Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMotionSight: Boosting Fine-Grained Motion Understanding in Multimodal LLMs
Despite advancements in Multimodal Large Language Models (MLLMs), their proficiency in fine-grained video motion understanding remains critically limited. They often lack inter-frame differencing and tend to average or ignore subtle visual cues. Furthermore, while visual prompting has shown potential in static images, its application to video's temporal complexities, particularly for fine-grained motion understanding, remains largely unexplored. We investigate whether inherent capability can be unlocked and boost MLLMs' motion perception and enable distinct visual signatures tailored to decouple object and camera motion cues. In this study, we introduce MotionSight, a novel zero-shot method pioneering object-centric visual spotlight and motion blur as visual prompts to effectively improve fine-grained motion understanding without training. To convert this into valuable data assets, we curated MotionVid-QA, the first large-scale dataset for fine-grained video motion understanding, with hierarchical annotations including SFT and preference data, {\Theta}(40K) video clips and {\Theta}(87K) QAs. Experiments show MotionSight achieves state-of-the-art open-source performance and competitiveness with commercial models. In particular, for fine-grained motion understanding we present a novel zero-shot technique and a large-scale, high-quality dataset. All the code and annotations will be publicly available.
Towards Better Instruction Following Language Models for Chinese: Investigating the Impact of Training Data and Evaluation
Recently, significant public efforts have been directed towards developing low-cost models with capabilities akin to ChatGPT, thereby fostering the growth of open-source conversational models. However, there remains a scarcity of comprehensive and in-depth evaluations of these models' performance. In this study, we examine the influence of training data factors, including quantity, quality, and linguistic distribution, on model performance. Our analysis is grounded in several publicly accessible, high-quality instruction datasets, as well as our own Chinese multi-turn conversations. We assess various models using a evaluation set of 1,000 samples, encompassing nine real-world scenarios. Our goal is to supplement manual evaluations with quantitative analyses, offering valuable insights for the continued advancement of open-source chat models. Furthermore, to enhance the performance and training and inference efficiency of models in the Chinese domain, we extend the vocabulary of LLaMA - the model with the closest open-source performance to proprietary language models like GPT-3 - and conduct secondary pre-training on 3.4B Chinese words. We make our model, data, as well as code publicly available.
4D-Bench: Benchmarking Multi-modal Large Language Models for 4D Object Understanding
Multimodal Large Language Models (MLLMs) have demonstrated impressive 2D image/video understanding capabilities. However, there are no publicly standardized benchmarks to assess the abilities of MLLMs in understanding the 4D objects (3D objects with temporal evolution over time). In this paper, we introduce 4D-Bench, the first benchmark to evaluate the capabilities of MLLMs in 4D object understanding, featuring tasks in 4D object Question Answering (4D object QA) and 4D object captioning. 4D-Bench provides 4D objects with diverse categories, high-quality annotations, and tasks necessitating multi-view spatial-temporal understanding, different from existing 2D image/video-based benchmarks. With 4D-Bench, we evaluate a wide range of open-source and closed-source MLLMs. The results from the 4D object captioning experiment indicate that MLLMs generally exhibit weaker temporal understanding compared to their appearance understanding, notably, while open-source models approach closed-source performance in appearance understanding, they show larger performance gaps in temporal understanding. 4D object QA yields surprising findings: even with simple single-object videos, MLLMs perform poorly, with state-of-the-art GPT-4o achieving only 63\% accuracy compared to the human baseline of 91\%. These findings highlight a substantial gap in 4D object understanding and the need for further advancements in MLLMs.
Large Multilingual Models Pivot Zero-Shot Multimodal Learning across Languages
Recently there has been a significant surge in multimodal learning in terms of both image-to-text and text-to-image generation. However, the success is typically limited to English, leaving other languages largely behind. Building a competitive counterpart in other languages is highly challenging due to the low-resource nature of non-English multimodal data (i.e., lack of large-scale, high-quality image-text data). In this work, we propose MPM, an effective training paradigm for training large multimodal models in low-resource languages. MPM demonstrates that Multilingual language models can Pivot zero-shot Multimodal learning across languages. Specifically, based on a strong multilingual large language model, multimodal models pretrained on English-only image-text data can well generalize to other languages in a zero-shot manner for both image-to-text and text-to-image generation, even surpassing models trained on image-text data in native languages. Taking Chinese as a practice of MPM, we build large multimodal models VisCPM in image-to-text and text-to-image generation, which achieve state-of-the-art (open-source) performance in Chinese. To facilitate future research, we open-source codes and model weights at https://github.com/OpenBMB/VisCPM.git.
Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive
Direct Preference Optimisation (DPO) is effective at significantly improving the performance of large language models (LLMs) on downstream tasks such as reasoning, summarisation, and alignment. Using pairs of preferred and dispreferred data, DPO models the relative probability of picking one response over another. In this work, first we show theoretically that the standard DPO loss can lead to a reduction of the model's likelihood of the preferred examples, as long as the relative probability between the preferred and dispreferred classes increases. We then show empirically that this phenomenon occurs when fine-tuning LLMs on common datasets, especially datasets in which the edit distance between pairs of completions is low. Using these insights, we design DPO-Positive (DPOP), a new loss function and training procedure which avoids this failure mode. Surprisingly, we also find that DPOP significantly outperforms DPO across a wide variety of datasets and downstream tasks, including datasets with high edit distances between completions. By fine-tuning with DPOP, we create and release Smaug-34B and Smaug-72B, which achieve state-of-the-art open-source performance. Notably, Smaug-72B is nearly 2\% better than any other open-source model on the HuggingFace Open LLM Leaderboard and becomes the first open-source LLM to surpass an average accuracy of 80\%.
Surgical Gym: A high-performance GPU-based platform for reinforcement learning with surgical robots
Recent advances in robot-assisted surgery have resulted in progressively more precise, efficient, and minimally invasive procedures, sparking a new era of robotic surgical intervention. This enables doctors, in collaborative interaction with robots, to perform traditional or minimally invasive surgeries with improved outcomes through smaller incisions. Recent efforts are working toward making robotic surgery more autonomous which has the potential to reduce variability of surgical outcomes and reduce complication rates. Deep reinforcement learning methodologies offer scalable solutions for surgical automation, but their effectiveness relies on extensive data acquisition due to the absence of prior knowledge in successfully accomplishing tasks. Due to the intensive nature of simulated data collection, previous works have focused on making existing algorithms more efficient. In this work, we focus on making the simulator more efficient, making training data much more accessible than previously possible. We introduce Surgical Gym, an open-source high performance platform for surgical robot learning where both the physics simulation and reinforcement learning occur directly on the GPU. We demonstrate between 100-5000x faster training times compared with previous surgical learning platforms. The code is available at: https://github.com/SamuelSchmidgall/SurgicalGym.
CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs
Large language models (LLMs) have shown great potential in code-related tasks, yet open-source models lag behind their closed-source counterparts. To bridge this performance gap, existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training. Motivated by the need for more effective and efficient training, we propose the Code Adaptive Compute-efficient Tuning (CodeACT) framework. CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data based on complexity and diversity, and the Dynamic Pack padding strategy to reduce computational resource usage by minimizing padding tokens during training. Experimental results demonstrate that CodeACT-DeepSeek-Coder-6.7B, fine-tuned on only 40% of the EVOL-Instruct data, achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%. These findings underscore CodeACT's ability to enhance the performance and efficiency of open-source models. By optimizing both the data selection and training processes, CodeACT offers a comprehensive approach to improving the capabilities of open-source LLMs while significantly reducing computational requirements, addressing the dual challenges of data quality and training efficiency, and paving the way for more resource-efficient and performant models.
TCIA: A Task-Centric Instruction Augmentation Method for Instruction Finetuning
Diverse instruction data is vital for effective instruction tuning of large language models, as it enables the model to generalize across different types of inputs . Building such diversified instruction dataset is an essential step in this process. Existing approaches often leverage large language models to automatically explore and generate diverse instructions, ensuring both data diversity and quality. However, they tend to overlook an important factor in real-world applications: on-task relevance. In practice, only a few real-world applications require a truly general-purpose model; most benefit from task-specific knowledge tailored to their particular use case. Therefore, it is vital to develop instruction augmentation methods that not only maintain diversity but are also optimized for specific, real-world scenarios. We thus introduce Task Centric Instruction Augmentation (TCIA), a framework that systematically expands instructions while preserving both diversity and task alignment. By representing instructions in a discrete query-constraints space, TCIA creates a rich set of task-relevant instructions and enables models to generalize to these task-specific instructions without sacrificing overall performance. Experiments show that TCIA improves open-source LLMs' performance by an average of 8.7% across four real-world, task-specific applications, and in some cases outperforming leading closed-source models. These improvements do not compromise general instruction-following ability, making TCIA a scalable and efficient solution for adapting LLMs to real-world, task-focused applications.
UniSVG: A Unified Dataset for Vector Graphic Understanding and Generation with Multimodal Large Language Models
Unlike bitmap images, scalable vector graphics (SVG) maintain quality when scaled, frequently employed in computer vision and artistic design in the representation of SVG code. In this era of proliferating AI-powered systems, enabling AI to understand and generate SVG has become increasingly urgent. However, AI-driven SVG understanding and generation (U&G) remain significant challenges. SVG code, equivalent to a set of curves and lines controlled by floating-point parameters, demands high precision in SVG U&G. Besides, SVG generation operates under diverse conditional constraints, including textual prompts and visual references, which requires powerful multi-modal processing for condition-to-SVG transformation. Recently, the rapid growth of Multi-modal Large Language Models (MLLMs) have demonstrated capabilities to process multi-modal inputs and generate complex vector controlling parameters, suggesting the potential to address SVG U&G tasks within a unified model. To unlock MLLM's capabilities in the SVG area, we propose an SVG-centric dataset called UniSVG, comprising 525k data items, tailored for MLLM training and evaluation. To our best knowledge, it is the first comprehensive dataset designed for unified SVG generation (from textual prompts and images) and SVG understanding (color, category, usage, etc.). As expected, learning on the proposed dataset boosts open-source MLLMs' performance on various SVG U&G tasks, surpassing SOTA close-source MLLMs like GPT-4V. We release dataset, benchmark, weights, codes and experiment details on https://ryanlijinke.github.io/.
CulFiT: A Fine-grained Cultural-aware LLM Training Paradigm via Multilingual Critique Data Synthesis
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often exhibit a specific cultural biases, neglecting the values and linguistic diversity of low-resource regions. This cultural bias not only undermines universal equality, but also risks reinforcing stereotypes and perpetuating discrimination. To address this, we propose CulFiT, a novel culturally-aware training paradigm that leverages multilingual data and fine-grained reward modeling to enhance cultural sensitivity and inclusivity. Our approach synthesizes diverse cultural-related questions, constructs critique data in culturally relevant languages, and employs fine-grained rewards to decompose cultural texts into verifiable knowledge units for interpretable evaluation. We also introduce GlobalCultureQA, a multilingual open-ended question-answering dataset designed to evaluate culturally-aware responses in a global context. Extensive experiments on three existing benchmarks and our GlobalCultureQA demonstrate that CulFiT achieves state-of-the-art open-source model performance in cultural alignment and general reasoning.
Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model
We present Ring-1T, the first open-source, state-of-the-art thinking model with a trillion-scale parameter. It features 1 trillion total parameters and activates approximately 50 billion per token. Training such models at a trillion-parameter scale introduces unprecedented challenges, including train-inference misalignment, inefficiencies in rollout processing, and bottlenecks in the RL system. To address these, we pioneer three interconnected innovations: (1) IcePop stabilizes RL training via token-level discrepancy masking and clipping, resolving instability from training-inference mismatches; (2) C3PO++ improves resource utilization for long rollouts under a token budget by dynamically partitioning them, thereby obtaining high time efficiency; and (3) ASystem, a high-performance RL framework designed to overcome the systemic bottlenecks that impede trillion-parameter model training. Ring-1T delivers breakthrough results across critical benchmarks: 93.4 on AIME-2025, 86.72 on HMMT-2025, 2088 on CodeForces, and 55.94 on ARC-AGI-v1. Notably, it attains a silver medal-level result on the IMO-2025, underscoring its exceptional reasoning capabilities. By releasing the complete 1T parameter MoE model to the community, we provide the research community with direct access to cutting-edge reasoning capabilities. This contribution marks a significant milestone in democratizing large-scale reasoning intelligence and establishes a new baseline for open-source model performance.
MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs
Large language models (LLMs) have exhibited great potential in mathematical reasoning. However, there remains a performance gap in this area between existing open-source models and closed-source models such as GPT-4. In this paper, we introduce MathGenie, a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset (denoted as seed data). We augment the ground-truth solutions of our seed data and train a back-translation model to translate the augmented solutions back into new questions. Subsequently, we generate code-integrated solutions for the new questions. To ensure the correctness of the code-integrated solutions, we employ rationale-based strategy for solution verification. Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique, resulting in a family of models known as MathGenieLM. These models consistently outperform previous open-source models across five representative mathematical reasoning datasets, achieving state-of-the-art performance. In particular, MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
MathScale: Scaling Instruction Tuning for Mathematical Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., {\tt GPT-3.5}). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct {\sc MwpBench}, a benchmark of Math Word Problems, which is a collection of ten datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on {\sc MwpBench}, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.9\% in micro average accuracy and 43.7\% in macro average accuracy, respectively.
OpenDCVCs: A PyTorch Open Source Implementation and Performance Evaluation of the DCVC series Video Codecs
We present OpenDCVCs, an open-source PyTorch implementation designed to advance reproducible research in learned video compression. OpenDCVCs provides unified and training-ready implementations of four representative Deep Contextual Video Compression (DCVC) models--DCVC, DCVC with Temporal Context Modeling (DCVC-TCM), DCVC with Hybrid Entropy Modeling (DCVC-HEM), and DCVC with Diverse Contexts (DCVC-DC). While the DCVC series achieves substantial bitrate reductions over both classical codecs and advanced learned models, previous public code releases have been limited to evaluation codes, presenting significant barriers to reproducibility, benchmarking, and further development. OpenDCVCs bridges this gap by offering a comprehensive, self-contained framework that supports both end-to-end training and evaluation for all included algorithms. The implementation includes detailed documentation, evaluation protocols, and extensive benchmarking results across diverse datasets, providing a transparent and consistent foundation for comparison and extension. All code and experimental tools are publicly available at https://gitlab.com/viper-purdue/opendcvcs, empowering the community to accelerate research and foster collaboration.
Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures
Hyperdimensional computing (HD), also known as vector symbolic architectures (VSA), is a framework for computing with distributed representations by exploiting properties of random high-dimensional vector spaces. The commitment of the scientific community to aggregate and disseminate research in this particularly multidisciplinary area has been fundamental for its advancement. Joining these efforts, we present Torchhd, a high-performance open source Python library for HD/VSA. Torchhd seeks to make HD/VSA more accessible and serves as an efficient foundation for further research and application development. The easy-to-use library builds on top of PyTorch and features state-of-the-art HD/VSA functionality, clear documentation, and implementation examples from well-known publications. Comparing publicly available code with their corresponding Torchhd implementation shows that experiments can run up to 100x faster. Torchhd is available at: https://github.com/hyperdimensional-computing/torchhd.
LongGenBench: Long-context Generation Benchmark
Current long-context benchmarks primarily focus on retrieval-based tests, requiring Large Language Models (LLMs) to locate specific information within extensive input contexts, such as the needle-in-a-haystack (NIAH) benchmark. Long-context generation refers to the ability of a language model to generate coherent and contextually accurate text that spans across lengthy passages or documents. While recent studies show strong performance on NIAH and other retrieval-based long-context benchmarks, there is a significant lack of benchmarks for evaluating long-context generation capabilities. To bridge this gap and offer a comprehensive assessment, we introduce a synthetic benchmark, LongGenBench, which allows for flexible configurations of customized generation context lengths. LongGenBench advances beyond traditional benchmarks by redesigning the format of questions and necessitating that LLMs respond with a single, cohesive long-context answer. Upon extensive evaluation using LongGenBench, we observe that: (1) both API accessed and open source models exhibit performance degradation in long-context generation scenarios, ranging from 1.2% to 47.1%; (2) different series of LLMs exhibit varying trends of performance degradation, with the Gemini-1.5-Flash model showing the least degradation among API accessed models, and the Qwen2 series exhibiting the least degradation in LongGenBench among open source models.
Parrot: Enhancing Multi-Turn Chat Models by Learning to Ask Questions
Impressive progress has been made on chat models based on Large Language Models (LLMs) recently; however, there is a noticeable lag in multi-turn conversations between open-source chat models (e.g., Alpaca and Vicuna) and the leading chat models (e.g., ChatGPT and GPT-4). Through a series of analyses, we attribute the lag to the lack of enough high-quality multi-turn instruction-tuning data. The available instruction-tuning data for the community are either single-turn conversations or multi-turn ones with certain issues, such as non-human-like instructions, less detailed responses, or rare topic shifts. In this paper, we address these challenges by introducing Parrot, a highly scalable solution designed to automatically generate high-quality instruction-tuning data, which are then used to enhance the effectiveness of chat models in multi-turn conversations. Specifically, we start by training the Parrot-Ask model, which is designed to emulate real users in generating instructions. We then utilize Parrot-Ask to engage in multi-turn conversations with ChatGPT across a diverse range of topics, resulting in a collection of 40K high-quality multi-turn dialogues (Parrot-40K). These data are subsequently employed to train a chat model that we have named Parrot-Chat. We demonstrate that the dialogues gathered from Parrot-Ask markedly outperform existing multi-turn instruction-following datasets in critical metrics, including topic diversity, number of turns, and resemblance to human conversation. With only 40K training examples, Parrot-Chat achieves strong performance against other 13B open-source models across a range of instruction-following benchmarks, and particularly excels in evaluations of multi-turn capabilities. We make all codes, datasets, and two versions of the Parrot-Ask model based on LLaMA2-13B and KuaiYii-13B available at https://github.com/kwai/KwaiYii/Parrot.
VideoVista: A Versatile Benchmark for Video Understanding and Reasoning
Despite significant breakthroughs in video analysis driven by the rapid development of large multimodal models (LMMs), there remains a lack of a versatile evaluation benchmark to comprehensively assess these models' performance in video understanding and reasoning. To address this, we present VideoVista, a video QA benchmark that integrates challenges across diverse content categories, durations, and abilities. Specifically, VideoVista comprises 25,000 questions derived from 3,400 videos spanning 14 categories (e.g., Howto, Film, and Entertainment) with durations ranging from a few seconds to over 10 minutes. Besides, it encompasses 19 types of understanding tasks (e.g., anomaly detection, interaction understanding) and 8 reasoning tasks (e.g., logical reasoning, causal reasoning). To achieve this, we present an automatic data construction framework, leveraging powerful GPT-4o alongside advanced analysis tools (e.g., video splitting, object segmenting, and tracking). We also utilize this framework to construct training data to enhance the capabilities of video-related LMMs (Video-LMMs). Through a comprehensive and quantitative evaluation of cutting-edge models, we reveal that: 1) Video-LMMs face difficulties in fine-grained video tasks involving temporal location, object tracking, and anomaly detection; 2) Video-LMMs present inferior logical and relation reasoning abilities; 3) Open-source Video-LMMs' performance is significantly lower than GPT-4o and Gemini-1.5, lagging by 20 points. This highlights the crucial role VideoVista will play in advancing LMMs that can accurately understand videos and perform precise reasoning.
Can Open-Source LLMs Compete with Commercial Models? Exploring the Few-Shot Performance of Current GPT Models in Biomedical Tasks
Commercial large language models (LLMs), like OpenAI's GPT-4 powering ChatGPT and Anthropic's Claude 3 Opus, have dominated natural language processing (NLP) benchmarks across different domains. New competing Open-Source alternatives like Mixtral 8x7B or Llama 3 have emerged and seem to be closing the gap while often offering higher throughput and being less costly to use. Open-Source LLMs can also be self-hosted, which makes them interesting for enterprise and clinical use cases where sensitive data should not be processed by third parties. We participated in the 12th BioASQ challenge, which is a retrieval augmented generation (RAG) setting, and explored the performance of current GPT models Claude 3 Opus, GPT-3.5-turbo and Mixtral 8x7b with in-context learning (zero-shot, few-shot) and QLoRa fine-tuning. We also explored how additional relevant knowledge from Wikipedia added to the context-window of the LLM might improve their performance. Mixtral 8x7b was competitive in the 10-shot setting, both with and without fine-tuning, but failed to produce usable results in the zero-shot setting. QLoRa fine-tuning and Wikipedia context did not lead to measurable performance gains. Our results indicate that the performance gap between commercial and open-source models in RAG setups exists mainly in the zero-shot setting and can be closed by simply collecting few-shot examples for domain-specific use cases. The code needed to rerun these experiments is available through GitHub.
Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0, maintaining its core model architecture while introducing significant enhancements in training and testing strategies as well as data quality. In this work, we delve into the relationship between model scaling and performance, systematically exploring the performance trends in vision encoders, language models, dataset sizes, and test-time configurations. Through extensive evaluations on a wide range of benchmarks, including multi-discipline reasoning, document understanding, multi-image / video understanding, real-world comprehension, multimodal hallucination detection, visual grounding, multilingual capabilities, and pure language processing, InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet. Notably, our model is the first open-source MLLMs to surpass 70% on the MMMU benchmark, achieving a 3.7-point improvement through Chain-of-Thought (CoT) reasoning and showcasing strong potential for test-time scaling. We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems. HuggingFace demo see https://huggingface.co/spaces/OpenGVLab/InternVL
Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport
Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases.
Democratizing LLMs: An Exploration of Cost-Performance Trade-offs in Self-Refined Open-Source Models
The dominance of proprietary LLMs has led to restricted access and raised information privacy concerns. High-performing open-source alternatives are crucial for information-sensitive and high-volume applications but often lag behind in performance. To address this gap, we propose (1) A untargeted variant of iterative self-critique and self-refinement devoid of external influence. (2) A novel ranking metric - Performance, Refinement, and Inference Cost Score (PeRFICS) - to find the optimal model for a given task considering refined performance and cost. Our experiments show that SoTA open source models of varying sizes from 7B - 65B, on average, improve 8.2% from their baseline performance. Strikingly, even models with extremely small memory footprints, such as Vicuna-7B, show a 11.74% improvement overall and up to a 25.39% improvement in high-creativity, open ended tasks on the Vicuna benchmark. Vicuna-13B takes it a step further and outperforms ChatGPT post-refinement. This work has profound implications for resource-constrained and information-sensitive environments seeking to leverage LLMs without incurring prohibitive costs, compromising on performance and privacy. The domain-agnostic self-refinement process coupled with our novel ranking metric facilitates informed decision-making in model selection, thereby reducing costs and democratizing access to high-performing language models, as evidenced by case studies.
F2LLM Technical Report: Matching SOTA Embedding Performance with 6 Million Open-Source Data
We introduce F2LLM - Foundation to Feature Large Language Models, a suite of state-of-the-art embedding models in three sizes: 0.6B, 1.7B, and 4B. Unlike previous top-ranking embedding models that require massive contrastive pretraining, sophisticated training pipelines, and costly synthetic training data, F2LLM is directly finetuned from foundation models on 6 million query-document-negative tuples curated from open-source, non-synthetic datasets, striking a strong balance between training cost, model size, and embedding performance. On the MTEB English leaderboard, F2LLM-4B ranks 2nd among models with approximately 4B parameters and 7th overall, while F2LLM-1.7B ranks 1st among models in the 1B-2B size range. To facilitate future research in the field, we release the models, training dataset, and code, positioning F2LLM as a strong, reproducible, and budget-friendly baseline for future works.
OpenTSLM: Time-Series Language Models for Reasoning over Multivariate Medical Text- and Time-Series Data
LLMs have emerged as powerful tools for interpreting multimodal data. In medicine, they hold particular promise for synthesizing large volumes of clinical information into actionable insights and digital health applications. Yet, a major limitation remains their inability to handle time series. To overcome this gap, we present OpenTSLM, a family of Time Series Language Models (TSLMs) created by integrating time series as a native modality to pretrained LLMs, enabling reasoning over multiple time series of any length. We investigate two architectures for OpenTSLM. The first, OpenTSLM-SoftPrompt, models time series implicitly by concatenating learnable time series tokens with text tokens via soft prompting. Although parameter-efficient, we hypothesize that explicit time series modeling scales better and outperforms implicit approaches. We thus introduce OpenTSLM-Flamingo, which integrates time series with text via cross-attention. We benchmark both variants against baselines that treat time series as text tokens or plots, across a suite of text-time-series Chain-of-Thought (CoT) reasoning tasks. We introduce three datasets: HAR-CoT, Sleep-CoT, and ECG-QA-CoT. Across all, OpenTSLM models outperform baselines, reaching 69.9 F1 in sleep staging and 65.4 in HAR, compared to 9.05 and 52.2 for finetuned text-only models. Notably, even 1B-parameter OpenTSLM models surpass GPT-4o (15.47 and 2.95). OpenTSLM-Flamingo matches OpenTSLM-SoftPrompt in performance and outperforms on longer sequences, while maintaining stable memory requirements. By contrast, SoftPrompt grows exponentially in memory with sequence length, requiring around 110 GB compared to 40 GB VRAM when training on ECG-QA with LLaMA-3B. Expert reviews by clinicians find strong reasoning capabilities exhibited by OpenTSLMs on ECG-QA. To facilitate further research, we provide all code, datasets, and models open-source.
Open-Source Large Language Models Outperform Crowd Workers and Approach ChatGPT in Text-Annotation Tasks
This study examines the performance of open-source Large Language Models (LLMs) in text annotation tasks and compares it with proprietary models like ChatGPT and human-based services such as MTurk. While prior research demonstrated the high performance of ChatGPT across numerous NLP tasks, open-source LLMs like HugginChat and FLAN are gaining attention for their cost-effectiveness, transparency, reproducibility, and superior data protection. We assess these models using both zero-shot and few-shot approaches and different temperature parameters across a range of text annotation tasks. Our findings show that while ChatGPT achieves the best performance in most tasks, open-source LLMs not only outperform MTurk but also demonstrate competitive potential against ChatGPT in specific tasks.
Open-Source Molecular Processing Pipeline for Generating Molecules
Generative models for molecules have shown considerable promise for use in computational chemistry, but remain difficult to use for non-experts. For this reason, we introduce open-source infrastructure for easily building generative molecular models into the widely used DeepChem [Ramsundar et al., 2019] library with the aim of creating a robust and reusable molecular generation pipeline. In particular, we add high quality PyTorch [Paszke et al., 2019] implementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao and Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our implementations show strong performance comparable with past work [Kuznetsov and Polykovskiy, 2021, Cao and Kipf, 2022].
Open-Reasoner-Zero: An Open Source Approach to Scaling Up Reinforcement Learning on the Base Model
We introduce Open-Reasoner-Zero, the first open source implementation of large-scale reasoning-oriented RL training focusing on scalability, simplicity and accessibility. Through extensive experiments, we demonstrate that a minimalist approach, vanilla PPO with GAE (lambda=1, gamma=1) and straightforward rule-based rewards, without any KL regularization, is sufficient to scale up both response length and benchmark performance, similar to the phenomenon observed in DeepSeek-R1-Zero. Using the same base model as DeepSeek-R1-Zero-Qwen-32B, our implementation achieves superior performance on AIME2024, MATH500, and the GPQA Diamond benchmark while demonstrating remarkable efficiency -- requiring only a tenth of the training steps, compared to DeepSeek-R1-Zero pipeline. In the spirit of open source, we release our source code, parameter settings, training data, and model weights across various sizes.
Vikhr: The Family of Open-Source Instruction-Tuned Large Language Models for Russian
There has been a surge in the development of various Large Language Models (LLMs). However, text generation for languages other than English often faces significant challenges, including poor generation quality and the reduced computational performance due to the disproportionate representation of tokens in model's vocabulary. In this work, we address these issues and introduce Vikhr, a new state-of-the-art open-source instruction-tuned LLM designed specifically for the Russian language. Unlike previous efforts for Russian that utilize computationally inexpensive LoRA adapters on top of English-oriented models, Vikhr features an adapted tokenizer vocabulary and undergoes the continued pre-training and instruction tuning of all weights. This approach not only enhances the model's performance but also significantly improves its computational and contextual efficiency. The remarkable performance of Vikhr across various Russian-language benchmarks can also be attributed to our efforts in expanding instruction datasets and corpora for continued pre-training. Vikhr not only sets the new state of the art among open-source LLMs for Russian, but even outperforms some proprietary closed-source models on certain benchmarks. The model weights, instruction sets, and code are publicly available
The Open Source Advantage in Large Language Models (LLMs)
Large language models (LLMs) mark a key shift in natural language processing (NLP), having advanced text generation, translation, and domain-specific reasoning. Closed-source models like GPT-4, powered by proprietary datasets and extensive computational resources, lead with state-of-the-art performance today. However, they face criticism for their "black box" nature and for limiting accessibility in a manner that hinders reproducibility and equitable AI development. By contrast, open-source initiatives like LLaMA and BLOOM prioritize democratization through community-driven development and computational efficiency. These models have significantly reduced performance gaps, particularly in linguistic diversity and domain-specific applications, while providing accessible tools for global researchers and developers. Notably, both paradigms rely on foundational architectural innovations, such as the Transformer framework by Vaswani et al. (2017). Closed-source models excel by scaling effectively, while open-source models adapt to real-world applications in underrepresented languages and domains. Techniques like Low-Rank Adaptation (LoRA) and instruction-tuning datasets enable open-source models to achieve competitive results despite limited resources. To be sure, the tension between closed-source and open-source approaches underscores a broader debate on transparency versus proprietary control in AI. Ethical considerations further highlight this divide. Closed-source systems restrict external scrutiny, while open-source models promote reproducibility and collaboration but lack standardized auditing documentation frameworks to mitigate biases. Hybrid approaches that leverage the strengths of both paradigms are likely to shape the future of LLM innovation, ensuring accessibility, competitive technical performance, and ethical deployment.
FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration
We present FireRedASR, a family of large-scale automatic speech recognition (ASR) models for Mandarin, designed to meet diverse requirements in superior performance and optimal efficiency across various applications. FireRedASR comprises two variants: FireRedASR-LLM: Designed to achieve state-of-the-art (SOTA) performance and to enable seamless end-to-end speech interaction. It adopts an Encoder-Adapter-LLM framework leveraging large language model (LLM) capabilities. On public Mandarin benchmarks, FireRedASR-LLM (8.3B parameters) achieves an average Character Error Rate (CER) of 3.05%, surpassing the latest SOTA of 3.33% with an 8.4% relative CER reduction (CERR). It demonstrates superior generalization capability over industrial-grade baselines, achieving 24%-40% CERR in multi-source Mandarin ASR scenarios such as video, live, and intelligent assistant. FireRedASR-AED: Designed to balance high performance and computational efficiency and to serve as an effective speech representation module in LLM-based speech models. It utilizes an Attention-based Encoder-Decoder (AED) architecture. On public Mandarin benchmarks, FireRedASR-AED (1.1B parameters) achieves an average CER of 3.18%, slightly worse than FireRedASR-LLM but still outperforming the latest SOTA model with over 12B parameters. It offers a more compact size, making it suitable for resource-constrained applications. Moreover, both models exhibit competitive results on Chinese dialects and English speech benchmarks and excel in singing lyrics recognition. To advance research in speech processing, we release our models and inference code at https://github.com/FireRedTeam/FireRedASR.
MedConceptsQA -- Open Source Medical Concepts QA Benchmark
We present MedConceptsQA, a dedicated open source benchmark for medical concepts question answering. The benchmark comprises of questions of various medical concepts across different vocabularies: diagnoses, procedures, and drugs. The questions are categorized into three levels of difficulty: easy, medium, and hard. We conducted evaluations of the benchmark using various Large Language Models. Our findings show that pre-trained clinical Large Language Models achieved accuracy levels close to random guessing on this benchmark, despite being pre-trained on medical data. However, GPT-4 achieves an absolute average improvement of nearly 27%-37% (27% for zero-shot learning and 37% for few-shot learning) when compared to clinical Large Language Models. Our benchmark serves as a valuable resource for evaluating the understanding and reasoning of medical concepts by Large Language Models. Our benchmark is available at https://huggingface.co/datasets/ofir408/MedConceptsQA
Fully Open Source Moxin-7B Technical Report
Recently, Large Language Models (LLMs) have undergone a significant transformation, marked by a rapid rise in both their popularity and capabilities. Leading this evolution are proprietary LLMs like GPT-4 and GPT-o1, which have captured widespread attention in the AI community due to their remarkable performance and versatility. Simultaneously, open-source LLMs, such as LLaMA and Mistral, have made great contributions to the ever-increasing popularity of LLMs due to the ease to customize and deploy the models across diverse applications. Although open-source LLMs present unprecedented opportunities for innovation and research, the commercialization of LLMs has raised concerns about transparency, reproducibility, and safety. Many open-source LLMs fail to meet fundamental transparency requirements by withholding essential components like training code and data, and some use restrictive licenses whilst claiming to be "open-source," which may hinder further innovations on LLMs. To mitigate this issue, we introduce Moxin 7B, a fully open-source LLM developed in accordance with the Model Openness Framework (MOF), a ranked classification system that evaluates AI models based on model completeness and openness, adhering to principles of open science, open source, open data, and open access. Our model achieves the highest MOF classification level of "open science" through the comprehensive release of pre-training code and configurations, training and fine-tuning datasets, and intermediate and final checkpoints. Experiments show that our model achieves superior performance in zero-shot evaluation compared with popular 7B models and performs competitively in few-shot evaluation.
OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets
Named-entity recognition (NER) is fundamental to extracting structured information from the >80% of healthcare data that resides in unstructured clinical notes and biomedical literature. Despite recent advances with large language models, achieving state-of-the-art performance across diverse entity types while maintaining computational efficiency remains a significant challenge. We introduce OpenMed NER, a suite of open-source, domain-adapted transformer models that combine lightweight domain-adaptive pre-training (DAPT) with parameter-efficient Low-Rank Adaptation (LoRA). Our approach performs cost-effective DAPT on a 350k-passage corpus compiled from ethically sourced, publicly available research repositories and de-identified clinical notes (PubMed, arXiv, and MIMIC-III) using DeBERTa-v3, PubMedBERT, and BioELECTRA backbones. This is followed by task-specific fine-tuning with LoRA, which updates less than 1.5% of model parameters. We evaluate our models on 12 established biomedical NER benchmarks spanning chemicals, diseases, genes, and species. OpenMed NER achieves new state-of-the-art micro-F1 scores on 10 of these 12 datasets, with substantial gains across diverse entity types. Our models advance the state-of-the-art on foundational disease and chemical benchmarks (e.g., BC5CDR-Disease, +2.70 pp), while delivering even larger improvements of over 5.3 and 9.7 percentage points on more specialized gene and clinical cell line corpora. This work demonstrates that strategically adapted open-source models can surpass closed-source solutions. This performance is achieved with remarkable efficiency: training completes in under 12 hours on a single GPU with a low carbon footprint (< 1.2 kg CO2e), producing permissively licensed, open-source checkpoints designed to help practitioners facilitate compliance with emerging data protection and AI regulations, such as the EU AI Act.
Clinical Camel: An Open-Source Expert-Level Medical Language Model with Dialogue-Based Knowledge Encoding
Large Language Models (LLMs) present immense potential in the medical field, yet concerns over data privacy, regulatory compliance, and model stability restrict their widespread adoption. Although the distillation of high-performing closed-source LLMs has proven effective for general tasks, their application in healthcare is limited due to reduced domain knowledge and remnants of alignment behavior hindering clinical tasks. To address these challenges, we propose Dialogue-Based Knowledge Encoding (DBKE). DBKE enhances models' implicit knowledge base and primes them for conversational recall, augmenting their conversational capabilities and enabling a soft alignment for subsequent use cases. By transforming dense academic source text into synthetic dialogue, DBKE broadens the model's knowledge base and enables a soft alignment that guides downstream behaviours. We present Clinical Camel, an open-source, healthcare-focused conversational model, to showcase the effectiveness of DBKE. Clinical Camel outperforms GPT-3.5 on the United States Medical Licensing Examination (USMLE) Step 1 and Step 3 with scores of 53.2 % and 58.2 %, respectively, compared to GPT-3.5's scores of 36.1 % and 55.7 %. Clinical Camel adeptly handles multi-stage clinical case problems, provides adaptive counseling, and generates clinical notes. However, it is prone to hallucinations, which pose a significant obstacle in safety-critical settings. The performance of Clinical Camel underscores the importance of continued research and development of open-source models for the safe and effective integration of LLMs in healthcare settings.
Sidon: Fast and Robust Open-Source Multilingual Speech Restoration for Large-scale Dataset Cleansing
Large-scale text-to-speech (TTS) systems are limited by the scarcity of clean, multilingual recordings. We introduce Sidon, a fast, open-source speech restoration model that converts noisy in-the-wild speech into studio-quality speech and scales to dozens of languages. Sidon consists of two models: w2v-BERT 2.0 finetuned feature predictor to cleanse features from noisy speech and vocoder trained to synthesize restored speech from the cleansed features. Sidon achieves restoration performance comparable to Miipher: Google's internal speech restoration model with the aim of dataset cleansing for speech synthesis. Sidon is also computationally efficient, running up to 3,390 times faster than real time on a single GPU. We further show that training a TTS model using a Sidon-cleansed automatic speech recognition corpus improves the quality of synthetic speech in a zero-shot setting. Code and model are released to facilitate reproducible dataset cleansing for the research community.
MiniOneRec: An Open-Source Framework for Scaling Generative Recommendation
The recent success of large language models (LLMs) has renewed interest in whether recommender systems can achieve similar scaling benefits. Conventional recommenders, dominated by massive embedding tables, tend to plateau as embedding dimensions grow. In contrast, the emerging generative paradigm replaces embeddings with compact Semantic ID (SID) sequences produced by autoregressive Transformers. Yet most industrial deployments remain proprietary, leaving two fundamental questions open: (1) Do the expected scaling laws hold on public benchmarks? (2) What is the minimal post-training recipe that enables competitive performance? We present MiniOneRec, to the best of our knowledge, the first fully open-source generative recommendation framework, which provides an end-to-end workflow spanning SID construction, supervised fine-tuning, and recommendation-oriented reinforcement learning. We generate SIDs via a Residual Quantized VAE and post-train Qwen backbones ranging from 0.5B to 7B parameters on the Amazon Review dataset. Our experiments reveal a consistent downward trend in both training and evaluation losses with increasing model size, validating the parameter efficiency of the generative approach. To further enhance performance, we propose a lightweight yet effective post-training pipeline that (1) enforces full-process SID alignment and (2) applies reinforcement learning with constrained decoding and hybrid rewards. Together, these techniques yield significant improvements in both ranking accuracy and candidate diversity.
CAD-Coder: An Open-Source Vision-Language Model for Computer-Aided Design Code Generation
Efficient creation of accurate and editable 3D CAD models is critical in engineering design, significantly impacting cost and time-to-market in product innovation. Current manual workflows remain highly time-consuming and demand extensive user expertise. While recent developments in AI-driven CAD generation show promise, existing models are limited by incomplete representations of CAD operations, inability to generalize to real-world images, and low output accuracy. This paper introduces CAD-Coder, an open-source Vision-Language Model (VLM) explicitly fine-tuned to generate editable CAD code (CadQuery Python) directly from visual input. Leveraging a novel dataset that we created--GenCAD-Code, consisting of over 163k CAD-model image and code pairs--CAD-Coder outperforms state-of-the-art VLM baselines such as GPT-4.5 and Qwen2.5-VL-72B, achieving a 100% valid syntax rate and the highest accuracy in 3D solid similarity. Notably, our VLM demonstrates some signs of generalizability, successfully generating CAD code from real-world images and executing CAD operations unseen during fine-tuning. The performance and adaptability of CAD-Coder highlights the potential of VLMs fine-tuned on code to streamline CAD workflows for engineers and designers. CAD-Coder is publicly available at: https://github.com/anniedoris/CAD-Coder.
Closing the gap between open-source and commercial large language models for medical evidence summarization
Large language models (LLMs) hold great promise in summarizing medical evidence. Most recent studies focus on the application of proprietary LLMs. Using proprietary LLMs introduces multiple risk factors, including a lack of transparency and vendor dependency. While open-source LLMs allow better transparency and customization, their performance falls short compared to proprietary ones. In this study, we investigated to what extent fine-tuning open-source LLMs can further improve their performance in summarizing medical evidence. Utilizing a benchmark dataset, MedReview, consisting of 8,161 pairs of systematic reviews and summaries, we fine-tuned three broadly-used, open-sourced LLMs, namely PRIMERA, LongT5, and Llama-2. Overall, the fine-tuned LLMs obtained an increase of 9.89 in ROUGE-L (95% confidence interval: 8.94-10.81), 13.21 in METEOR score (95% confidence interval: 12.05-14.37), and 15.82 in CHRF score (95% confidence interval: 13.89-16.44). The performance of fine-tuned LongT5 is close to GPT-3.5 with zero-shot settings. Furthermore, smaller fine-tuned models sometimes even demonstrated superior performance compared to larger zero-shot models. The above trends of improvement were also manifested in both human and GPT4-simulated evaluations. Our results can be applied to guide model selection for tasks demanding particular domain knowledge, such as medical evidence summarization.
