 2 authors
·
Jan 25, 2016 1

NeRF-DS: Neural Radiance Fields for Dynamic Specular Objects

Dynamic Neural Radiance Field (NeRF) is a powerful algorithm capable of rendering photo-realistic novel view images from a monocular RGB video of a dynamic scene. Although it warps moving points across frames from the observation spaces to a common canonical space for rendering, dynamic NeRF does not model the change of the reflected color during the warping. As a result, this approach often fails drastically on challenging specular objects in motion. We address this limitation by reformulating the neural radiance field function to be conditioned on surface position and orientation in the observation space. This allows the specular surface at different poses to keep the different reflected colors when mapped to the common canonical space. Additionally, we add the mask of moving objects to guide the deformation field. As the specular surface changes color during motion, the mask mitigates the problem of failure to find temporal correspondences with only RGB supervision. We evaluate our model based on the novel view synthesis quality with a self-collected dataset of different moving specular objects in realistic environments. The experimental results demonstrate that our method significantly improves the reconstruction quality of moving specular objects from monocular RGB videos compared to the existing NeRF models. Our code and data are available at the project website https://github.com/JokerYan/NeRF-DS.

  • 3 authors
·
Mar 25, 2023

APNet: An All-Frame-Level Neural Vocoder Incorporating Direct Prediction of Amplitude and Phase Spectra

This paper presents a novel neural vocoder named APNet which reconstructs speech waveforms from acoustic features by predicting amplitude and phase spectra directly. The APNet vocoder is composed of an amplitude spectrum predictor (ASP) and a phase spectrum predictor (PSP). The ASP is a residual convolution network which predicts frame-level log amplitude spectra from acoustic features. The PSP also adopts a residual convolution network using acoustic features as input, then passes the output of this network through two parallel linear convolution layers respectively, and finally integrates into a phase calculation formula to estimate frame-level phase spectra. Finally, the outputs of ASP and PSP are combined to reconstruct speech waveforms by inverse short-time Fourier transform (ISTFT). All operations of the ASP and PSP are performed at the frame level. We train the ASP and PSP jointly and define multilevel loss functions based on amplitude mean square error, phase anti-wrapping error, short-time spectral inconsistency error and time domain reconstruction error. Experimental results show that our proposed APNet vocoder achieves an approximately 8x faster inference speed than HiFi-GAN v1 on a CPU due to the all-frame-level operations, while its synthesized speech quality is comparable to HiFi-GAN v1. The synthesized speech quality of the APNet vocoder is also better than that of several equally efficient models. Ablation experiments also confirm that the proposed parallel phase estimation architecture is essential to phase modeling and the proposed loss functions are helpful for improving the synthesized speech quality.

  • 2 authors
·
May 13, 2023

HDRT: Infrared Capture for HDR Imaging

Capturing real world lighting is a long standing challenge in imaging and most practical methods acquire High Dynamic Range (HDR) images by either fusing multiple exposures, or boosting the dynamic range of Standard Dynamic Range (SDR) images. Multiple exposure capture is problematic as it requires longer capture times which can often lead to ghosting problems. The main alternative, inverse tone mapping is an ill-defined problem that is especially challenging as single captured exposures usually contain clipped and quantized values, and are therefore missing substantial amounts of content. To alleviate this, we propose a new approach, High Dynamic Range Thermal (HDRT), for HDR acquisition using a separate, commonly available, thermal infrared (IR) sensor. We propose a novel deep neural method (HDRTNet) which combines IR and SDR content to generate HDR images. HDRTNet learns to exploit IR features linked to the RGB image and the IR-specific parameters are subsequently used in a dual branch method that fuses features at shallow layers. This produces an HDR image that is significantly superior to that generated using naive fusion approaches. To validate our method, we have created the first HDR and thermal dataset, and performed extensive experiments comparing HDRTNet with the state-of-the-art. We show substantial quantitative and qualitative quality improvements on both over- and under-exposed images, showing that our approach is robust to capturing in multiple different lighting conditions.

  • 5 authors
·
Jun 8, 2024

First systematic study reporting the changes in eclipse cut-off frequency for pulsar J1544+4937

We present results from a long-term monitoring of frequency dependent eclipses of the radio emission from PSR J1544+4937 which is a ``black widow spider'' millisecond pulsar (MSP) in a compact binary system. The majority of such systems often exhibit relatively long duration radio eclipses caused by ablated material from their companion stars. With the wide spectral bandwidth of upgraded Giant Metrewave Radio Telescope (uGMRT), we present first systematic study of temporal variation of eclipse cut-off frequency. With decade-long monitoring of 39 eclipses for PSR J1544+4937, we notice significant changes in the observed cut-off frequency ranging from 343 pm 7 MHz to > 740 MHz. We also monitored changes in eclipse cut-off frequency on timescales of tens of days and observed a maximum change of ge 315 MHz between observations that were separated by 22 days. In addition, we observed a change of sim 47 MHz in eclipse cut-off frequency between adjacent orbits, i.e. on timescales of sim 2.9 hours. We infer that such changes in the eclipse cut-off frequency depict an eclipse environment for the PSR J1544+4937 system that is dynamically evolving, where, along with the change in electron density, the magnetic field could also be varying. We also report a significant correlation between the eclipse cut-off frequency and the mass loss rate of the companion. This study provides the first direct evidence of mass loss rate affecting the frequency dependent eclipsing in a spider MSP.

  • 6 authors
·
Nov 3, 2023