A Comparative Study of Open-Source Large Language Models, GPT-4 and Claude 2: Multiple-Choice Test Taking in Nephrology
In recent years, there have been significant breakthroughs in the field of natural language processing, particularly with the development of large language models (LLMs). These LLMs have showcased remarkable capabilities on various benchmarks. In the healthcare field, the exact role LLMs and other future AI models will play remains unclear. There is a potential for these models in the future to be used as part of adaptive physician training, medical co-pilot applications, and digital patient interaction scenarios. The ability of AI models to participate in medical training and patient care will depend in part on their mastery of the knowledge content of specific medical fields. This study investigated the medical knowledge capability of LLMs, specifically in the context of internal medicine subspecialty multiple-choice test-taking ability. We compared the performance of several open-source LLMs (Koala 7B, Falcon 7B, Stable-Vicuna 13B, and Orca Mini 13B), to GPT-4 and Claude 2 on multiple-choice questions in the field of Nephrology. Nephrology was chosen as an example of a particularly conceptually complex subspecialty field within internal medicine. The study was conducted to evaluate the ability of LLM models to provide correct answers to nephSAP (Nephrology Self-Assessment Program) multiple-choice questions. The overall success of open-sourced LLMs in answering the 858 nephSAP multiple-choice questions correctly was 17.1% - 25.5%. In contrast, Claude 2 answered 54.4% of the questions correctly, whereas GPT-4 achieved a score of 73.3%. We show that current widely used open-sourced LLMs do poorly in their ability for zero-shot reasoning when compared to GPT-4 and Claude 2. The findings of this study potentially have significant implications for the future of subspecialty medical training and patient care.
PolyLM: An Open Source Polyglot Large Language Model
Large language models (LLMs) demonstrate remarkable ability to comprehend, reason, and generate following nature language instructions. However, the development of LLMs has been primarily focused on high-resource languages, such as English, thereby limiting their applicability and research in other languages. Consequently, we present PolyLM, a multilingual LLM trained on 640 billion (B) tokens, avaliable in two model sizes: 1.7B and 13B. To enhance its multilingual capabilities, we 1) integrate bilingual data into training data; and 2) adopt a curriculum learning strategy that increases the proportion of non-English data from 30% in the first stage to 60% in the final stage during pre-training. Further, we propose a multilingual self-instruct method which automatically generates 132.7K diverse multilingual instructions for model fine-tuning. To assess the model's performance, we collect several existing multilingual tasks, including multilingual understanding, question answering, generation, and translation. Extensive experiments show that PolyLM surpasses other open-source models such as LLaMA and BLOOM on multilingual tasks while maintaining comparable performance in English. Our models, alone with the instruction data and multilingual benchmark, are available at: https://modelscope.cn/models/damo/nlp_polylm_13b_text_generation.
Magentic Marketplace: An Open-Source Environment for Studying Agentic Markets
As LLM agents advance, they are increasingly mediating economic decisions, ranging from product discovery to transactions, on behalf of users. Such applications promise benefits but also raise many questions about agent accountability and value for users. Addressing these questions requires understanding how agents behave in realistic market conditions. However, previous research has largely evaluated agents in constrained settings, such as single-task marketplaces (e.g., negotiation) or structured two-agent interactions. Real-world markets are fundamentally different: they require agents to handle diverse economic activities and coordinate within large, dynamic ecosystems where multiple agents with opaque behaviors may engage in open-ended dialogues. To bridge this gap, we investigate two-sided agentic marketplaces where Assistant agents represent consumers and Service agents represent competing businesses. To study these interactions safely, we develop Magentic-Marketplace-- a simulated environment where Assistants and Services can operate. This environment enables us to study key market dynamics: the utility agents achieve, behavioral biases, vulnerability to manipulation, and how search mechanisms shape market outcomes. Our experiments show that frontier models can approach optimal welfare-- but only under ideal search conditions. Performance degrades sharply with scale, and all models exhibit severe first-proposal bias, creating 10-30x advantages for response speed over quality. These findings reveal how behaviors emerge across market conditions, informing the design of fair and efficient agentic marketplaces.
OpenBEATs: A Fully Open-Source General-Purpose Audio Encoder
Masked token prediction has emerged as a powerful pre-training objective across language, vision, and speech, offering the potential to unify these diverse modalities through a single pre-training task. However, its application for general audio understanding remains underexplored, with BEATs being the only notable example. BEATs has seen limited modifications due to the absence of open-source pre-training code. Furthermore, BEATs was trained only on AudioSet, restricting its broader downstream applicability. To address these gaps, we present OpenBEATs, an open-source framework that extends BEATs via multi-domain audio pre-training. We conduct comprehensive evaluations across six types of tasks, twenty five datasets, and three audio domains, including audio reasoning tasks such as audio question answering, entailment, and captioning. OpenBEATs achieves state-of-the-art performance on six bioacoustics datasets, two environmental sound datasets and five reasoning datasets, performing better than models exceeding a billion parameters at one-fourth their parameter size. These results demonstrate the effectiveness of multi-domain datasets and masked token prediction task to learn general-purpose audio representations. To promote further research and reproducibility, we release all pre-training and evaluation code, pretrained and fine-tuned checkpoints, and training logs at https://shikhar-s.github.io/OpenBEATs
BioMistral: A Collection of Open-Source Pretrained Large Language Models for Medical Domains
Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, offering potential applications across specialized domains such as healthcare and medicine. Despite the availability of various open-source LLMs tailored for health contexts, adapting general-purpose LLMs to the medical domain presents significant challenges. In this paper, we introduce BioMistral, an open-source LLM tailored for the biomedical domain, utilizing Mistral as its foundation model and further pre-trained on PubMed Central. We conduct a comprehensive evaluation of BioMistral on a benchmark comprising 10 established medical question-answering (QA) tasks in English. We also explore lightweight models obtained through quantization and model merging approaches. Our results demonstrate BioMistral's superior performance compared to existing open-source medical models and its competitive edge against proprietary counterparts. Finally, to address the limited availability of data beyond English and to assess the multilingual generalization of medical LLMs, we automatically translated and evaluated this benchmark into 7 other languages. This marks the first large-scale multilingual evaluation of LLMs in the medical domain. Datasets, multilingual evaluation benchmarks, scripts, and all the models obtained during our experiments are freely released.
Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data
The recent introduction of synthetic correlated diffusion (CDI^s) imaging has demonstrated significant potential in the realm of clinical decision support for prostate cancer (PCa). CDI^s is a new form of magnetic resonance imaging (MRI) designed to characterize tissue characteristics through the joint correlation of diffusion signal attenuation across different Brownian motion sensitivities. Despite the performance improvement, the CDI^s data for PCa has not been previously made publicly available. In our commitment to advance research efforts for PCa, we introduce Cancer-Net PCa-Data, an open-source benchmark dataset of volumetric CDI^s imaging data of PCa patients. Cancer-Net PCa-Data consists of CDI^s volumetric images from a patient cohort of 200 patient cases, along with full annotations (gland masks, tumor masks, and PCa diagnosis for each tumor). We also analyze the demographic and label region diversity of Cancer-Net PCa-Data for potential biases. Cancer-Net PCa-Data is the first-ever public dataset of CDI^s imaging data for PCa, and is a part of the global open-source initiative dedicated to advancement in machine learning and imaging research to aid clinicians in the global fight against cancer.
SAGDA: Open-Source Synthetic Agriculture Data for Africa
Data scarcity in African agriculture hampers machine learning (ML) model performance, limiting innovations in precision agriculture. The Synthetic Agriculture Data for Africa (SAGDA) library, a Python-based open-source toolkit, addresses this gap by generating, augmenting, and validating synthetic agricultural datasets. We present SAGDA's design and development practices, highlighting its core functions: generate, model, augment, validate, visualize, optimize, and simulate, as well as their roles in applications of ML for agriculture. Two use cases are detailed: yield prediction enhanced via data augmentation, and multi-objective NPK (nitrogen, phosphorus, potassium) fertilizer recommendation. We conclude with future plans for expanding SAGDA's capabilities, underscoring the vital role of open-source, data-driven practices for African agriculture.
CareBot: A Pioneering Full-Process Open-Source Medical Language Model
Recently, both closed-source LLMs and open-source communities have made significant strides, outperforming humans in various general domains. However, their performance in specific professional domains such as medicine, especially within the open-source community, remains suboptimal due to the complexity of medical knowledge. In this paper, we propose CareBot, a bilingual medical LLM, which leverages a comprehensive approach integrating continuous pre-training (CPT), supervised fine-tuning (SFT), and reinforcement learning with human feedback (RLHF). Our novel two-stage CPT method, comprising Stable CPT and Boost CPT, effectively bridges the gap between general and domain-specific data, facilitating a smooth transition from pre-training to fine-tuning and enhancing domain knowledge progressively. We also introduce DataRater, a model designed to assess data quality during CPT, ensuring that the training data is both accurate and relevant. For SFT, we develope a large and diverse bilingual dataset, along with ConFilter, a metric to enhance multi-turn dialogue quality, which is crucial to improving the model's ability to handle more complex dialogues. The combination of high-quality data sources and innovative techniques significantly improves CareBot's performance across a range of medical applications. Our rigorous evaluations on Chinese and English benchmarks confirm CareBot's effectiveness in medical consultation and education. These advancements not only address current limitations in medical LLMs but also set a new standard for developing effective and reliable open-source models in the medical domain. We will open-source the datasets and models later, contributing valuable resources to the research community.
CodeS: Towards Building Open-source Language Models for Text-to-SQL
Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.
Can open source large language models be used for tumor documentation in Germany? -- An evaluation on urological doctors' notes
Tumor documentation in Germany is largely done manually, requiring reading patient records and entering data into structured databases. Large language models (LLMs) could potentially enhance this process by improving efficiency and reliability. This evaluation tests eleven different open source LLMs with sizes ranging from 1-70 billion model parameters on three basic tasks of the tumor documentation process: identifying tumor diagnoses, assigning ICD-10 codes, and extracting the date of first diagnosis. For evaluating the LLMs on these tasks, a dataset of annotated text snippets based on anonymized doctors' notes from urology was prepared. Different prompting strategies were used to investigate the effect of the number of examples in few-shot prompting and to explore the capabilities of the LLMs in general. The models Llama 3.1 8B, Mistral 7B, and Mistral NeMo 12 B performed comparably well in the tasks. Models with less extensive training data or having fewer than 7 billion parameters showed notably lower performance, while larger models did not display performance gains. Examples from a different medical domain than urology could also improve the outcome in few-shot prompting, which demonstrates the ability of LLMs to handle tasks needed for tumor documentation. Open source LLMs show a strong potential for automating tumor documentation. Models from 7-12 billion parameters could offer an optimal balance between performance and resource efficiency. With tailored fine-tuning and well-designed prompting, these models might become important tools for clinical documentation in the future. The code for the evaluation is available from https://github.com/stefan-m-lenz/UroLlmEval. We also release the dataset as a new valuable resource that addresses the shortage of authentic and easily accessible benchmarks in German-language medical NLP.
ORAN-Bench-13K: An Open Source Benchmark for Assessing LLMs in Open Radio Access Networks
Large Language Models (LLMs) can revolutionize how we deploy and operate Open Radio Access Networks (O-RAN) by enhancing network analytics, anomaly detection, and code generation and significantly increasing the efficiency and reliability of a plethora of O-RAN tasks. In this paper, we present ORAN-Bench-13K, the first comprehensive benchmark designed to evaluate the performance of Large Language Models (LLMs) within the context of O-RAN. Our benchmark consists of 13,952 meticulously curated multiple-choice questions generated from 116 O-RAN specification documents. We leverage a novel three-stage LLM framework, and the questions are categorized into three distinct difficulties to cover a wide spectrum of ORAN-related knowledge. We thoroughly evaluate the performance of several state-of-the-art LLMs, including Gemini, Chat-GPT, and Mistral. Additionally, we propose ORANSight, a Retrieval-Augmented Generation (RAG)-based pipeline that demonstrates superior performance on ORAN-Bench-13K compared to other tested closed-source models. Our findings indicate that current popular LLM models are not proficient in O-RAN, highlighting the need for specialized models. We observed a noticeable performance improvement when incorporating the RAG-based ORANSight pipeline, with a Macro Accuracy of 0.784 and a Weighted Accuracy of 0.776, which was on average 21.55% and 22.59% better than the other tested LLMs.
InternLM-Law: An Open Source Chinese Legal Large Language Model
While large language models (LLMs) have showcased impressive capabilities, they struggle with addressing legal queries due to the intricate complexities and specialized expertise required in the legal field. In this paper, we introduce InternLM-Law, a specialized LLM tailored for addressing diverse legal queries related to Chinese laws, spanning from responding to standard legal questions (e.g., legal exercises in textbooks) to analyzing complex real-world legal situations. We meticulously construct a dataset in the Chinese legal domain, encompassing over 1 million queries, and implement a data filtering and processing pipeline to ensure its diversity and quality. Our training approach involves a novel two-stage process: initially fine-tuning LLMs on both legal-specific and general-purpose content to equip the models with broad knowledge, followed by exclusive fine-tuning on high-quality legal data to enhance structured output generation. InternLM-Law achieves the highest average performance on LawBench, outperforming state-of-the-art models, including GPT-4, on 13 out of 20 subtasks. We make InternLM-Law and our dataset publicly available to facilitate future research in applying LLMs within the legal domain.
Benchmarking Open-Source Language Models for Efficient Question Answering in Industrial Applications
In the rapidly evolving landscape of Natural Language Processing (NLP), Large Language Models (LLMs) have demonstrated remarkable capabilities in tasks such as question answering (QA). However, the accessibility and practicality of utilizing these models for industrial applications pose significant challenges, particularly concerning cost-effectiveness, inference speed, and resource efficiency. This paper presents a comprehensive benchmarking study comparing open-source LLMs with their non-open-source counterparts on the task of question answering. Our objective is to identify open-source alternatives capable of delivering comparable performance to proprietary models while being lightweight in terms of resource requirements and suitable for Central Processing Unit (CPU)-based inference. Through rigorous evaluation across various metrics including accuracy, inference speed, and resource consumption, we aim to provide insights into selecting efficient LLMs for real-world applications. Our findings shed light on viable open-source alternatives that offer acceptable performance and efficiency, addressing the pressing need for accessible and efficient NLP solutions in industry settings.
Aqulia-Med LLM: Pioneering Full-Process Open-Source Medical Language Models
Recently, both closed-source LLMs and open-source communities have made significant strides, outperforming humans in various general domains. However, their performance in specific professional fields such as medicine, especially within the open-source community, remains suboptimal due to the complexity of medical knowledge. We propose Aquila-Med, a bilingual medical LLM based on Aquila, addressing these challenges through continue pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF). We construct a large-scale Chinese and English medical dataset for continue pre-training and a high-quality SFT dataset, covering extensive medical specialties. Additionally, we develop a high-quality Direct Preference Optimization (DPO) dataset for further alignment. Aquila-Med achieves notable results across single-turn, multi-turn dialogues, and medical multiple-choice questions, demonstrating the effectiveness of our approach. We open-source the datasets and the entire training process, contributing valuable resources to the research community. Our models and datasets will released at https://huggingface.co/BAAI/AquilaMed-RL.
CarDreamer: Open-Source Learning Platform for World Model based Autonomous Driving
To safely navigate intricate real-world scenarios, autonomous vehicles must be able to adapt to diverse road conditions and anticipate future events. World model (WM) based reinforcement learning (RL) has emerged as a promising approach by learning and predicting the complex dynamics of various environments. Nevertheless, to the best of our knowledge, there does not exist an accessible platform for training and testing such algorithms in sophisticated driving environments. To fill this void, we introduce CarDreamer, the first open-source learning platform designed specifically for developing WM based autonomous driving algorithms. It comprises three key components: 1) World model backbone: CarDreamer has integrated some state-of-the-art WMs, which simplifies the reproduction of RL algorithms. The backbone is decoupled from the rest and communicates using the standard Gym interface, so that users can easily integrate and test their own algorithms. 2) Built-in tasks: CarDreamer offers a comprehensive set of highly configurable driving tasks which are compatible with Gym interfaces and are equipped with empirically optimized reward functions. 3) Task development suite: This suite streamlines the creation of driving tasks, enabling easy definition of traffic flows and vehicle routes, along with automatic collection of multi-modal observation data. A visualization server allows users to trace real-time agent driving videos and performance metrics through a browser. Furthermore, we conduct extensive experiments using built-in tasks to evaluate the performance and potential of WMs in autonomous driving. Thanks to the richness and flexibility of CarDreamer, we also systematically study the impact of observation modality, observability, and sharing of vehicle intentions on AV safety and efficiency. All code and documents are accessible on https://github.com/ucd-dare/CarDreamer.
Medical mT5: An Open-Source Multilingual Text-to-Text LLM for The Medical Domain
Research on language technology for the development of medical applications is currently a hot topic in Natural Language Understanding and Generation. Thus, a number of large language models (LLMs) have recently been adapted to the medical domain, so that they can be used as a tool for mediating in human-AI interaction. While these LLMs display competitive performance on automated medical texts benchmarks, they have been pre-trained and evaluated with a focus on a single language (English mostly). This is particularly true of text-to-text models, which typically require large amounts of domain-specific pre-training data, often not easily accessible for many languages. In this paper, we address these shortcomings by compiling, to the best of our knowledge, the largest multilingual corpus for the medical domain in four languages, namely English, French, Italian and Spanish. This new corpus has been used to train Medical mT5, the first open-source text-to-text multilingual model for the medical domain. Additionally, we present two new evaluation benchmarks for all four languages with the aim of facilitating multilingual research in this domain. A comprehensive evaluation shows that Medical mT5 outperforms both encoders and similarly sized text-to-text models for the Spanish, French, and Italian benchmarks, while being competitive with current state-of-the-art LLMs in English.
MiroMind-M1: An Open-Source Advancement in Mathematical Reasoning via Context-Aware Multi-Stage Policy Optimization
Large language models have recently evolved from fluent text generation to advanced reasoning across diverse domains, giving rise to reasoning language models. Among these domains, mathematical reasoning serves as a representative benchmark as it requires precise multi-step logic and abstract reasoning, which can be generalized to other tasks. While closed-source RLMs such as GPT-o3 demonstrate impressive reasoning capabilities, their proprietary nature limits transparency and reproducibility. Although many open-source projects aim to close this gap, most of them lack sufficient openness by omitting critical resources such as datasets and detailed training configurations, which hinders reproducibility. To contribute toward greater transparency in RLM development, we introduce the MiroMind-M1 series, a set of fully open-source RLMs built on the Qwen-2.5 backbone that match or exceed the performance of existing open-source RLMs. Specifically, our models are trained in two stages: SFT on a carefully curated corpus of 719K math-reasoning problems with verified CoT trajectories, followed by RLVR on 62K challenging and verifiable problems. To enhance the robustness and efficiency of the RLVR process, we introduce Context-Aware Multi-Stage Policy Optimization, an algorithm that integrates length-progressive training with an adaptive repetition penalty to encourage context-aware RL training. Our model achieves state-of-the-art or competitive performance and superior token efficiency among Qwen-2.5-based open-source 7B and 32B models on the AIME24, AIME25, and MATH benchmarks. To facilitate reproducibility, we release the complete stack: models (MiroMind-M1-SFT-7B, MiroMind-M1-RL-7B, MiroMind-M1-RL-32B); datasets (MiroMind-M1-SFT-719K, MiroMind-M1-RL-62K); and all training and evaluation configurations. We hope these resources will support further research and foster community advancement.
MinerU: An Open-Source Solution for Precise Document Content Extraction
Document content analysis has been a crucial research area in computer vision. Despite significant advancements in methods such as OCR, layout detection, and formula recognition, existing open-source solutions struggle to consistently deliver high-quality content extraction due to the diversity in document types and content. To address these challenges, we present MinerU, an open-source solution for high-precision document content extraction. MinerU leverages the sophisticated PDF-Extract-Kit models to extract content from diverse documents effectively and employs finely-tuned preprocessing and postprocessing rules to ensure the accuracy of the final results. Experimental results demonstrate that MinerU consistently achieves high performance across various document types, significantly enhancing the quality and consistency of content extraction. The MinerU open-source project is available at https://github.com/opendatalab/MinerU.
GPT4All: An Ecosystem of Open Source Compressed Language Models
Large language models (LLMs) have recently achieved human-level performance on a range of professional and academic benchmarks. The accessibility of these models has lagged behind their performance. State-of-the-art LLMs require costly infrastructure; are only accessible via rate-limited, geo-locked, and censored web interfaces; and lack publicly available code and technical reports. In this paper, we tell the story of GPT4All, a popular open source repository that aims to democratize access to LLMs. We outline the technical details of the original GPT4All model family, as well as the evolution of the GPT4All project from a single model into a fully fledged open source ecosystem. It is our hope that this paper acts as both a technical overview of the original GPT4All models as well as a case study on the subsequent growth of the GPT4All open source ecosystem.
OpenGuardrails: An Open-Source Context-Aware AI Guardrails Platform
As large language models (LLMs) become increasingly integrated into real-world applications, safeguarding them against unsafe, malicious, or privacy-violating content is critically important. We present OpenGuardrails, the first open-source project to provide both a context-aware safety and manipulation detection model and a deployable platform for comprehensive AI guardrails. OpenGuardrails protects against content-safety risks, model-manipulation attacks (e.g., prompt injection, jailbreaking, code-interpreter abuse, and the generation/execution of malicious code), and data leakage. Content-safety and model-manipulation detection are implemented by a unified large model, while data-leakage identification and redaction are performed by a separate lightweight NER pipeline (e.g., Presidio-style models or regex-based detectors). The system can be deployed as a security gateway or an API-based service, with enterprise-grade, fully private deployment options. OpenGuardrails achieves state-of-the-art (SOTA) performance on safety benchmarks, excelling in both prompt and response classification across English, Chinese, and multilingual tasks. All models are released under the Apache 2.0 license for public use.
An Optical Measurement System for Open-Source Tracking of Jaw Motions
Precise tracking of the jaw kinematics is crucial for diagnosing various musculoskeletal and neuromuscular diseases affecting the masticatory system and for advancing rehabilitative devices such as jaw exoskeletons, a hardly explored research field, to treat these disorders. We introduce an open-source, low-cost, precise, non-invasive, and biocompatible jaw tracking system based on optical motion capture technology to address the need for accessible and adaptable research tools. The system encompasses a complete pipeline from data acquisition, processing, and kinematic analysis to filtering, visualization, and data storage. We evaluated its performance and feasibility in experiments with four participants executing various jaw movements. The system demonstrated reliable kinematic tracking with an estimated precision of (182 pm 47) {mu}m and (0.126 pm 0.034) {deg}. Therefore, the open-source nature of the system and its utility comparable to commercial systems make it suitable for many research and development contexts, especially for applications such as the integration and design of jaw exoskeletons and customized diagnostic protocols. The complete system is available at GitHub with the aim of promoting innovation in temporomandibular disorders research and jaw assistive technology.
Open-Source Large Language Models as Multilingual Crowdworkers: Synthesizing Open-Domain Dialogues in Several Languages With No Examples in Targets and No Machine Translation
The prevailing paradigm in the domain of Open-Domain Dialogue agents predominantly focuses on the English language, encompassing both models and datasets. Furthermore, the financial and temporal investments required for crowdsourcing such datasets for finetuning are substantial, particularly when multiple languages are involved. Fortunately, advancements in Large Language Models (LLMs) have unveiled a plethora of possibilities across diverse tasks. Specifically, instruction-tuning has enabled LLMs to execute tasks based on natural language instructions, occasionally surpassing the performance of human crowdworkers. Additionally, these models possess the capability to function in various languages within a single thread. Consequently, to generate new samples in different languages, we propose leveraging these capabilities to replicate the data collection process. We introduce a pipeline for generating Open-Domain Dialogue data in multiple Target Languages using LLMs, with demonstrations provided in a unique Source Language. By eschewing explicit Machine Translation in this approach, we enhance the adherence to language-specific nuances. We apply this methodology to the PersonaChat dataset. To enhance the openness of generated dialogues and mimic real life scenarii, we added the notion of speech events corresponding to the type of conversation the speakers are involved in and also that of common ground which represents the premises of a conversation.
GR-NLP-TOOLKIT: An Open-Source NLP Toolkit for Modern Greek
We present GR-NLP-TOOLKIT, an open-source natural language processing (NLP) toolkit developed specifically for modern Greek. The toolkit provides state-of-the-art performance in five core NLP tasks, namely part-of-speech tagging, morphological tagging, dependency parsing, named entity recognition, and Greeklishto-Greek transliteration. The toolkit is based on pre-trained Transformers, it is freely available, and can be easily installed in Python (pip install gr-nlp-toolkit). It is also accessible through a demonstration platform on HuggingFace, along with a publicly available API for non-commercial use. We discuss the functionality provided for each task, the underlying methods, experiments against comparable open-source toolkits, and future possible enhancements. The toolkit is available at: https://github.com/nlpaueb/gr-nlp-toolkit
LOLA -- An Open-Source Massively Multilingual Large Language Model
This paper presents LOLA, a massively multilingual large language model trained on more than 160 languages using a sparse Mixture-of-Experts Transformer architecture. Our architectural and implementation choices address the challenge of harnessing linguistic diversity while maintaining efficiency and avoiding the common pitfalls of multilinguality. Our analysis of the evaluation results shows competitive performance in natural language generation and understanding tasks. Additionally, we demonstrate how the learned expert-routing mechanism exploits implicit phylogenetic linguistic patterns to potentially alleviate the curse of multilinguality. We provide an in-depth look at the training process, an analysis of the datasets, and a balanced exploration of the model's strengths and limitations. As an open-source model, LOLA promotes reproducibility and serves as a robust foundation for future research. Our findings enable the development of compute-efficient multilingual models with strong, scalable performance across languages.
OpenACE: An Open Benchmark for Evaluating Audio Coding Performance
Audio and speech coding lack unified evaluation and open-source testing. Many candidate systems were evaluated on proprietary, non-reproducible, or small data, and machine learning-based codecs are often tested on datasets with similar distributions as trained on, which is unfairly compared to digital signal processing-based codecs that usually work well with unseen data. This paper presents a full-band audio and speech coding quality benchmark with more variable content types, including traditional open test vectors. An example use case of audio coding quality assessment is presented with open-source Opus, 3GPP's EVS, and recent ETSI's LC3 with LC3+ used in Bluetooth LE Audio profiles. Besides, quality variations of emotional speech encoding at 16 kbps are shown. The proposed open-source benchmark contributes to audio and speech coding democratization and is available at https://github.com/JozefColdenhoff/OpenACE.
Comparing GPT-4 and Open-Source Language Models in Misinformation Mitigation
Recent large language models (LLMs) have been shown to be effective for misinformation detection. However, the choice of LLMs for experiments varies widely, leading to uncertain conclusions. In particular, GPT-4 is known to be strong in this domain, but it is closed source, potentially expensive, and can show instability between different versions. Meanwhile, alternative LLMs have given mixed results. In this work, we show that Zephyr-7b presents a consistently viable alternative, overcoming key limitations of commonly used approaches like Llama-2 and GPT-3.5. This provides the research community with a solid open-source option and shows open-source models are gradually catching up on this task. We then highlight how GPT-3.5 exhibits unstable performance, such that this very widely used model could provide misleading results in misinformation detection. Finally, we validate new tools including approaches to structured output and the latest version of GPT-4 (Turbo), showing they do not compromise performance, thus unlocking them for future research and potentially enabling more complex pipelines for misinformation mitigation.
Code Recommendation for Open Source Software Developers
Open Source Software (OSS) is forming the spines of technology infrastructures, attracting millions of talents to contribute. Notably, it is challenging and critical to consider both the developers' interests and the semantic features of the project code to recommend appropriate development tasks to OSS developers. In this paper, we formulate the novel problem of code recommendation, whose purpose is to predict the future contribution behaviors of developers given their interaction history, the semantic features of source code, and the hierarchical file structures of projects. Considering the complex interactions among multiple parties within the system, we propose CODER, a novel graph-based code recommendation framework for open source software developers. CODER jointly models microscopic user-code interactions and macroscopic user-project interactions via a heterogeneous graph and further bridges the two levels of information through aggregation on file-structure graphs that reflect the project hierarchy. Moreover, due to the lack of reliable benchmarks, we construct three large-scale datasets to facilitate future research in this direction. Extensive experiments show that our CODER framework achieves superior performance under various experimental settings, including intra-project, cross-project, and cold-start recommendation. We will release all the datasets, code, and utilities for data retrieval upon the acceptance of this work.
Hunyuan-Large: An Open-Source MoE Model with 52 Billion Activated Parameters by Tencent
In this paper, we introduce Hunyuan-Large, which is currently the largest open-source Transformer-based mixture of experts model, with a total of 389 billion parameters and 52 billion activation parameters, capable of handling up to 256K tokens. We conduct a thorough evaluation of Hunyuan-Large's superior performance across various benchmarks including language understanding and generation, logical reasoning, mathematical problem-solving, coding, long-context, and aggregated tasks, where it outperforms LLama3.1-70B and exhibits comparable performance when compared to the significantly larger LLama3.1-405B model. Key practice of Hunyuan-Large include large-scale synthetic data that is orders larger than in previous literature, a mixed expert routing strategy, a key-value cache compression technique, and an expert-specific learning rate strategy. Additionally, we also investigate the scaling laws and learning rate schedule of mixture of experts models, providing valuable insights and guidances for future model development and optimization. The code and checkpoints of Hunyuan-Large are released to facilitate future innovations and applications. Codes: https://github.com/Tencent/Hunyuan-Large Models: https://huggingface.co/tencent/Tencent-Hunyuan-Large
MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens
Multimodal interleaved datasets featuring free-form interleaved sequences of images and text are crucial for training frontier large multimodal models (LMMs). Despite the rapid progression of open-source LMMs, there remains a pronounced scarcity of large-scale, diverse open-source multimodal interleaved datasets. In response, we introduce MINT-1T, the most extensive and diverse open-source Multimodal INTerleaved dataset to date. MINT-1T comprises one trillion text tokens and three billion images, a 10x scale-up from existing open-source datasets. Additionally, we include previously untapped sources such as PDFs and ArXiv papers. As scaling multimodal interleaved datasets requires substantial engineering effort, sharing the data curation process and releasing the dataset greatly benefits the community. Our experiments show that LMMs trained on MINT-1T rival the performance of models trained on the previous leading dataset, OBELICS. Our data and code will be released at https://github.com/mlfoundations/MINT-1T.
Orion-14B: Open-source Multilingual Large Language Models
In this study, we introduce Orion-14B, a collection of multilingual large language models with 14 billion parameters. We utilize a data scheduling approach to train a foundational model on a diverse corpus of 2.5 trillion tokens, sourced from texts in English, Chinese, Japanese, Korean, and other languages. Additionally, we fine-tuned a series of models tailored for conversational applications and other specific use cases. Our evaluation results demonstrate that Orion-14B achieves state-of-the-art performance across a broad spectrum of tasks. We make the Orion-14B model family and its associated code publicly accessible https://github.com/OrionStarAI/Orion, aiming to inspire future research and practical applications in the field.
ML-Bench: Large Language Models Leverage Open-source Libraries for Machine Learning Tasks
Large language models have shown promising performance in code generation benchmarks. However, a considerable divide exists between these benchmark achievements and their practical applicability, primarily attributed to real-world programming's reliance on pre-existing libraries. Instead of evaluating LLMs to code from scratch, this work aims to propose a new evaluation setup where LLMs use open-source libraries to finish machine learning tasks. Therefore, we propose ML-Bench, an expansive benchmark developed to assess the effectiveness of LLMs in leveraging existing functions in open-source libraries. Consisting of 10044 samples spanning 130 tasks over 14 notable machine learning GitHub repositories. In this setting, given a specific machine learning task instruction and the accompanying README in a codebase, an LLM is tasked to generate code to accomplish the task. This necessitates the comprehension of long and language-code interleaved documents, as well as the understanding of complex cross-file code structures, introducing new challenges. Notably, while GPT-4 exhibits remarkable improvement over other LLMs, it manages to accomplish only 39.73\% of the tasks, leaving a huge space for improvement. We address these challenges by proposing ML-Agent, designed to effectively navigate the codebase, locate documentation, retrieve code, and generate executable code. Empirical results demonstrate that ML-Agent, built upon GPT-4, results in further improvements. Code, data, and models are available at https://ml-bench.github.io/.
Steel-LLM:From Scratch to Open Source -- A Personal Journey in Building a Chinese-Centric LLM
Steel-LLM is a Chinese-centric language model developed from scratch with the goal of creating a high-quality, open-source model despite limited computational resources. Launched in March 2024, the project aimed to train a 1-billion-parameter model on a large-scale dataset, prioritizing transparency and the sharing of practical insights to assist others in the community. The training process primarily focused on Chinese data, with a small proportion of English data included, addressing gaps in existing open-source LLMs by providing a more detailed and practical account of the model-building journey. Steel-LLM has demonstrated competitive performance on benchmarks such as CEVAL and CMMLU, outperforming early models from larger institutions. This paper provides a comprehensive summary of the project's key contributions, including data collection, model design, training methodologies, and the challenges encountered along the way, offering a valuable resource for researchers and practitioners looking to develop their own LLMs. The model checkpoints and training script are available at https://github.com/zhanshijinwat/Steel-LLM.
UniVid: The Open-Source Unified Video Model
Unified video modeling that combines generation and understanding capabilities is increasingly important but faces two key challenges: maintaining semantic faithfulness during flow-based generation due to text-visual token imbalance and the limitations of uniform cross-modal attention across the flow trajectory, and efficiently extending image-centric MLLMs to video without costly retraining. We present UniVid, a unified architecture that couples an MLLM with a diffusion decoder through a lightweight adapter, enabling both video understanding and generation. We introduce Temperature Modality Alignment to improve prompt adherence and Pyramid Reflection for efficient temporal reasoning via dynamic keyframe selection. Extensive experiments on standard benchmarks demonstrate state-of-the-art performance, achieving a 2.2% improvement on VBench-Long total score compared to EasyAnimateV5.1, and 1.0% and 3.3% accuracy gains on MSVD-QA and ActivityNet-QA, respectively, compared with the best prior 7B baselines.
BuildBench: Benchmarking LLM Agents on Compiling Real-World Open-Source Software
Automatically compiling open-source software (OSS) projects is a vital, labor-intensive, and complex task, which makes it a good challenge for LLM Agents. Existing methods rely on manually curated rules and workflows, which cannot adapt to OSS that requires customized configuration or environment setup. Recent attempts using Large Language Models (LLMs) used selective evaluation on a subset of highly rated OSS, a practice that underestimates the realistic challenges of OSS compilation. In practice, compilation instructions are often absent, dependencies are undocumented, and successful builds may even require patching source files or modifying build scripts. We propose a more challenging and realistic benchmark, BUILD-BENCH, comprising OSS that are more diverse in quality, scale, and characteristics. Furthermore, we propose a strong baseline LLM-based agent, OSS-BUILD-AGENT, an effective system with enhanced build instruction retrieval module that achieves state-of-the-art performance on BUILD-BENCH and is adaptable to heterogeneous OSS characteristics. We also provide detailed analysis regarding different compilation method design choices and their influence to the whole task, offering insights to guide future advances. We believe performance on BUILD-BENCH can faithfully reflect an agent's ability to tackle compilation as a complex software engineering tasks, and, as such, our benchmark will spur innovation with a significant impact on downstream applications in the fields of software development and software security.
OpenThaiGPT 1.6 and R1: Thai-Centric Open Source and Reasoning Large Language Models
We present OpenThaiGPT 1.6 and R1 (OTG-1.6 and OTG-R1), Thai-centric Large Language Models (LLMs) developed through distinct methodologies to enhance generalization and reasoning capabilities. OTG-1.6 employs Task Arithmetic model merging for broad generalization, while OTG-R1 integrates multi-stage training with the Less-Is-More Reasoning Hypothesis (LIMO) for advanced reasoning. Benchmark evaluations demonstrate superior performance across Thai language tasks, achieving competitive results against larger-scale open-source Thai LLMs. This paper details the proposed models, training processes, benchmarks, and results, highlighting improvements over previous models and establishing new performance standards for Thai-centric LLMs.
Domain-Specific Translation with Open-Source Large Language Models: Resource-Oriented Analysis
In this work, we compare the domain-specific translation performance of open-source autoregressive decoder-only large language models (LLMs) with task-oriented machine translation (MT) models. Our experiments focus on the medical domain and cover four language pairs with varied resource availability: English-to-French, English-to-Portuguese, English-to-Swahili, and Swahili-to-English. Despite recent advancements, LLMs exhibit a clear gap in specialized translation quality compared to multilingual encoder-decoder MT models such as NLLB-200. In three out of four language directions in our study, NLLB-200 3.3B outperforms all LLMs in the size range of 8B parameters in medical translation. While fine-tuning LLMs such as Mistral and Llama improves their performance at medical translation, these models still fall short compared to fine-tuned NLLB-200 3.3B models. Our findings highlight the ongoing need for specialized MT models to achieve higher-quality domain-specific translation, especially in medium-resource and low-resource settings. As larger LLMs outperform their 8B variants, this also encourages pre-training domain-specific medium-sized LMs to improve quality and efficiency in specialized translation tasks.
Cognitive Kernel: An Open-source Agent System towards Generalist Autopilots
We introduce Cognitive Kernel, an open-source agent system towards the goal of generalist autopilots. Unlike copilot systems, which primarily rely on users to provide essential state information (e.g., task descriptions) and assist users by answering questions or auto-completing contents, autopilot systems must complete tasks from start to finish independently, which requires the system to acquire the state information from the environments actively. To achieve this, an autopilot system should be capable of understanding user intents, actively gathering necessary information from various real-world sources, and making wise decisions. Cognitive Kernel adopts a model-centric design. In our implementation, the central policy model (a fine-tuned LLM) initiates interactions with the environment using a combination of atomic actions, such as opening files, clicking buttons, saving intermediate results to memory, or calling the LLM itself. This differs from the widely used environment-centric design, where a task-specific environment with predefined actions is fixed, and the policy model is limited to selecting the correct action from a given set of options. Our design facilitates seamless information flow across various sources and provides greater flexibility. We evaluate our system in three use cases: real-time information management, private information management, and long-term memory management. The results demonstrate that Cognitive Kernel achieves better or comparable performance to other closed-source systems in these scenarios. Cognitive Kernel is fully dockerized, ensuring everyone can deploy it privately and securely. We open-source the system and the backbone model to encourage further research on LLM-driven autopilot systems.
ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design
Machine learning is a prevalent approach to tame the complexity of design space exploration for domain-specific architectures. Using ML for design space exploration poses challenges. First, it's not straightforward to identify the suitable algorithm from an increasing pool of ML methods. Second, assessing the trade-offs between performance and sample efficiency across these methods is inconclusive. Finally, lack of a holistic framework for fair, reproducible, and objective comparison across these methods hinders progress of adopting ML-aided architecture design space exploration and impedes creating repeatable artifacts. To mitigate these challenges, we introduce ArchGym, an open-source gym and easy-to-extend framework that connects diverse search algorithms to architecture simulators. To demonstrate utility, we evaluate ArchGym across multiple vanilla and domain-specific search algorithms in designing custom memory controller, deep neural network accelerators, and custom SoC for AR/VR workloads, encompassing over 21K experiments. Results suggest that with unlimited samples, ML algorithms are equally favorable to meet user-defined target specification if hyperparameters are tuned; no solution is necessarily better than another (e.g., reinforcement learning vs. Bayesian methods). We coin the term hyperparameter lottery to describe the chance for a search algorithm to find an optimal design provided meticulously selected hyperparameters. The ease of data collection and aggregation in ArchGym facilitates research in ML-aided architecture design space exploration. As a case study, we show this advantage by developing a proxy cost model with an RMSE of 0.61% that offers a 2,000-fold reduction in simulation time. Code and data for ArchGym is available at https://bit.ly/ArchGym.
1.4 Million Open-Source Distilled Reasoning Dataset to Empower Large Language Model Training
The AM-DeepSeek-R1-Distilled is a large-scale dataset with thinking traces for general reasoning tasks, composed of high-quality and challenging reasoning problems. These problems are collected from a multitude of open-source datasets, subjected to semantic deduplication and meticulous cleaning to eliminate test set contamination. All responses within the dataset are distilled from reasoning models (predominantly DeepSeek-R1) and have undergone rigorous verification procedures. Mathematical problems are validated by checking against reference answers, code problems are verified using test cases, and other tasks are evaluated with the aid of a reward model. The AM-Distill-Qwen-32B model, which was trained through only simple Supervised Fine-Tuning (SFT) using this batch of data, outperformed the DeepSeek-R1-Distill-Qwen-32B model on four benchmarks: AIME2024, MATH-500, GPQA-Diamond, and LiveCodeBench. Additionally, the AM-Distill-Qwen-72B model surpassed the DeepSeek-R1-Distill-Llama-70B model on all benchmarks as well. We are releasing these 1.4 million problems and their corresponding responses to the research community with the objective of fostering the development of powerful reasoning-oriented Large Language Models (LLMs). The dataset was published in https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M{https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M}.
MedImageInsight: An Open-Source Embedding Model for General Domain Medical Imaging
In this work, we present MedImageInsight, an open-source medical imaging embedding model. MedImageInsight is trained on medical images with associated text and labels across a diverse collection of domains, including X-Ray, CT, MRI, dermoscopy, OCT, fundus photography, ultrasound, histopathology, and mammography. Rigorous evaluations demonstrate MedImageInsight's ability to achieve state-of-the-art (SOTA) or human expert level performance across classification, image-image search, and fine-tuning tasks. Specifically, on public datasets, MedImageInsight achieves SOTA in CT 3D medical image retrieval, as well as SOTA in disease classification and search for chest X-ray, dermatology, and OCT imaging. Furthermore, MedImageInsight achieves human expert performance in bone age estimation (on both public and partner data), as well as AUC above 0.9 in most other domains. When paired with a text decoder, MedImageInsight achieves near SOTA level single image report findings generation with less than 10\% the parameters of other models. Compared to fine-tuning GPT-4o with only MIMIC-CXR data for the same task, MedImageInsight outperforms in clinical metrics, but underperforms on lexical metrics where GPT-4o sets a new SOTA. Importantly for regulatory purposes, MedImageInsight can generate ROC curves, adjust sensitivity and specificity based on clinical need, and provide evidence-based decision support through image-image search (which can also enable retrieval augmented generation). In an independent clinical evaluation of image-image search in chest X-ray, MedImageInsight outperformed every other publicly available foundation model evaluated by large margins (over 6 points AUC), and significantly outperformed other models in terms of AI fairness (across age and gender). We hope releasing MedImageInsight will help enhance collective progress in medical imaging AI research and development.
ToolBridge: An Open-Source Dataset to Equip LLMs with External Tool Capabilities
Through the integration of external tools, large language models (LLMs) such as GPT-4o and Llama 3.1 significantly expand their functional capabilities, evolving from elementary conversational agents to general-purpose assistants. We argue that the primary drivers of these advancements are the quality and diversity of the training data. However, the existing LLMs with external tool integration provide only limited transparency regarding their datasets and data collection methods, which has led to the initiation of this research. Specifically, in this paper, our objective is to elucidate the detailed process involved in constructing datasets that empower LLMs to effectively learn how to utilize external tools and make this information available to the public through the introduction of ToolBridge. ToolBridge proposes to employ a collection of general open-access datasets as its raw dataset pool and applies a series of strategies to identify appropriate data entries from the pool for external tool API insertions. By supervised fine-tuning on these curated data entries, LLMs can invoke external tools in appropriate contexts to boost their predictive accuracy, particularly for basic functions including data processing, numerical computation, and factual retrieval. Our experiments rigorously isolates model architectures and training configurations, focusing exclusively on the role of data. The experimental results indicate that LLMs trained on ToolBridge demonstrate consistent performance improvements on both standard benchmarks and custom evaluation datasets. All the associated code and data will be open-source at https://github.com/CharlesPikachu/ToolBridge, promoting transparency and facilitating the broader community to explore approaches for equipping LLMs with external tools capabilities.
RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with Our Open-Source Dataset and Lightweight Solution
The automatic generation of RTL code (e.g., Verilog) using natural language instructions and large language models (LLMs) has attracted significant research interest recently. However, most existing approaches heavily rely on commercial LLMs such as ChatGPT, while open-source LLMs tailored for this specific design generation task exhibit notably inferior performance. The absence of high-quality open-source solutions restricts the flexibility and data privacy of this emerging technique. In this study, we present a new customized LLM solution with a modest parameter count of only 7B, achieving better performance than GPT-3.5 on two representative benchmarks for RTL code generation. This remarkable balance between accuracy and efficiency is made possible by leveraging our new RTL code dataset and a customized LLM algorithm, both of which will be made fully open-source. Furthermore, we have successfully quantized our LLM to 4-bit with a total size of 4GB, enabling it to function on a single laptop with only slight performance degradation. This efficiency allows the RTL generator to serve as a local assistant for engineers, ensuring all design privacy concerns are addressed.
LLM Interactive Optimization of Open Source Python Libraries -- Case Studies and Generalization
With the advent of large language models (LLMs) like GPT-3, a natural question is the extent to which these models can be utilized for source code optimization. This paper presents methodologically stringent case studies applied to well-known open source python libraries pillow and numpy. We find that contemporary LLM ChatGPT-4 (state September and October 2023) is surprisingly adept at optimizing energy and compute efficiency. However, this is only the case in interactive use, with a human expert in the loop. Aware of experimenter bias, we document our qualitative approach in detail, and provide transcript and source code. We start by providing a detailed description of our approach in conversing with the LLM to optimize the _getextrema function in the pillow library, and a quantitative evaluation of the performance improvement. To demonstrate qualitative replicability, we report further attempts on another locus in the pillow library, and one code locus in the numpy library, to demonstrate generalization within and beyond a library. In all attempts, the performance improvement is significant (factor up to 38). We have also not omitted reporting of failed attempts (there were none). We conclude that LLMs are a promising tool for code optimization in open source libraries, but that the human expert in the loop is essential for success. Nonetheless, we were surprised by how few iterations were required to achieve substantial performance improvements that were not obvious to the expert in the loop. We would like bring attention to the qualitative nature of this study, more robust quantitative studies would need to introduce a layer of selecting experts in a representative sample -- we invite the community to collaborate.
Automatic Instruction Optimization for Open-source LLM Instruction Tuning
Instruction tuning is crucial for enabling Language Learning Models (LLMs) in responding to human instructions. The quality of instruction pairs used for tuning greatly affects the performance of LLMs. However, the manual creation of high-quality instruction datasets is costly, leading to the adoption of automatic generation of instruction pairs by LLMs as a popular alternative in the training of open-source LLMs. To ensure the high quality of LLM-generated instruction datasets, several approaches have been proposed. Nevertheless, existing methods either compromise dataset integrity by filtering a large proportion of samples, or are unsuitable for industrial applications. In this paper, instead of discarding low-quality samples, we propose CoachLM, a novel approach to enhance the quality of instruction datasets through automatic revisions on samples in the dataset. CoachLM is trained from the samples revised by human experts and significantly increases the proportion of high-quality samples in the dataset from 17.7% to 78.9%. The effectiveness of CoachLM is further assessed on various real-world instruction test sets. The results show that CoachLM improves the instruction-following capabilities of the instruction-tuned LLM by an average of 29.9%, which even surpasses larger LLMs with nearly twice the number of parameters. Furthermore, CoachLM is successfully deployed in a data management system for LLMs at Huawei, resulting in an efficiency improvement of up to 20% in the cleaning of 40k real-world instruction pairs. We release the training data and code of CoachLM (https://github.com/lunyiliu/CoachLM).
HyDe: The First Open-Source, Python-Based, GPU-Accelerated Hyperspectral Denoising Package
As with any physical instrument, hyperspectral cameras induce different kinds of noise in the acquired data. Therefore, Hyperspectral denoising is a crucial step for analyzing hyperspectral images (HSIs). Conventional computational methods rarely use GPUs to improve efficiency and are not fully open-source. Alternatively, deep learning-based methods are often open-source and use GPUs, but their training and utilization for real-world applications remain non-trivial for many researchers. Consequently, we propose HyDe: the first open-source, GPU-accelerated Python-based, hyperspectral image denoising toolbox, which aims to provide a large set of methods with an easy-to-use environment. HyDe includes a variety of methods ranging from low-rank wavelet-based methods to deep neural network (DNN) models. HyDe's interface dramatically improves the interoperability of these methods and the performance of the underlying functions. In fact, these methods maintain similar HSI denoising performance to their original implementations while consuming nearly ten times less energy. Furthermore, we present a method for training DNNs for denoising HSIs which are not spatially related to the training dataset, i.e., training on ground-level HSIs for denoising HSIs with other perspectives including airborne, drone-borne, and space-borne. To utilize the trained DNNs, we show a sliding window method to effectively denoise HSIs which would otherwise require more than 40 GB. The package can be found at: https://github.com/Helmholtz-AI-Energy/HyDe.
LibriMix: An Open-Source Dataset for Generalizable Speech Separation
In recent years, wsj0-2mix has become the reference dataset for single-channel speech separation. Most deep learning-based speech separation models today are benchmarked on it. However, recent studies have shown important performance drops when models trained on wsj0-2mix are evaluated on other, similar datasets. To address this generalization issue, we created LibriMix, an open-source alternative to wsj0-2mix, and to its noisy extension, WHAM!. Based on LibriSpeech, LibriMix consists of two- or three-speaker mixtures combined with ambient noise samples from WHAM!. Using Conv-TasNet, we achieve competitive performance on all LibriMix versions. In order to fairly evaluate across datasets, we introduce a third test set based on VCTK for speech and WHAM! for noise. Our experiments show that the generalization error is smaller for models trained with LibriMix than with WHAM!, in both clean and noisy conditions. Aiming towards evaluation in more realistic, conversation-like scenarios, we also release a sparsely overlapping version of LibriMix's test set.
YAYI 2: Multilingual Open-Source Large Language Models
As the latest advancements in natural language processing, large language models (LLMs) have achieved human-level language understanding and generation abilities in many real-world tasks, and even have been regarded as a potential path to the artificial general intelligence. To better facilitate research on LLMs, many open-source LLMs, such as Llama 2 and Falcon, have recently been proposed and gained comparable performances to proprietary models. However, these models are primarily designed for English scenarios and exhibit poor performances in Chinese contexts. In this technical report, we propose YAYI 2, including both base and chat models, with 30 billion parameters. YAYI 2 is pre-trained from scratch on a multilingual corpus which contains 2.65 trillion tokens filtered by our pre-training data processing pipeline. The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback. Extensive experiments on multiple benchmarks, such as MMLU and CMMLU, consistently demonstrate that the proposed YAYI 2 outperforms other similar sized open-source models.
InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models
We introduce InternVL3, a significant advancement in the InternVL series featuring a native multimodal pre-training paradigm. Rather than adapting a text-only large language model (LLM) into a multimodal large language model (MLLM) that supports visual inputs, InternVL3 jointly acquires multimodal and linguistic capabilities from both diverse multimodal data and pure-text corpora during a single pre-training stage. This unified training paradigm effectively addresses the complexities and alignment challenges commonly encountered in conventional post-hoc training pipelines for MLLMs. To further improve performance and scalability, InternVL3 incorporates variable visual position encoding (V2PE) to support extended multimodal contexts, employs advanced post-training techniques such as supervised fine-tuning (SFT) and mixed preference optimization (MPO), and adopts test-time scaling strategies alongside an optimized training infrastructure. Extensive empirical evaluations demonstrate that InternVL3 delivers superior performance across a wide range of multi-modal tasks. In particular, InternVL3-78B achieves a score of 72.2 on the MMMU benchmark, setting a new state-of-the-art among open-source MLLMs. Its capabilities remain highly competitive with leading proprietary models, including ChatGPT-4o, Claude 3.5 Sonnet, and Gemini 2.5 Pro, while also maintaining strong pure-language proficiency. In pursuit of open-science principles, we will publicly release both the training data and model weights to foster further research and development in next-generation MLLMs.
InternVL3.5: Advancing Open-Source Multimodal Models in Versatility, Reasoning, and Efficiency
We introduce InternVL 3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0\% gain in overall reasoning performance and a 4.05times inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks -- narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.
TinyLlama: An Open-Source Small Language Model
We present TinyLlama, a compact 1.1B language model pretrained on around 1 trillion tokens for approximately 3 epochs. Building on the architecture and tokenizer of Llama 2, TinyLlama leverages various advances contributed by the open-source community (e.g., FlashAttention), achieving better computational efficiency. Despite its relatively small size, TinyLlama demonstrates remarkable performance in a series of downstream tasks. It significantly outperforms existing open-source language models with comparable sizes. Our model checkpoints and code are publicly available on GitHub at https://github.com/jzhang38/TinyLlama.
Open Deep Search: Democratizing Search with Open-source Reasoning Agents
We introduce Open Deep Search (ODS) to close the increasing gap between the proprietary search AI solutions, such as Perplexity's Sonar Reasoning Pro and OpenAI's GPT-4o Search Preview, and their open-source counterparts. The main innovation introduced in ODS is to augment the reasoning capabilities of the latest open-source LLMs with reasoning agents that can judiciously use web search tools to answer queries. Concretely, ODS consists of two components that work with a base LLM chosen by the user: Open Search Tool and Open Reasoning Agent. Open Reasoning Agent interprets the given task and completes it by orchestrating a sequence of actions that includes calling tools, one of which is the Open Search Tool. Open Search Tool is a novel web search tool that outperforms proprietary counterparts. Together with powerful open-source reasoning LLMs, such as DeepSeek-R1, ODS nearly matches and sometimes surpasses the existing state-of-the-art baselines on two benchmarks: SimpleQA and FRAMES. For example, on the FRAMES evaluation benchmark, ODS improves the best existing baseline of the recently released GPT-4o Search Preview by 9.7% in accuracy. ODS is a general framework for seamlessly augmenting any LLMs -- for example, DeepSeek-R1 that achieves 82.4% on SimpleQA and 30.1% on FRAMES -- with search and reasoning capabilities to achieve state-of-the-art performance: 88.3% on SimpleQA and 75.3% on FRAMES.
Open-MAGVIT2: An Open-Source Project Toward Democratizing Auto-regressive Visual Generation
We present Open-MAGVIT2, a family of auto-regressive image generation models ranging from 300M to 1.5B. The Open-MAGVIT2 project produces an open-source replication of Google's MAGVIT-v2 tokenizer, a tokenizer with a super-large codebook (i.e., 2^{18} codes), and achieves the state-of-the-art reconstruction performance (1.17 rFID) on ImageNet 256 times 256. Furthermore, we explore its application in plain auto-regressive models and validate scalability properties. To assist auto-regressive models in predicting with a super-large vocabulary, we factorize it into two sub-vocabulary of different sizes by asymmetric token factorization, and further introduce "next sub-token prediction" to enhance sub-token interaction for better generation quality. We release all models and codes to foster innovation and creativity in the field of auto-regressive visual generation.
VidTok: A Versatile and Open-Source Video Tokenizer
Encoding video content into compact latent tokens has become a fundamental step in video generation and understanding, driven by the need to address the inherent redundancy in pixel-level representations. Consequently, there is a growing demand for high-performance, open-source video tokenizers as video-centric research gains prominence. We introduce VidTok, a versatile video tokenizer that delivers state-of-the-art performance in both continuous and discrete tokenizations. VidTok incorporates several key advancements over existing approaches: 1) model architecture such as convolutional layers and up/downsampling modules; 2) to address the training instability and codebook collapse commonly associated with conventional Vector Quantization (VQ), we integrate Finite Scalar Quantization (FSQ) into discrete video tokenization; 3) improved training strategies, including a two-stage training process and the use of reduced frame rates. By integrating these advancements, VidTok achieves substantial improvements over existing methods, demonstrating superior performance across multiple metrics, including PSNR, SSIM, LPIPS, and FVD, under standardized evaluation settings.
TSpec-LLM: An Open-source Dataset for LLM Understanding of 3GPP Specifications
Understanding telecom standards involves sorting through numerous technical documents, such as those produced by the 3rd Generation Partnership Project (3GPP), which is time-consuming and labor-intensive. While large language models (LLMs) can assist with the extensive 3GPP knowledge base, an inclusive dataset is crucial for their effective pre-training and fine-tuning. In this paper, we introduce TSpec-LLM, an open-source comprehensive dataset covering all 3GPP documents from Release 8 to Release 19 (1999--2023). To evaluate its efficacy, we first select a representative sample of 3GPP documents, create corresponding technical questions, and assess the baseline performance of various LLMs. We then incorporate a retrieval-augmented generation (RAG) framework to enhance LLM capabilities by retrieving relevant context from the TSpec-LLM dataset. Our evaluation shows that using a naive-RAG framework on TSpec-LLM improves the accuracy of GPT-3.5, Gemini 1.0 Pro, and GPT-4 from 44\%, 46\%, and 51\% to 71\%, 75\%, and 72\%, respectively.
UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised Fine-tuning Dataset
Open-source large language models (LLMs) have gained significant strength across diverse fields. Nevertheless, the majority of studies primarily concentrate on English, with only limited exploration into the realm of multilingual supervised fine-tuning. In this work, we therefore construct an open-source multilingual supervised fine-tuning dataset. Different from previous works that simply translate English instructions, we consider both the language-specific and language-agnostic abilities of LLMs. For language-specific abilities, we introduce a knowledge-grounded data augmentation approach to elicit more culture-specific knowledge of LLMs, improving their ability to serve users from different countries. For language-agnostic abilities, we find through experiments that modern LLMs exhibit strong cross-lingual transfer capabilities, thus repeatedly learning identical content in various languages is not necessary. Consequently, we can substantially prune the language-agnostic SFT data without any performance degradation, making the SFT process more efficient. The resulting UltraLink dataset comprises approximately 1 million samples across five languages, and the proposed data construction method can also be easily extended to other languages. UltraLink-LM, which is trained on UltraLink, outperforms several representative baselines across many tasks.
Systematic Optimization of Open Source Large Language Models for Mathematical Reasoning
This paper presents a practical investigation into fine-tuning model parameters for mathematical reasoning tasks through experimenting with various configurations including randomness control, reasoning depth, and sampling strategies, careful tuning demonstrates substantial improvements in efficiency as well as performance. A holistically optimized framework is introduced for five state-of-the-art models on mathematical reasoning tasks, exhibiting significant performance boosts while maintaining solution correctness. Through systematic parameter optimization across Qwen2.5-72B, Llama-3.1-70B, DeepSeek-V3, Mixtral-8x22B, and Yi-Lightning, consistent efficiency gains are demonstrated with 100% optimization success rate. The methodology achieves an average 29.4% reduction in computational cost and 23.9% improvement in inference speed across all tested models. This framework systematically searches parameter spaces including temperature (0.1-0.5), reasoning steps (4-12), planning periods (1-4), and nucleus sampling (0.85-0.98), determining optimal configurations through testing on mathematical reasoning benchmarks. Critical findings show that lower temperature regimes (0.1-0.4) and reduced reasoning steps (4-6) consistently enhance efficiency without compromising accuracy. DeepSeek-V3 achieves the highest accuracy at 98%, while Mixtral-8x22B delivers the most cost-effective performance at 361.5 tokens per accurate response. Key contributions include: (1) the first comprehensive optimization study for five diverse SOTA models in mathematical reasoning, (2) a standardized production-oriented parameter optimization framework, (3) discovery of universal optimization trends applicable across model architectures, and (4) production-ready configurations with extensive performance characterization.
NYU CTF Bench: A Scalable Open-Source Benchmark Dataset for Evaluating LLMs in Offensive Security
Large Language Models (LLMs) are being deployed across various domains today. However, their capacity to solve Capture the Flag (CTF) challenges in cybersecurity has not been thoroughly evaluated. To address this, we develop a novel method to assess LLMs in solving CTF challenges by creating a scalable, open-source benchmark database specifically designed for these applications. This database includes metadata for LLM testing and adaptive learning, compiling a diverse range of CTF challenges from popular competitions. Utilizing the advanced function calling capabilities of LLMs, we build a fully automated system with an enhanced workflow and support for external tool calls. Our benchmark dataset and automated framework allow us to evaluate the performance of five LLMs, encompassing both black-box and open-source models. This work lays the foundation for future research into improving the efficiency of LLMs in interactive cybersecurity tasks and automated task planning. By providing a specialized benchmark, our project offers an ideal platform for developing, testing, and refining LLM-based approaches to vulnerability detection and resolution. Evaluating LLMs on these challenges and comparing with human performance yields insights into their potential for AI-driven cybersecurity solutions to perform real-world threat management. We make our benchmark dataset open source to public https://github.com/NYU-LLM-CTF/NYU_CTF_Bench along with our playground automated framework https://github.com/NYU-LLM-CTF/llm_ctf_automation.
Automating Customer Service using LangChain: Building custom open-source GPT Chatbot for organizations
In the digital age, the dynamics of customer service are evolving, driven by technological advancements and the integration of Large Language Models (LLMs). This research paper introduces a groundbreaking approach to automating customer service using LangChain, a custom LLM tailored for organizations. The paper explores the obsolescence of traditional customer support techniques, particularly Frequently Asked Questions (FAQs), and proposes a paradigm shift towards responsive, context-aware, and personalized customer interactions. The heart of this innovation lies in the fusion of open-source methodologies, web scraping, fine-tuning, and the seamless integration of LangChain into customer service platforms. This open-source state-of-the-art framework, presented as "Sahaay," demonstrates the ability to scale across industries and organizations, offering real-time support and query resolution. Key elements of this research encompass data collection via web scraping, the role of embeddings, the utilization of Google's Flan T5 XXL, Base and Small language models for knowledge retrieval, and the integration of the chatbot into customer service platforms. The results section provides insights into their performance and use cases, here particularly within an educational institution. This research heralds a new era in customer service, where technology is harnessed to create efficient, personalized, and responsive interactions. Sahaay, powered by LangChain, redefines the customer-company relationship, elevating customer retention, value extraction, and brand image. As organizations embrace LLMs, customer service becomes a dynamic and customer-centric ecosystem.
HazyDet: Open-Source Benchmark for Drone-View Object Detection with Depth-Cues in Hazy Scenes
Object detection from aerial platforms under adverse atmospheric conditions, particularly haze, is paramount for robust drone autonomy. Yet, this domain remains largely underexplored, primarily hindered by the absence of specialized benchmarks. To bridge this gap, we present HazyDet, the first, large-scale benchmark specifically designed for drone-view object detection in hazy conditions. Comprising 383,000 real-world instances derived from both naturally hazy captures and synthetically hazed scenes augmented from clear images, HazyDet provides a challenging and realistic testbed for advancing detection algorithms. To address the severe visual degradation induced by haze, we propose the Depth-Conditioned Detector (DeCoDet), a novel architecture that integrates a Depth-Conditioned Kernel to dynamically modulate feature representations based on depth cues. The practical efficacy and robustness of DeCoDet are further enhanced by its training with a Progressive Domain Fine-Tuning (PDFT) strategy to navigate synthetic-to-real domain shifts, and a Scale-Invariant Refurbishment Loss (SIRLoss) to ensure resilient learning from potentially noisy depth annotations. Comprehensive empirical validation on HazyDet substantiates the superiority of our unified DeCoDet framework, which achieves state-of-the-art performance, surpassing the closest competitor by a notable +1.5\% mAP on challenging real-world hazy test scenarios. Our dataset and toolkit are available at https://github.com/GrokCV/HazyDet.
OpenLLM-Ro -- Technical Report on Open-source Romanian LLMs trained starting from Llama 2
In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English. Hence, their performance in English greatly exceeds their performance in other languages. This document presents our approach to training and evaluating the first foundational and chat LLM specialized for Romanian.
ArcheType: A Novel Framework for Open-Source Column Type Annotation using Large Language Models
Existing deep-learning approaches to semantic column type annotation (CTA) have important shortcomings: they rely on semantic types which are fixed at training time; require a large number of training samples per type and incur large run-time inference costs; and their performance can degrade when evaluated on novel datasets, even when types remain constant. Large language models have exhibited strong zero-shot classification performance on a wide range of tasks and in this paper we explore their use for CTA. We introduce ArcheType, a simple, practical method for context sampling, prompt serialization, model querying, and label remapping, which enables large language models to solve CTA problems in a fully zero-shot manner. We ablate each component of our method separately, and establish that improvements to context sampling and label remapping provide the most consistent gains. ArcheType establishes a new state-of-the-art performance on zero-shot CTA benchmarks (including three new domain-specific benchmarks which we release along with this paper), and when used in conjunction with classical CTA techniques, it outperforms a SOTA DoDuo model on the fine-tuned SOTAB benchmark. Our code is available at https://github.com/penfever/ArcheType.
How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites
In this report, we introduce InternVL 1.5, an open-source multimodal large language model (MLLM) to bridge the capability gap between open-source and proprietary commercial models in multimodal understanding. We introduce three simple improvements: (1) Strong Vision Encoder: we explored a continuous learning strategy for the large-scale vision foundation model -- InternViT-6B, boosting its visual understanding capabilities, and making it can be transferred and reused in different LLMs. (2) Dynamic High-Resolution: we divide images into tiles ranging from 1 to 40 of 448times448 pixels according to the aspect ratio and resolution of the input images, which supports up to 4K resolution input. (3) High-Quality Bilingual Dataset: we carefully collected a high-quality bilingual dataset that covers common scenes, document images, and annotated them with English and Chinese question-answer pairs, significantly enhancing performance in OCR- and Chinese-related tasks. We evaluate InternVL 1.5 through a series of benchmarks and comparative studies. Compared to both open-source and proprietary models, InternVL 1.5 shows competitive performance, achieving state-of-the-art results in 8 of 18 benchmarks. Code has been released at https://github.com/OpenGVLab/InternVL.
DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
The rapid development of open-source large language models (LLMs) has been truly remarkable. However, the scaling law described in previous literature presents varying conclusions, which casts a dark cloud over scaling LLMs. We delve into the study of scaling laws and present our distinctive findings that facilitate scaling of large scale models in two commonly used open-source configurations, 7B and 67B. Guided by the scaling laws, we introduce DeepSeek LLM, a project dedicated to advancing open-source language models with a long-term perspective. To support the pre-training phase, we have developed a dataset that currently consists of 2 trillion tokens and is continuously expanding. We further conduct supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) on DeepSeek LLM Base models, resulting in the creation of DeepSeek Chat models. Our evaluation results demonstrate that DeepSeek LLM 67B surpasses LLaMA-2 70B on various benchmarks, particularly in the domains of code, mathematics, and reasoning. Furthermore, open-ended evaluations reveal that DeepSeek LLM 67B Chat exhibits superior performance compared to GPT-3.5.
Mini-Omni2: Towards Open-source GPT-4o with Vision, Speech and Duplex Capabilities
GPT-4o, an all-encompassing model, represents a milestone in the development of large multi-modal language models. It can understand visual, auditory, and textual modalities, directly output audio, and support flexible duplex interaction. Models from the open-source community often achieve some functionalities of GPT-4o, such as visual understanding and voice chat. Nevertheless, training a unified model that incorporates all modalities is challenging due to the complexities of multi-modal data, intricate model architectures, and training processes. In this paper, we introduce Mini-Omni2, a visual-audio assistant capable of providing real-time, end-to-end voice responses to visoin and audio queries. By integrating pretrained visual and auditory encoders, Mini-Omni2 maintains performance in individual modalities. We propose a three-stage training process to align modalities, allowing the language model to handle multi-modal inputs and outputs after training on a limited dataset. For interaction, we introduce a command-based interruption mechanism, enabling more flexible interaction with users. To the best of our knowledge, Mini-Omni2 is one of the closest reproductions of GPT-4o, which have similar form of functionality, and we hope it can offer valuable insights for subsequent research.
OpenChat: Advancing Open-source Language Models with Mixed-Quality Data
Nowadays, open-source large language models like LLaMA have emerged. Recent developments have incorporated supervised fine-tuning (SFT) and reinforcement learning fine-tuning (RLFT) to align these models with human goals. However, SFT methods treat all training data with mixed quality equally, while RLFT methods require high-quality pairwise or ranking-based preference data. In this study, we present a novel framework, named OpenChat, to advance open-source language models with mixed-quality data. Specifically, we consider the general SFT training data, consisting of a small amount of expert data mixed with a large proportion of sub-optimal data, without any preference labels. We propose the C(onditioned)-RLFT, which regards different data sources as coarse-grained reward labels and learns a class-conditioned policy to leverage complementary data quality information. Interestingly, the optimal policy in C-RLFT can be easily solved through single-stage, RL-free supervised learning, which is lightweight and avoids costly human preference labeling. Through extensive experiments on three standard benchmarks, our openchat-13b fine-tuned with C-RLFT achieves the highest average performance among all 13b open-source language models. Moreover, we use AGIEval to validate the model generalization performance, in which only openchat-13b surpasses the base model. Finally, we conduct a series of analyses to shed light on the effectiveness and robustness of OpenChat. Our code, data, and models are publicly available at https://github.com/imoneoi/openchat.
A Technical Report for Polyglot-Ko: Open-Source Large-Scale Korean Language Models
Polyglot is a pioneering project aimed at enhancing the non-English language performance of multilingual language models. Despite the availability of various multilingual models such as mBERT (Devlin et al., 2019), XGLM (Lin et al., 2022), and BLOOM (Scao et al., 2022), researchers and developers often resort to building monolingual models in their respective languages due to the dissatisfaction with the current multilingual models non-English language capabilities. Addressing this gap, we seek to develop advanced multilingual language models that offer improved performance in non-English languages. In this paper, we introduce the Polyglot Korean models, which represent a specific focus rather than being multilingual in nature. In collaboration with TUNiB, our team collected 1.2TB of Korean data meticulously curated for our research journey. We made a deliberate decision to prioritize the development of Korean models before venturing into multilingual models. This choice was motivated by multiple factors: firstly, the Korean models facilitated performance comparisons with existing multilingual models; and finally, they catered to the specific needs of Korean companies and researchers. This paper presents our work in developing the Polyglot Korean models, which propose some steps towards addressing the non-English language performance gap in multilingual language models.
Open-RAG: Enhanced Retrieval-Augmented Reasoning with Open-Source Large Language Models
Retrieval-Augmented Generation (RAG) has been shown to enhance the factual accuracy of Large Language Models (LLMs), but existing methods often suffer from limited reasoning capabilities in effectively using the retrieved evidence, particularly when using open-source LLMs. To mitigate this gap, we introduce a novel framework, Open-RAG, designed to enhance reasoning capabilities in RAG with open-source LLMs. Our framework transforms an arbitrary dense LLM into a parameter-efficient sparse mixture of experts (MoE) model capable of handling complex reasoning tasks, including both single- and multi-hop queries. Open-RAG uniquely trains the model to navigate challenging distractors that appear relevant but are misleading. As a result, Open-RAG leverages latent learning, dynamically selecting relevant experts and integrating external knowledge effectively for more accurate and contextually relevant responses. In addition, we propose a hybrid adaptive retrieval method to determine retrieval necessity and balance the trade-off between performance gain and inference speed. Experimental results show that the Llama2-7B-based Open-RAG outperforms state-of-the-art LLMs and RAG models such as ChatGPT, Self-RAG, and Command R+ in various knowledge-intensive tasks. We open-source our code and models at https://openragmoe.github.io/
Why Do Open-Source LLMs Struggle with Data Analysis? A Systematic Empirical Study
Large Language Models (LLMs) hold promise in automating data analysis tasks, yet open-source models face significant limitations in these kinds of reasoning-intensive scenarios. In this work, we investigate strategies to enhance the data analysis capabilities of open-source LLMs. By curating a seed dataset of diverse, realistic scenarios, we evaluate models across three dimensions: data understanding, code generation, and strategic planning. Our analysis reveals three key findings: (1) Strategic planning quality serves as the primary determinant of model performance; (2) Interaction design and task complexity significantly influence reasoning capabilities; (3) Data quality demonstrates a greater impact than diversity in achieving optimal performance. We leverage these insights to develop a data synthesis methodology, demonstrating significant improvements in open-source LLMs' analytical reasoning capabilities.
Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training
Large Language Models (LLMs) have shown remarkable advancements in specialized fields such as finance, law, and medicine. However, in cybersecurity, we have noticed a lack of open-source datasets, with a particular lack of high-quality cybersecurity pretraining corpora, even though much research indicates that LLMs acquire their knowledge during pretraining. To address this, we present a comprehensive suite of datasets covering all major training stages, including pretraining, instruction fine-tuning, and reasoning distillation with cybersecurity-specific self-reflection data. Extensive ablation studies demonstrate their effectiveness on public cybersecurity benchmarks. In particular, continual pre-training on our dataset yields a 15.88% improvement in the aggregate score, while reasoning distillation leads to a 10% gain in security certification (CISSP). We will release all datasets and trained cybersecurity LLMs under the ODC-BY and MIT licenses to encourage further research in the community. For access to all datasets and model weights, please refer to https://huggingface.co/collections/trendmicro-ailab/primus-67b1fd27052b802b4af9d243.
Is GPT-OSS Good? A Comprehensive Evaluation of OpenAI's Latest Open Source Models
In August 2025, OpenAI released GPT-OSS models, its first open weight large language models since GPT-2 in 2019, comprising two mixture of experts architectures with 120B and 20B parameters. We evaluated both variants against six contemporary open source large language models ranging from 14.7B to 235B parameters, representing both dense and sparse designs, across ten benchmarks covering general knowledge, mathematical reasoning, code generation, multilingual understanding, and conversational ability. All models were tested in unquantised form under standardised inference settings, with statistical validation using McNemars test and effect size analysis. Results show that gpt-oss-20B consistently outperforms gpt-oss-120B on several benchmarks, such as HumanEval and MMLU, despite requiring substantially less memory and energy per response. Both models demonstrate mid-tier overall performance within the current open source landscape, with relative strength in code generation and notable weaknesses in multilingual tasks. These findings provide empirical evidence that scaling in sparse architectures may not yield proportional performance gains, underscoring the need for further investigation into optimisation strategies and informing more efficient model selection for future open source deployments.
YuLan: An Open-source Large Language Model
Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with 12 billion parameters. The base model of YuLan is pre-trained on approximately 1.7T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan's overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan's training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat.
OpenThaiGPT 1.5: A Thai-Centric Open Source Large Language Model
OpenThaiGPT 1.5 is an advanced Thai language chat model based on Qwen v2.5, finetuned on over 2,000,000 Thai instruction pairs. This report provides an engineering perspective on the model's development, capabilities, and performance. We discuss the model's architecture, training process, and key features, including multi-turn conversation support, Retrieval Augmented Generation (RAG) compatibility, and tool-calling functionality. Benchmark results demonstrate OpenThaiGPT 1.5's state-of-the-art performance on various Thai language tasks, outperforming other open-source Thai language models. We also address practical considerations such as GPU memory requirements and deployment strategies.
OpenR: An Open Source Framework for Advanced Reasoning with Large Language Models
In this technical report, we introduce OpenR, an open-source framework designed to integrate key components for enhancing the reasoning capabilities of large language models (LLMs). OpenR unifies data acquisition, reinforcement learning training (both online and offline), and non-autoregressive decoding into a cohesive software platform. Our goal is to establish an open-source platform and community to accelerate the development of LLM reasoning. Inspired by the success of OpenAI's o1 model, which demonstrated improved reasoning abilities through step-by-step reasoning and reinforcement learning, OpenR integrates test-time compute, reinforcement learning, and process supervision to improve reasoning in LLMs. Our work is the first to provide an open-source framework that explores the core techniques of OpenAI's o1 model with reinforcement learning, achieving advanced reasoning capabilities beyond traditional autoregressive methods. We demonstrate the efficacy of OpenR by evaluating it on the MATH dataset, utilising publicly available data and search methods. Our initial experiments confirm substantial gains, with relative improvements in reasoning and performance driven by test-time computation and reinforcement learning through process reward models. The OpenR framework, including code, models, and datasets, is accessible at https://openreasoner.github.io.
GPT-NeoX-20B: An Open-Source Autoregressive Language Model
We introduce GPT-NeoX-20B, a 20 billion parameter autoregressive language model trained on the Pile, whose weights will be made freely and openly available to the public through a permissive license. It is, to the best of our knowledge, the largest dense autoregressive model that has publicly available weights at the time of submission. In this work, we describe 's architecture and training and evaluate its performance on a range of language-understanding, mathematics, and knowledge-based tasks. We find that GPT-NeoX-20B is a particularly powerful few-shot reasoner and gains far more in performance when evaluated five-shot than similarly sized GPT-3 and FairSeq models. We open-source the training and evaluation code, as well as the model weights, at https://github.com/EleutherAI/gpt-neox.
PlantBert: An Open Source Language Model for Plant Science
The rapid advancement of transformer-based language models has catalyzed breakthroughs in biomedical and clinical natural language processing; however, plant science remains markedly underserved by such domain-adapted tools. In this work, we present PlantBert, a high-performance, open-source language model specifically tailored for extracting structured knowledge from plant stress-response literature. Built upon the DeBERTa architecture-known for its disentangled attention and robust contextual encoding-PlantBert is fine-tuned on a meticulously curated corpus of expert-annotated abstracts, with a primary focus on lentil (Lens culinaris) responses to diverse abiotic and biotic stressors. Our methodology combines transformer-based modeling with rule-enhanced linguistic post-processing and ontology-grounded entity normalization, enabling PlantBert to capture biologically meaningful relationships with precision and semantic fidelity. The underlying corpus is annotated using a hierarchical schema aligned with the Crop Ontology, encompassing molecular, physiological, biochemical, and agronomic dimensions of plant adaptation. PlantBert exhibits strong generalization capabilities across entity types and demonstrates the feasibility of robust domain adaptation in low-resource scientific fields. By providing a scalable and reproducible framework for high-resolution entity recognition, PlantBert bridges a critical gap in agricultural NLP and paves the way for intelligent, data-driven systems in plant genomics, phenomics, and agronomic knowledge discovery. Our model is publicly released to promote transparency and accelerate cross-disciplinary innovation in computational plant science.
Towards Watermarking of Open-Source LLMs
While watermarks for closed LLMs have matured and have been included in large-scale deployments, these methods are not applicable to open-source models, which allow users full control over the decoding process. This setting is understudied yet critical, given the rising performance of open-source models. In this work, we lay the foundation for systematic study of open-source LLM watermarking. For the first time, we explicitly formulate key requirements, including durability against common model modifications such as model merging, quantization, or finetuning, and propose a concrete evaluation setup. Given the prevalence of these modifications, durability is crucial for an open-source watermark to be effective. We survey and evaluate existing methods, showing that they are not durable. We also discuss potential ways to improve their durability and highlight remaining challenges. We hope our work enables future progress on this important problem.
Fine-Tuning and Evaluating Open-Source Large Language Models for the Army Domain
In recent years, the widespread adoption of Large Language Models (LLMs) has sparked interest in their potential for application within the military domain. However, the current generation of LLMs demonstrate sub-optimal performance on Army use cases, due to the prevalence of domain-specific vocabulary and jargon. In order to fully leverage LLMs in-domain, many organizations have turned to fine-tuning to circumvent the prohibitive costs involved in training new LLMs from scratch. In light of this trend, we explore the viability of adapting open-source LLMs for usage in the Army domain in order to address their existing lack of domain-specificity. Our investigations have resulted in the creation of three distinct generations of TRACLM, a family of LLMs fine-tuned by The Research and Analysis Center (TRAC), Army Futures Command (AFC). Through continuous refinement of our training pipeline, each successive iteration of TRACLM displayed improved capabilities when applied to Army tasks and use cases. Furthermore, throughout our fine-tuning experiments, we recognized the need for an evaluation framework that objectively quantifies the Army domain-specific knowledge of LLMs. To address this, we developed MilBench, an extensible software framework that efficiently evaluates the Army knowledge of a given LLM using tasks derived from doctrine and assessments. We share preliminary results, models, methods, and recommendations on the creation of TRACLM and MilBench. Our work significantly informs the development of LLM technology across the DoD and augments senior leader decisions with respect to artificial intelligence integration.
GPTutor: an open-source AI pair programming tool alternative to Copilot
This paper presents the latest progress of GPTutor: a ChatGPT-powered programming tool extension in Visual Studio Code. The emergence of Large Language Models (LLMs) has improved software development efficiency, but their performance can be hindered by training data limitations and prompt design issues. Existing LLM development tools often operate as black boxes, with users unable to view the prompts used and unable to improve performance by correcting prompts when errors occur. To address the aforementioned issues, GPTutor was introduced as an open-source AI pair programming tool, offering an alternative to Copilot. GPTutor empowers users to customize prompts for various programming languages and scenarios, with support for 120+ human languages and 50+ programming languages. Users can fine-tune prompts to correct the errors from LLM for precision and efficient code generation. At the end of the paper, we underscore GPTutor's potential through examples, including demonstrating its proficiency in interpreting and generating Sui-Move, a newly introduced smart contract language, using prompt engineering.
Baize: An Open-Source Chat Model with Parameter-Efficient Tuning on Self-Chat Data
Chat models, such as ChatGPT, have shown impressive capabilities and have been rapidly adopted across numerous domains. However, these models are only accessible through a restricted API, creating barriers for new research and progress in the field. We propose a pipeline that can automatically generate a high-quality multi-turn chat corpus by leveraging ChatGPT to engage in a conversation with itself. Subsequently, we employ parameter-efficient tuning to enhance LLaMA, an open-source large language model. The resulting model, named Baize, demonstrates good performance in multi-turn dialogues with guardrails that minimize potential risks. The Baize models and data are released for research purposes only at https://github.com/project-baize/baize. An online demo is also available at https://huggingface.co/spaces/project-baize/baize-lora-7B.
ClArTTS: An Open-Source Classical Arabic Text-to-Speech Corpus
At present, Text-to-speech (TTS) systems that are trained with high-quality transcribed speech data using end-to-end neural models can generate speech that is intelligible, natural, and closely resembles human speech. These models are trained with relatively large single-speaker professionally recorded audio, typically extracted from audiobooks. Meanwhile, due to the scarcity of freely available speech corpora of this kind, a larger gap exists in Arabic TTS research and development. Most of the existing freely available Arabic speech corpora are not suitable for TTS training as they contain multi-speaker casual speech with variations in recording conditions and quality, whereas the corpus curated for speech synthesis are generally small in size and not suitable for training state-of-the-art end-to-end models. In a move towards filling this gap in resources, we present a speech corpus for Classical Arabic Text-to-Speech (ClArTTS) to support the development of end-to-end TTS systems for Arabic. The speech is extracted from a LibriVox audiobook, which is then processed, segmented, and manually transcribed and annotated. The final ClArTTS corpus contains about 12 hours of speech from a single male speaker sampled at 40100 kHz. In this paper, we describe the process of corpus creation and provide details of corpus statistics and a comparison with existing resources. Furthermore, we develop two TTS systems based on Grad-TTS and Glow-TTS and illustrate the performance of the resulting systems via subjective and objective evaluations. The corpus will be made publicly available at www.clartts.com for research purposes, along with the baseline TTS systems demo.
Interview: A Large-Scale Open-Source Corpus of Media Dialog
Existing conversational datasets consist either of written proxies for dialog or small-scale transcriptions of natural speech. We introduce 'Interview': a large-scale (105K conversations) media dialog dataset collected from news interview transcripts. Compared to existing large-scale proxies for conversational data, language models trained on our dataset exhibit better zero-shot out-of-domain performance on existing spoken dialog datasets, demonstrating its usefulness in modeling real-world conversations. 'Interview' contains speaker role annotations for each turn, facilitating the development of engaging, responsive dialog systems. In fact, experiments on two dialog tasks show that leveraging such labels improves performance over strong speaker-agnostic baselines, and enabling models to generate more specific and inquisitive responses in interview-style conversations.
OpenKiwi: An Open Source Framework for Quality Estimation
We introduce OpenKiwi, a PyTorch-based open source framework for translation quality estimation. OpenKiwi supports training and testing of word-level and sentence-level quality estimation systems, implementing the winning systems of the WMT 2015-18 quality estimation campaigns. We benchmark OpenKiwi on two datasets from WMT 2018 (English-German SMT and NMT), yielding state-of-the-art performance on the word-level tasks and near state-of-the-art in the sentence-level tasks.
OpenFlamingo: An Open-Source Framework for Training Large Autoregressive Vision-Language Models
We introduce OpenFlamingo, a family of autoregressive vision-language models ranging from 3B to 9B parameters. OpenFlamingo is an ongoing effort to produce an open-source replication of DeepMind's Flamingo models. On seven vision-language datasets, OpenFlamingo models average between 80 - 89% of corresponding Flamingo performance. This technical report describes our models, training data, hyperparameters, and evaluation suite. We share our models and code at https://github.com/mlfoundations/open_flamingo.
N-LTP: An Open-source Neural Language Technology Platform for Chinese
We introduce N-LTP, an open-source neural language technology platform supporting six fundamental Chinese NLP tasks: {lexical analysis} (Chinese word segmentation, part-of-speech tagging, and named entity recognition), {syntactic parsing} (dependency parsing), and {semantic parsing} (semantic dependency parsing and semantic role labeling). Unlike the existing state-of-the-art toolkits, such as Stanza, that adopt an independent model for each task, N-LTP adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks. In addition, a knowledge distillation method DBLP:journals/corr/abs-1907-04829 where the single-task model teaches the multi-task model is further introduced to encourage the multi-task model to surpass its single-task teacher. Finally, we provide a collection of easy-to-use APIs and a visualization tool to make users to use and view the processing results more easily and directly. To the best of our knowledge, this is the first toolkit to support six Chinese NLP fundamental tasks. Source code, documentation, and pre-trained models are available at https://github.com/HIT-SCIR/ltp.
DAPO: An Open-Source LLM Reinforcement Learning System at Scale
Inference scaling empowers LLMs with unprecedented reasoning ability, with reinforcement learning as the core technique to elicit complex reasoning. However, key technical details of state-of-the-art reasoning LLMs are concealed (such as in OpenAI o1 blog and DeepSeek R1 technical report), thus the community still struggles to reproduce their RL training results. We propose the Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO) algorithm, and fully open-source a state-of-the-art large-scale RL system that achieves 50 points on AIME 2024 using Qwen2.5-32B base model. Unlike previous works that withhold training details, we introduce four key techniques of our algorithm that make large-scale LLM RL a success. In addition, we open-source our training code, which is built on the verl framework, along with a carefully curated and processed dataset. These components of our open-source system enhance reproducibility and support future research in large-scale LLM RL.
ScaleCUA: Scaling Open-Source Computer Use Agents with Cross-Platform Data
Vision-Language Models (VLMs) have enabled computer use agents (CUAs) that operate GUIs autonomously, showing great potential, yet progress is limited by the lack of large-scale, open-source computer use data and foundation models. In this work, we introduce ScaleCUA, a step toward scaling open-source CUAs. It offers a large-scale dataset spanning 6 operating systems and 3 task domains, built via a closed-loop pipeline uniting automated agents with human experts. Trained on this scaled-up data, ScaleCUA can operate seamlessly across platforms. Specifically, it delivers strong gains over baselines (+26.6 on WebArena-Lite-v2, +10.7 on ScreenSpot-Pro) and sets new state-of-the-art results (94.4% on MMBench-GUI L1-Hard, 60.6% on OSWorld-G, 47.4% on WebArena-Lite-v2). These findings underscore the power of data-driven scaling for general-purpose computer use agents. We will release data, models, and code to advance future research: https://github.com/OpenGVLab/ScaleCUA.
VITA: Towards Open-Source Interactive Omni Multimodal LLM
The remarkable multimodal capabilities and interactive experience of GPT-4o underscore their necessity in practical applications, yet open-source models rarely excel in both areas. In this paper, we introduce VITA, the first-ever open-source Multimodal Large Language Model (MLLM) adept at simultaneous processing and analysis of Video, Image, Text, and Audio modalities, and meanwhile has an advanced multimodal interactive experience. Starting from Mixtral 8x7B as a language foundation, we expand its Chinese vocabulary followed by bilingual instruction tuning. We further endow the language model with visual and audio capabilities through two-stage multi-task learning of multimodal alignment and instruction tuning. VITA demonstrates robust foundational capabilities of multilingual, vision, and audio understanding, as evidenced by its strong performance across a range of both unimodal and multimodal benchmarks. Beyond foundational capabilities, we have made considerable progress in enhancing the natural multimodal human-computer interaction experience. To the best of our knowledge, we are the first to exploit non-awakening interaction and audio interrupt in MLLM. VITA is the first step for the open-source community to explore the seamless integration of multimodal understanding and interaction. While there is still lots of work to be done on VITA to get close to close-source counterparts, we hope that its role as a pioneer can serve as a cornerstone for subsequent research. Project Page: https://vita-home.github.io.
OpenVLA: An Open-Source Vision-Language-Action Model
Large policies pretrained on a combination of Internet-scale vision-language data and diverse robot demonstrations have the potential to change how we teach robots new skills: rather than training new behaviors from scratch, we can fine-tune such vision-language-action (VLA) models to obtain robust, generalizable policies for visuomotor control. Yet, widespread adoption of VLAs for robotics has been challenging as 1) existing VLAs are largely closed and inaccessible to the public, and 2) prior work fails to explore methods for efficiently fine-tuning VLAs for new tasks, a key component for adoption. Addressing these challenges, we introduce OpenVLA, a 7B-parameter open-source VLA trained on a diverse collection of 970k real-world robot demonstrations. OpenVLA builds on a Llama 2 language model combined with a visual encoder that fuses pretrained features from DINOv2 and SigLIP. As a product of the added data diversity and new model components, OpenVLA demonstrates strong results for generalist manipulation, outperforming closed models such as RT-2-X (55B) by 16.5% in absolute task success rate across 29 tasks and multiple robot embodiments, with 7x fewer parameters. We further show that we can effectively fine-tune OpenVLA for new settings, with especially strong generalization results in multi-task environments involving multiple objects and strong language grounding abilities, and outperform expressive from-scratch imitation learning methods such as Diffusion Policy by 20.4%. We also explore compute efficiency; as a separate contribution, we show that OpenVLA can be fine-tuned on consumer GPUs via modern low-rank adaptation methods and served efficiently via quantization without a hit to downstream success rate. Finally, we release model checkpoints, fine-tuning notebooks, and our PyTorch codebase with built-in support for training VLAs at scale on Open X-Embodiment datasets.
AU-Harness: An Open-Source Toolkit for Holistic Evaluation of Audio LLMs
Large Audio Language Models (LALMs) are rapidly advancing, but evaluating them remains challenging due to inefficient toolkits that limit fair comparison and systematic assessment. Current frameworks suffer from three critical issues: slow processing that bottlenecks large-scale studies, inconsistent prompting that hurts reproducibility, and narrow task coverage that misses important audio reasoning capabilities. We introduce AU-Harness, an efficient and comprehensive evaluation framework for LALMs. Our system achieves a speedup of up to 127% over existing toolkits through optimized batch processing and parallel execution, enabling large-scale evaluations previously impractical. We provide standardized prompting protocols and flexible configurations for fair model comparison across diverse scenarios. Additionally, we introduce two new evaluation categories: LLM-Adaptive Diarization for temporal audio understanding and Spoken Language Reasoning for complex audio-based cognitive tasks. Through evaluation across 380+ tasks, we reveal significant gaps in current LALMs, particularly in temporal understanding and complex spoken language reasoning tasks. Our findings also highlight a lack of standardization in instruction modality existent across audio benchmarks, which can lead up performance differences up to 9.5 absolute points on the challenging complex instruction following downstream tasks. AU-Harness provides both practical evaluation tools and insights into model limitations, advancing systematic LALM development.
Ark: An Open-source Python-based Framework for Robot Learning
Robotics has made remarkable hardware strides-from DARPA's Urban and Robotics Challenges to the first humanoid-robot kickboxing tournament-yet commercial autonomy still lags behind progress in machine learning. A major bottleneck is software: current robot stacks demand steep learning curves, low-level C/C++ expertise, fragmented tooling, and intricate hardware integration, in stark contrast to the Python-centric, well-documented ecosystems that propelled modern AI. We introduce ARK, an open-source, Python-first robotics framework designed to close that gap. ARK presents a Gym-style environment interface that allows users to collect data, preprocess it, and train policies using state-of-the-art imitation-learning algorithms (e.g., ACT, Diffusion Policy) while seamlessly toggling between high-fidelity simulation and physical robots. A lightweight client-server architecture provides networked publisher-subscriber communication, and optional C/C++ bindings ensure real-time performance when needed. ARK ships with reusable modules for control, SLAM, motion planning, system identification, and visualization, along with native ROS interoperability. Comprehensive documentation and case studies-from manipulation to mobile navigation-demonstrate rapid prototyping, effortless hardware swapping, and end-to-end pipelines that rival the convenience of mainstream machine-learning workflows. By unifying robotics and AI practices under a common Python umbrella, ARK lowers entry barriers and accelerates research and commercial deployment of autonomous robots.
SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution
Large Language Models (LLMs) have demonstrated remarkable proficiency across a variety of complex tasks. One significant application of LLMs is in tackling software engineering challenges, particularly in resolving real-world tasks on GitHub by fixing code based on the issues reported by the users. However, many current approaches rely on proprietary LLMs, which limits reproducibility, accessibility, and transparency. The critical components of LLMs for addressing software engineering issues and how their capabilities can be effectively enhanced remain unclear. To address these challenges, we introduce SWE-Fixer, a novel open-source LLM designed to effectively and efficiently resolve GitHub issues. SWE-Fixer comprises two essential modules: a code file retrieval module and a code editing module. The retrieval module employs BM25 along with a lightweight LLM model to achieve coarse-to-fine file retrieval. Subsequently, the code editing module utilizes the other LLM model to generate patches for the identified files. Then, to mitigate the lack of publicly available datasets, we compile an extensive dataset that includes 110K GitHub issues along with their corresponding patches, and train the two modules of SWE-Fixer separately. We assess our approach on the SWE-Bench Lite and Verified benchmarks, achieving state-of-the-art performance among open-source models with scores of 23.3% and 30.2%, respectively. These outcomes highlight the efficacy of our approach. We will make our model, dataset, and code publicly available at https://github.com/InternLM/SWE-Fixer.
MedAlpaca -- An Open-Source Collection of Medical Conversational AI Models and Training Data
As large language models (LLMs) like OpenAI's GPT series continue to make strides, we witness the emergence of artificial intelligence applications in an ever-expanding range of fields. In medicine, these LLMs hold considerable promise for improving medical workflows, diagnostics, patient care, and education. Yet, there is an urgent need for open-source models that can be deployed on-premises to safeguard patient privacy. In our work, we present an innovative dataset consisting of over 160,000 entries, specifically crafted to fine-tune LLMs for effective medical applications. We investigate the impact of fine-tuning these datasets on publicly accessible pre-trained LLMs, and subsequently, we juxtapose the performance of pre-trained-only models against the fine-tuned models concerning the examinations that future medical doctors must pass to achieve certification.
OpenDiLoCo: An Open-Source Framework for Globally Distributed Low-Communication Training
OpenDiLoCo is an open-source implementation and replication of the Distributed Low-Communication (DiLoCo) training method for large language models. We provide a reproducible implementation of the DiLoCo experiments, offering it within a scalable, decentralized training framework using the Hivemind library. We demonstrate its effectiveness by training a model across two continents and three countries, while maintaining 90-95% compute utilization. Additionally, we conduct ablations studies focusing on the algorithm's compute efficiency, scalability in the number of workers and show that its gradients can be all-reduced using FP16 without any performance degradation. Furthermore, we scale OpenDiLoCo to 3x the size of the original work, demonstrating its effectiveness for billion parameter models.
AudioDec: An Open-source Streaming High-fidelity Neural Audio Codec
A good audio codec for live applications such as telecommunication is characterized by three key properties: (1) compression, i.e.\ the bitrate that is required to transmit the signal should be as low as possible; (2) latency, i.e.\ encoding and decoding the signal needs to be fast enough to enable communication without or with only minimal noticeable delay; and (3) reconstruction quality of the signal. In this work, we propose an open-source, streamable, and real-time neural audio codec that achieves strong performance along all three axes: it can reconstruct highly natural sounding 48~kHz speech signals while operating at only 12~kbps and running with less than 6~ms (GPU)/10~ms (CPU) latency. An efficient training paradigm is also demonstrated for developing such neural audio codecs for real-world scenarios. Both objective and subjective evaluations using the VCTK corpus are provided. To sum up, AudioDec is a well-developed plug-and-play benchmark for audio codec applications.
FastPathology: An open-source platform for deep learning-based research and decision support in digital pathology
Deep convolutional neural networks (CNNs) are the current state-of-the-art for digital analysis of histopathological images. The large size of whole-slide microscopy images (WSIs) requires advanced memory handling to read, display and process these images. There are several open-source platforms for working with WSIs, but few support deployment of CNN models. These applications use third-party solutions for inference, making them less user-friendly and unsuitable for high-performance image analysis. To make deployment of CNNs user-friendly and feasible on low-end machines, we have developed a new platform, FastPathology, using the FAST framework and C++. It minimizes memory usage for reading and processing WSIs, deployment of CNN models, and real-time interactive visualization of results. Runtime experiments were conducted on four different use cases, using different architectures, inference engines, hardware configurations and operating systems. Memory usage for reading, visualizing, zooming and panning a WSI were measured, using FastPathology and three existing platforms. FastPathology performed similarly in terms of memory to the other C++ based application, while using considerably less than the two Java-based platforms. The choice of neural network model, inference engine, hardware and processors influenced runtime considerably. Thus, FastPathology includes all steps needed for efficient visualization and processing of WSIs in a single application, including inference of CNNs with real-time display of the results. Source code, binary releases and test data can be found online on GitHub at https://github.com/SINTEFMedtek/FAST-Pathology/.
SHEET: A Multi-purpose Open-source Speech Human Evaluation Estimation Toolkit
We introduce SHEET, a multi-purpose open-source toolkit designed to accelerate subjective speech quality assessment (SSQA) research. SHEET stands for the Speech Human Evaluation Estimation Toolkit, which focuses on data-driven deep neural network-based models trained to predict human-labeled quality scores of speech samples. SHEET provides comprehensive training and evaluation scripts, multi-dataset and multi-model support, as well as pre-trained models accessible via Torch Hub and HuggingFace Spaces. To demonstrate its capabilities, we re-evaluated SSL-MOS, a speech self-supervised learning (SSL)-based SSQA model widely used in recent scientific papers, on an extensive list of speech SSL models. Experiments were conducted on two representative SSQA datasets named BVCC and NISQA, and we identified the optimal speech SSL model, whose performance surpassed the original SSL-MOS implementation and was comparable to state-of-the-art methods.
Osiris: A Lightweight Open-Source Hallucination Detection System
Retrieval-Augmented Generation (RAG) systems have gained widespread adoption by application builders because they leverage sources of truth to enable Large Language Models (LLMs) to generate more factually sound responses. However, hallucinations, instances of LLM responses that are unfaithful to the provided context, often prevent these systems from being deployed in production environments. Current hallucination detection methods typically involve human evaluation or the use of closed-source models to review RAG system outputs for hallucinations. Both human evaluators and closed-source models suffer from scaling issues due to their high costs and slow inference speeds. In this work, we introduce a perturbed multi-hop QA dataset with induced hallucinations. Via supervised fine-tuning on our dataset, we achieve better recall with a 7B model than GPT-4o on the RAGTruth hallucination detection benchmark and offer competitive performance on precision and accuracy, all while using a fraction of the parameters. Code is released at our repository.
Sagalee: an Open Source Automatic Speech Recognition Dataset for Oromo Language
We present a novel Automatic Speech Recognition (ASR) dataset for the Oromo language, a widely spoken language in Ethiopia and neighboring regions. The dataset was collected through a crowd-sourcing initiative, encompassing a diverse range of speakers and phonetic variations. It consists of 100 hours of real-world audio recordings paired with transcriptions, covering read speech in both clean and noisy environments. This dataset addresses the critical need for ASR resources for the Oromo language which is underrepresented. To show its applicability for the ASR task, we conducted experiments using the Conformer model, achieving a Word Error Rate (WER) of 15.32% with hybrid CTC and AED loss and WER of 18.74% with pure CTC loss. Additionally, fine-tuning the Whisper model resulted in a significantly improved WER of 10.82%. These results establish baselines for Oromo ASR, highlighting both the challenges and the potential for improving ASR performance in Oromo. The dataset is publicly available at https://github.com/turinaf/sagalee and we encourage its use for further research and development in Oromo speech processing.
PMC-LLaMA: Towards Building Open-source Language Models for Medicine
Recently, Large Language Models (LLMs) have showcased remarkable capabilities in natural language understanding. While demonstrating proficiency in everyday conversations and question-answering situations, these models frequently struggle in domains that require precision, such as medical applications, due to their lack of domain-specific knowledge. In this paper, we describe the procedure for building a powerful, open-source language model specifically designed for medicine applications, termed as PMC-LLaMA. Our contributions are threefold: (i) we systematically investigate the process of adapting a general-purpose foundation language model towards medical domain, this involves data-centric knowledge injection through the integration of 4.8M biomedical academic papers and 30K medical textbooks, as well as comprehensive fine-tuning for alignment with domain-specific instructions; (ii) we contribute a large-scale, comprehensive dataset for instruction tuning. This dataset encompasses medical question-answering (QA), rationale for reasoning, and conversational dialogues, comprising a total of 202M tokens; (iii) we conduct thorough ablation studies to demonstrate the effectiveness of each proposed component. While evaluating on various public medical question-answering benchmarks, our lightweight PMCLLaMA, which consists of only 13 billion parameters, exhibits superior performance, even surpassing ChatGPT. All models, codes, datasets can be found in https://github.com/chaoyi-wu/PMC-LLaMA.
KazakhTTS2: Extending the Open-Source Kazakh TTS Corpus With More Data, Speakers, and Topics
We present an expanded version of our previously released Kazakh text-to-speech (KazakhTTS) synthesis corpus. In the new KazakhTTS2 corpus, the overall size has increased from 93 hours to 271 hours, the number of speakers has risen from two to five (three females and two males), and the topic coverage has been diversified with the help of new sources, including a book and Wikipedia articles. This corpus is necessary for building high-quality TTS systems for Kazakh, a Central Asian agglutinative language from the Turkic family, which presents several linguistic challenges. We describe the corpus construction process and provide the details of the training and evaluation procedures for the TTS system. Our experimental results indicate that the constructed corpus is sufficient to build robust TTS models for real-world applications, with a subjective mean opinion score ranging from 3.6 to 4.2 for all the five speakers. We believe that our corpus will facilitate speech and language research for Kazakh and other Turkic languages, which are widely considered to be low-resource due to the limited availability of free linguistic data. The constructed corpus, code, and pretrained models are publicly available in our GitHub repository.
S3PRL-VC: Open-source Voice Conversion Framework with Self-supervised Speech Representations
This paper introduces S3PRL-VC, an open-source voice conversion (VC) framework based on the S3PRL toolkit. In the context of recognition-synthesis VC, self-supervised speech representation (S3R) is valuable in its potential to replace the expensive supervised representation adopted by state-of-the-art VC systems. Moreover, we claim that VC is a good probing task for S3R analysis. In this work, we provide a series of in-depth analyses by benchmarking on the two tasks in VCC2020, namely intra-/cross-lingual any-to-one (A2O) VC, as well as an any-to-any (A2A) setting. We also provide comparisons between not only different S3Rs but also top systems in VCC2020 with supervised representations. Systematic objective and subjective evaluation were conducted, and we show that S3R is comparable with VCC2020 top systems in the A2O setting in terms of similarity, and achieves state-of-the-art in S3R-based A2A VC. We believe the extensive analysis, as well as the toolkit itself, contribute to not only the S3R community but also the VC community. The codebase is now open-sourced.
Matrix-Game 2.0: An Open-Source, Real-Time, and Streaming Interactive World Model
Recent advances in interactive video generations have demonstrated diffusion model's potential as world models by capturing complex physical dynamics and interactive behaviors. However, existing interactive world models depend on bidirectional attention and lengthy inference steps, severely limiting real-time performance. Consequently, they are hard to simulate real-world dynamics, where outcomes must update instantaneously based on historical context and current actions. To address this, we present Matrix-Game 2.0, an interactive world model generates long videos on-the-fly via few-step auto-regressive diffusion. Our framework consists of three key components: (1) A scalable data production pipeline for Unreal Engine and GTA5 environments to effectively produce massive amounts (about 1200 hours) of video data with diverse interaction annotations; (2) An action injection module that enables frame-level mouse and keyboard inputs as interactive conditions; (3) A few-step distillation based on the casual architecture for real-time and streaming video generation. Matrix Game 2.0 can generate high-quality minute-level videos across diverse scenes at an ultra-fast speed of 25 FPS. We open-source our model weights and codebase to advance research in interactive world modeling.
SoTaNa: The Open-Source Software Development Assistant
Software development plays a crucial role in driving innovation and efficiency across modern societies. To meet the demands of this dynamic field, there is a growing need for an effective software development assistant. However, existing large language models represented by ChatGPT suffer from limited accessibility, including training data and model weights. Although other large open-source models like LLaMA have shown promise, they still struggle with understanding human intent. In this paper, we present SoTaNa, an open-source software development assistant. SoTaNa utilizes ChatGPT to generate high-quality instruction-based data for the domain of software engineering and employs a parameter-efficient fine-tuning approach to enhance the open-source foundation model, LLaMA. We evaluate the effectiveness of in answering Stack Overflow questions and demonstrate its capabilities. Additionally, we discuss its capabilities in code summarization and generation, as well as the impact of varying the volume of generated data on model performance. Notably, SoTaNa can run on a single GPU, making it accessible to a broader range of researchers. Our code, model weights, and data are public at https://github.com/DeepSoftwareAnalytics/SoTaNa.
Zshot: An Open-source Framework for Zero-Shot Named Entity Recognition and Relation Extraction
The Zero-Shot Learning (ZSL) task pertains to the identification of entities or relations in texts that were not seen during training. ZSL has emerged as a critical research area due to the scarcity of labeled data in specific domains, and its applications have grown significantly in recent years. With the advent of large pretrained language models, several novel methods have been proposed, resulting in substantial improvements in ZSL performance. There is a growing demand, both in the research community and industry, for a comprehensive ZSL framework that facilitates the development and accessibility of the latest methods and pretrained models.In this study, we propose a novel ZSL framework called Zshot that aims to address the aforementioned challenges. Our primary objective is to provide a platform that allows researchers to compare different state-of-the-art ZSL methods with standard benchmark datasets. Additionally, we have designed our framework to support the industry with readily available APIs for production under the standard SpaCy NLP pipeline. Our API is extendible and evaluable, moreover, we include numerous enhancements such as boosting the accuracy with pipeline ensembling and visualization utilities available as a SpaCy extension.
OpenPrompt: An Open-source Framework for Prompt-learning
Prompt-learning has become a new paradigm in modern natural language processing, which directly adapts pre-trained language models (PLMs) to cloze-style prediction, autoregressive modeling, or sequence to sequence generation, resulting in promising performances on various tasks. However, no standard implementation framework of prompt-learning is proposed yet, and most existing prompt-learning codebases, often unregulated, only provide limited implementations for specific scenarios. Since there are many details such as templating strategy, initializing strategy, and verbalizing strategy, etc. need to be considered in prompt-learning, practitioners face impediments to quickly adapting the desired prompt learning methods to their applications. In this paper, we present {OpenPrompt}, a unified easy-to-use toolkit to conduct prompt-learning over PLMs. OpenPrompt is a research-friendly framework that is equipped with efficiency, modularity, and extendibility, and its combinability allows the freedom to combine different PLMs, task formats, and prompting modules in a unified paradigm. Users could expediently deploy prompt-learning frameworks and evaluate the generalization of them on different NLP tasks without constraints. OpenPrompt is publicly released at { https://github.com/thunlp/OpenPrompt}.
SingMOS: An extensive Open-Source Singing Voice Dataset for MOS Prediction
In speech generation tasks, human subjective ratings, usually referred to as the opinion score, are considered the "gold standard" for speech quality evaluation, with the mean opinion score (MOS) serving as the primary evaluation metric. Due to the high cost of human annotation, several MOS prediction systems have emerged in the speech domain, demonstrating good performance. These MOS prediction models are trained using annotations from previous speech-related challenges. However, compared to the speech domain, the singing domain faces data scarcity and stricter copyright protections, leading to a lack of high-quality MOS-annotated datasets for singing. To address this, we propose SingMOS, a high-quality and diverse MOS dataset for singing, covering a range of Chinese and Japanese datasets. These synthesized vocals are generated using state-of-the-art models in singing synthesis, conversion, or resynthesis tasks and are rated by professional annotators alongside real vocals. Data analysis demonstrates the diversity and reliability of our dataset. Additionally, we conduct further exploration on SingMOS, providing insights for singing MOS prediction and guidance for the continued expansion of SingMOS.
On the Tool Manipulation Capability of Open-source Large Language Models
Recent studies on software tool manipulation with large language models (LLMs) mostly rely on closed model APIs. The industrial adoption of these models is substantially constrained due to the security and robustness risks in exposing information to closed LLM API services. In this paper, we ask can we enhance open-source LLMs to be competitive to leading closed LLM APIs in tool manipulation, with practical amount of human supervision. By analyzing common tool manipulation failures, we first demonstrate that open-source LLMs may require training with usage examples, in-context demonstration and generation style regulation to resolve failures. These insights motivate us to revisit classical methods in LLM literature, and demonstrate that we can adapt them as model alignment with programmatic data generation, system prompts and in-context demonstration retrievers to enhance open-source LLMs for tool manipulation. To evaluate these techniques, we create the ToolBench, a tool manipulation benchmark consisting of diverse software tools for real-world tasks. We demonstrate that our techniques can boost leading open-source LLMs by up to 90% success rate, showing capabilities competitive to OpenAI GPT-4 in 4 out of 8 ToolBench tasks. We show that such enhancement typically requires about one developer day to curate data for each tool, rendering a recipe with practical amount of human supervision.
MetaCaptioner: Towards Generalist Visual Captioning with Open-source Suites
Generalist visual captioning goes beyond a simple appearance description task, but requires integrating a series of visual cues into a caption and handling various visual domains. In this task, current open-source models present a large performance gap with commercial ones, which limits various applications such as data synthesis. To bridge the gap, this paper proposes CapFlow, a novel multi-agent collaboration workflow. CapFlow demonstrates for the first time that, by capitalizing on open-source models, it is possible to achieve caption quality on par with GPT-4.1 in various domains with an 89.5% reduction in costs. By leveraging CapFlow as the data synthesizer, we produce high-quality visual captions from image and video domains at scale, and obtain a generalist visual captioner via fine-tuning, namely MetaCaptioner. Through extensive experiments, we show that MetaCaptioner not only achieves comparable captioning capabilities with commercial models but also reaches top-tier multimodal performance in the open-source community. We hope CapFlow and MetaCaptioner can benefit future multimodal research by providing a strong and cost-effective visual captioning solution.
Improving Model Alignment Through Collective Intelligence of Open-Source LLMS
Building helpful and harmless large language models (LLMs) requires effective model alignment approach based on human instructions and feedback, which necessitates high-quality human-labeled data. Constructing such datasets is often expensive and hard to scale, and may face potential limitations on diversity and generalization. To address these challenges, we introduce Mixture of Agents Alignment (MoAA), that leverages the collective strengths of various language models to provide high-quality data for model alignment. By employing MoAA, we enhance both supervised fine-tuning and preference optimization, leading to improved performance compared to using a single model alone to generate alignment data (e.g. using GPT-4o alone). Evaluation results show that our approach can improve win rate of LLaMA-3.1-8B-Instruct from 19.5 to 48.3 on Arena-Hard and from 22.33 to 57.23 on AlpacaEval2, highlighting a promising direction for model alignment through this new scalable and diverse synthetic data recipe. Furthermore, we demonstrate that MoAA enables a self-improvement pipeline, where models finetuned on MoA-generated data surpass their own initial capabilities, providing evidence that our approach can push the frontier of open-source LLMs without reliance on stronger external supervision. Data and code will be released.
RLAIF-V: Aligning MLLMs through Open-Source AI Feedback for Super GPT-4V Trustworthiness
Learning from feedback reduces the hallucination of multimodal large language models (MLLMs) by aligning them with human preferences. While traditional methods rely on labor-intensive and time-consuming manual labeling, recent approaches employing models as automatic labelers have shown promising results without human intervention. However, these methods heavily rely on costly proprietary models like GPT-4V, resulting in scalability issues. Moreover, this paradigm essentially distills the proprietary models to provide a temporary solution to quickly bridge the performance gap. As this gap continues to shrink, the community is soon facing the essential challenge of aligning MLLMs using labeler models of comparable capability. In this work, we introduce RLAIF-V, a novel framework that aligns MLLMs in a fully open-source paradigm for super GPT-4V trustworthiness. RLAIF-V maximally exploits the open-source feedback from two perspectives, including high-quality feedback data and online feedback learning algorithm. Extensive experiments on seven benchmarks in both automatic and human evaluation show that RLAIF-V substantially enhances the trustworthiness of models without sacrificing performance on other tasks. Using a 34B model as labeler, RLAIF-V 7B model reduces object hallucination by 82.9\% and overall hallucination by 42.1\%, outperforming the labeler model. Remarkably, RLAIF-V also reveals the self-alignment potential of open-source MLLMs, where a 12B model can learn from the feedback of itself to achieve less than 29.5\% overall hallucination rate, surpassing GPT-4V (45.9\%) by a large margin. The results shed light on a promising route to enhance the efficacy of leading-edge MLLMs.
Generating High-Quality Datasets for Code Editing via Open-Source Language Models
Code editing plays a vital role in software engineering, requiring developers to adjust existing code according to natural language instructions while keeping functionality intact and avoiding unnecessary modifications. However, commit-based datasets commonly used for this task are often noisy, lack diversity, and fail to reflect the style of real-world edit instructions. To address this, we introduce CanItEdit, an open-source pipeline that leverages multiple LLMs to synthesize realistic code-edit triplets. The pipeline produces both concise "lazy" instructions and more detailed "descriptive" ones, and applies filtering based on diffs and topics to guarantee data quality and variety. Using this process, we construct OCEDataFT, a curated dataset of 20K samples. Fine-tuning three advanced base models on OCEDataFT leads to significant performance boosts on the CanItEdit benchmark, with relative pass@1 improvements ranging from 4.50% to 20.79%. Notably, the resulting models achieve performance close to closed-source systems, narrowing the gap to GPT-4 to just 3.54%, without relying on proprietary resources or manual annotation.
Rethinking Scale: The Efficacy of Fine-Tuned Open-Source LLMs in Large-Scale Reproducible Social Science Research
Large Language Models (LLMs) are distinguished by their architecture, which dictates their parameter size and performance capabilities. Social scientists have increasingly adopted LLMs for text classification tasks, which are difficult to scale with human coders. While very large, closed-source models often deliver superior performance, their use presents significant risks. These include lack of transparency, potential exposure of sensitive data, challenges to replicability, and dependence on proprietary systems. Additionally, their high costs make them impractical for large-scale research projects. In contrast, open-source models, although available in various sizes, may underperform compared to commercial alternatives if used without further fine-tuning. However, open-source models offer distinct advantages: they can be run locally (ensuring data privacy), fine-tuned for specific tasks, shared within the research community, and integrated into reproducible workflows. This study demonstrates that small, fine-tuned open-source LLMs can achieve equal or superior performance to models such as ChatGPT-4. We further explore the relationship between training set size and fine-tuning efficacy in open-source models. Finally, we propose a hybrid workflow that leverages the strengths of both open and closed models, offering a balanced approach to performance, transparency, and reproducibility.
ChatGPT's One-year Anniversary: Are Open-Source Large Language Models Catching up?
Upon its release in late 2022, ChatGPT has brought a seismic shift in the entire landscape of AI, both in research and commerce. Through instruction-tuning a large language model (LLM) with supervised fine-tuning and reinforcement learning from human feedback, it showed that a model could answer human questions and follow instructions on a broad panel of tasks. Following this success, interests in LLMs have intensified, with new LLMs flourishing at frequent interval across academia and industry, including many start-ups focused on LLMs. While closed-source LLMs (e.g., OpenAI's GPT, Anthropic's Claude) generally outperform their open-source counterparts, the progress on the latter has been rapid with claims of achieving parity or even better on certain tasks. This has crucial implications not only on research but also on business. In this work, on the first anniversary of ChatGPT, we provide an exhaustive overview of this success, surveying all tasks where an open-source LLM has claimed to be on par or better than ChatGPT.
COVIDx CXR-4: An Expanded Multi-Institutional Open-Source Benchmark Dataset for Chest X-ray Image-Based Computer-Aided COVID-19 Diagnostics
The global ramifications of the COVID-19 pandemic remain significant, exerting persistent pressure on nations even three years after its initial outbreak. Deep learning models have shown promise in improving COVID-19 diagnostics but require diverse and larger-scale datasets to improve performance. In this paper, we introduce COVIDx CXR-4, an expanded multi-institutional open-source benchmark dataset for chest X-ray image-based computer-aided COVID-19 diagnostics. COVIDx CXR-4 expands significantly on the previous COVIDx CXR-3 dataset by increasing the total patient cohort size by greater than 2.66 times, resulting in 84,818 images from 45,342 patients across multiple institutions. We provide extensive analysis on the diversity of the patient demographic, imaging metadata, and disease distributions to highlight potential dataset biases. To the best of the authors' knowledge, COVIDx CXR-4 is the largest and most diverse open-source COVID-19 CXR dataset and is made publicly available as part of an open initiative to advance research to aid clinicians against the COVID-19 disease.
Be Careful When Fine-tuning On Open-Source LLMs: Your Fine-tuning Data Could Be Secretly Stolen!
Fine-tuning on open-source Large Language Models (LLMs) with proprietary data is now a standard practice for downstream developers to obtain task-specific LLMs. Surprisingly, we reveal a new and concerning risk along with the practice: the creator of the open-source LLMs can later extract the private downstream fine-tuning data through simple backdoor training, only requiring black-box access to the fine-tuned downstream model. Our comprehensive experiments, across 4 popularly used open-source models with 3B to 32B parameters and 2 downstream datasets, suggest that the extraction performance can be strikingly high: in practical settings, as much as 76.3% downstream fine-tuning data (queries) out of a total 5,000 samples can be perfectly extracted, and the success rate can increase to 94.9% in more ideal settings. We also explore a detection-based defense strategy but find it can be bypassed with improved attack. Overall, we highlight the emergency of this newly identified data breaching risk in fine-tuning, and we hope that more follow-up research could push the progress of addressing this concerning risk. The code and data used in our experiments are released at https://github.com/thu-coai/Backdoor-Data-Extraction.
Goedel-Prover: A Frontier Model for Open-Source Automated Theorem Proving
We introduce Goedel-Prover, an open-source large language model (LLM) that achieves the state-of-the-art (SOTA) performance in automated formal proof generation for mathematical problems. The key challenge in this field is the scarcity of formalized math statements and proofs, which we tackle in the following ways. We train statement formalizers to translate the natural language math problems from Numina into formal language (Lean 4), creating a dataset of 1.64 million formal statements. LLMs are used to check that the formal statements accurately preserve the content of the original natural language problems. We then iteratively build a large dataset of formal proofs by training a series of provers. Each prover succeeds in proving many statements that the previous ones could not, and these new proofs are added to the training set for the next prover. The final prover outperforms all existing open-source models in whole-proof generation. On the miniF2F benchmark, it achieves a 57.6% success rate (Pass@32), exceeding the previous best open-source model by 7.6%. On PutnamBench, Goedel-Prover successfully solves 7 problems (Pass@512), ranking first on the leaderboard. Furthermore, it generates 29.7K formal proofs for Lean Workbook problems, nearly doubling the 15.7K produced by earlier works.
Scaling Down to Scale Up: A Cost-Benefit Analysis of Replacing OpenAI's LLM with Open Source SLMs in Production
Many companies use large language models (LLMs) offered as a service, like OpenAI's GPT-4, to create AI-enabled product experiences. Along with the benefits of ease-of-use and shortened time-to-solution, this reliance on proprietary services has downsides in model control, performance reliability, uptime predictability, and cost. At the same time, a flurry of open-source small language models (SLMs) has been made available for commercial use. However, their readiness to replace existing capabilities remains unclear, and a systematic approach to holistically evaluate these SLMs is not readily available. This paper presents a systematic evaluation methodology and a characterization of modern open-source SLMs and their trade-offs when replacing proprietary LLMs for a real-world product feature. We have designed SLaM, an open-source automated analysis tool that enables the quantitative and qualitative testing of product features utilizing arbitrary SLMs. Using SLaM, we examine the quality and performance characteristics of modern SLMs relative to an existing customer-facing implementation using the OpenAI GPT-4 API. Across 9 SLMs and their 29 variants, we observe that SLMs provide competitive results, significant performance consistency improvements, and a cost reduction of 5x~29x when compared to GPT-4.
Reproducing Whisper-Style Training Using an Open-Source Toolkit and Publicly Available Data
Pre-training speech models on large volumes of data has achieved remarkable success. OpenAI Whisper is a multilingual multitask model trained on 680k hours of supervised speech data. It generalizes well to various speech recognition and translation benchmarks even in a zero-shot setup. However, the full pipeline for developing such models (from data collection to training) is not publicly accessible, which makes it difficult for researchers to further improve its performance and address training-related issues such as efficiency, robustness, fairness, and bias. This work presents an Open Whisper-style Speech Model (OWSM), which reproduces Whisper-style training using an open-source toolkit and publicly available data. OWSM even supports more translation directions and can be more efficient to train. We will publicly release all scripts used for data preparation, training, inference, and scoring as well as pre-trained models and training logs to promote open science.
OpenMathInstruct-2: Accelerating AI for Math with Massive Open-Source Instruction Data
Mathematical reasoning continues to be a critical challenge in large language model (LLM) development with significant interest. However, most of the cutting-edge progress in mathematical reasoning with LLMs has become closed-source due to lack of access to training data. This lack of data access limits researchers from understanding the impact of different choices for synthesizing and utilizing the data. With the goal of creating a high-quality finetuning (SFT) dataset for math reasoning, we conduct careful ablation experiments on data synthesis using the recently released Llama3.1 family of models. Our experiments show that: (a) solution format matters, with excessively verbose solutions proving detrimental to SFT performance, (b) data generated by a strong teacher outperforms on-policy data generated by a weak student model, (c) SFT is robust to low-quality solutions, allowing for imprecise data filtering, and (d) question diversity is crucial for achieving data scaling gains. Based on these insights, we create the OpenMathInstruct-2 dataset, which consists of 14M question-solution pairs (approx 600K unique questions), making it nearly eight times larger than the previous largest open-source math reasoning dataset. Finetuning the Llama-3.1-8B-Base using OpenMathInstruct-2 outperforms Llama3.1-8B-Instruct on MATH by an absolute 15.9\% (51.9\% rightarrow 67.8\%). Finally, to accelerate the open-source efforts, we release the code, the finetuned models, and the OpenMathInstruct-2 dataset under a commercially permissive license.
DistALANER: Distantly Supervised Active Learning Augmented Named Entity Recognition in the Open Source Software Ecosystem
This paper proposes a novel named entity recognition (NER) technique specifically tailored for the open-source software systems. Our approach aims to address the scarcity of annotated software data by employing a comprehensive two-step distantly supervised annotation process. This process strategically leverages language heuristics, unique lookup tables, external knowledge sources, and an active learning approach. By harnessing these powerful techniques, we not only enhance model performance but also effectively mitigate the limitations associated with cost and the scarcity of expert annotators. It is noteworthy that our framework significantly outperforms the state-of-the-art LLMs by a substantial margin. We also show the effectiveness of NER in the downstream task of relation extraction.
Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models
Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources.
OpenMedLM: Prompt engineering can out-perform fine-tuning in medical question-answering with open-source large language models
LLMs have become increasingly capable at accomplishing a range of specialized-tasks and can be utilized to expand equitable access to medical knowledge. Most medical LLMs have involved extensive fine-tuning, leveraging specialized medical data and significant, thus costly, amounts of computational power. Many of the top performing LLMs are proprietary and their access is limited to very few research groups. However, open-source (OS) models represent a key area of growth for medical LLMs due to significant improvements in performance and an inherent ability to provide the transparency and compliance required in healthcare. We present OpenMedLM, a prompting platform which delivers state-of-the-art (SOTA) performance for OS LLMs on medical benchmarks. We evaluated a range of OS foundation LLMs (7B-70B) on four medical benchmarks (MedQA, MedMCQA, PubMedQA, MMLU medical-subset). We employed a series of prompting strategies, including zero-shot, few-shot, chain-of-thought (random selection and kNN selection), and ensemble/self-consistency voting. We found that OpenMedLM delivers OS SOTA results on three common medical LLM benchmarks, surpassing the previous best performing OS models that leveraged computationally costly extensive fine-tuning. The model delivers a 72.6% accuracy on the MedQA benchmark, outperforming the previous SOTA by 2.4%, and achieves 81.7% accuracy on the MMLU medical-subset, establishing itself as the first OS LLM to surpass 80% accuracy on this benchmark. Our results highlight medical-specific emergent properties in OS LLMs which have not yet been documented to date elsewhere, and showcase the benefits of further leveraging prompt engineering to improve the performance of accessible LLMs for medical applications.
AttackQA: Development and Adoption of a Dataset for Assisting Cybersecurity Operations using Fine-tuned and Open-Source LLMs
Retrieval-augmented generation (RAG) on specialized domain datasets has shown improved performance when large language models (LLMs) are fine-tuned for generating responses to user queries. In this study, we develop a cybersecurity question-answering (Q\&A) dataset, called AttackQA, and employ it to build a RAG-based Q\&A system designed for analysts in security operations centers. The dataset comprises 25,335 Q\&A pairs, accompanied by rationales to facilitate fine-tuning and evaluation. 80\% of the dataset was generated with help of a lightweight open-source LLM (LLama 3 8B), which produced over 1100 tokens per second with full 16-bit precision on SambaNova System's SN40L specialized hardware. To ensure dataset quality, we fine-tuned LLama 3 70B to detect and reject low-quality Q\&A pairs. In using the dataset for RAG, we demonstrate that fine-tuning open-source embeddings and LLMs can yield superior accuracy compared to OpenAI's state-of-the-art proprietary embedding and LLM (GPT-4o). Furthermore, we use Llama 3.1 405B as a judge to evaluate answer correctness, enabling the creation of a fully open-source, high-speed RAG and evaluation pipeline with a benchmark for model accuracy.
LLM-Detector: Improving AI-Generated Chinese Text Detection with Open-Source LLM Instruction Tuning
ChatGPT and other general large language models (LLMs) have achieved remarkable success, but they have also raised concerns about the misuse of AI-generated texts. Existing AI-generated text detection models, such as based on BERT and RoBERTa, are prone to in-domain over-fitting, leading to poor out-of-domain (OOD) detection performance. In this paper, we first collected Chinese text responses generated by human experts and 9 types of LLMs, for which to multiple domains questions, and further created a dataset that mixed human-written sentences and sentences polished by LLMs. We then proposed LLM-Detector, a novel method for both document-level and sentence-level text detection through Instruction Tuning of LLMs. Our method leverages the wealth of knowledge LLMs acquire during pre-training, enabling them to detect the text they generate. Instruction tuning aligns the model's responses with the user's expected text detection tasks. Experimental results show that previous methods struggle with sentence-level AI-generated text detection and OOD detection. In contrast, our proposed method not only significantly outperforms baseline methods in both sentence-level and document-level text detection but also demonstrates strong generalization capabilities. Furthermore, since LLM-Detector is trained based on open-source LLMs, it is easy to customize for deployment.
FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B schuhmann2022laion, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
GREATERPROMPT: A Unified, Customizable, and High-Performing Open-Source Toolkit for Prompt Optimization
LLMs have gained immense popularity among researchers and the general public for its impressive capabilities on a variety of tasks. Notably, the efficacy of LLMs remains significantly dependent on the quality and structure of the input prompts, making prompt design a critical factor for their performance. Recent advancements in automated prompt optimization have introduced diverse techniques that automatically enhance prompts to better align model outputs with user expectations. However, these methods often suffer from the lack of standardization and compatibility across different techniques, limited flexibility in customization, inconsistent performance across model scales, and they often exclusively rely on expensive proprietary LLM APIs. To fill in this gap, we introduce GREATERPROMPT, a novel framework that democratizes prompt optimization by unifying diverse methods under a unified, customizable API while delivering highly effective prompts for different tasks. Our framework flexibly accommodates various model scales by leveraging both text feedback-based optimization for larger LLMs and internal gradient-based optimization for smaller models to achieve powerful and precise prompt improvements. Moreover, we provide a user-friendly Web UI that ensures accessibility for non-expert users, enabling broader adoption and enhanced performance across various user groups and application scenarios. GREATERPROMPT is available at https://github.com/psunlpgroup/GreaterPrompt via GitHub, PyPI, and web user interfaces.
Lumos: Learning Agents with Unified Data, Modular Design, and Open-Source LLMs
We introduce Lumos, a novel framework for training language agents that employs a unified data format and a modular architecture based on open-source large language models (LLMs). Lumos consists of three distinct modules: planning, grounding, and execution. The planning module breaks down a task into a series of high-level, tool-agnostic subgoals, which are then made specific by the grounding module through a set of low-level actions. These actions are subsequently executed by the execution module, utilizing a range of off-the-shelf tools and APIs. In order to train these modules effectively, high-quality annotations of subgoals and actions were collected and are made available for fine-tuning open-source LLMs for various tasks such as complex question answering, web tasks, and math problems. Leveraging this unified data and modular design, Lumos not only achieves comparable or superior performance to current, state-of-the-art agents, but also exhibits several key advantages: (1) Lumos surpasses GPT-4/3.5-based agents in complex question answering and web tasks, while equalling the performance of significantly larger LLM agents on math tasks; (2) Lumos outperforms open-source agents created through conventional training methods and those using chain-of-thoughts training; and (3) Lumos is capable of effectively generalizing to unseen interactive tasks, outperforming larger LLM-based agents and even exceeding performance of specialized agents.
Bridging the LLM Accessibility Divide? Performance, Fairness, and Cost of Closed versus Open LLMs for Automated Essay Scoring
Closed large language models (LLMs) such as GPT-4 have set state-of-the-art results across a number of NLP tasks and have become central to NLP and machine learning (ML)-driven solutions. Closed LLMs' performance and wide adoption has sparked considerable debate about their accessibility in terms of availability, cost, and transparency. In this study, we perform a rigorous comparative analysis of nine leading LLMs, spanning closed, open, and open-source LLM ecosystems, across text assessment and generation tasks related to automated essay scoring. Our findings reveal that for few-shot learning-based assessment of human generated essays, open LLMs such as Llama 3 and Qwen2.5 perform comparably to GPT-4 in terms of predictive performance, with no significant differences in disparate impact scores when considering age- or race-related fairness. Moreover, Llama 3 offers a substantial cost advantage, being up to 37 times more cost-efficient than GPT-4. For generative tasks, we find that essays generated by top open LLMs are comparable to closed LLMs in terms of their semantic composition/embeddings and ML assessed scores. Our findings challenge the dominance of closed LLMs and highlight the democratizing potential of open LLMs, suggesting they can effectively bridge accessibility divides while maintaining competitive performance and fairness.
OpenHelix: A Short Survey, Empirical Analysis, and Open-Source Dual-System VLA Model for Robotic Manipulation
Dual-system VLA (Vision-Language-Action) architectures have become a hot topic in embodied intelligence research, but there is a lack of sufficient open-source work for further performance analysis and optimization. To address this problem, this paper will summarize and compare the structural designs of existing dual-system architectures, and conduct systematic empirical evaluations on the core design elements of existing dual-system architectures. Ultimately, it will provide a low-cost open-source model for further exploration. Of course, this project will continue to update with more experimental conclusions and open-source models with improved performance for everyone to choose from. Project page: https://openhelix-robot.github.io/.
Improving Performance, Robustness, and Fairness of Radiographic AI Models with Finely-Controllable Synthetic Data
Achieving robust performance and fairness across diverse patient populations remains a challenge in developing clinically deployable deep learning models for diagnostic imaging. Synthetic data generation has emerged as a promising strategy to address limitations in dataset scale and diversity. We introduce RoentGen-v2, a text-to-image diffusion model for chest radiographs that enables fine-grained control over both radiographic findings and patient demographic attributes, including sex, age, and race/ethnicity. RoentGen-v2 is the first model to generate clinically plausible images with demographic conditioning, facilitating the creation of a large, demographically balanced synthetic dataset comprising over 565,000 images. We use this large synthetic dataset to evaluate optimal training pipelines for downstream disease classification models. In contrast to prior work that combines real and synthetic data naively, we propose an improved training strategy that leverages synthetic data for supervised pretraining, followed by fine-tuning on real data. Through extensive evaluation on over 137,000 chest radiographs from five institutions, we demonstrate that synthetic pretraining consistently improves model performance, generalization to out-of-distribution settings, and fairness across demographic subgroups. Across datasets, synthetic pretraining led to a 6.5% accuracy increase in the performance of downstream classification models, compared to a modest 2.7% increase when naively combining real and synthetic data. We observe this performance improvement simultaneously with the reduction of the underdiagnosis fairness gap by 19.3%. These results highlight the potential of synthetic imaging to advance equitable and generalizable medical deep learning under real-world data constraints. We open source our code, trained models, and synthetic dataset at https://github.com/StanfordMIMI/RoentGen-v2 .
Confucius3-Math: A Lightweight High-Performance Reasoning LLM for Chinese K-12 Mathematics Learning
We introduce Confucius3-Math, an open-source large language model with 14B parameters that (1) runs efficiently on a single consumer-grade GPU; (2) achieves SOTA performances on a range of mathematical reasoning tasks, outperforming many models with significantly larger sizes. In particular, as part of our mission to enhancing education and knowledge dissemination with AI, Confucius3-Math is specifically committed to mathematics learning for Chinese K-12 students and educators. Built via post-training with large-scale reinforcement learning (RL), Confucius3-Math aligns with national curriculum and excels at solving main-stream Chinese K-12 mathematical problems with low cost. In this report we share our development recipe, the challenges we encounter and the techniques we develop to overcome them. In particular, we introduce three technical innovations: Targeted Entropy Regularization, Recent Sample Recovery and Policy-Specific Hardness Weighting. These innovations encompass a new entropy regularization, a novel data scheduling policy, and an improved group-relative advantage estimator. Collectively, they significantly stabilize the RL training, improve data efficiency, and boost performance. Our work demonstrates the feasibility of building strong reasoning models in a particular domain at low cost. We open-source our model and code at https://github.com/netease-youdao/Confucius3-Math.
WebLLM: A High-Performance In-Browser LLM Inference Engine
Advancements in large language models (LLMs) have unlocked remarkable capabilities. While deploying these models typically requires server-grade GPUs and cloud-based inference, the recent emergence of smaller open-source models and increasingly powerful consumer devices have made on-device deployment practical. The web browser as a platform for on-device deployment is universally accessible, provides a natural agentic environment, and conveniently abstracts out the different backends from diverse device vendors. To address this opportunity, we introduce WebLLM, an open-source JavaScript framework that enables high-performance LLM inference entirely within web browsers. WebLLM provides an OpenAI-style API for seamless integration into web applications, and leverages WebGPU for efficient local GPU acceleration and WebAssembly for performant CPU computation. With machine learning compilers MLC-LLM and Apache TVM, WebLLM leverages optimized WebGPU kernels, overcoming the absence of performant WebGPU kernel libraries. Evaluations show that WebLLM can retain up to 80% native performance on the same device, with room to further close the gap. WebLLM paves the way for universally accessible, privacy-preserving, personalized, and locally powered LLM applications in web browsers. The code is available at: https://github.com/mlc-ai/web-llm.
SQLfuse: Enhancing Text-to-SQL Performance through Comprehensive LLM Synergy
Text-to-SQL conversion is a critical innovation, simplifying the transition from complex SQL to intuitive natural language queries, especially significant given SQL's prevalence in the job market across various roles. The rise of Large Language Models (LLMs) like GPT-3.5 and GPT-4 has greatly advanced this field, offering improved natural language understanding and the ability to generate nuanced SQL statements. However, the potential of open-source LLMs in Text-to-SQL applications remains underexplored, with many frameworks failing to leverage their full capabilities, particularly in handling complex database queries and incorporating feedback for iterative refinement. Addressing these limitations, this paper introduces SQLfuse, a robust system integrating open-source LLMs with a suite of tools to enhance Text-to-SQL translation's accuracy and usability. SQLfuse features four modules: schema mining, schema linking, SQL generation, and a SQL critic module, to not only generate but also continuously enhance SQL query quality. Demonstrated by its leading performance on the Spider Leaderboard and deployment by Ant Group, SQLfuse showcases the practical merits of open-source LLMs in diverse business contexts.
Performance Portable Monte Carlo Particle Transport on Intel, NVIDIA, and AMD GPUs
OpenMC is an open source Monte Carlo neutral particle transport application that has recently been ported to GPU using the OpenMP target offloading model. We examine the performance of OpenMC at scale on the Frontier, Polaris, and Aurora supercomputers, demonstrating that performance portability has been achieved by OpenMC across all three major GPU vendors (AMD, NVIDIA, and Intel). OpenMC's GPU performance is compared to both the traditional CPU-based version of OpenMC as well as several other state-of-the-art CPU-based Monte Carlo particle transport applications. We also provide historical context by analyzing OpenMC's performance on several legacy GPU and CPU architectures. This work includes some of the first published results for a scientific simulation application at scale on a supercomputer featuring Intel's Max series "Ponte Vecchio" GPUs. It is also one of the first demonstrations of a large scientific production application using the OpenMP target offloading model to achieve high performance on all three major GPU platforms.
MagicFusion: Boosting Text-to-Image Generation Performance by Fusing Diffusion Models
The advent of open-source AI communities has produced a cornucopia of powerful text-guided diffusion models that are trained on various datasets. While few explorations have been conducted on ensembling such models to combine their strengths. In this work, we propose a simple yet effective method called Saliency-aware Noise Blending (SNB) that can empower the fused text-guided diffusion models to achieve more controllable generation. Specifically, we experimentally find that the responses of classifier-free guidance are highly related to the saliency of generated images. Thus we propose to trust different models in their areas of expertise by blending the predicted noises of two diffusion models in a saliency-aware manner. SNB is training-free and can be completed within a DDIM sampling process. Additionally, it can automatically align the semantics of two noise spaces without requiring additional annotations such as masks. Extensive experiments show the impressive effectiveness of SNB in various applications. Project page is available at https://magicfusion.github.io/.
The Impact of Hyperparameters on Large Language Model Inference Performance: An Evaluation of vLLM and HuggingFace Pipelines
The recent surge of open-source large language models (LLMs) enables developers to create AI-based solutions while maintaining control over aspects such as privacy and compliance, thereby providing governance and ownership of the model deployment process. To utilize these LLMs, inference engines are needed. These engines load the model's weights onto available resources, such as GPUs, and process queries to generate responses. The speed of inference, or performance, of the LLM, is critical for real-time applications, as it computes millions or billions of floating point operations per inference. Recently, advanced inference engines such as vLLM have emerged, incorporating novel mechanisms such as efficient memory management to achieve state-of-the-art performance. In this paper, we analyze the performance, particularly the throughput (tokens generated per unit of time), of 20 LLMs using two inference libraries: vLLM and HuggingFace's pipelines. We investigate how various hyperparameters, which developers must configure, influence inference performance. Our results reveal that throughput landscapes are irregular, with distinct peaks, highlighting the importance of hyperparameter optimization to achieve maximum performance. We also show that applying hyperparameter optimization when upgrading or downgrading the GPU model used for inference can improve throughput from HuggingFace pipelines by an average of 9.16% and 13.7%, respectively.
ONNX-Net: Towards Universal Representations and Instant Performance Prediction for Neural Architectures
Neural architecture search (NAS) automates the design process of high-performing architectures, but remains bottlenecked by expensive performance evaluation. Most existing studies that achieve faster evaluation are mostly tied to cell-based search spaces and graph encodings tailored to those individual search spaces, limiting their flexibility and scalability when applied to more expressive search spaces. In this work, we aim to close the gap of individual search space restrictions and search space dependent network representations. We present ONNX-Bench, a benchmark consisting of a collection of neural networks in a unified format based on ONNX files. ONNX-Bench includes all open-source NAS-bench-based neural networks, resulting in a total size of more than 600k {architecture, accuracy} pairs. This benchmark allows creating a shared neural network representation, ONNX-Net, able to represent any neural architecture using natural language descriptions acting as an input to a performance predictor. This text-based encoding can accommodate arbitrary layer types, operation parameters, and heterogeneous topologies, enabling a single surrogate to generalise across all neural architectures rather than being confined to cell-based search spaces. Experiments show strong zero-shot performance across disparate search spaces using only a small amount of pretraining samples, enabling the unprecedented ability to evaluate any neural network architecture instantly.
X-ARES: A Comprehensive Framework for Assessing Audio Encoder Performance
We introduces X-ARES (eXtensive Audio Representation and Evaluation Suite), a novel open-source benchmark designed to systematically assess audio encoder performance across diverse domains. By encompassing tasks spanning speech, environmental sounds, and music, X-ARES provides two evaluation approaches for evaluating audio representations: linear fine-tuning and unparameterized evaluation. The framework includes 22 distinct tasks that cover essential aspects of audio processing, from speech recognition and emotion detection to sound event classification and music genre identification. Our extensive evaluation of state-of-the-art audio encoders reveals significant performance variations across different tasks and domains, highlighting the complexity of general audio representation learning.
AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data
Open-source Large Language Models (LLMs) and their specialized variants, particularly Code LLMs, have recently delivered impressive performance. However, previous Code LLMs are typically fine-tuned on single-source data with limited quality and diversity, which may insufficiently elicit the potential of pre-trained Code LLMs. In this paper, we present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data. To achieve this, we pioneer to unveil inherent conflicts among the various styles and qualities in multi-source code corpora and introduce data-specific prompts with hindsight relabeling, termed AlchemistPrompts, to harmonize different data sources and instruction-response pairs. Additionally, we propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review. Extensive experiments demonstrate that AlchemistCoder holds a clear lead among all models of the same size (6.7B/7B) and rivals or even surpasses larger models (15B/33B/70B), showcasing the efficacy of our method in refining instruction-following capabilities and advancing the boundaries of code intelligence.
UI-Venus Technical Report: Building High-performance UI Agents with RFT
We present UI-Venus, a native UI agent that takes only screenshots as input based on a multimodal large language model. UI-Venus achieves SOTA performance on both UI grounding and navigation tasks using only several hundred thousand high-quality training samples through reinforcement finetune (RFT) based on Qwen2.5-VL. Specifically, the 7B and 72B variants of UI-Venus obtain 94.1% / 50.8% and 95.3% / 61.9% on the standard grounding benchmarks, i.e., Screenspot-V2 / Pro, surpassing the previous SOTA baselines including open-source GTA1 and closed-source UI-TARS-1.5.To show UI-Venus's summary and planing ability, we also evaluate it on the AndroidWorld, an online UI navigation arena, on which our 7B and 72B variants achieve 49.1% and 65.9% success rate, also beating existing models.To achieve this, we introduce carefully designed reward functions for both UI grounding and navigation tasks and corresponding efficient data cleaning strategies.To further boost navigation performance, we propose Self-Evolving Trajectory History Alignment \& Sparse Action Enhancement that refine historical reasoning traces and balances the distribution of sparse but critical actions, leading to more coherent planning and better generalization in complex UI tasks. Our contributions include the publish of SOTA open-source UI agents, comprehensive data cleaning protocols and a novel self-evolving framework for improving navigation performance, which encourage further research and development in the community. Code is available at https://github.com/antgroup/UI-Venus.
Beyond Prompt Content: Enhancing LLM Performance via Content-Format Integrated Prompt Optimization
Large Language Models (LLMs) have shown significant capability across various tasks, with their real-world effectiveness often driven by prompt design. While recent research has focused on optimizing prompt content, the role of prompt formatting, a critical but often overlooked dimension, has received limited systematic investigation. In this paper, we introduce Content-Format Integrated Prompt Optimization (CFPO), an innovative methodology that jointly optimizes both prompt content and formatting through an iterative refinement process. CFPO leverages natural language mutations to explore content variations and employs a dynamic format exploration strategy that systematically evaluates diverse format options. Our extensive evaluations across multiple tasks and open-source LLMs demonstrate that CFPO demonstrates measurable performance improvements compared to content-only optimization methods. This highlights the importance of integrated content-format optimization and offers a practical, model-agnostic approach to enhancing LLM performance. Code will be available at https://github.com/HenryLau7/CFPO.
TigerBot: An Open Multilingual Multitask LLM
We release and introduce the TigerBot family of large language models (LLMs), consisting of base and chat models, sized from 7, 13, 70 and 180 billion parameters. We develop our models embarking from Llama-2 and BLOOM, and push the boundary further in data, training algorithm, infrastructure, and application tools. Our models yield meaningful performance gain over SOTA open-source models, e.g., Llama-2, specifically 6\% gain in English and 20\% gain in Chinese. TigerBot model family also achieves leading performance in major academic and industrial benchmarks and leaderboards. We believe that TigerBot represents just a snapshot of lightning-fast progression in LLM open-source community. Therefore, we are thrilled to give back by publicly releasing our models and reporting our approach behind, with additional emphases on building SOTA LLMs in a democratized way and making LLMs of use in real-world applications.
Towards a clinically accessible radiology foundation model: open-access and lightweight, with automated evaluation
The scaling laws and extraordinary performance of large foundation models motivate the development and utilization of such models in biomedicine. However, despite early promising results on some biomedical benchmarks, there are still major challenges that need to be addressed before these models can be used in real-world clinics. Frontier general-domain models such as GPT-4V still have significant performance gaps in multimodal biomedical applications. More importantly, less-acknowledged pragmatic issues, including accessibility, model cost, and tedious manual evaluation make it hard for clinicians to use state-of-the-art large models directly on private patient data. Here, we explore training open-source small multimodal models (SMMs) to bridge competency gaps for unmet clinical needs in radiology. To maximize data efficiency, we adopt a modular approach by incorporating state-of-the-art pre-trained models for image and text modalities, and focusing on training a lightweight adapter to ground each modality to the text embedding space, as exemplified by LLaVA-Med. For training, we assemble a large dataset of over 697 thousand radiology image-text pairs. For evaluation, we propose CheXprompt, a GPT-4-based metric for factuality evaluation, and demonstrate its parity with expert evaluation. For best practice, we conduct a systematic ablation study on various choices in data engineering and multimodal training. The resulting LlaVA-Rad (7B) model attains state-of-the-art results on standard radiology tasks such as report generation and cross-modal retrieval, even outperforming much larger models such as GPT-4V and Med-PaLM M (84B). The inference of LlaVA-Rad is fast and can be performed on a single V100 GPU in private settings, offering a promising state-of-the-art tool for real-world clinical applications.
Babel: Open Multilingual Large Language Models Serving Over 90% of Global Speakers
Large language models (LLMs) have revolutionized natural language processing (NLP), yet open-source multilingual LLMs remain scarce, with existing models often limited in language coverage. Such models typically prioritize well-resourced languages, while widely spoken but under-resourced languages are often overlooked. To address this disparity, we introduce Babel, an open multilingual LLM that covers the top 25 languages by number of speakers, supports over 90% of the global population, and includes many languages neglected by other open multilingual LLMs. Unlike traditional continue pretraining approaches, Babel expands its parameter count through a layer extension technique that elevates Babel's performance ceiling. We introduce two variants: Babel-9B, designed for efficient inference and fine-tuning, and Babel-83B, which sets a new standard for open multilingual LLMs. Extensive evaluations on multilingual tasks demonstrate its superior performance compared to open LLMs of comparable size. In addition, using open-source supervised fine-tuning datasets, Babel achieves remarkable performance, with Babel-9B-Chat leading among 10B-sized LLMs and Babel-83B-Chat setting a new standard for multilingual tasks, reaching the same level of commercial models.
OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework
Large Language Models (LLMs) fine-tuned via Reinforcement Learning from Human Feedback (RLHF) and Reinforcement Learning with Verifiable Rewards (RLVR) significantly improve the alignment of human-AI values and further raise the upper bound of AI capabilities, particularly in reasoning-intensive, long-context Chain-of-Thought (long-CoT) tasks. However, existing RLHF (or RLVR) frameworks commonly face challenges such as inference bottlenecks and complexity barriers, restricting their accessibility for newcomers. To bridge this gap, we introduce OpenRLHF, a user-friendly, scalable, and easy-to-learn open-source RLHF framework built upon Ray, vLLM, DeepSpeed, and HuggingFace Transformers, featuring a simplified design, clear code structure, and comprehensive documentation to facilitate entry for researchers and practitioners. Experimental results show that OpenRLHF achieves superior training efficiency with speedups ranging from 1.22x to 1.68x across different model sizes compared to state-of-the-art frameworks, while requiring significantly fewer lines of code for implementation. OpenRLHF is publicly available at https://github.com/OpenRLHF/OpenRLHF, and has already been adopted by leading institutions to accelerate RLHF research and learning.
Kimi K2: Open Agentic Intelligence
We introduce Kimi K2, a Mixture-of-Experts (MoE) large language model with 32 billion activated parameters and 1 trillion total parameters. We propose the MuonClip optimizer, which improves upon Muon with a novel QK-clip technique to address training instability while enjoying the advanced token efficiency of Muon. Based on MuonClip, K2 was pre-trained on 15.5 trillion tokens with zero loss spike. During post-training, K2 undergoes a multi-stage post-training process, highlighted by a large-scale agentic data synthesis pipeline and a joint reinforcement learning (RL) stage, where the model improves its capabilities through interactions with real and synthetic environments. Kimi K2 achieves state-of-the-art performance among open-source non-thinking models, with strengths in agentic capabilities. Notably, K2 obtains 66.1 on Tau2-Bench, 76.5 on ACEBench (En), 65.8 on SWE-Bench Verified, and 47.3 on SWE-Bench Multilingual -- surpassing most open and closed-sourced baselines in non-thinking settings. It also exhibits strong capabilities in coding, mathematics, and reasoning tasks, with a score of 53.7 on LiveCodeBench v6, 49.5 on AIME 2025, 75.1 on GPQA-Diamond, and 27.1 on OJBench, all without extended thinking. These results position Kimi K2 as one of the most capable open-source large language models to date, particularly in software engineering and agentic tasks. We release our base and post-trained model checkpoints to facilitate future research and applications of agentic intelligence.
Open, Closed, or Small Language Models for Text Classification?
Recent advancements in large language models have demonstrated remarkable capabilities across various NLP tasks. But many questions remain, including whether open-source models match closed ones, why these models excel or struggle with certain tasks, and what types of practical procedures can improve performance. We address these questions in the context of classification by evaluating three classes of models using eight datasets across three distinct tasks: named entity recognition, political party prediction, and misinformation detection. While larger LLMs often lead to improved performance, open-source models can rival their closed-source counterparts by fine-tuning. Moreover, supervised smaller models, like RoBERTa, can achieve similar or even greater performance in many datasets compared to generative LLMs. On the other hand, closed models maintain an advantage in hard tasks that demand the most generalizability. This study underscores the importance of model selection based on task requirements
Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance
In this report, we introduce Falcon-H1, a new series of large language models (LLMs) featuring hybrid architecture designs optimized for both high performance and efficiency across diverse use cases. Unlike earlier Falcon models built solely on Transformer or Mamba architectures, Falcon-H1 adopts a parallel hybrid approach that combines Transformer-based attention with State Space Models (SSMs), known for superior long-context memory and computational efficiency. We systematically revisited model design, data strategy, and training dynamics, challenging conventional practices in the field. Falcon-H1 is released in multiple configurations, including base and instruction-tuned variants at 0.5B, 1.5B, 1.5B-deep, 3B, 7B, and 34B parameters. Quantized instruction-tuned models are also available, totaling over 30 checkpoints on Hugging Face Hub. Falcon-H1 models demonstrate state-of-the-art performance and exceptional parameter and training efficiency. The flagship Falcon-H1-34B matches or outperforms models up to 70B scale, such as Qwen3-32B, Qwen2.5-72B, and Llama3.3-70B, while using fewer parameters and less data. Smaller models show similar trends: the Falcon-H1-1.5B-Deep rivals current leading 7B-10B models, and Falcon-H1-0.5B performs comparably to typical 7B models from 2024. These models excel across reasoning, mathematics, multilingual tasks, instruction following, and scientific knowledge. With support for up to 256K context tokens and 18 languages, Falcon-H1 is suitable for a wide range of applications. All models are released under a permissive open-source license, underscoring our commitment to accessible and impactful AI research.
Infinity-MM: Scaling Multimodal Performance with Large-Scale and High-Quality Instruction Data
Vision-Language Models (VLMs) have recently made significant progress, but the limited scale and quality of open-source instruction data hinder their performance compared to closed-source models. In this work, we address this limitation by introducing Infinity-MM, a large-scale multimodal instruction dataset with 40 million samples, enhanced through rigorous quality filtering and deduplication. We also propose a synthetic instruction generation method based on open-source VLMs, using detailed image annotations and diverse question generation. Using this data, we trained a 2-billion-parameter VLM, Aquila-VL-2B, achieving state-of-the-art (SOTA) performance for models of similar scale. This demonstrates that expanding instruction data and generating synthetic data can significantly improve the performance of open-source models.
Türkçe Dil Modellerinin Performans Karşılaştırması Performance Comparison of Turkish Language Models
The developments that language models have provided in fulfilling almost all kinds of tasks have attracted the attention of not only researchers but also the society and have enabled them to become products. There are commercially successful language models available. However, users may prefer open-source language models due to cost, data privacy, or regulations. Yet, despite the increasing number of these models, there is no comprehensive comparison of their performance for Turkish. This study aims to fill this gap in the literature. A comparison is made among seven selected language models based on their contextual learning and question-answering abilities. Turkish datasets for contextual learning and question-answering were prepared, and both automatic and human evaluations were conducted. The results show that for question-answering, continuing pretraining before fine-tuning with instructional datasets is more successful in adapting multilingual models to Turkish and that in-context learning performances do not much related to question-answering performances.
Leeroo Orchestrator: Elevating LLMs Performance Through Model Integration
In this paper, we propose an architecture to harness the collective knowledge of multiple trained LLMs to create a new state-of-the-art. At the core of this framework is a LLM-based orchestrator that is adept at picking the right underlying LLM experts for optimal task execution. Inspired by self-play in reinforcement learning, we created a loop of query generation, orchestration, and evaluation to generate training data for the orchestrator. Our evaluation focused on the MMLU benchmark, employing models with 7B, 13B, and 34B parameters available on Hugging Face. The results demonstrate new state-of-the-art open-source models: Our Leeroo orchestrator achieves performance on par with the Mixtral model while incurring only two-thirds of its cost. Moreover, increasing the allowed cost surpasses Mixtral's accuracy by over 5% at the same cost level, reaching an accuracy of 75.9%. Further enhancements were observed when integrating GPT4 into the underlying model pool. The Leeroo orchestrator nearly matches GPT4's performance at half the cost and even exceeds GPT4's results with a 25% cost reduction. These findings illustrate the potential of our architecture in creating state-of-the-art and cost-effective LLMs by optimizing the synergy between multiple LLMs to achieve superior performance outcomes.
Chain-of-Thought Hub: A Continuous Effort to Measure Large Language Models' Reasoning Performance
As large language models (LLMs) are continuously being developed, their evaluation becomes increasingly important yet challenging. This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models. We are interested in this setting for two reasons: (1) from the behavior of GPT and PaLM model family, we observe that complex reasoning is likely to be a key differentiator between weaker and stronger LLMs; (2) we envisage large language models to become the next-generation computational platform and foster an ecosystem of LLM-based new applications, this naturally requires the foundation models to perform complex tasks that often involve the composition of linguistic and logical operations. Our approach is to compile a suite of challenging reasoning benchmarks to track the progress of LLMs. Our current results show that: (1) model scale clearly correlates with reasoning capabilities; (2) As of May 2023, Claude-v1.3 and PaLM-2 are the only two models that are comparable with GPT-4, while open-sourced models still lag behind; (3) LLaMA-65B performs closely to code-davinci-002, indicating that with successful further development such as reinforcement learning from human feedback (RLHF), it has great potential to be close to GPT-3.5-Turbo. Our results also suggest that for the open-source efforts to catch up, the community may focus more on building better base models and exploring RLHF.
ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance & Efficiency on a Specific Domain
Recent advancements in language models have started a new era of superior information retrieval and content generation, with embedding models playing an important role in optimizing data representation efficiency and performance. While benchmarks like the Massive Text Embedding Benchmark (MTEB) have standardized the evaluation of general domain embedding models, a gap remains in specialized fields such as chemistry, which require tailored approaches due to domain-specific challenges. This paper introduces a novel benchmark, the Chemical Text Embedding Benchmark (ChemTEB), designed specifically for the chemical sciences. ChemTEB addresses the unique linguistic and semantic complexities of chemical literature and data, offering a comprehensive suite of tasks on chemical domain data. Through the evaluation of 34 open-source and proprietary models using this benchmark, we illuminate the strengths and weaknesses of current methodologies in processing and understanding chemical information. Our work aims to equip the research community with a standardized, domain-specific evaluation framework, promoting the development of more precise and efficient NLP models for chemistry-related applications. Furthermore, it provides insights into the performance of generic models in a domain-specific context. ChemTEB comes with open-source code and data, contributing further to its accessibility and utility.
Etalon: Holistic Performance Evaluation Framework for LLM Inference Systems
Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at https://github.com/project-etalon/etalon.
OpenCUA: Open Foundations for Computer-Use Agents
Vision-language models have demonstrated impressive capabilities as computer-use agents (CUAs) capable of automating diverse computer tasks. As their commercial potential grows, critical details of the most capable CUA systems remain closed. As these agents will increasingly mediate digital interactions and execute consequential decisions on our behalf, the research community needs access to open CUA frameworks to study their capabilities, limitations, and risks. To bridge this gap, we propose OpenCUA, a comprehensive open-source framework for scaling CUA data and foundation models. Our framework consists of: (1) an annotation infrastructure that seamlessly captures human computer-use demonstrations; (2) AgentNet, the first large-scale computer-use task dataset spanning 3 operating systems and 200+ applications and websites; (3) a scalable pipeline that transforms demonstrations into state-action pairs with reflective long Chain-of-Thought reasoning that sustain robust performance gains as data scales. Our end-to-end agent models demonstrate strong performance across CUA benchmarks. In particular, OpenCUA-32B achieves an average success rate of 34.8% on OSWorld-Verified, establishing a new state-of-the-art (SOTA) among open-source models and surpassing OpenAI CUA (GPT-4o). Further analysis confirms that our approach generalizes well across domains and benefits significantly from increased test-time computation. We release our annotation tool, datasets, code, and models to build open foundations for further CUA research.
Wan: Open and Advanced Large-Scale Video Generative Models
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
The Aloe Family Recipe for Open and Specialized Healthcare LLMs
Purpose: With advancements in Large Language Models (LLMs) for healthcare, the need arises for competitive open-source models to protect the public interest. This work contributes to the field of open medical LLMs by optimizing key stages of data preprocessing and training, while showing how to improve model safety (through DPO) and efficacy (through RAG). The evaluation methodology used, which includes four different types of tests, defines a new standard for the field. The resultant models, shown to be competitive with the best private alternatives, are released with a permisive license. Methods: Building on top of strong base models like Llama 3.1 and Qwen 2.5, Aloe Beta uses a custom dataset to enhance public data with synthetic Chain of Thought examples. The models undergo alignment with Direct Preference Optimization, emphasizing ethical and policy-aligned performance in the presence of jailbreaking attacks. Evaluation includes close-ended, open-ended, safety and human assessments, to maximize the reliability of results. Results: Recommendations are made across the entire pipeline, backed by the solid performance of the Aloe Family. These models deliver competitive performance across healthcare benchmarks and medical fields, and are often preferred by healthcare professionals. On bias and toxicity, the Aloe Beta models significantly improve safety, showing resilience to unseen jailbreaking attacks. For a responsible release, a detailed risk assessment specific to healthcare is attached to the Aloe Family models. Conclusion: The Aloe Beta models, and the recipe that leads to them, are a significant contribution to the open-source medical LLM field, offering top-of-the-line performance while maintaining high ethical requirements. This work sets a new standard for developing and reporting aligned LLMs in healthcare.
ThinkDial: An Open Recipe for Controlling Reasoning Effort in Large Language Models
Large language models (LLMs) with chain-of-thought reasoning have demonstrated remarkable problem-solving capabilities, but controlling their computational effort remains a significant challenge for practical deployment. Recent proprietary systems like OpenAI's gpt-oss series have introduced discrete operational modes for intuitive reasoning control, but the open-source community has largely failed to achieve such capabilities. In this paper, we introduce ThinkDial, the first open-recipe end-to-end framework that successfully implements gpt-oss-style controllable reasoning through discrete operational modes. Our system enables seamless switching between three distinct reasoning regimes: High mode (full reasoning capability), Medium mode (50 percent token reduction with <10 percent performance degradation), and Low mode (75 percent token reduction with <15 percent performance degradation). We achieve this through an end-to-end training paradigm that integrates budget-mode control throughout the entire pipeline: budget-mode supervised fine-tuning that embeds controllable reasoning capabilities directly into the learning process, and two-phase budget-aware reinforcement learning with adaptive reward shaping. Extensive experiments demonstrate that ThinkDial achieves target compression-performance trade-offs with clear response length reductions while maintaining performance thresholds. The framework also exhibits strong generalization capabilities on out-of-distribution tasks.
Aloe: A Family of Fine-tuned Open Healthcare LLMs
As the capabilities of Large Language Models (LLMs) in healthcare and medicine continue to advance, there is a growing need for competitive open-source models that can safeguard public interest. With the increasing availability of highly competitive open base models, the impact of continued pre-training is increasingly uncertain. In this work, we explore the role of instruct tuning, model merging, alignment, red teaming and advanced inference schemes, as means to improve current open models. To that end, we introduce the Aloe family, a set of open medical LLMs highly competitive within its scale range. Aloe models are trained on the current best base models (Mistral, LLaMA 3), using a new custom dataset which combines public data sources improved with synthetic Chain of Thought (CoT). Aloe models undergo an alignment phase, becoming one of the first few policy-aligned open healthcare LLM using Direct Preference Optimization, setting a new standard for ethical performance in healthcare LLMs. Model evaluation expands to include various bias and toxicity datasets, a dedicated red teaming effort, and a much-needed risk assessment for healthcare LLMs. Finally, to explore the limits of current LLMs in inference, we study several advanced prompt engineering strategies to boost performance across benchmarks, yielding state-of-the-art results for open healthcare 7B LLMs, unprecedented at this scale.
ShinkaEvolve: Towards Open-Ended And Sample-Efficient Program Evolution
We introduce ShinkaEvolve: a new open-source framework leveraging large language models (LLMs) to advance scientific discovery with state-of-the-art performance and unprecedented efficiency. Recent advances in scaling inference time compute of LLMs have enabled significant progress in generalized scientific discovery. These approaches rely on evolutionary agentic harnesses that leverage LLMs as mutation operators to generate candidate solutions. However, current code evolution methods suffer from critical limitations: they are sample inefficient, requiring thousands of samples to identify effective solutions, and remain closed-source, hindering broad adoption and extension. ShinkaEvolve addresses these limitations, introducing three key innovations: a parent sampling technique balancing exploration and exploitation, code novelty rejection-sampling for efficient search space exploration, and a bandit-based LLM ensemble selection strategy. We evaluate ShinkaEvolve across diverse tasks, demonstrating consistent improvements in sample efficiency and solution quality. ShinkaEvolve discovers a new state-of-the-art circle packing solution using only 150 samples, designs high-performing agentic harnesses for AIME mathematical reasoning tasks, identifies improvements to ALE-Bench competitive programming solutions, and discovers novel mixture-of-expert load balancing loss functions that illuminate the space of optimization strategies. Our results demonstrate that ShinkaEvolve achieves broad applicability with exceptional sample efficiency. By providing open-source accessibility and cost-efficiency, this work democratizes open-ended discovery across diverse computational problems.
BMFM-RNA: An Open Framework for Building and Evaluating Transcriptomic Foundation Models
Transcriptomic foundation models (TFMs) have recently emerged as powerful tools for analyzing gene expression in cells and tissues, supporting key tasks such as cell-type annotation, batch correction, and perturbation prediction. However, the diversity of model implementations and training strategies across recent TFMs, though promising, makes it challenging to isolate the contribution of individual design choices or evaluate their potential synergies. This hinders the field's ability to converge on best practices and limits the reproducibility of insights across studies. We present BMFM-RNA, an open-source, modular software package that unifies diverse TFM pretraining and fine-tuning objectives within a single framework. Leveraging this capability, we introduce a novel training objective, whole cell expression decoder (WCED), which captures global expression patterns using an autoencoder-like CLS bottleneck representation. In this paper, we describe the framework, supported input representations, and training objectives. We evaluated four model checkpoints pretrained on CELLxGENE using combinations of masked language modeling (MLM), WCED and multitask learning. Using the benchmarking capabilities of BMFM-RNA, we show that WCED-based models achieve performance that matches or exceeds state-of-the-art approaches like scGPT across more than a dozen datasets in both zero-shot and fine-tuning tasks. BMFM-RNA, available as part of the biomed-multi-omics project ( https://github.com/BiomedSciAI/biomed-multi-omic ), offers a reproducible foundation for systematic benchmarking and community-driven exploration of optimal TFM training strategies, enabling the development of more effective tools to leverage the latest advances in AI for understanding cell biology.
Magicoder: Source Code Is All You Need
We introduce Magicoder, a series of fully open-source (code, weights, and data) Large Language Models (LLMs) for code that significantly closes the gap with top code models while having no more than 7B parameters. Magicoder models are trained on 75K synthetic instruction data using OSS-Instruct, a novel approach to enlightening LLMs with open-source code snippets to generate high-quality instruction data for code. Our main motivation is to mitigate the inherent bias of the synthetic data generated by LLMs by empowering them with a wealth of open-source references for the production of more diverse, realistic, and controllable data. The orthogonality of OSS-Instruct and other data generation methods like Evol-Instruct further enables us to build an enhanced MagicoderS. Both Magicoder and MagicoderS substantially outperform state-of-the-art code models with similar or even larger sizes on a wide range of coding benchmarks, including Python text-to-code generation, multilingual coding, and data-science program completion. Notably, MagicoderS-CL-7B based on CodeLlama even surpasses the prominent ChatGPT on HumanEval+ (66.5 vs. 65.9 in pass@1). Overall, OSS-Instruct opens a new direction for low-bias and high-quality instruction tuning using abundant open-source references.
M2-omni: Advancing Omni-MLLM for Comprehensive Modality Support with Competitive Performance
We present M2-omni, a cutting-edge, open-source omni-MLLM that achieves competitive performance to GPT-4o. M2-omni employs a unified multimodal sequence modeling framework, which empowers Large Language Models(LLMs) to acquire comprehensive cross-modal understanding and generation capabilities. Specifically, M2-omni can process arbitrary combinations of audio, video, image, and text modalities as input, generating multimodal sequences interleaving with audio, image, or text outputs, thereby enabling an advanced and interactive real-time experience. The training of such an omni-MLLM is challenged by significant disparities in data quantity and convergence rates across modalities. To address these challenges, we propose a step balance strategy during pre-training to handle the quantity disparities in modality-specific data. Additionally, a dynamically adaptive balance strategy is introduced during the instruction tuning stage to synchronize the modality-wise training progress, ensuring optimal convergence. Notably, we prioritize preserving strong performance on pure text tasks to maintain the robustness of M2-omni's language understanding capability throughout the training process. To our best knowledge, M2-omni is currently a very competitive open-source model to GPT-4o, characterized by its comprehensive modality and task support, as well as its exceptional performance. We expect M2-omni will advance the development of omni-MLLMs, thus facilitating future research in this domain.
QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance
This work presents a novel architecture for building Retrieval-Augmented Generation (RAG) systems to improve Question Answering (QA) tasks from a target corpus. Large Language Models (LLMs) have revolutionized the analyzing and generation of human-like text. These models rely on pre-trained data and lack real-time updates unless integrated with live data tools. RAG enhances LLMs by integrating online resources and databases to generate contextually appropriate responses. However, traditional RAG still encounters challenges like information dilution and hallucinations when handling vast amounts of data. Our approach addresses these challenges by converting corpora into a domain-specific dataset and RAG architecture is constructed to generate responses from the target document. We introduce QuIM-RAG (Question-to-question Inverted Index Matching), a novel approach for the retrieval mechanism in our system. This strategy generates potential questions from document chunks and matches these with user queries to identify the most relevant text chunks for generating accurate answers. We have implemented our RAG system on top of the open-source Meta-LLaMA3-8B-instruct model by Meta Inc. that is available on Hugging Face. We constructed a custom corpus of 500+ pages from a high-traffic website accessed thousands of times daily for answering complex questions, along with manually prepared ground truth QA for evaluation. We compared our approach with traditional RAG models using BERT-Score and RAGAS, state-of-the-art metrics for evaluating LLM applications. Our evaluation demonstrates that our approach outperforms traditional RAG architectures on both metrics.
Performance Comparison of Pre-trained Models for Speech-to-Text in Turkish: Whisper-Small and Wav2Vec2-XLS-R-300M
In this study, the performances of the Whisper-Small and Wav2Vec2-XLS-R-300M models which are two pre-trained multilingual models for speech to text were examined for the Turkish language. Mozilla Common Voice version 11.0 which is prepared in Turkish language and is an open-source data set, was used in the study. The multilingual models, Whisper- Small and Wav2Vec2-XLS-R-300M were fine-tuned with this data set which contains a small amount of data. The speech to text performance of the two models was compared. WER values are calculated as 0.28 and 0.16 for the Wav2Vec2-XLS- R-300M and the Whisper-Small models respectively. In addition, the performances of the models were examined with the test data prepared with call center records that were not included in the training and validation dataset.
Panda LLM: Training Data and Evaluation for Open-Sourced Chinese Instruction-Following Large Language Models
This project focuses on enhancing open-source large language models through instruction-tuning and providing comprehensive evaluations of their performance. We explore how various training data factors, such as quantity, quality, and linguistic distribution, influence the performance of instruction-tuned models trained on publicly accessible high-quality instruction datasets for both English and Chinese languages. Our goal is to supplement evaluation with quantitative analyses, providing valuable insights for the continued advancement of open-source chat models. Our model, data, and code are publicly available for others to use and build upon.
Long Context RAG Performance of Large Language Models
Retrieval Augmented Generation (RAG) has emerged as a crucial technique for enhancing the accuracy of Large Language Models (LLMs) by incorporating external information. With the advent of LLMs that support increasingly longer context lengths, there is a growing interest in understanding how these models perform in RAG scenarios. Can these new long context models improve RAG performance? This paper presents a comprehensive study of the impact of increased context length on RAG performance across 20 popular open source and commercial LLMs. We ran RAG workflows while varying the total context length from 2,000 to 128,000 tokens (and 2 million tokens when possible) on three domain-specific datasets, and report key insights on the benefits and limitations of long context in RAG applications. Our findings reveal that while retrieving more documents can improve performance, only a handful of the most recent state of the art LLMs can maintain consistent accuracy at long context above 64k tokens. We also identify distinct failure modes in long context scenarios, suggesting areas for future research.
OpenJAI-v1.0: An Open Thai Large Language Model
We introduce OpenJAI-v1.0, an open-source large language model for Thai and English, developed from the Qwen3-14B model. Our work focuses on boosting performance on practical tasks through carefully curated data across three key use cases: instruction following, long-context understanding, and tool use. Evaluation results show that OpenJAI-v1.0 improves on the capabilities of its base model and outperforms other leading open-source Thai models on a diverse suite of benchmarks, while avoiding catastrophic forgetting. OpenJAI-v1.0 is publicly released as another alternative NLP resource for the Thai AI community.
From Parameters to Performance: A Data-Driven Study on LLM Structure and Development
Large language models (LLMs) have achieved remarkable success across various domains, driving significant technological advancements and innovations. Despite the rapid growth in model scale and capability, systematic, data-driven research on how structural configurations affect performance remains scarce. To address this gap, we present a large-scale dataset encompassing diverse open-source LLM structures and their performance across multiple benchmarks. Leveraging this dataset, we conduct a systematic, data mining-driven analysis to validate and quantify the relationship between structural configurations and performance. Our study begins with a review of the historical development of LLMs and an exploration of potential future trends. We then analyze how various structural choices impact performance across benchmarks and further corroborate our findings using mechanistic interpretability techniques. By providing data-driven insights into LLM optimization, our work aims to guide the targeted development and application of future models. We will release our dataset at https://huggingface.co/datasets/DX0369/LLM-Structure-Performance-Dataset
Fixing It in Post: A Comparative Study of LLM Post-Training Data Quality and Model Performance
Recent work on large language models (LLMs) has increasingly focused on post-training and alignment with datasets curated to enhance instruction following, world knowledge, and specialized skills. However, most post-training datasets used in leading open- and closed-source LLMs remain inaccessible to the public, with limited information about their construction process. This lack of transparency has motivated the recent development of open-source post-training corpora. While training on these open alternatives can yield performance comparable to that of leading models, systematic comparisons remain challenging due to the significant computational cost of conducting them rigorously at scale, and are therefore largely absent. As a result, it remains unclear how specific samples, task types, or curation strategies influence downstream performance when assessing data quality. In this work, we conduct the first comprehensive side-by-side analysis of two prominent open post-training datasets: Tulu-3-SFT-Mix and SmolTalk. Using the Magpie framework, we annotate each sample with detailed quality metrics, including turn structure (single-turn vs. multi-turn), task category, input quality, and response quality, and we derive statistics that reveal structural and qualitative similarities and differences between the two datasets. Based on these insights, we design a principled curation recipe that produces a new data mixture, TuluTalk, which contains 14% fewer samples than either source dataset while matching or exceeding their performance on key benchmarks. Our findings offer actionable insights for constructing more effective post-training datasets that improve model performance within practical resource limits. To support future research, we publicly release both the annotated source datasets and our curated TuluTalk mixture.
BTLM-3B-8K: 7B Parameter Performance in a 3B Parameter Model
We introduce the Bittensor Language Model, called "BTLM-3B-8K", a new state-of-the-art 3 billion parameter open-source language model. BTLM-3B-8K was trained on 627B tokens from the SlimPajama dataset with a mixture of 2,048 and 8,192 context lengths. BTLM-3B-8K outperforms all existing 3B parameter models by 2-5.5% across downstream tasks. BTLM-3B-8K is even competitive with some 7B parameter models. Additionally, BTLM-3B-8K provides excellent long context performance, outperforming MPT-7B-8K and XGen-7B-8K on tasks up to 8,192 context length. We trained the model on a cleaned and deduplicated SlimPajama dataset; aggressively tuned the \textmu P hyperparameters and schedule; used ALiBi position embeddings; and adopted the SwiGLU nonlinearity. On Hugging Face, the most popular models have 7B parameters, indicating that users prefer the quality-size ratio of 7B models. Compacting the 7B parameter model to one with 3B parameters, with little performance impact, is an important milestone. BTLM-3B-8K needs only 3GB of memory with 4-bit precision and takes 2.5x less inference compute than 7B models, helping to open up access to a powerful language model on mobile and edge devices. BTLM-3B-8K is available under an Apache 2.0 license on Hugging Face: https://huggingface.co/cerebras/btlm-3b-8k-base.
From Behavioral Performance to Internal Competence: Interpreting Vision-Language Models with VLM-Lens
We introduce VLM-Lens, a toolkit designed to enable systematic benchmarking, analysis, and interpretation of vision-language models (VLMs) by supporting the extraction of intermediate outputs from any layer during the forward pass of open-source VLMs. VLM-Lens provides a unified, YAML-configurable interface that abstracts away model-specific complexities and supports user-friendly operation across diverse VLMs. It currently supports 16 state-of-the-art base VLMs and their over 30 variants, and is extensible to accommodate new models without changing the core logic. The toolkit integrates easily with various interpretability and analysis methods. We demonstrate its usage with two simple analytical experiments, revealing systematic differences in the hidden representations of VLMs across layers and target concepts. VLM-Lens is released as an open-sourced project to accelerate community efforts in understanding and improving VLMs.
The Future of MLLM Prompting is Adaptive: A Comprehensive Experimental Evaluation of Prompt Engineering Methods for Robust Multimodal Performance
Multimodal Large Language Models (MLLMs) are set to transform how machines process and generate human-like responses by integrating diverse modalities such as text, images, and code. Yet, effectively harnessing their capabilities hinges on optimal prompt engineering. We present a comprehensive experimental evaluation of seven prompt engineering methods applied to 13 open-source MLLMs over 24 tasks spanning Reasoning and Compositionality, Multimodal Understanding and Alignment, Complex Code Generation and Execution, and Knowledge Retrieval and Integration. Our approach stratifies models by parameter count into Small (<4B), Medium (4B-10B), and Large (>10B) categories and compares prompting techniques including Zero-Shot, One-Shot, Few-Shot, Chain-of-Thought, Analogical, Generated Knowledge, and Tree-of-Thought. While Large MLLMs excel in structured tasks such as code generation, achieving accuracies up to 96.88% under Few-Shot prompting, all models struggle with complex reasoning and abstract understanding, often yielding accuracies below 60% and high hallucination rates. Structured reasoning prompts frequently increased hallucination up to 75% in small models and led to longer response times (over 20 seconds in Large MLLMs), while simpler prompting methods provided more concise and efficient outputs. No single prompting method uniformly optimises all task types. Instead, adaptive strategies combining example-based guidance with selective structured reasoning are essential to enhance robustness, efficiency, and factual accuracy. Our findings offer practical recommendations for prompt engineering and support more reliable deployment of MLLMs across applications including AI-assisted coding, knowledge retrieval, and multimodal content understanding.
Performance of Large Language Models in Supporting Medical Diagnosis and Treatment
The integration of Large Language Models (LLMs) into healthcare holds significant potential to enhance diagnostic accuracy and support medical treatment planning. These AI-driven systems can analyze vast datasets, assisting clinicians in identifying diseases, recommending treatments, and predicting patient outcomes. This study evaluates the performance of a range of contemporary LLMs, including both open-source and closed-source models, on the 2024 Portuguese National Exam for medical specialty access (PNA), a standardized medical knowledge assessment. Our results highlight considerable variation in accuracy and cost-effectiveness, with several models demonstrating performance exceeding human benchmarks for medical students on this specific task. We identify leading models based on a combined score of accuracy and cost, discuss the implications of reasoning methodologies like Chain-of-Thought, and underscore the potential for LLMs to function as valuable complementary tools aiding medical professionals in complex clinical decision-making.
Understanding GEMM Performance and Energy on NVIDIA Ada Lovelace: A Machine Learning-Based Analytical Approach
Analytical framework for predicting General Matrix Multiplication (GEMM) performance on modern GPUs, focusing on runtime, power consumption, and energy efficiency. Our study employs two approaches: a custom-implemented tiled matrix multiplication kernel for fundamental analysis, and NVIDIA's CUTLASS library for comprehensive performance data collection across advanced configurations. Using the NVIDIA RTX 4070 as our experimental platform, we developed a Random Forest-based prediction model with multi-output regression capability. Through analysis of both naive tiled matrix multiplication with varying tile sizes (1 to 32) and 16,128 CUTLASS GEMM operations across diverse configurations, we identified critical performance patterns related to matrix dimensions, thread block configurations, and memory access patterns. Our framework achieved exceptional accuracy with an R^2 score of 0.98 for runtime prediction (mean error 15.57%) and 0.78 for power prediction (median error 5.42%). The system successfully predicts performance across matrix sizes, demonstrating robust scaling behavior. Our results show that optimal tile size selection can improve performance by up to 3.2x while reducing power consumption by 22% compared to baseline configurations. Analysis of shared memory utilization and SM occupancy reveals that tile sizes of 16x16 achieve the best balance between parallelism and resource usage. The implementation of our framework, including prediction models and analysis tools, is available as an open-source project at GPPerf [https://github.com/pavlyhalim/GPPerf].
Beyond Task Performance: Evaluating and Reducing the Flaws of Large Multimodal Models with In-Context Learning
Following the success of Large Language Models (LLMs), Large Multimodal Models (LMMs), such as the Flamingo model and its subsequent competitors, have started to emerge as natural steps towards generalist agents. However, interacting with recent LMMs reveals major limitations that are hardly captured by the current evaluation benchmarks. Indeed, task performances (e.g., VQA accuracy) alone do not provide enough clues to understand their real capabilities, limitations, and to which extent such models are aligned to human expectations. To refine our understanding of those flaws, we deviate from the current evaluation paradigm, and (1) evaluate 10 recent open-source LMMs from 3B up to 80B parameter scale, on 5 different axes; hallucinations, abstention, compositionality, explainability and instruction following. Our evaluation on these axes reveals major flaws in LMMs. While the current go-to solution to align these models is based on training, such as instruction tuning or RLHF, we rather (2) explore the training-free in-context learning (ICL) as a solution, and study how it affects these limitations. Based on our ICL study, (3) we push ICL further and propose new multimodal ICL variants such as; Multitask-ICL, Chain-of-Hindsight-ICL, and Self-Correcting-ICL. Our findings are as follows. (1) Despite their success, LMMs have flaws that remain unsolved with scaling alone. (2) The effect of ICL on LMMs flaws is nuanced; despite its effectiveness for improved explainability, answer abstention, ICL only slightly improves instruction following, does not improve compositional abilities, and actually even amplifies hallucinations. (3) The proposed ICL variants are promising as post-hoc approaches to efficiently tackle some of those flaws. The code is available here: https://github.com/mshukor/EvALign-ICL.
Creating a Dataset for High-Performance Computing Code Translation using LLMs: A Bridge Between OpenMP Fortran and C++
In this study, we present a novel dataset for training machine learning models translating between OpenMP Fortran and C++ code. To ensure reliability and applicability, the dataset is created from a range of representative open-source OpenMP benchmarks. It is also refined using a meticulous code similarity test. The effectiveness of our dataset is assessed using both quantitative (CodeBLEU) and qualitative (human evaluation) methods. We showcase how this dataset significantly elevates the translation competencies of large language models (LLMs). Specifically, models without prior coding knowledge experienced a boost of times~5.1 in their CodeBLEU scores, while models with some coding familiarity saw an impressive times~9.9-fold increase. The best fine-tuned model using our dataset outperforms GPT-4. It is also reaching human-level accuracy. This work underscores the immense potential of our dataset in propelling advancements in the domain of code translation for high-performance computing. The dataset is accessible at https://github.com/bin123apple/Fortran-CPP-HPC-code-translation-dataset{OpenMP-Fortran-CPP-Translation}.
Lion: Adversarial Distillation of Closed-Source Large Language Model
The practice of transferring knowledge from a sophisticated, closed-source large language model (LLM) to a compact, open-source LLM has garnered considerable attention. Previous works have focused on a unidirectional knowledge distillation way by aligning the responses of the student model with those of the teacher model to a set of instructions. Nevertheless, they overlooked the possibility of incorporating any reciprocal "feedback"--identifying challenging instructions where the student model's performance falls short--to boost the student model's proficiency iteratively. To this end, we propose a novel adversarial distillation framework for a more efficient knowledge transfer. Leveraging the versatile role adaptability of LLMs, we prompt the closed-source model to identify "hard" instructions and generate new "hard" instructions for the student model, creating a three-stage adversarial loop of imitation, discrimination, and generation. By applying this adversarial framework, we successfully transfer knowledge from ChatGPT to a 7B student model (named Lion), achieving nearly 95% capability approximation using a mere 70k training data. We aspire that this proposed model may serve as the baseline to reflect the performance of ChatGPT, especially the open-source instruction-following language model baseline for our community.
Processing of Crowdsourced Observations of Aircraft in a High Performance Computing Environment
As unmanned aircraft systems (UASs) continue to integrate into the U.S. National Airspace System (NAS), there is a need to quantify the risk of airborne collisions between unmanned and manned aircraft to support regulation and standards development. Both regulators and standards developing organizations have made extensive use of Monte Carlo collision risk analysis simulations using probabilistic models of aircraft flight. We've previously determined that the observations of manned aircraft by the OpenSky Network, a community network of ground-based sensors, are appropriate to develop models of the low altitude environment. This works overviews the high performance computing workflow designed and deployed on the Lincoln Laboratory Supercomputing Center to process 3.9 billion observations of aircraft. We then trained the aircraft models using more than 250,000 flight hours at 5,000 feet above ground level or below. A key feature of the workflow is that all the aircraft observations and supporting datasets are available as open source technologies or been released to the public domain.
TÜLU 3: Pushing Frontiers in Open Language Model Post-Training
Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce T\"ULU 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. T\"ULU 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With T\"ULU 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the T\"ULU 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the T\"ULU 3 approach to more domains.
xGen-MM (BLIP-3): A Family of Open Large Multimodal Models
This report introduces xGen-MM (also known as BLIP-3), a framework for developing Large Multimodal Models (LMMs). The framework comprises meticulously curated datasets, a training recipe, model architectures, and a resulting suite of LMMs. xGen-MM, short for xGen-MultiModal, expands the Salesforce xGen initiative on foundation AI models. Our models undergo rigorous evaluation across a range of tasks, including both single and multi-image benchmarks. Our pre-trained base model exhibits strong in-context learning capabilities and the instruction-tuned model demonstrates competitive performance among open-source LMMs with similar model sizes. In addition, we introduce a safety-tuned model with DPO, aiming to mitigate harmful behaviors such as hallucinations and improve safety. We open-source our models, curated large-scale datasets, and our fine-tuning codebase to facilitate further advancements in LMM research. Associated resources will be available on our project page above.
DeepSeek-Coder-V2: Breaking the Barrier of Closed-Source Models in Code Intelligence
We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.
JetMoE: Reaching Llama2 Performance with 0.1M Dollars
Large Language Models (LLMs) have achieved remarkable results, but their increasing resource demand has become a major obstacle to the development of powerful and accessible super-human intelligence. This report introduces JetMoE-8B, a new LLM trained with less than $0.1 million, using 1.25T tokens from carefully mixed open-source corpora and 30,000 H100 GPU hours. Despite its low cost, the JetMoE-8B demonstrates impressive performance, with JetMoE-8B outperforming the Llama2-7B model and JetMoE-8B-Chat surpassing the Llama2-13B-Chat model. These results suggest that LLM training can be much more cost-effective than generally thought. JetMoE-8B is based on an efficient Sparsely-gated Mixture-of-Experts (SMoE) architecture, composed of attention and feedforward experts. Both layers are sparsely activated, allowing JetMoE-8B to have 8B parameters while only activating 2B for each input token, reducing inference computation by about 70% compared to Llama2-7B. Moreover, JetMoE-8B is highly open and academia-friendly, using only public datasets and training code. All training parameters and data mixtures have been detailed in this report to facilitate future efforts in the development of open foundation models. This transparency aims to encourage collaboration and further advancements in the field of accessible and efficient LLMs. The model weights are publicly available at https://github.com/myshell-ai/JetMoE.
Granite Code Models: A Family of Open Foundation Models for Code Intelligence
Large Language Models (LLMs) trained on code are revolutionizing the software development process. Increasingly, code LLMs are being integrated into software development environments to improve the productivity of human programmers, and LLM-based agents are beginning to show promise for handling complex tasks autonomously. Realizing the full potential of code LLMs requires a wide range of capabilities, including code generation, fixing bugs, explaining and documenting code, maintaining repositories, and more. In this work, we introduce the Granite series of decoder-only code models for code generative tasks, trained with code written in 116 programming languages. The Granite Code models family consists of models ranging in size from 3 to 34 billion parameters, suitable for applications ranging from complex application modernization tasks to on-device memory-constrained use cases. Evaluation on a comprehensive set of tasks demonstrates that Granite Code models consistently reaches state-of-the-art performance among available open-source code LLMs. The Granite Code model family was optimized for enterprise software development workflows and performs well across a range of coding tasks (e.g. code generation, fixing and explanation), making it a versatile all around code model. We release all our Granite Code models under an Apache 2.0 license for both research and commercial use.
Multilingual Machine Translation with Open Large Language Models at Practical Scale: An Empirical Study
Large language models (LLMs) have shown continuously improving multilingual capabilities, and even small-scale open-source models have demonstrated rapid performance enhancement. In this paper, we systematically explore the abilities of open LLMs with less than ten billion parameters to handle multilingual machine translation (MT) tasks. We conduct comprehensive evaluations on six popular LLMs and find that models like Gemma2-9B exhibit impressive multilingual translation capabilities. We then introduce the Parallel-First Monolingual-Second (PFMS) data mixing strategy in the continual pretraining stage to further enhance the MT performance and present GemmaX2-28, a 9B model achieving top-tier multilingual translation performance across 28 languages. Specifically, GemmaX2-28 consistently outperforms the state-of-the-art (SOTA) models such as TowerInstruct and XALMA and achieves competitive performance with Google Translate and GPT-4-turbo.
WildGuard: Open One-Stop Moderation Tools for Safety Risks, Jailbreaks, and Refusals of LLMs
We introduce WildGuard -- an open, light-weight moderation tool for LLM safety that achieves three goals: (1) identifying malicious intent in user prompts, (2) detecting safety risks of model responses, and (3) determining model refusal rate. Together, WildGuard serves the increasing needs for automatic safety moderation and evaluation of LLM interactions, providing a one-stop tool with enhanced accuracy and broad coverage across 13 risk categories. While existing open moderation tools such as Llama-Guard2 score reasonably well in classifying straightforward model interactions, they lag far behind a prompted GPT-4, especially in identifying adversarial jailbreaks and in evaluating models' refusals, a key measure for evaluating safety behaviors in model responses. To address these challenges, we construct WildGuardMix, a large-scale and carefully balanced multi-task safety moderation dataset with 92K labeled examples that cover vanilla (direct) prompts and adversarial jailbreaks, paired with various refusal and compliance responses. WildGuardMix is a combination of WildGuardTrain, the training data of WildGuard, and WildGuardTest, a high-quality human-annotated moderation test set with 5K labeled items covering broad risk scenarios. Through extensive evaluations on WildGuardTest and ten existing public benchmarks, we show that WildGuard establishes state-of-the-art performance in open-source safety moderation across all the three tasks compared to ten strong existing open-source moderation models (e.g., up to 26.4% improvement on refusal detection). Importantly, WildGuard matches and sometimes exceeds GPT-4 performance (e.g., up to 3.9% improvement on prompt harmfulness identification). WildGuard serves as a highly effective safety moderator in an LLM interface, reducing the success rate of jailbreak attacks from 79.8% to 2.4%.
Zyda: A 1.3T Dataset for Open Language Modeling
The size of large language models (LLMs) has scaled dramatically in recent years and their computational and data requirements have surged correspondingly. State-of-the-art language models, even at relatively smaller sizes, typically require training on at least a trillion tokens. This rapid advancement has eclipsed the growth of open-source datasets available for large-scale LLM pretraining. In this paper, we introduce Zyda (Zyphra Dataset), a dataset under a permissive license comprising 1.3 trillion tokens, assembled by integrating several major respected open-source datasets into a single, high-quality corpus. We apply rigorous filtering and deduplication processes, both within and across datasets, to maintain and enhance the quality derived from the original datasets. Our evaluations show that Zyda not only competes favorably with other open datasets like Dolma, FineWeb, and RefinedWeb, but also substantially improves the performance of comparable models from the Pythia suite. Our rigorous data processing methods significantly enhance Zyda's effectiveness, outperforming even the best of its constituent datasets when used independently.
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.
Llama 2: Open Foundation and Fine-Tuned Chat Models
In this work, we develop and release Llama 2, a collection of pretrained and fine-tuned large language models (LLMs) ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama 2-Chat, are optimized for dialogue use cases. Our models outperform open-source chat models on most benchmarks we tested, and based on our human evaluations for helpfulness and safety, may be a suitable substitute for closed-source models. We provide a detailed description of our approach to fine-tuning and safety improvements of Llama 2-Chat in order to enable the community to build on our work and contribute to the responsible development of LLMs.
Reverse-Engineered Reasoning for Open-Ended Generation
While the ``deep reasoning'' paradigm has spurred significant advances in verifiable domains like mathematics, its application to open-ended, creative generation remains a critical challenge. The two dominant methods for instilling reasoning -- reinforcement learning (RL) and instruction distillation -- falter in this area; RL struggles with the absence of clear reward signals and high-quality reward models, while distillation is prohibitively expensive and capped by the teacher model's capabilities. To overcome these limitations, we introduce REverse-Engineered Reasoning (REER), a new paradigm that fundamentally shifts the approach. Instead of building a reasoning process ``forwards'' through trial-and-error or imitation, REER works ``backwards'' from known-good solutions to computationally discover the latent, step-by-step deep reasoning process that could have produced them. Using this scalable, gradient-free approach, we curate and open-source DeepWriting-20K, a large-scale dataset of 20,000 deep reasoning trajectories for open-ended tasks. Our model, DeepWriter-8B, trained on this data, not only surpasses strong open-source baselines but also achieves performance competitive with, and at times superior to, leading proprietary models like GPT-4o and Claude 3.5.
Baichuan 2: Open Large-scale Language Models
Large language models (LLMs) have demonstrated remarkable performance on a variety of natural language tasks based on just a few examples of natural language instructions, reducing the need for extensive feature engineering. However, most powerful LLMs are closed-source or limited in their capability for languages other than English. In this technical report, we present Baichuan 2, a series of large-scale multilingual language models containing 7 billion and 13 billion parameters, trained from scratch, on 2.6 trillion tokens. Baichuan 2 matches or outperforms other open-source models of similar size on public benchmarks like MMLU, CMMLU, GSM8K, and HumanEval. Furthermore, Baichuan 2 excels in vertical domains such as medicine and law. We will release all pre-training model checkpoints to benefit the research community in better understanding the training dynamics of Baichuan 2.
Cross-Domain Evaluation of Transformer-Based Vulnerability Detection on Open & Industry Data
Deep learning solutions for vulnerability detection proposed in academic research are not always accessible to developers, and their applicability in industrial settings is rarely addressed. Transferring such technologies from academia to industry presents challenges related to trustworthiness, legacy systems, limited digital literacy, and the gap between academic and industrial expertise. For deep learning in particular, performance and integration into existing workflows are additional concerns. In this work, we first evaluate the performance of CodeBERT for detecting vulnerable functions in industrial and open-source software. We analyse its cross-domain generalisation when fine-tuned on open-source data and tested on industrial data, and vice versa, also exploring strategies for handling class imbalance. Based on these results, we develop AI-DO(Automating vulnerability detection Integration for Developers' Operations), a Continuous Integration-Continuous Deployment (CI/CD)-integrated recommender system that uses fine-tuned CodeBERT to detect and localise vulnerabilities during code review without disrupting workflows. Finally, we assess the tool's perceived usefulness through a survey with the company's IT professionals. Our results show that models trained on industrial data detect vulnerabilities accurately within the same domain but lose performance on open-source code, while a deep learner fine-tuned on open data, with appropriate undersampling techniques, improves the detection of vulnerabilities.
A New Massive Multilingual Dataset for High-Performance Language Technologies
We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work.
From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning
In the realm of Large Language Models, the balance between instruction data quality and quantity has become a focal point. Recognizing this, we introduce a self-guided methodology for LLMs to autonomously discern and select cherry samples from vast open-source datasets, effectively minimizing manual curation and potential cost for instruction tuning an LLM. Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal tool to identify discrepancies between a model's expected responses and its autonomous generation prowess. Through the adept application of IFD, cherry samples are pinpointed, leading to a marked uptick in model training efficiency. Empirical validations on renowned datasets like Alpaca and WizardLM underpin our findings; with a mere 10% of conventional data input, our strategy showcases improved results. This synthesis of self-guided cherry-picking and the IFD metric signifies a transformative leap in the optimization of LLMs, promising both efficiency and resource-conscious advancements. Codes, data, and models are available: https://github.com/MingLiiii/Cherry_LLM
INS-MMBench: A Comprehensive Benchmark for Evaluating LVLMs' Performance in Insurance
Large Vision-Language Models (LVLMs) have demonstrated outstanding performance in various general multimodal applications such as image recognition and visual reasoning, and have also shown promising potential in specialized domains. However, the application potential of LVLMs in the insurance domain-characterized by rich application scenarios and abundant multimodal data-has not been effectively explored. There is no systematic review of multimodal tasks in the insurance domain, nor a benchmark specifically designed to evaluate the capabilities of LVLMs in insurance. This gap hinders the development of LVLMs within the insurance domain. In this paper, we systematically review and distill multimodal tasks for four representative types of insurance: auto insurance, property insurance, health insurance, and agricultural insurance. We propose INS-MMBench, the first comprehensive LVLMs benchmark tailored for the insurance domain. INS-MMBench comprises a total of 2.2K thoroughly designed multiple-choice questions, covering 12 meta-tasks and 22 fundamental tasks. Furthermore, we evaluate multiple representative LVLMs, including closed-source models such as GPT-4o and open-source models like BLIP-2. This evaluation not only validates the effectiveness of our benchmark but also provides an in-depth performance analysis of current LVLMs on various multimodal tasks in the insurance domain. We hope that INS-MMBench will facilitate the further application of LVLMs in the insurance domain and inspire interdisciplinary development. Our dataset and evaluation code are available at https://github.com/FDU-INS/INS-MMBench.
EVA2.0: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training
Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems. However, previous works mainly focus on showing and evaluating the conversational performance of the released dialogue model, ignoring the discussion of some key factors towards a powerful human-like chatbot, especially in Chinese scenarios. In this paper, we conduct extensive experiments to investigate these under-explored factors, including data quality control, model architecture designs, training approaches, and decoding strategies. We propose EVA2.0, a large-scale pre-trained open-domain Chinese dialogue model with 2.8 billion parameters, and make our models and code publicly available. To our knowledge, EVA2.0 is the largest open-source Chinese dialogue model. Automatic and human evaluations show that our model significantly outperforms other open-source counterparts. We also discuss the limitations of this work by presenting some failure cases and pose some future directions.
Hard2Verify: A Step-Level Verification Benchmark for Open-Ended Frontier Math
Large language model (LLM)-based reasoning systems have recently achieved gold medal-level performance in the IMO 2025 competition, writing mathematical proofs where, to receive full credit, each step must be not only correct but also sufficiently supported. To train LLM-based reasoners in such challenging, open-ended settings, strong verifiers capable of catching step-level mistakes are necessary prerequisites. We introduce Hard2Verify, a human-annotated, step-level verification benchmark produced with over 500 hours of human labor. Hard2Verify is designed to rigorously assess step-level verifiers at the frontier: Verifiers must provide step-level annotations or identify the first error in responses generated by frontier LLMs for very recent, challenging, and open-ended math questions. We evaluate 29 generative critics and process reward models, demonstrating that, beyond a few standouts, open-source verifiers lag closed source models. We subsequently analyze what drives poor performance in step-level verification, the impacts of scaling verifier compute, as well as fundamental questions such as self-verification and verification-generation dynamics.
M5 -- A Diverse Benchmark to Assess the Performance of Large Multimodal Models Across Multilingual and Multicultural Vision-Language Tasks
Since the release of ChatGPT, the field of Natural Language Processing has experienced rapid advancements, particularly in Large Language Models (LLMs) and their multimodal counterparts, Large Multimodal Models (LMMs). Despite their impressive capabilities, LLMs often exhibit significant performance disparities across different languages and cultural contexts, as demonstrated by various text-only benchmarks. However, current research lacks such benchmarks for multimodal visio-linguistic settings. This work fills this gap by introducing M5, the first comprehensive benchmark designed to evaluate LMMs on diverse vision-language tasks within a multilingual and multicultural context. M5 includes eight datasets covering five tasks and 41 languages, with a focus on underrepresented languages and culturally diverse images. Furthermore, we introduce two novel datasets, M5-VGR and M5-VLOD, including a new Visio-Linguistic Outlier Detection task, in which all evaluated open-source models fail to significantly surpass the random baseline. Through extensive evaluation and analyses, we highlight substantial task-agnostic performance disparities between high- and low-resource languages. Moreover, we show that larger models do not necessarily outperform smaller ones in a multilingual setting.
R2E-Gym: Procedural Environments and Hybrid Verifiers for Scaling Open-Weights SWE Agents
Improving open-source models on real-world SWE tasks (solving GITHUB issues) faces two key challenges: 1) scalable curation of execution environments to train these models, and, 2) optimal scaling of test-time compute. We introduce AgentGym, the largest procedurally-curated executable gym environment for training real-world SWE-agents, consisting of more than 8.7K tasks. AgentGym is powered by two main contributions: 1) SYNGEN: a synthetic data curation recipe that enables scalable curation of executable environments using test-generation and back-translation directly from commits, thereby reducing reliance on human-written issues or unit tests. We show that this enables more scalable training leading to pass@1 performance of 34.4% on SWE-Bench Verified benchmark with our 32B model. 2) Hybrid Test-time Scaling: we provide an in-depth analysis of two test-time scaling axes; execution-based and execution-free verifiers, demonstrating that they exhibit complementary strengths and limitations. Test-based verifiers suffer from low distinguishability, while execution-free verifiers are biased and often rely on stylistic features. Surprisingly, we find that while each approach individually saturates around 42-43%, significantly higher gains can be obtained by leveraging their complementary strengths. Overall, our approach achieves 51% on the SWE-Bench Verified benchmark, reflecting a new state-of-the-art for open-weight SWE-agents and for the first time showing competitive performance with proprietary models such as o1, o1-preview and sonnet-3.5-v2 (with tools). We will open-source our environments, models, and agent trajectories.
SWE-RL: Advancing LLM Reasoning via Reinforcement Learning on Open Software Evolution
The recent DeepSeek-R1 release has demonstrated the immense potential of reinforcement learning (RL) in enhancing the general reasoning capabilities of large language models (LLMs). While DeepSeek-R1 and other follow-up work primarily focus on applying RL to competitive coding and math problems, this paper introduces SWE-RL, the first approach to scale RL-based LLM reasoning for real-world software engineering. Leveraging a lightweight rule-based reward (e.g., the similarity score between ground-truth and LLM-generated solutions), SWE-RL enables LLMs to autonomously recover a developer's reasoning processes and solutions by learning from extensive open-source software evolution data -- the record of a software's entire lifecycle, including its code snapshots, code changes, and events such as issues and pull requests. Trained on top of Llama 3, our resulting reasoning model, Llama3-SWE-RL-70B, achieves a 41.0% solve rate on SWE-bench Verified -- a human-verified collection of real-world GitHub issues. To our knowledge, this is the best performance reported for medium-sized (<100B) LLMs to date, even comparable to leading proprietary LLMs like GPT-4o. Surprisingly, despite performing RL solely on software evolution data, Llama3-SWE-RL has even emerged with generalized reasoning skills. For example, it shows improved results on five out-of-domain tasks, namely, function coding, library use, code reasoning, mathematics, and general language understanding, whereas a supervised-finetuning baseline even leads to performance degradation on average. Overall, SWE-RL opens up a new direction to improve the reasoning capabilities of LLMs through reinforcement learning on massive software engineering data.
PhyloLM : Inferring the Phylogeny of Large Language Models and Predicting their Performances in Benchmarks
This paper introduces PhyloLM, a method adapting phylogenetic algorithms to Large Language Models (LLMs) to explore whether and how they relate to each other and to predict their performance characteristics. Our method calculates a phylogenetic distance metrics based on the similarity of LLMs' output. The resulting metric is then used to construct dendrograms, which satisfactorily capture known relationships across a set of 111 open-source and 45 closed models. Furthermore, our phylogenetic distance predicts performance in standard benchmarks, thus demonstrating its functional validity and paving the way for a time and cost-effective estimation of LLM capabilities. To sum up, by translating population genetic concepts to machine learning, we propose and validate a tool to evaluate LLM development, relationships and capabilities, even in the absence of transparent training information.
"Give Me BF16 or Give Me Death"? Accuracy-Performance Trade-Offs in LLM Quantization
Despite the popularity of large language model (LLM) quantization for inference acceleration, significant uncertainty remains regarding the accuracy-performance trade-offs associated with various quantization formats. We present a comprehensive empirical study of quantized accuracy, evaluating popular quantization formats (FP8, INT8, INT4) across academic benchmarks and real-world tasks, on the entire Llama-3.1 model family. Additionally, our study examines the difference in text generated by quantized models versus their uncompressed counterparts. Beyond benchmarks, we also present a couple of quantization improvements which allowed us to obtain state-of-the-art accuracy recovery results. Our investigation, encompassing over 500,000 individual evaluations, yields several key findings: (1) FP8 weight and activation quantization (W8A8-FP) is lossless across all model scales, (2) INT8 weight and activation quantization (W8A8-INT), when properly tuned, incurs surprisingly low 1-3% accuracy degradation, and (3) INT4 weight-only quantization (W4A16-INT) is competitive with 8-bit integer weight and activation quantization. To address the question of the "best" format for a given deployment environment, we conduct inference performance analysis using the popular open-source vLLM framework on various GPU architectures. We find that W4A16 offers the best cost-efficiency for synchronous deployments, and for asynchronous deployment on mid-tier GPUs. At the same time, W8A8 formats excel in asynchronous "continuous batching" deployment of mid- and large-size models on high-end GPUs. Our results provide a set of practical guidelines for deploying quantized LLMs across scales and performance requirements.
A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1
Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.
Impact of Large Language Models on Generating Software Specifications
Software specifications are essential for ensuring the reliability of software systems. Existing specification extraction approaches, however, suffer from limited generalizability and require manual efforts. The recent emergence of Large Language Models (LLMs), which have been successfully applied to numerous software engineering tasks, offers a promising avenue for automating this process. In this paper, we conduct the first empirical study to evaluate the capabilities of LLMs for generating software specifications from software comments or documentation. We evaluate LLMs' performance with Few Shot Learning (FSL), enabling LLMs to generalize from a small number of examples, as well as different prompt construction strategies, and compare the performance of LLMs with traditional approaches. Additionally, we conduct a comparative diagnosis of the failure cases from both LLMs and traditional methods, identifying their unique strengths and weaknesses. Lastly, we conduct extensive experiments on 15 state of the art LLMs, evaluating their performance and cost effectiveness for generating software specifications. Our results show that with FSL, LLMs outperform traditional methods (by 5.6%), and more sophisticated prompt construction strategies can further enlarge this performance gap (up to 5.1 to 10.0%). Yet, LLMs suffer from their unique challenges, such as ineffective prompts and the lack of domain knowledge, which together account for 53 to 60% of LLM unique failures. The strong performance of open source models (e.g., StarCoder) makes closed source models (e.g., GPT 3 Davinci) less desirable due to size and cost. Our study offers valuable insights for future research to improve specification generation.
When Reasoning Meets Compression: Benchmarking Compressed Large Reasoning Models on Complex Reasoning Tasks
Recent open-source large reasoning models (LRMs) exhibit strong performance on complex reasoning tasks, but their large parameter count makes them prohibitively expensive for individuals. The compression of large language models (LLMs) offers an effective solution to reduce cost of computational resources. However, systematic studies on the performance of compressed LLMs in complex reasoning tasks, especially for LRMs, are lacking. Most works on quantization and pruning focus on preserving language modeling performance, while existing distillation works do not comprehensively benchmark student models based on reasoning difficulty or compression impact on knowledge and reasoning. In this paper, we benchmark compressed DeepSeek-R1 models on four different reasoning datasets (AIME 2024, FOLIO, Temporal Sequences of BIG-Bench Hard, and MuSiQue), ranging from mathematical to multihop reasoning, using quantization, distillation, and pruning methods. We benchmark 2.51-, 1.73-, and 1.58-bit R1 models that adopt dynamic quantization. We also benchmark distilled R1 models that are based on LLaMA or Qwen and run SparseGPT on them to obtain various sparsity levels. Studying the performance and behavior of compressed LRMs, we report their performance scores and test-time compute (number of tokens spent on each question). Notably, using MuSiQue, we find that parameter count has a much greater impact on LRMs' knowledge memorization than on their reasoning capability, which can inform the choice of compression techniques. Through our empirical analysis of test-time compute, we find that shorter model outputs generally achieve better performance than longer ones across several benchmarks for both R1 and its compressed variants, highlighting the need for more concise reasoning chains.
MooER: LLM-based Speech Recognition and Translation Models from Moore Threads
In this paper, we present MooER, a LLM-based large-scale automatic speech recognition (ASR) / automatic speech translation (AST) model of Moore Threads. A 5000h pseudo labeled dataset containing open source and self collected speech data is used for training. We achieve performance comparable to other open source models trained with up to hundreds of thousands of hours of labeled speech data. Meanwhile, experiments conducted on Covost2 Zh2en testset suggest that our model outperforms other open source Speech LLMs. A BLEU score of 25.2 can be obtained. The main contributions of this paper are summarized as follows. First, this paper presents a training strategy for encoders and LLMs on speech related tasks (including ASR and AST) using a small size of pseudo labeled data without any extra manual annotation and selection. Second, we release our ASR and AST models and plan to open-source our training code and strategy in the near future. Moreover, a model trained on 8wh scale training data is planned to be released later on.
SpikingBrain Technical Report: Spiking Brain-inspired Large Models
Mainstream Transformer-based large language models face major efficiency bottlenecks: training computation scales quadratically with sequence length, and inference memory grows linearly, limiting long-context processing. Building large models on non-NVIDIA platforms also poses challenges for stable and efficient training. To address this, we introduce SpikingBrain, a family of brain-inspired models designed for efficient long-context training and inference. SpikingBrain leverages the MetaX GPU cluster and focuses on three aspects: (1) Model Architecture: linear and hybrid-linear attention architectures with adaptive spiking neurons; (2) Algorithmic Optimizations: an efficient, conversion-based training pipeline and a dedicated spike coding framework; (3) System Engineering: customized training frameworks, operator libraries, and parallelism strategies tailored to MetaX hardware. Using these techniques, we develop two models: SpikingBrain-7B, a linear LLM, and SpikingBrain-76B, a hybrid-linear MoE LLM. These models demonstrate the feasibility of large-scale LLM development on non-NVIDIA platforms. SpikingBrain achieves performance comparable to open-source Transformer baselines while using only about 150B tokens for continual pre-training. Our models significantly improve long-sequence training efficiency and deliver inference with (partially) constant memory and event-driven spiking behavior. For example, SpikingBrain-7B attains over 100x speedup in Time to First Token for 4M-token sequences. Training remains stable for weeks on hundreds of MetaX C550 GPUs, with the 7B model reaching a Model FLOPs Utilization of 23.4 percent. The proposed spiking scheme achieves 69.15 percent sparsity, enabling low-power operation. Overall, this work demonstrates the potential of brain-inspired mechanisms to drive the next generation of efficient and scalable large model design.
Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities, making them highly successful in a variety of tasks. However, when used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4. As intelligent agents, LLMs need to have the capabilities of task planning, long-term memory, and the ability to leverage external tools to achieve satisfactory performance. Various methods have been proposed to enhance the agent capabilities of LLMs. On the one hand, methods involve constructing agent-specific data and fine-tuning the models. On the other hand, some methods focus on designing prompts that effectively activate the reasoning abilities of the LLMs. We explore both strategies on the 7B and 13B models. We propose a comprehensive method for constructing agent-specific data using GPT-4. Through supervised fine-tuning with constructed data, we find that for these models with a relatively small number of parameters, supervised fine-tuning can significantly reduce hallucination outputs and formatting errors in agent tasks. Furthermore, techniques such as multi-path reasoning and task decomposition can effectively decrease problem complexity and enhance the performance of LLMs as agents. We evaluate our method on five agent tasks of AgentBench and achieve satisfactory results.
MMDU: A Multi-Turn Multi-Image Dialog Understanding Benchmark and Instruction-Tuning Dataset for LVLMs
Generating natural and meaningful responses to communicate with multi-modal human inputs is a fundamental capability of Large Vision-Language Models(LVLMs). While current open-source LVLMs demonstrate promising performance in simplified scenarios such as single-turn single-image input, they fall short in real-world conversation scenarios such as following instructions in a long context history with multi-turn and multi-images. Existing LVLM benchmarks primarily focus on single-choice questions or short-form responses, which do not adequately assess the capabilities of LVLMs in real-world human-AI interaction applications. Therefore, we introduce MMDU, a comprehensive benchmark, and MMDU-45k, a large-scale instruction tuning dataset, designed to evaluate and improve LVLMs' abilities in multi-turn and multi-image conversations. We employ the clustering algorithm to ffnd the relevant images and textual descriptions from the open-source Wikipedia and construct the question-answer pairs by human annotators with the assistance of the GPT-4o model. MMDU has a maximum of 18k image+text tokens, 20 images, and 27 turns, which is at least 5x longer than previous benchmarks and poses challenges to current LVLMs. Our in-depth analysis of 15 representative LVLMs using MMDU reveals that open-source LVLMs lag behind closed-source counterparts due to limited conversational instruction tuning data. We demonstrate that ffne-tuning open-source LVLMs on MMDU-45k signiffcantly address this gap, generating longer and more accurate conversations, and improving scores on MMDU and existing benchmarks (MMStar: +1.1%, MathVista: +1.5%, ChartQA:+1.2%). Our contributions pave the way for bridging the gap between current LVLM models and real-world application demands. This project is available at https://github.com/Liuziyu77/MMDU.
LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints
Instruction following is a key capability for LLMs. However, recent studies have shown that LLMs often struggle with instructions containing multiple constraints (e.g. a request to create a social media post "in a funny tone" with "no hashtag"). Despite this, most evaluations focus solely on synthetic data. To address this, we introduce RealInstruct, the first benchmark designed to evaluate LLMs' ability to follow real-world multi-constrained instructions by leveraging queries real users asked AI assistants. We also investigate model-based evaluation as a cost-effective alternative to human annotation for this task. Our findings reveal that even the proprietary GPT-4 model fails to meet at least one constraint on over 21% of instructions, highlighting the limitations of state-of-the-art models. To address the performance gap between open-source and proprietary models, we propose the Decompose, Critique and Refine (DeCRIM) self-correction pipeline, which enhances LLMs' ability to follow constraints. DeCRIM works by decomposing the original instruction into a list of constraints and using a Critic model to decide when and where the LLM's response needs refinement. Our results show that DeCRIM improves Mistral's performance by 7.3% on RealInstruct and 8.0% on IFEval even with weak feedback. Moreover, we demonstrate that with strong feedback, open-source LLMs with DeCRIM can outperform GPT-4 on both benchmarks.
ORLM: Training Large Language Models for Optimization Modeling
Large Language Models (LLMs) have emerged as powerful tools for complex Operations Research (OR) in automating optimization modeling. However, current methodologies heavily rely on prompt engineering (e.g., multi-agent cooperation) with proprietary LLMs, raising data privacy concerns that could be prohibitive in industry applications. To tackle this issue, we propose training open-source LLMs for optimization modeling. We identify four critical requirements for the training dataset of OR LLMs, design and implement OR-Instruct, a semi-automated process for creating synthetic data tailored to specific requirements. We also introduce the IndustryOR benchmark, the first industrial benchmark for testing LLMs on solving real-world OR problems. We apply the data from OR-Instruct to various open-source LLMs of 7b size (termed as ORLMs), resulting in a significantly improved capability for optimization modeling. Our best-performing ORLM achieves state-of-the-art performance on the NL4OPT, MAMO, and IndustryOR benchmarks. Our code and data will be available at https://github.com/Cardinal-Operations/ORLM.
TransLaw: Benchmarking Large Language Models in Multi-Agent Simulation of the Collaborative Translation
Multi-agent systems empowered by large language models (LLMs) have demonstrated remarkable capabilities in a wide range of downstream applications, including machine translation. However, the potential of LLMs in translating Hong Kong legal judgments remains uncertain due to challenges such as intricate legal terminology, culturally embedded nuances, and strict linguistic structures. In this work, we introduce TransLaw, a novel multi-agent framework implemented for real-world Hong Kong case law translation. It employs three specialized agents, namely, Translator, Annotator, and Proofreader, to collaboratively produce translations for high accuracy in legal meaning, appropriateness in style, and adequate coherence and cohesion in structure. This framework supports customizable LLM configurations and achieves tremendous cost reduction compared to professional human translation services. We evaluated its performance using 13 open-source and commercial LLMs as agents and obtained interesting findings, including that it surpasses GPT-4o in legal semantic accuracy, structural coherence, and stylistic fidelity, yet trails human experts in contextualizing complex terminology and stylistic naturalness. Our platform website is available at CityUHK, and our bilingual judgment corpus used for the evaluation is available at Hugging Face.
LLMzSzŁ: a comprehensive LLM benchmark for Polish
This article introduces the first comprehensive benchmark for the Polish language at this scale: LLMzSz{\L} (LLMs Behind the School Desk). It is based on a coherent collection of Polish national exams, including both academic and professional tests extracted from the archives of the Polish Central Examination Board. It covers 4 types of exams, coming from 154 domains. Altogether, it consists of almost 19k closed-ended questions. We investigate the performance of open-source multilingual, English, and Polish LLMs to verify LLMs' abilities to transfer knowledge between languages. Also, the correlation between LLMs and humans at model accuracy and exam pass rate levels is examined. We show that multilingual LLMs can obtain superior results over monolingual ones; however, monolingual models may be beneficial when model size matters. Our analysis highlights the potential of LLMs in assisting with exam validation, particularly in identifying anomalies or errors in examination tasks.
Automated Text Scoring in the Age of Generative AI for the GPU-poor
Current research on generative language models (GLMs) for automated text scoring (ATS) has focused almost exclusively on querying proprietary models via Application Programming Interfaces (APIs). Yet such practices raise issues around transparency and security, and these methods offer little in the way of efficiency or customizability. With the recent proliferation of smaller, open-source models, there is the option to explore GLMs with computers equipped with modest, consumer-grade hardware, that is, for the "GPU poor." In this study, we analyze the performance and efficiency of open-source, small-scale GLMs for ATS. Results show that GLMs can be fine-tuned to achieve adequate, though not state-of-the-art, performance. In addition to ATS, we take small steps towards analyzing models' capacity for generating feedback by prompting GLMs to explain their scores. Model-generated feedback shows promise, but requires more rigorous evaluation focused on targeted use cases.
Executable Code Actions Elicit Better LLM Agents
Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.
Design2Code: How Far Are We From Automating Front-End Engineering?
Generative AI has made rapid advancements in recent years, achieving unprecedented capabilities in multimodal understanding and code generation. This can enable a new paradigm of front-end development, in which multimodal LLMs might directly convert visual designs into code implementations. In this work, we formalize this as a Design2Code task and conduct comprehensive benchmarking. Specifically, we manually curate a benchmark of 484 diverse real-world webpages as test cases and develop a set of automatic evaluation metrics to assess how well current multimodal LLMs can generate the code implementations that directly render into the given reference webpages, given the screenshots as input. We also complement automatic metrics with comprehensive human evaluations. We develop a suite of multimodal prompting methods and show their effectiveness on GPT-4V and Gemini Pro Vision. We further finetune an open-source Design2Code-18B model that successfully matches the performance of Gemini Pro Vision. Both human evaluation and automatic metrics show that GPT-4V performs the best on this task compared to other models. Moreover, annotators think GPT-4V generated webpages can replace the original reference webpages in 49% of cases in terms of visual appearance and content; and perhaps surprisingly, in 64% of cases GPT-4V generated webpages are considered better than the original reference webpages. Our fine-grained break-down metrics indicate that open-source models mostly lag in recalling visual elements from the input webpages and in generating correct layout designs, while aspects like text content and coloring can be drastically improved with proper finetuning.
REFINE-AF: A Task-Agnostic Framework to Align Language Models via Self-Generated Instructions using Reinforcement Learning from Automated Feedback
Instruction-based Large Language Models (LLMs) have proven effective in numerous few-shot or zero-shot Natural Language Processing (NLP) tasks. However, creating human-annotated instruction data is time-consuming, expensive, and often limited in quantity and task diversity. Previous research endeavors have attempted to address this challenge by proposing frameworks capable of generating instructions in a semi-automated and task-agnostic manner directly from the model itself. Many of these efforts have relied on large API-only parameter-based models such as GPT-3.5 (175B), which are expensive, and subject to limits on a number of queries. This paper explores the performance of three open-source small LLMs such as LLaMA 2-7B, LLama 2-13B, and Mistral 7B, using a semi-automated framework, thereby reducing human intervention, effort, and cost required to generate an instruction dataset for fine-tuning LLMs. Furthermore, we demonstrate that incorporating a Reinforcement Learning (RL) based training algorithm into this LLMs-based framework leads to further enhancements. Our evaluation of the dataset reveals that these RL-based frameworks achieve a substantial improvements in 63-66% of the tasks compared to previous approaches.
VisCoder: Fine-Tuning LLMs for Executable Python Visualization Code Generation
Large language models (LLMs) often struggle with visualization tasks like plotting diagrams, charts, where success depends on both code correctness and visual semantics. Existing instruction-tuning datasets lack execution-grounded supervision and offer limited support for iterative code correction, resulting in fragile and unreliable plot generation. We present VisCode-200K, a large-scale instruction tuning dataset for Python-based visualization and self-correction. It contains over 200K examples from two sources: (1) validated plotting code from open-source repositories, paired with natural language instructions and rendered plots; and (2) 45K multi-turn correction dialogues from Code-Feedback, enabling models to revise faulty code using runtime feedback. We fine-tune Qwen2.5-Coder-Instruct on VisCode-200K to create VisCoder, and evaluate it on PandasPlotBench. VisCoder significantly outperforms strong open-source baselines and approaches the performance of proprietary models like GPT-4o-mini. We further adopt a self-debug evaluation protocol to assess iterative repair, demonstrating the benefits of feedback-driven learning for executable, visually accurate code generation.
ParallelMuse: Agentic Parallel Thinking for Deep Information Seeking
Parallel thinking expands exploration breadth, complementing the deep exploration of information-seeking (IS) agents to further enhance problem-solving capability. However, conventional parallel thinking faces two key challenges in this setting: inefficiency from repeatedly rolling out from scratch, and difficulty in integrating long-horizon reasoning trajectories during answer generation, as limited context capacity prevents full consideration of the reasoning process. To address these issues, we propose ParallelMuse, a two-stage paradigm designed for deep IS agents. The first stage, Functionality-Specified Partial Rollout, partitions generated sequences into functional regions and performs uncertainty-guided path reuse and branching to enhance exploration efficiency. The second stage, Compressed Reasoning Aggregation, exploits reasoning redundancy to losslessly compress information relevant to answer derivation and synthesize a coherent final answer. Experiments across multiple open-source agents and benchmarks demonstrate up to 62% performance improvement with a 10--30% reduction in exploratory token consumption.
ToolSandbox: A Stateful, Conversational, Interactive Evaluation Benchmark for LLM Tool Use Capabilities
Recent large language models (LLMs) advancements sparked a growing research interest in tool assisted LLMs solving real-world challenges, which calls for comprehensive evaluation of tool-use capabilities. While previous works focused on either evaluating over stateless web services (RESTful API), based on a single turn user prompt, or an off-policy dialog trajectory, ToolSandbox includes stateful tool execution, implicit state dependencies between tools, a built-in user simulator supporting on-policy conversational evaluation and a dynamic evaluation strategy for intermediate and final milestones over an arbitrary trajectory. We show that open source and proprietary models have a significant performance gap, and complex tasks like State Dependency, Canonicalization and Insufficient Information defined in ToolSandbox are challenging even the most capable SOTA LLMs, providing brand-new insights into tool-use LLM capabilities. ToolSandbox evaluation framework is released at https://github.com/apple/ToolSandbox
Explorer: Scaling Exploration-driven Web Trajectory Synthesis for Multimodal Web Agents
Recent success in large multimodal models (LMMs) has sparked promising applications of agents capable of autonomously completing complex web tasks. While open-source LMM agents have made significant advances in offline evaluation benchmarks, their performance still falls substantially short of human-level capabilities in more realistic online settings. A key bottleneck is the lack of diverse and large-scale trajectory-level datasets across various domains, which are expensive to collect. In this paper, we address this challenge by developing a scalable recipe to synthesize the largest and most diverse trajectory-level dataset to date, containing over 94K successful multimodal web trajectories, spanning 49K unique URLs, 720K screenshots, and 33M web elements. In particular, we leverage extensive web exploration and refinement to obtain diverse task intents. The average cost is 28 cents per successful trajectory, making it affordable to a wide range of users in the community. Leveraging this dataset, we train Explorer, a multimodal web agent, and demonstrate strong performance on both offline and online web agent benchmarks such as Mind2Web-Live, Multimodal-Mind2Web, and MiniWob++. Additionally, our experiments highlight data scaling as a key driver for improving web agent capabilities. We hope this study makes state-of-the-art LMM-based agent research at a larger scale more accessible.
Llama-Embed-Nemotron-8B: A Universal Text Embedding Model for Multilingual and Cross-Lingual Tasks
We introduce llama-embed-nemotron-8b, an open-weights text embedding model that achieves state-of-the-art performance on the Multilingual Massive Text Embedding Benchmark (MMTEB) leaderboard as of October 21, 2025. While recent models show strong performance, their training data or methodologies are often not fully disclosed. We aim to address this by developing a fully open-source model, publicly releasing its weights and detailed ablation studies, and planning to share the curated training datasets. Our model demonstrates superior performance across all major embedding tasks -- including retrieval, classification and semantic textual similarity (STS) -- and excels in challenging multilingual scenarios, such as low-resource languages and cross-lingual setups. This state-of-the-art performance is driven by a novel data mix of 16.1 million query-document pairs, split between 7.7 million samples from public datasets and 8.4 million synthetically generated examples from various open-weight LLMs. One of our key contributions is a detailed ablation study analyzing core design choices, including a comparison of contrastive loss implementations, an evaluation of synthetic data generation (SDG) strategies, and the impact of model merging. The llama-embed-nemotron-8b is an instruction-aware model, supporting user-defined instructions to enhance performance for specific use-cases. This combination of top-tier performance, broad applicability, and user-driven flexibility enables it to serve as a universal text embedding solution.
The False Promise of Imitating Proprietary LLMs
An emerging method to cheaply improve a weaker language model is to finetune it on outputs from a stronger model, such as a proprietary system like ChatGPT (e.g., Alpaca, Self-Instruct, and others). This approach looks to cheaply imitate the proprietary model's capabilities using a weaker open-source model. In this work, we critically analyze this approach. We first finetune a series of LMs that imitate ChatGPT using varying base model sizes (1.5B--13B), data sources, and imitation data amounts (0.3M--150M tokens). We then evaluate the models using crowd raters and canonical NLP benchmarks. Initially, we were surprised by the output quality of our imitation models -- they appear far better at following instructions, and crowd workers rate their outputs as competitive with ChatGPT. However, when conducting more targeted automatic evaluations, we find that imitation models close little to none of the gap from the base LM to ChatGPT on tasks that are not heavily supported in the imitation data. We show that these performance discrepancies may slip past human raters because imitation models are adept at mimicking ChatGPT's style but not its factuality. Overall, we conclude that model imitation is a false promise: there exists a substantial capabilities gap between open and closed LMs that, with current methods, can only be bridged using an unwieldy amount of imitation data or by using more capable base LMs. In turn, we argue that the highest leverage action for improving open-source models is to tackle the difficult challenge of developing better base LMs, rather than taking the shortcut of imitating proprietary systems.
Step-Audio: Unified Understanding and Generation in Intelligent Speech Interaction
Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
A Critical Evaluation of AI Feedback for Aligning Large Language Models
Reinforcement learning with AI feedback (RLAIF) is a popular paradigm for improving the instruction-following abilities of powerful pre-trained language models. RLAIF first performs supervised fine-tuning (SFT) using demonstrations from a teacher model and then further fine-tunes the model with reinforcement learning (RL), using feedback from a critic model. While recent popular open-source models have demonstrated substantial improvements in performance from the RL step, in this paper we question whether the complexity of this RL step is truly warranted for AI feedback. We show that the improvements of the RL step are virtually entirely due to the widespread practice of using a weaker teacher model (e.g. GPT-3.5) for SFT data collection than the critic (e.g., GPT-4) used for AI feedback generation. Specifically, we show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing RLAIF pipelines. More generally, we find that the gains from RLAIF vary substantially across base model families, test-time evaluation protocols, and critic models. Finally, we provide a mechanistic explanation for when SFT may outperform the full two-step RLAIF pipeline as well as suggestions for making RLAIF maximally useful in practice.
OlympicArena Medal Ranks: Who Is the Most Intelligent AI So Far?
In this report, we pose the following question: Who is the most intelligent AI model to date, as measured by the OlympicArena (an Olympic-level, multi-discipline, multi-modal benchmark for superintelligent AI)? We specifically focus on the most recently released models: Claude-3.5-Sonnet, Gemini-1.5-Pro, and GPT-4o. For the first time, we propose using an Olympic medal Table approach to rank AI models based on their comprehensive performance across various disciplines. Empirical results reveal: (1) Claude-3.5-Sonnet shows highly competitive overall performance over GPT-4o, even surpassing GPT-4o on a few subjects (i.e., Physics, Chemistry, and Biology). (2) Gemini-1.5-Pro and GPT-4V are ranked consecutively just behind GPT-4o and Claude-3.5-Sonnet, but with a clear performance gap between them. (3) The performance of AI models from the open-source community significantly lags behind these proprietary models. (4) The performance of these models on this benchmark has been less than satisfactory, indicating that we still have a long way to go before achieving superintelligence. We remain committed to continuously tracking and evaluating the performance of the latest powerful models on this benchmark (available at https://github.com/GAIR-NLP/OlympicArena).
RabakBench: Scaling Human Annotations to Construct Localized Multilingual Safety Benchmarks for Low-Resource Languages
Large language models (LLMs) and their safety classifiers often perform poorly on low-resource languages due to limited training data and evaluation benchmarks. This paper introduces RabakBench, a new multilingual safety benchmark localized to Singapore's unique linguistic context, covering Singlish, Chinese, Malay, and Tamil. RabakBench is constructed through a scalable three-stage pipeline: (i) Generate - adversarial example generation by augmenting real Singlish web content with LLM-driven red teaming; (ii) Label - semi-automated multi-label safety annotation using majority-voted LLM labelers aligned with human judgments; and (iii) Translate - high-fidelity translation preserving linguistic nuance and toxicity across languages. The final dataset comprises over 5,000 safety-labeled examples across four languages and six fine-grained safety categories with severity levels. Evaluations of 11 popular open-source and closed-source guardrail classifiers reveal significant performance degradation. RabakBench not only enables robust safety evaluation in Southeast Asian multilingual settings but also offers a reproducible framework for building localized safety datasets in low-resource environments. The benchmark dataset, including the human-verified translations, and evaluation code are publicly available.
ERPO: Advancing Safety Alignment via Ex-Ante Reasoning Preference Optimization
Recent advancements in large language models (LLMs) have accelerated progress toward artificial general intelligence, yet their potential to generate harmful content poses critical safety challenges. Existing alignment methods often struggle to cover diverse safety scenarios and remain vulnerable to adversarial attacks. In this work, we propose Ex-Ante Reasoning Preference Optimization (ERPO), a novel safety alignment framework that equips LLMs with explicit preemptive reasoning through Chain-of-Thought and provides clear evidence for safety judgments by embedding predefined safety rules. Specifically, our approach consists of three stages: first, equipping the model with Ex-Ante reasoning through supervised fine-tuning (SFT) using a constructed reasoning module; second, enhancing safety, usefulness, and efficiency via Direct Preference Optimization (DPO); and third, mitigating inference latency with a length-controlled iterative preference optimization strategy. Experiments on multiple open-source LLMs demonstrate that ERPO significantly enhances safety performance while maintaining response efficiency.
Modern Models, Medieval Texts: A POS Tagging Study of Old Occitan
Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing, yet their effectiveness in handling historical languages remains largely unexplored. This study examines the performance of open-source LLMs in part-of-speech (POS) tagging for Old Occitan, a historical language characterized by non-standardized orthography and significant diachronic variation. Through comparative analysis of two distinct corpora-hagiographical and medical texts-we evaluate how current models handle the inherent challenges of processing a low-resource historical language. Our findings demonstrate critical limitations in LLM performance when confronted with extreme orthographic and syntactic variability. We provide detailed error analysis and specific recommendations for improving model performance in historical language processing. This research advances our understanding of LLM capabilities in challenging linguistic contexts while offering practical insights for both computational linguistics and historical language studies.
VLABench: A Large-Scale Benchmark for Language-Conditioned Robotics Manipulation with Long-Horizon Reasoning Tasks
General-purposed embodied agents are designed to understand the users' natural instructions or intentions and act precisely to complete universal tasks. Recently, methods based on foundation models especially Vision-Language-Action models (VLAs) have shown a substantial potential to solve language-conditioned manipulation (LCM) tasks well. However, existing benchmarks do not adequately meet the needs of VLAs and relative algorithms. To better define such general-purpose tasks in the context of LLMs and advance the research in VLAs, we present VLABench, an open-source benchmark for evaluating universal LCM task learning. VLABench provides 100 carefully designed categories of tasks, with strong randomization in each category of task and a total of 2000+ objects. VLABench stands out from previous benchmarks in four key aspects: 1) tasks requiring world knowledge and common sense transfer, 2) natural language instructions with implicit human intentions rather than templates, 3) long-horizon tasks demanding multi-step reasoning, and 4) evaluation of both action policies and language model capabilities. The benchmark assesses multiple competencies including understanding of mesh\&texture, spatial relationship, semantic instruction, physical laws, knowledge transfer and reasoning, etc. To support the downstream finetuning, we provide high-quality training data collected via an automated framework incorporating heuristic skills and prior information. The experimental results indicate that both the current state-of-the-art pretrained VLAs and the workflow based on VLMs face challenges in our tasks.
ScribeAgent: Towards Specialized Web Agents Using Production-Scale Workflow Data
Large Language Model (LLM) agents are rapidly improving to handle increasingly complex web-based tasks. Most of these agents rely on general-purpose, proprietary models like GPT-4 and focus on designing better prompts to improve their planning abilities. However, general-purpose LLMs are not specifically trained to understand specialized web contexts such as HTML, and they often struggle with long-horizon planning. We explore an alternative approach that fine-tunes open-source LLMs using production-scale workflow data collected from over 250 domains corresponding to 6 billion tokens. This simple yet effective approach shows substantial gains over prompting-based agents on existing benchmarks -- ScribeAgent achieves state-of-the-art direct generation performance on Mind2Web and improves the task success rate by 14.1% over the previous best text-only web agents on WebArena. We further perform detailed ablation studies on various fine-tuning design choices and provide insights into LLM selection, training recipes, context window optimization, and effect of dataset sizes.
Have LLMs Advanced Enough? A Challenging Problem Solving Benchmark For Large Language Models
The performance of large language models (LLMs) on existing reasoning benchmarks has significantly improved over the past years. In response, we present JEEBench, a considerably more challenging benchmark dataset for evaluating the problem solving abilities of LLMs. We curate 515 challenging pre-engineering mathematics, physics and chemistry problems from the highly competitive IIT JEE-Advanced exam. Long-horizon reasoning on top of deep in-domain knowledge is essential for solving problems in this benchmark. Our evaluation on various open-source and proprietary models reveals that the highest performance, even after using techniques like self-consistency, self-refinement and chain-of-thought prompting, is less than 40%. The typical failure modes of GPT-4, the best model, are errors in algebraic manipulation, difficulty in grounding abstract concepts into mathematical equations accurately and failure in retrieving relevant domain-specific concepts. We also observe that by mere prompting, GPT-4 is unable to assess risk introduced by negative marking for incorrect answers. For this, we develop a post-hoc confidence-thresholding method over self-consistency, which enables effective response selection. We hope that our challenging benchmark will guide future re-search in problem-solving using LLMs.
CellCLIP -- Learning Perturbation Effects in Cell Painting via Text-Guided Contrastive Learning
High-content screening (HCS) assays based on high-throughput microscopy techniques such as Cell Painting have enabled the interrogation of cells' morphological responses to perturbations at an unprecedented scale. The collection of such data promises to facilitate a better understanding of the relationships between different perturbations and their effects on cellular state. Towards achieving this goal, recent advances in cross-modal contrastive learning could, in theory, be leveraged to learn a unified latent space that aligns perturbations with their corresponding morphological effects. However, the application of such methods to HCS data is not straightforward due to substantial differences in the semantics of Cell Painting images compared to natural images, and the difficulty of representing different classes of perturbations (e.g., small molecule vs CRISPR gene knockout) in a single latent space. In response to these challenges, here we introduce CellCLIP, a cross-modal contrastive learning framework for HCS data. CellCLIP leverages pre-trained image encoders coupled with a novel channel encoding scheme to better capture relationships between different microscopy channels in image embeddings, along with natural language encoders for representing perturbations. Our framework outperforms current open-source models, demonstrating the best performance in both cross-modal retrieval and biologically meaningful downstream tasks while also achieving significant reductions in computation time.
Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of recent deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 44 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but they do not yet reach the accuracy of human deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
Automatic Evaluation for Text-to-image Generation: Task-decomposed Framework, Distilled Training, and Meta-evaluation Benchmark
Driven by the remarkable progress in diffusion models, text-to-image generation has made significant strides, creating a pressing demand for automatic quality evaluation of generated images. Current state-of-the-art automatic evaluation methods heavily rely on Multi-modal Large Language Models (MLLMs), particularly powerful commercial models like GPT-4o. While these models are highly effective, their substantial costs limit scalability in large-scale evaluations. Adopting open-source MLLMs is an alternative; however, their performance falls short due to significant limitations in processing multi-modal data compared to commercial MLLMs. To tackle these problems, we first propose a task decomposition evaluation framework based on GPT-4o to automatically construct a new training dataset, where the complex evaluation task is decoupled into simpler sub-tasks, effectively reducing the learning complexity. Based on this dataset, we design innovative training strategies to effectively distill GPT-4o's evaluation capabilities into a 7B open-source MLLM, MiniCPM-V-2.6. Furthermore, to reliably and comprehensively assess prior works and our proposed model, we manually annotate a meta-evaluation benchmark that includes chain-of-thought explanations alongside quality scores for generated images. Experimental results demonstrate that our distilled open-source MLLM significantly outperforms the current state-of-the-art GPT-4o-base baseline, VIEScore, with over 4.6\% improvement in Spearman and Kendall correlations with human judgments.
LAHAJA: A Robust Multi-accent Benchmark for Evaluating Hindi ASR Systems
Hindi, one of the most spoken language of India, exhibits a diverse array of accents due to its usage among individuals from diverse linguistic origins. To enable a robust evaluation of Hindi ASR systems on multiple accents, we create a benchmark, LAHAJA, which contains read and extempore speech on a diverse set of topics and use cases, with a total of 12.5 hours of Hindi audio, sourced from 132 speakers spanning 83 districts of India. We evaluate existing open-source and commercial models on LAHAJA and find their performance to be poor. We then train models using different datasets and find that our model trained on multilingual data with good speaker diversity outperforms existing models by a significant margin. We also present a fine-grained analysis which shows that the performance declines for speakers from North-East and South India, especially with content heavy in named entities and specialized terminology.
Revisiting VerilogEval: Newer LLMs, In-Context Learning, and Specification-to-RTL Tasks
The application of large-language models (LLMs) to digital hardware code generation is an emerging field. Most LLMs are primarily trained on natural language and software code. Hardware code, such as Verilog, represents only a small portion of the training data and few hardware benchmarks exist. To address this gap, the open-source VerilogEval benchmark was released in 2023, providing a consistent evaluation framework for LLMs on code completion tasks. It was tested on state-of-the-art models at the time including GPT-4. However, VerilogEval and other Verilog generation benchmarks lack failure analysis and, in present form, are not conducive to exploring prompting techniques. Also, since VerilogEval's release, both commercial and open-source models have seen continued development. In this work, we evaluate new commercial and open-source models of varying sizes against an improved VerilogEval benchmark suite. We enhance VerilogEval's infrastructure and dataset by automatically classifying failures, introduce new prompts for supporting in-context learning (ICL) examples, and extend the supported tasks to specification-to-RTL translation. We find a measurable improvement in commercial state-of-the-art models, with GPT-4 Turbo achieving a 59% pass rate on spec-to-RTL tasks. We also study the performance of open-source and domain-specific models that have emerged, and demonstrate that models can benefit substantially from ICL. We find that recently-released Llama 3.1 405B achieves a pass rate of 58%, effectively matching that of GPT-4 Turbo, and that the much smaller domain-specific RTL-Coder 6.7B models achieve an impressive 37% pass rate. However, prompt engineering is key to achieving good pass rates, and varies widely with model and task. A benchmark infrastructure that allows for prompt engineering and failure analysis is key to continued model development and deployment.
PCA-Bench: Evaluating Multimodal Large Language Models in Perception-Cognition-Action Chain
We present PCA-Bench, a multimodal decision-making benchmark for evaluating the integrated capabilities of Multimodal Large Language Models (MLLMs). Departing from previous benchmarks focusing on simplistic tasks and individual model capability, PCA-Bench introduces three complex scenarios: autonomous driving, domestic robotics, and open-world games. Given task instructions and diverse contexts, the model is required to seamlessly integrate multiple capabilities of Perception, Cognition, and Action in a reasoning chain to make accurate decisions. Moreover, PCA-Bench features error localization capabilities, scrutinizing model inaccuracies in areas such as perception, knowledge, or reasoning. This enhances the reliability of deploying MLLMs. To balance accuracy and efficiency in evaluation, we propose PCA-Eval, an automatic evaluation protocol, and assess 10 prevalent MLLMs. The results reveal significant performance disparities between open-source models and powerful proprietary models like GPT-4 Vision. To address this, we introduce Embodied-Instruction-Evolution (EIE), an automatic framework for synthesizing instruction tuning examples in multimodal embodied environments. EIE generates 7,510 training examples in PCA-Bench and enhances the performance of open-source MLLMs, occasionally surpassing GPT-4 Vision (+3\% in decision accuracy), thereby validating the effectiveness of EIE. Our findings suggest that robust MLLMs like GPT4-Vision show promise for decision-making in embodied agents, opening new avenues for MLLM research.
A Hybrid CNN-LSTM model for Video Deepfake Detection by Leveraging Optical Flow Features
Deepfakes are the synthesized digital media in order to create ultra-realistic fake videos to trick the spectator. Deep generative algorithms, such as, Generative Adversarial Networks(GAN) are widely used to accomplish such tasks. This approach synthesizes pseudo-realistic contents that are very difficult to distinguish by traditional detection methods. In most cases, Convolutional Neural Network(CNN) based discriminators are being used for detecting such synthesized media. However, it emphasise primarily on the spatial attributes of individual video frames, thereby fail to learn the temporal information from their inter-frame relations. In this paper, we leveraged an optical flow based feature extraction approach to extract the temporal features, which are then fed to a hybrid model for classification. This hybrid model is based on the combination of CNN and recurrent neural network (RNN) architectures. The hybrid model provides effective performance on open source data-sets such as, DFDC, FF++ and Celeb-DF. This proposed method shows an accuracy of 66.26%, 91.21% and 79.49% in DFDC, FF++, and Celeb-DF respectively with a very reduced No of sample size of approx 100 samples(frames). This promises early detection of fake contents compared to existing modalities.
Behind the Mask: Demographic bias in name detection for PII masking
Many datasets contain personally identifiable information, or PII, which poses privacy risks to individuals. PII masking is commonly used to redact personal information such as names, addresses, and phone numbers from text data. Most modern PII masking pipelines involve machine learning algorithms. However, these systems may vary in performance, such that individuals from particular demographic groups bear a higher risk for having their personal information exposed. In this paper, we evaluate the performance of three off-the-shelf PII masking systems on name detection and redaction. We generate data using names and templates from the customer service domain. We find that an open-source RoBERTa-based system shows fewer disparities than the commercial models we test. However, all systems demonstrate significant differences in error rate based on demographics. In particular, the highest error rates occurred for names associated with Black and Asian/Pacific Islander individuals.
Vinoground: Scrutinizing LMMs over Dense Temporal Reasoning with Short Videos
There has been growing sentiment recently that modern large multimodal models (LMMs) have addressed most of the key challenges related to short video comprehension. As a result, both academia and industry are gradually shifting their attention towards the more complex challenges posed by understanding long-form videos. However, is this really the case? Our studies indicate that LMMs still lack many fundamental reasoning capabilities even when dealing with short videos. We introduce Vinoground, a temporal counterfactual LMM evaluation benchmark encompassing 1000 short and natural video-caption pairs. We demonstrate that existing LMMs severely struggle to distinguish temporal differences between different actions and object transformations. For example, the best model GPT-4o only obtains ~50% on our text and video scores, showing a large gap compared to the human baseline of ~90%. All open-source multimodal models and CLIP-based models perform much worse, producing mostly random chance performance. Through this work, we shed light onto the fact that temporal reasoning in short videos is a problem yet to be fully solved. The dataset and evaluation code are available at https://vinoground.github.io.
Self-supervised Learning for Human Activity Recognition Using 700,000 Person-days of Wearable Data
Advances in deep learning for human activity recognition have been relatively limited due to the lack of large labelled datasets. In this study, we leverage self-supervised learning techniques on the UK-Biobank activity tracker dataset--the largest of its kind to date--containing more than 700,000 person-days of unlabelled wearable sensor data. Our resulting activity recognition model consistently outperformed strong baselines across seven benchmark datasets, with an F1 relative improvement of 2.5%-100% (median 18.4%), the largest improvements occurring in the smaller datasets. In contrast to previous studies, our results generalise across external datasets, devices, and environments. Our open-source model will help researchers and developers to build customisable and generalisable activity classifiers with high performance.
MiMo-VL Technical Report
We open-source MiMo-VL-7B-SFT and MiMo-VL-7B-RL, two powerful vision-language models delivering state-of-the-art performance in both general visual understanding and multimodal reasoning. MiMo-VL-7B-RL outperforms Qwen2.5-VL-7B on 35 out of 40 evaluated tasks, and scores 59.4 on OlympiadBench, surpassing models with up to 78B parameters. For GUI grounding applications, it sets a new standard with 56.1 on OSWorld-G, even outperforming specialized models such as UI-TARS. Our training combines four-stage pre-training (2.4 trillion tokens) with Mixed On-policy Reinforcement Learning (MORL) integrating diverse reward signals. We identify the importance of incorporating high-quality reasoning data with long Chain-of-Thought into pre-training stages, and the benefits of mixed RL despite challenges in simultaneous multi-domain optimization. We also contribute a comprehensive evaluation suite covering 50+ tasks to promote reproducibility and advance the field. The model checkpoints and full evaluation suite are available at https://github.com/XiaomiMiMo/MiMo-VL.
DeepSeek-VL: Towards Real-World Vision-Language Understanding
We present DeepSeek-VL, an open-source Vision-Language (VL) Model designed for real-world vision and language understanding applications. Our approach is structured around three key dimensions: We strive to ensure our data is diverse, scalable, and extensively covers real-world scenarios including web screenshots, PDFs, OCR, charts, and knowledge-based content, aiming for a comprehensive representation of practical contexts. Further, we create a use case taxonomy from real user scenarios and construct an instruction tuning dataset accordingly. The fine-tuning with this dataset substantially improves the model's user experience in practical applications. Considering efficiency and the demands of most real-world scenarios, DeepSeek-VL incorporates a hybrid vision encoder that efficiently processes high-resolution images (1024 x 1024), while maintaining a relatively low computational overhead. This design choice ensures the model's ability to capture critical semantic and detailed information across various visual tasks. We posit that a proficient Vision-Language Model should, foremost, possess strong language abilities. To ensure the preservation of LLM capabilities during pretraining, we investigate an effective VL pretraining strategy by integrating LLM training from the beginning and carefully managing the competitive dynamics observed between vision and language modalities. The DeepSeek-VL family (both 1.3B and 7B models) showcases superior user experiences as a vision-language chatbot in real-world applications, achieving state-of-the-art or competitive performance across a wide range of visual-language benchmarks at the same model size while maintaining robust performance on language-centric benchmarks. We have made both 1.3B and 7B models publicly accessible to foster innovations based on this foundation model.
Seeing and Understanding: Bridging Vision with Chemical Knowledge Via ChemVLM
In this technical report, we propose ChemVLM, the first open-source multimodal large language model dedicated to the fields of chemistry, designed to address the incompatibility between chemical image understanding and text analysis. Built upon the VIT-MLP-LLM architecture, we leverage ChemLLM-20B as the foundational large model, endowing our model with robust capabilities in understanding and utilizing chemical text knowledge. Additionally, we employ InternVIT-6B as a powerful image encoder. We have curated high-quality data from the chemical domain, including molecules, reaction formulas, and chemistry examination data, and compiled these into a bilingual multimodal question-answering dataset. We test the performance of our model on multiple open-source benchmarks and three custom evaluation sets. Experimental results demonstrate that our model achieves excellent performance, securing state-of-the-art results in five out of six involved tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
VARCO-VISION: Expanding Frontiers in Korean Vision-Language Models
In this paper, we introduce an open-source Korean-English vision-language model (VLM), VARCO-VISION. We incorporate a step-by-step training strategy that allows a model learn both linguistic and visual information while preserving the backbone model's knowledge. Our model demonstrates outstanding performance in diverse settings requiring bilingual image-text understanding and generation abilities compared to models of similar size. VARCO-VISION is also capable of grounding, referring, and OCR, expanding its usage and potential applications for real-world scenarios. In addition to the model, we release five Korean evaluation datasets, including four closed-set and one openset benchmarks. We anticipate that our milestone will broaden the opportunities for AI researchers aiming to train VLMs. VARCO-VISION is available at https://huggingface.co/NCSOFT/VARCO-VISION-14B.
EVOC2RUST: A Skeleton-guided Framework for Project-Level C-to-Rust Translation
Rust's compile-time safety guarantees make it ideal for safety-critical systems, creating demand for translating legacy C codebases to Rust. While various approaches have emerged for this task, they face inherent trade-offs: rule-based solutions face challenges in meeting code safety and idiomaticity requirements, while LLM-based solutions often fail to generate semantically equivalent Rust code, due to the heavy dependencies of modules across the entire codebase. Recent studies have revealed that both solutions are limited to small-scale programs. In this paper, we propose EvoC2Rust, an automated framework for converting entire C projects to equivalent Rust ones. EvoC2Rust employs a skeleton-guided translation strategy for project-level translation. The pipeline consists of three evolutionary stages: 1) it first decomposes the C project into functional modules, employs a feature-mapping-enhanced LLM to transform definitions and macros and generates type-checked function stubs, which form a compilable Rust skeleton; 2) it then incrementally translates the function, replacing the corresponding stub placeholder; 3) finally, it repairs compilation errors by integrating LLM and static analysis. Through evolutionary augmentation, EvoC2Rust combines the advantages of both rule-based and LLM-based solutions. Our evaluation on open-source benchmarks and six industrial projects demonstrates EvoC2Rust's superior performance in project-level C-to-Rust translation. On average, it achieves 17.24% and 14.32% improvements in syntax and semantic accuracy over the LLM-based approaches, along with a 96.79% higher code safety rate than the rule-based tools. At the module level, EvoC2Rust reaches 92.25% compilation and 89.53% test pass rates on industrial projects, even for complex codebases and long functions.
ParamBench: A Graduate-Level Benchmark for Evaluating LLM Understanding on Indic Subjects
Large language models have been widely evaluated on tasks such as comprehension, summarization, code generation, etc. However, their performance on graduate-level, culturally grounded questions in the Indian context remains largely unexplored. Existing Indian benchmarks emphasise basic fact-orientated queries that offer limited assessment of a deeper disciplinary understanding tailored to the Indian setting. In this paper, we present ParamBench, consisting of more than 17K questions in the Hindi language, comprising questionnaires from 21 diverse subjects. These questions are primarily derived from a nationwide graduate-level entrance examination covering topics such as history, music, instruments, yoga, literature, philosophy, law, etc.~ specifically for the Indian context. Additionally, we assess the ability of LLMs to handle diverse question formats - such as list-based matching, assertion-reason pairs, and sequence ordering - alongside conventional multiple-choice questions. We evaluated the performance of more than 16 open source LLMs on this benchmark, observing that Gemma3-27B attains the highest overall accuracy of 56.4\%. Furthermore, subject-wise analysis indicates that even for the best-performing LLMs, performance remains weak on topics such as music, classical instruments, and law, underscoring persistent challenges in culturally grounded reasoning. The dataset and source code is present at https://github.com/ayushbits/ParamBench.
EmoBench-M: Benchmarking Emotional Intelligence for Multimodal Large Language Models
With the integration of Multimodal large language models (MLLMs) into robotic systems and various AI applications, embedding emotional intelligence (EI) capabilities into these models is essential for enabling robots to effectively address human emotional needs and interact seamlessly in real-world scenarios. Existing static, text-based, or text-image benchmarks overlook the multimodal complexities of real-world interactions and fail to capture the dynamic, multimodal nature of emotional expressions, making them inadequate for evaluating MLLMs' EI. Based on established psychological theories of EI, we build EmoBench-M, a novel benchmark designed to evaluate the EI capability of MLLMs across 13 valuation scenarios from three key dimensions: foundational emotion recognition, conversational emotion understanding, and socially complex emotion analysis. Evaluations of both open-source and closed-source MLLMs on EmoBench-M reveal a significant performance gap between them and humans, highlighting the need to further advance their EI capabilities. All benchmark resources, including code and datasets, are publicly available at https://emo-gml.github.io/.
CycleResearcher: Improving Automated Research via Automated Review
The automation of scientific discovery has been a long-standing goal within the research community, driven by the potential to accelerate knowledge creation. While significant progress has been made using commercial large language models (LLMs) as research assistants or idea generators, the possibility of automating the entire research process with open-source LLMs remains largely unexplored. This paper explores the feasibility of using open-source post-trained LLMs as autonomous agents capable of performing the full cycle of automated research and review, from literature review and manuscript preparation to peer review and paper revision. Our iterative preference training framework consists of CycleResearcher, which conducts research tasks, and CycleReviewer, which simulates the peer review process, providing iterative feedback via reinforcement learning. To train these models, we develop two new datasets, Review-5k and Research-14k, reflecting real-world machine learning research and peer review dynamics. Our results demonstrate that CycleReviewer achieves a 26.89\% improvement in mean absolute error (MAE) over individual human reviewers in predicting paper scores, indicating that LLMs can surpass expert-level performance in research evaluation. In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, surpassing the preprint level of 5.24 from human experts and approaching the accepted paper level of 5.69. This work represents a significant step toward fully automated scientific inquiry, providing ethical safeguards and advancing AI-driven research capabilities. The code, dataset and model weight are released at http://github/minjun-zhu/Researcher.
Data Interpreter: An LLM Agent For Data Science
Large Language Model (LLM)-based agents have demonstrated remarkable effectiveness. However, their performance can be compromised in data science scenarios that require real-time data adjustment, expertise in optimization due to complex dependencies among various tasks, and the ability to identify logical errors for precise reasoning. In this study, we introduce the Data Interpreter, a solution designed to solve with code that emphasizes three pivotal techniques to augment problem-solving in data science: 1) dynamic planning with hierarchical graph structures for real-time data adaptability;2) tool integration dynamically to enhance code proficiency during execution, enriching the requisite expertise;3) logical inconsistency identification in feedback, and efficiency enhancement through experience recording. We evaluate the Data Interpreter on various data science and real-world tasks. Compared to open-source baselines, it demonstrated superior performance, exhibiting significant improvements in machine learning tasks, increasing from 0.86 to 0.95. Additionally, it showed a 26% increase in the MATH dataset and a remarkable 112% improvement in open-ended tasks. The solution will be released at https://github.com/geekan/MetaGPT.
Can Large Language Models Adapt to Other Agents In-Context?
As the research community aims to build better AI assistants that are more dynamic and personalized to the diversity of humans that they interact with, there is increased interest in evaluating the theory of mind capabilities of large language models (LLMs). Indeed, several recent studies suggest that LLM theory of mind capabilities are quite impressive, approximating human-level performance. Our paper aims to rebuke this narrative and argues instead that past studies were not directly measuring agent performance, potentially leading to findings that are illusory in nature as a result. We draw a strong distinction between what we call literal theory of mind i.e. measuring the agent's ability to predict the behavior of others and functional theory of mind i.e. adapting to agents in-context based on a rational response to predictions of their behavior. We find that top performing open source LLMs may display strong capabilities in literal theory of mind, depending on how they are prompted, but seem to struggle with functional theory of mind -- even when partner policies are exceedingly simple. Our work serves to highlight the double sided nature of inductive bias in LLMs when adapting to new situations. While this bias can lead to strong performance over limited horizons, it often hinders convergence to optimal long-term behavior.
OpenCOLE: Towards Reproducible Automatic Graphic Design Generation
Automatic generation of graphic designs has recently received considerable attention. However, the state-of-the-art approaches are complex and rely on proprietary datasets, which creates reproducibility barriers. In this paper, we propose an open framework for automatic graphic design called OpenCOLE, where we build a modified version of the pioneering COLE and train our model exclusively on publicly available datasets. Based on GPT4V evaluations, our model shows promising performance comparable to the original COLE. We release the pipeline and training results to encourage open development.
ULTra-AV: A Unified Longitudinal Trajectory Dataset for Automated Vehicle
Automated Vehicles (AVs) promise significant advances in transportation. Critical to these improvements is understanding AVs' longitudinal behavior, relying heavily on real-world trajectory data. Existing open-source trajectory datasets of AV, however, often fall short in refinement, reliability, and completeness, hindering effective performance metrics analysis and model development. This study addresses these challenges by creating a Unified Longitudinal TRAjectory dataset for AVs (Ultra-AV) to analyze their microscopic longitudinal driving behaviors. This dataset compiles data from 13 distinct sources, encompassing various AV types, test sites, and experiment scenarios. We established a three-step data processing: 1. extraction of longitudinal trajectory data, 2. general data cleaning, and 3. data-specific cleaning to obtain the longitudinal trajectory data and car-following trajectory data. The validity of the processed data is affirmed through performance evaluations across safety, mobility, stability, and sustainability, along with an analysis of the relationships between variables in car-following models. Our work not only furnishes researchers with standardized data and metrics for longitudinal AV behavior studies but also sets guidelines for data collection and model development.
CACTUS: Chemistry Agent Connecting Tool-Usage to Science
Large language models (LLMs) have shown remarkable potential in various domains, but they often lack the ability to access and reason over domain-specific knowledge and tools. In this paper, we introduced CACTUS (Chemistry Agent Connecting Tool-Usage to Science), an LLM-based agent that integrates cheminformatics tools to enable advanced reasoning and problem-solving in chemistry and molecular discovery. We evaluate the performance of CACTUS using a diverse set of open-source LLMs, including Gemma-7b, Falcon-7b, MPT-7b, Llama2-7b, and Mistral-7b, on a benchmark of thousands of chemistry questions. Our results demonstrate that CACTUS significantly outperforms baseline LLMs, with the Gemma-7b and Mistral-7b models achieving the highest accuracy regardless of the prompting strategy used. Moreover, we explore the impact of domain-specific prompting and hardware configurations on model performance, highlighting the importance of prompt engineering and the potential for deploying smaller models on consumer-grade hardware without significant loss in accuracy. By combining the cognitive capabilities of open-source LLMs with domain-specific tools, CACTUS can assist researchers in tasks such as molecular property prediction, similarity searching, and drug-likeness assessment. Furthermore, CACTUS represents a significant milestone in the field of cheminformatics, offering an adaptable tool for researchers engaged in chemistry and molecular discovery. By integrating the strengths of open-source LLMs with domain-specific tools, CACTUS has the potential to accelerate scientific advancement and unlock new frontiers in the exploration of novel, effective, and safe therapeutic candidates, catalysts, and materials. Moreover, CACTUS's ability to integrate with automated experimentation platforms and make data-driven decisions in real time opens up new possibilities for autonomous discovery.
EthioLLM: Multilingual Large Language Models for Ethiopian Languages with Task Evaluation
Large language models (LLMs) have gained popularity recently due to their outstanding performance in various downstream Natural Language Processing (NLP) tasks. However, low-resource languages are still lagging behind current state-of-the-art (SOTA) developments in the field of NLP due to insufficient resources to train LLMs. Ethiopian languages exhibit remarkable linguistic diversity, encompassing a wide array of scripts, and are imbued with profound religious and cultural significance. This paper introduces EthioLLM -- multilingual large language models for five Ethiopian languages (Amharic, Ge'ez, Afan Oromo, Somali, and Tigrinya) and English, and Ethiobenchmark -- a new benchmark dataset for various downstream NLP tasks. We evaluate the performance of these models across five downstream NLP tasks. We open-source our multilingual language models, new benchmark datasets for various downstream tasks, and task-specific fine-tuned language models and discuss the performance of the models. Our dataset and models are available at the https://huggingface.co/EthioNLP repository.
Tur[k]ingBench: A Challenge Benchmark for Web Agents
Can advanced multi-modal models effectively tackle complex web-based tasks? Such tasks are often found on crowdsourcing platforms, where crowdworkers engage in challenging micro-tasks within web-based environments. Building on this idea, we present TurkingBench, a benchmark consisting of tasks presented as web pages with textual instructions and multi-modal contexts. Unlike previous approaches that rely on artificially synthesized web pages, our benchmark uses natural HTML pages originally designed for crowdsourcing workers to perform various annotation tasks. Each task's HTML instructions are instantiated with different values derived from crowdsourcing tasks, creating diverse instances. This benchmark includes 32.2K instances spread across 158 tasks. To support the evaluation of TurkingBench, we have developed a framework that links chatbot responses to actions on web pages (e.g., modifying a text box, selecting a radio button). We assess the performance of cutting-edge private and open-source models, including language-only and vision-language models (such as GPT4 and InternVL), on this benchmark. Our results show that while these models outperform random chance, there is still significant room for improvement. We hope that this benchmark will drive progress in the evaluation and development of web-based agents.
LLM4SecHW: Leveraging Domain Specific Large Language Model for Hardware Debugging
This paper presents LLM4SecHW, a novel framework for hardware debugging that leverages domain specific Large Language Model (LLM). Despite the success of LLMs in automating various software development tasks, their application in the hardware security domain has been limited due to the constraints of commercial LLMs and the scarcity of domain specific data. To address these challenges, we propose a unique approach to compile a dataset of open source hardware design defects and their remediation steps, utilizing version control data. This dataset provides a substantial foundation for training machine learning models for hardware. LLM4SecHW employs fine tuning of medium sized LLMs based on this dataset, enabling the identification and rectification of bugs in hardware designs. This pioneering approach offers a reference workflow for the application of fine tuning domain specific LLMs in other research areas. We evaluate the performance of our proposed system on various open source hardware designs, demonstrating its efficacy in accurately identifying and correcting defects. Our work brings a new perspective on automating the quality control process in hardware design.
ChatCounselor: A Large Language Models for Mental Health Support
This paper presents ChatCounselor, a large language model (LLM) solution designed to provide mental health support. Unlike generic chatbots, ChatCounselor is distinguished by its foundation in real conversations between consulting clients and professional psychologists, enabling it to possess specialized knowledge and counseling skills in the field of psychology. The training dataset, Psych8k, was constructed from 260 in-depth interviews, each spanning an hour. To assess the quality of counseling responses, the counseling Bench was devised. Leveraging GPT-4 and meticulously crafted prompts based on seven metrics of psychological counseling assessment, the model underwent evaluation using a set of real-world counseling questions. Impressively, ChatCounselor surpasses existing open-source models in the counseling Bench and approaches the performance level of ChatGPT, showcasing the remarkable enhancement in model capability attained through high-quality domain-specific data.
POLCA: Power Oversubscription in LLM Cloud Providers
Recent innovation in large language models (LLMs), and their myriad use-cases have rapidly driven up the compute capacity demand for datacenter GPUs. Several cloud providers and other enterprises have made substantial plans of growth in their datacenters to support these new workloads. One of the key bottleneck resources in datacenters is power, and given the increasing model sizes of LLMs, they are becoming increasingly power intensive. In this paper, we show that there is a significant opportunity to oversubscribe power in LLM clusters. Power oversubscription improves the power efficiency of these datacenters, allowing more deployable servers per datacenter, and reduces the deployment time, since building new datacenters is slow. We extensively characterize the power consumption patterns of a variety of LLMs and their configurations. We identify the differences between the inference and training power consumption patterns. Based on our analysis of these LLMs, we claim that the average and peak power utilization in LLM clusters for inference should not be very high. Our deductions align with the data from production LLM clusters, revealing that inference workloads offer substantial headroom for power oversubscription. However, the stringent set of telemetry and controls that GPUs offer in a virtualized environment, makes it challenging to have a reliable and robust power oversubscription mechanism. We propose POLCA, our framework for power oversubscription that is robust, reliable, and readily deployable for GPU clusters. Using open-source models to replicate the power patterns observed in production, we simulate POLCA and demonstrate that we can deploy 30% more servers in the same GPU cluster for inference, with minimal performance loss
Hammer: Robust Function-Calling for On-Device Language Models via Function Masking
Large language models have demonstrated impressive value in performing as autonomous agents when equipped with external tools and API calls. Nonetheless, effectively harnessing their potential for executing complex tasks crucially relies on enhancements in their function calling capabilities. This paper identifies a critical gap in existing function calling models, where performance varies significantly across benchmarks, often due to being misled by specific naming conventions. To address such an issue, we introduce Hammer, a novel family of foundation models specifically engineered for on-device function calling. Hammer employs an augmented dataset that enhances models' sensitivity to irrelevant functions and incorporates function masking techniques to minimize misleading. Our empirical evaluations reveal that Hammer not only outperforms larger models but also demonstrates robust generalization across diverse benchmarks, achieving sota results. Our open source contributions include a specialized dataset for irrelevance detection, a tuning framework for enhanced generalization, and the Hammer models, establishing a new standard for function calling performance.
OmniGen2: Exploration to Advanced Multimodal Generation
In this work, we introduce OmniGen2, a versatile and open-source generative model designed to provide a unified solution for diverse generation tasks, including text-to-image, image editing, and in-context generation. Unlike OmniGen v1, OmniGen2 features two distinct decoding pathways for text and image modalities, utilizing unshared parameters and a decoupled image tokenizer. This design enables OmniGen2 to build upon existing multimodal understanding models without the need to re-adapt VAE inputs, thereby preserving the original text generation capabilities. To facilitate the training of OmniGen2, we developed comprehensive data construction pipelines, encompassing image editing and in-context generation data. Additionally, we introduce a reflection mechanism tailored for image generation tasks and curate a dedicated reflection dataset based on OmniGen2. Despite its relatively modest parameter size, OmniGen2 achieves competitive results on multiple task benchmarks, including text-to-image and image editing. To further evaluate in-context generation, also referred to as subject-driven tasks, we introduce a new benchmark named OmniContext. OmniGen2 achieves state-of-the-art performance among open-source models in terms of consistency. We will release our models, training code, datasets, and data construction pipeline to support future research in this field. Project Page: https://vectorspacelab.github.io/OmniGen2; GitHub Link: https://github.com/VectorSpaceLab/OmniGen2
OS-ATLAS: A Foundation Action Model for Generalist GUI Agents
Existing efforts in building GUI agents heavily rely on the availability of robust commercial Vision-Language Models (VLMs) such as GPT-4o and GeminiProVision. Practitioners are often reluctant to use open-source VLMs due to their significant performance lag compared to their closed-source counterparts, particularly in GUI grounding and Out-Of-Distribution (OOD) scenarios. To facilitate future research in this area, we developed OS-Atlas - a foundational GUI action model that excels at GUI grounding and OOD agentic tasks through innovations in both data and modeling. We have invested significant engineering effort in developing an open-source toolkit for synthesizing GUI grounding data across multiple platforms, including Windows, Linux, MacOS, Android, and the web. Leveraging this toolkit, we are releasing the largest open-source cross-platform GUI grounding corpus to date, which contains over 13 million GUI elements. This dataset, combined with innovations in model training, provides a solid foundation for OS-Atlas to understand GUI screenshots and generalize to unseen interfaces. Through extensive evaluation across six benchmarks spanning three different platforms (mobile, desktop, and web), OS-Atlas demonstrates significant performance improvements over previous state-of-the-art models. Our evaluation also uncovers valuable insights into continuously improving and scaling the agentic capabilities of open-source VLMs.
Code Graph Model (CGM): A Graph-Integrated Large Language Model for Repository-Level Software Engineering Tasks
Recent advances in Large Language Models (LLMs) have shown promise in function-level code generation, yet repository-level software engineering tasks remain challenging. Current solutions predominantly rely on proprietary LLM agents, which introduce unpredictability and limit accessibility, raising concerns about data privacy and model customization. This paper investigates whether open-source LLMs can effectively address repository-level tasks without requiring agent-based approaches. We demonstrate this is possible by enabling LLMs to comprehend functions and files within codebases through their semantic information and structural dependencies. To this end, we introduce Code Graph Models (CGMs), which integrate repository code graph structures into the LLM's attention mechanism and map node attributes to the LLM's input space using a specialized adapter. When combined with an agentless graph RAG framework, our approach achieves a 43.00% resolution rate on the SWE-bench Lite benchmark using the open-source Qwen2.5-72B model. This performance ranks first among open weight models, second among methods with open-source systems, and eighth overall, surpassing the previous best open-source model-based method by 12.33%.
Unleashing Reasoning Capability of LLMs via Scalable Question Synthesis from Scratch
The availability of high-quality data is one of the most important factors in improving the reasoning capability of LLMs. Existing works have demonstrated the effectiveness of creating more instruction data from seed questions or knowledge bases. Recent research indicates that continually scaling up data synthesis from strong models (e.g., GPT-4) can further elicit reasoning performance. Though promising, the open-sourced community still lacks high-quality data at scale and scalable data synthesis methods with affordable costs. To address this, we introduce ScaleQuest, a scalable and novel data synthesis method that utilizes "small-size" (e.g., 7B) open-source models to generate questions from scratch without the need for seed data with complex augmentation constraints. With the efficient ScaleQuest, we automatically constructed a mathematical reasoning dataset consisting of 1 million problem-solution pairs, which are more effective than existing open-sourced datasets. It can universally increase the performance of mainstream open-source models (i.e., Mistral, Llama3, DeepSeekMath, and Qwen2-Math) by achieving 29.2% to 46.4% gains on MATH. Notably, simply fine-tuning the Qwen2-Math-7B-Base model with our dataset can even surpass Qwen2-Math-7B-Instruct, a strong and well-aligned model on closed-source data, and proprietary models such as GPT-4-Turbo and Claude-3.5 Sonnet.
Qwen Technical Report
Large language models (LLMs) have revolutionized the field of artificial intelligence, enabling natural language processing tasks that were previously thought to be exclusive to humans. In this work, we introduce Qwen, the first installment of our large language model series. Qwen is a comprehensive language model series that encompasses distinct models with varying parameter counts. It includes Qwen, the base pretrained language models, and Qwen-Chat, the chat models finetuned with human alignment techniques. The base language models consistently demonstrate superior performance across a multitude of downstream tasks, and the chat models, particularly those trained using Reinforcement Learning from Human Feedback (RLHF), are highly competitive. The chat models possess advanced tool-use and planning capabilities for creating agent applications, showcasing impressive performance even when compared to bigger models on complex tasks like utilizing a code interpreter. Furthermore, we have developed coding-specialized models, Code-Qwen and Code-Qwen-Chat, as well as mathematics-focused models, Math-Qwen-Chat, which are built upon base language models. These models demonstrate significantly improved performance in comparison with open-source models, and slightly fall behind the proprietary models.
HiPhO: How Far Are (M)LLMs from Humans in the Latest High School Physics Olympiad Benchmark?
Recently, the physical capabilities of (M)LLMs have garnered increasing attention. However, existing benchmarks for physics suffer from two major gaps: they neither provide systematic and up-to-date coverage of real-world physics competitions such as physics Olympiads, nor enable direct performance comparison with humans. To bridge these gaps, we present HiPhO, the first benchmark dedicated to high school physics Olympiads with human-aligned evaluation. Specifically, HiPhO highlights three key innovations. (1) Comprehensive Data: It compiles 13 latest Olympiad exams from 2024-2025, spanning both international and regional competitions, and covering mixed modalities that encompass problems spanning text-only to diagram-based. (2) Professional Evaluation: We adopt official marking schemes to perform fine-grained grading at both the answer and step level, fully aligned with human examiners to ensure high-quality and domain-specific evaluation. (3) Comparison with Human Contestants: We assign gold, silver, and bronze medals to models based on official medal thresholds, thereby enabling direct comparison between (M)LLMs and human contestants. Our large-scale evaluation of 30 state-of-the-art (M)LLMs shows that: across 13 exams, open-source MLLMs mostly remain at or below the bronze level; open-source LLMs show promising progress with occasional golds; closed-source reasoning MLLMs can achieve 6 to 12 gold medals; and most models still have a significant gap from full marks. These results highlight a substantial performance gap between open-source models and top students, the strong physical reasoning capabilities of closed-source reasoning models, and the fact that there is still significant room for improvement. HiPhO, as a rigorous, human-aligned, and Olympiad-focused benchmark for advancing multimodal physical reasoning, is open-source and available at https://github.com/SciYu/HiPhO.
Learning From Mistakes Makes LLM Better Reasoner
Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve this capability, this work proposes Learning from Mistakes (LeMa), akin to human learning processes. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LeMa fine-tunes LLMs on mistake-correction data pairs generated by GPT-4. Specifically, we first collect inaccurate reasoning paths from various LLMs and then employ GPT-4 as a "corrector" to (1) identify the mistake step, (2) explain the reason for the mistake, and (3) correct the mistake and generate the final answer. Experimental results demonstrate the effectiveness of LeMa: across five backbone LLMs and two mathematical reasoning tasks, LeMa consistently improves the performance compared with fine-tuning on CoT data alone. Impressively, LeMa can also benefit specialized LLMs such as WizardMath and MetaMath, achieving 85.4% pass@1 accuracy on GSM8K and 27.1% on MATH. This surpasses the SOTA performance achieved by non-execution open-source models on these challenging tasks. Our code, data and models will be publicly available at https://github.com/microsoft/CodeT.
VisCoder2: Building Multi-Language Visualization Coding Agents
Large language models (LLMs) have recently enabled coding agents capable of generating, executing, and revising visualization code. However, existing models often fail in practical workflows due to limited language coverage, unreliable execution, and lack of iterative correction mechanisms. Progress has been constrained by narrow datasets and benchmarks that emphasize single-round generation and single-language tasks. To address these challenges, we introduce three complementary resources for advancing visualization coding agents. VisCode-Multi-679K is a large-scale, supervised dataset containing 679K validated and executable visualization samples with multi-turn correction dialogues across 12 programming languages. VisPlotBench is a benchmark for systematic evaluation, featuring executable tasks, rendered outputs, and protocols for both initial generation and multi-round self-debug. Finally, we present VisCoder2, a family of multi-language visualization models trained on VisCode-Multi-679K. Experiments show that VisCoder2 significantly outperforms strong open-source baselines and approaches the performance of proprietary models like GPT-4.1, with further gains from iterative self-debug, reaching 82.4% overall execution pass rate at the 32B scale, particularly in symbolic or compiler-dependent languages.
AM-Thinking-v1: Advancing the Frontier of Reasoning at 32B Scale
We present AM-Thinking-v1, a 32B dense language model that advances the frontier of reasoning, embodying the collaborative spirit of open-source innovation. Outperforming DeepSeek-R1 and rivaling leading Mixture-of-Experts (MoE) models like Qwen3-235B-A22B and Seed1.5-Thinking, AM-Thinking-v1 achieves impressive scores of 85.3 on AIME 2024, 74.4 on AIME 2025, and 70.3 on LiveCodeBench, showcasing state-of-the-art mathematical and coding capabilities among open-source models of similar scale. Built entirely from the open-source Qwen2.5-32B base model and publicly available queries, AM-Thinking-v1 leverages a meticulously crafted post-training pipeline - combining supervised fine-tuning and reinforcement learning - to deliver exceptional reasoning capabilities. This work demonstrates that the open-source community can achieve high performance at the 32B scale, a practical sweet spot for deployment and fine-tuning. By striking a balance between top-tier performance and real-world usability, we hope AM-Thinking-v1 inspires further collaborative efforts to harness mid-scale models, pushing reasoning boundaries while keeping accessibility at the core of innovation. We have open-sourced our model on https://huggingface.co/a-m-team/AM-Thinking-v1{Hugging Face}.
Language Models are Surprisingly Fragile to Drug Names in Biomedical Benchmarks
Medical knowledge is context-dependent and requires consistent reasoning across various natural language expressions of semantically equivalent phrases. This is particularly crucial for drug names, where patients often use brand names like Advil or Tylenol instead of their generic equivalents. To study this, we create a new robustness dataset, RABBITS, to evaluate performance differences on medical benchmarks after swapping brand and generic drug names using physician expert annotations. We assess both open-source and API-based LLMs on MedQA and MedMCQA, revealing a consistent performance drop ranging from 1-10\%. Furthermore, we identify a potential source of this fragility as the contamination of test data in widely used pre-training datasets. All code is accessible at https://github.com/BittermanLab/RABBITS, and a HuggingFace leaderboard is available at https://huggingface.co/spaces/AIM-Harvard/rabbits-leaderboard.
ProJudge: A Multi-Modal Multi-Discipline Benchmark and Instruction-Tuning Dataset for MLLM-based Process Judges
As multi-modal large language models (MLLMs) frequently exhibit errors when solving scientific problems, evaluating the validity of their reasoning processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is laborious and costly, prompting MLLMs as automated process judges has become a common practice. However, the reliability of these model-based judges remains uncertain. To address this, we introduce ProJudgeBench, the first comprehensive benchmark specifically designed for evaluating abilities of MLLM-based process judges. ProJudgeBench comprises 2,400 test cases and 50,118 step-level labels, spanning four scientific disciplines with diverse difficulty levels and multi-modal content. In ProJudgeBench, each step is meticulously annotated by human experts for correctness, error type, and explanation, enabling a systematic evaluation of judges' capabilities to detect, classify and diagnose errors. Evaluation on ProJudgeBench reveals a significant performance gap between open-source and proprietary models. To bridge this gap, we further propose ProJudge-173k, a large-scale instruction-tuning dataset, and a Dynamic Dual-Phase fine-tuning strategy that encourages models to explicitly reason through problem-solving before assessing solutions. Both contributions significantly enhance the process evaluation capabilities of open-source models. All the resources will be released to foster future research of reliable multi-modal process evaluation.
Struct2D: A Perception-Guided Framework for Spatial Reasoning in Large Multimodal Models
Unlocking spatial reasoning in Large Multimodal Models (LMMs) is crucial for enabling intelligent interaction with 3D environments. While prior efforts often rely on explicit 3D inputs or specialized model architectures, we ask: can LMMs reason about 3D space using only structured 2D representations derived from perception? We introduce Struct2D, a perception-guided prompting framework that combines bird's-eye-view (BEV) images with object marks and object-centric metadata, optionally incorporating egocentric keyframes when needed. Using Struct2D, we conduct an in-depth zero-shot analysis of closed-source LMMs (e.g., GPT-o3) and find that they exhibit surprisingly strong spatial reasoning abilities when provided with structured 2D inputs, effectively handling tasks such as relative direction estimation and route planning. Building on these insights, we construct Struct2D-Set, a large-scale instruction tuning dataset with 200K fine-grained QA pairs across eight spatial reasoning categories, generated automatically from 3D indoor scenes. We fine-tune an open-source LMM (Qwen2.5VL) on Struct2D-Set, achieving competitive performance on multiple benchmarks, including 3D question answering, dense captioning, and object grounding. Our approach demonstrates that structured 2D inputs can effectively bridge perception and language reasoning in LMMs-without requiring explicit 3D representations as input. We will release both our code and dataset to support future research.
ExpVid: A Benchmark for Experiment Video Understanding & Reasoning
Multimodal Large Language Models (MLLMs) hold promise for accelerating scientific discovery by interpreting complex experimental procedures. However, their true capabilities are poorly understood, as existing benchmarks neglect the fine-grained and long-horizon nature of authentic laboratory work, especially in wet-lab settings. To bridge this gap, we introduce ExpVid, the first benchmark designed to systematically evaluate MLLMs on scientific experiment videos. Curated from peer-reviewed video publications, ExpVid features a new three-level task hierarchy that mirrors the scientific process: (1) Fine-grained Perception of tools, materials, and actions; (2) Procedural Understanding of step order and completeness; and (3) Scientific Reasoning that connects the full experiment to its published conclusions. Our vision-centric annotation pipeline, combining automated generation with multi-disciplinary expert validation, ensures that tasks require visual grounding. We evaluate 19 leading MLLMs on ExpVid and find that while they excel at coarse-grained recognition, they struggle with disambiguating fine details, tracking state changes over time, and linking experimental procedures to scientific outcomes. Our results reveal a notable performance gap between proprietary and open-source models, particularly in high-order reasoning. ExpVid not only provides a diagnostic tool but also charts a roadmap for developing MLLMs capable of becoming trustworthy partners in scientific experimentation.
TeleMath: A Benchmark for Large Language Models in Telecom Mathematical Problem Solving
The increasing adoption of artificial intelligence in telecommunications has raised interest in the capability of Large Language Models (LLMs) to address domain-specific, mathematically intensive tasks. Although recent advancements have improved the performance of LLMs in general mathematical reasoning, their effectiveness within specialized domains, such as signal processing, network optimization, and performance analysis, remains largely unexplored. To address this gap, we introduce TeleMath, the first benchmark dataset specifically designed to evaluate LLM performance in solving mathematical problems with numerical solutions in the telecommunications domain. Comprising 500 question-answer (QnA) pairs, TeleMath covers a wide spectrum of topics in the telecommunications field. This paper outlines the proposed QnAs generation pipeline, starting from a selected seed of problems crafted by Subject Matter Experts. The evaluation of a wide range of open-source LLMs reveals that best performance on TeleMath is achieved by recent models explicitly designed for mathematical or logical reasoning. In contrast, general-purpose models, even those with a large number of parameters, often struggle with these challenges. We have released the dataset and the evaluation code to ease result reproducibility and support future research.
ComfyMind: Toward General-Purpose Generation via Tree-Based Planning and Reactive Feedback
With the rapid advancement of generative models, general-purpose generation has gained increasing attention as a promising approach to unify diverse tasks across modalities within a single system. Despite this progress, existing open-source frameworks often remain fragile and struggle to support complex real-world applications due to the lack of structured workflow planning and execution-level feedback. To address these limitations, we present ComfyMind, a collaborative AI system designed to enable robust and scalable general-purpose generation, built on the ComfyUI platform. ComfyMind introduces two core innovations: Semantic Workflow Interface (SWI) that abstracts low-level node graphs into callable functional modules described in natural language, enabling high-level composition and reducing structural errors; Search Tree Planning mechanism with localized feedback execution, which models generation as a hierarchical decision process and allows adaptive correction at each stage. Together, these components improve the stability and flexibility of complex generative workflows. We evaluate ComfyMind on three public benchmarks: ComfyBench, GenEval, and Reason-Edit, which span generation, editing, and reasoning tasks. Results show that ComfyMind consistently outperforms existing open-source baselines and achieves performance comparable to GPT-Image-1. ComfyMind paves a promising path for the development of open-source general-purpose generative AI systems. Project page: https://github.com/LitaoGuo/ComfyMind
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
UICoder: Finetuning Large Language Models to Generate User Interface Code through Automated Feedback
Large language models (LLMs) struggle to consistently generate UI code that compiles and produces visually relevant designs. Existing approaches to improve generation rely on expensive human feedback or distilling a proprietary model. In this paper, we explore the use of automated feedback (compilers and multi-modal models) to guide LLMs to generate high-quality UI code. Our method starts with an existing LLM and iteratively produces improved models by self-generating a large synthetic dataset using an original model, applying automated tools to aggressively filter, score, and de-duplicate the data into a refined higher quality dataset. The original LLM is improved by finetuning on this refined dataset. We applied our approach to several open-source LLMs and compared the resulting performance to baseline models with both automated metrics and human preferences. Our evaluation shows the resulting models outperform all other downloadable baselines and approach the performance of larger proprietary models.
MindLLM: Pre-training Lightweight Large Language Model from Scratch, Evaluations and Domain Applications
Large Language Models (LLMs) have demonstrated remarkable performance across various natural language tasks, marking significant strides towards general artificial intelligence. While general artificial intelligence is leveraged by developing increasingly large-scale models, there could be another branch to develop lightweight custom models that better serve certain domains, taking into account the high cost of training and deploying LLMs and the scarcity of resources. In this paper, we present MindLLM, a novel series of bilingual lightweight large language models, trained from scratch, alleviating such burdens by offering models with 1.3 billion and 3 billion parameters. A thorough account of experiences accrued during large model development is given, covering every step of the process, including data construction, model architecture, evaluation, and applications. Such insights are hopefully valuable for fellow academics and developers. MindLLM consistently matches or surpasses the performance of other open-source larger models on some public benchmarks. We also introduce an innovative instruction tuning framework tailored for smaller models to enhance their capabilities efficiently. Moreover, we explore the application of MindLLM in specific vertical domains such as law and finance, underscoring the agility and adaptability of our lightweight models.
Evaluating Instruction-Tuned Large Language Models on Code Comprehension and Generation
In this work, we evaluate 10 open-source instructed LLMs on four representative code comprehension and generation tasks. We have the following main findings. First, for the zero-shot setting, instructed LLMs are very competitive on code comprehension and generation tasks and sometimes even better than small SOTA models specifically fine-tuned on each downstream task. We also find that larger instructed LLMs are not always better on code-related tasks. Second, for the few-shot setting, we find that adding demonstration examples substantially helps instructed LLMs perform better on most code comprehension and generation tasks; however, the examples would sometimes induce unstable or even worse performance. Furthermore, we find widely-used BM25-based shot selection strategy significantly outperforms the basic random selection or fixed selection only on generation problems. Third, for the fine-tuning setting, we find that fine-tuning could further improve the model performance on downstream code comprehension and generation tasks compared to the zero-shot/one-shot performance. In addition, after being fine-tuned on the same downstream task dataset, instructed LLMs outperform both the small SOTA models and similar-scaled LLMs without instruction tuning. Based on our findings, we further present practical implications on model and usage recommendation, performance and cost trade-offs, and future direction.
Evaluating Large Language Models for Detecting Antisemitism
Detecting hateful content is a challenging and important problem. Automated tools, like machine-learning models, can help, but they require continuous training to adapt to the ever-changing landscape of social media. In this work, we evaluate eight open-source LLMs' capability to detect antisemitic content, specifically leveraging in-context definition as a policy guideline. We explore various prompting techniques and design a new CoT-like prompt, Guided-CoT. Guided-CoT handles the in-context policy well, increasing performance across all evaluated models, regardless of decoding configuration, model sizes, or reasoning capability. Notably, Llama 3.1 70B outperforms fine-tuned GPT-3.5. Additionally, we examine LLM errors and introduce metrics to quantify semantic divergence in model-generated rationales, revealing notable differences and paradoxical behaviors among LLMs. Our experiments highlight the differences observed across LLMs' utility, explainability, and reliability.
MMAT-1M: A Large Reasoning Dataset for Multimodal Agent Tuning
Large Language Models (LLMs), enhanced through agent tuning, have demonstrated remarkable capabilities in Chain-of-Thought (CoT) and tool utilization, significantly surpassing the performance of standalone models. However, the multimodal domain still lacks a large-scale, high-quality agent tuning dataset to unlock the full potential of multimodal large language models. To bridge this gap, we introduce MMAT-1M, the first million-scale multimodal agent tuning dataset designed to support CoT, reflection, and dynamic tool usage. Our dataset is constructed through a novel four-stage data engine: 1) We first curate publicly available multimodal datasets containing question-answer pairs; 2) Then, leveraging GPT-4o, we generate rationales for the original question-answer pairs and dynamically integrate API calls and Retrieval Augmented Generation (RAG) information through a multi-turn paradigm; 3) Furthermore, we refine the rationales through reflection to ensure logical consistency and accuracy, creating a multi-turn dialogue dataset with both Rationale and Reflection (RR); 4) Finally, to enhance efficiency, we optionally compress multi-turn dialogues into a One-turn Rationale and Reflection (ORR) format. By fine-tuning open-source multimodal models on the MMAT-1M, we observe significant performance gains. For instance, the InternVL2.5-8B-RR model achieves an average improvement of 2.7% across eight public benchmarks and 8.8% on the RAG benchmark Dyn-VQA, demonstrating the dataset's effectiveness in enhancing multimodal reasoning and tool-based capabilities. The dataset is publicly available at https://github.com/VIS-MPU-Agent/MMAT-1M.
Why We Feel: Breaking Boundaries in Emotional Reasoning with Multimodal Large Language Models
Most existing emotion analysis emphasizes which emotion arises (e.g., happy, sad, angry) but neglects the deeper why. We propose Emotion Interpretation (EI), focusing on causal factors-whether explicit (e.g., observable objects, interpersonal interactions) or implicit (e.g., cultural context, off-screen events)-that drive emotional responses. Unlike traditional emotion recognition, EI tasks require reasoning about triggers instead of mere labeling. To facilitate EI research, we present EIBench, a large-scale benchmark encompassing 1,615 basic EI samples and 50 complex EI samples featuring multifaceted emotions. Each instance demands rationale-based explanations rather than straightforward categorization. We further propose a Coarse-to-Fine Self-Ask (CFSA) annotation pipeline, which guides Vision-Language Models (VLLMs) through iterative question-answer rounds to yield high-quality labels at scale. Extensive evaluations on open-source and proprietary large language models under four experimental settings reveal consistent performance gaps-especially for more intricate scenarios-underscoring EI's potential to enrich empathetic, context-aware AI applications. Our benchmark and methods are publicly available at: https://github.com/Lum1104/EIBench, offering a foundation for advanced multimodal causal analysis and next-generation affective computing.
Plancraft: an evaluation dataset for planning with LLM agents
We present Plancraft, a multi-modal evaluation dataset for LLM agents. Plancraft has both a text-only and multi-modal interface, based on the Minecraft crafting GUI. We include the Minecraft Wiki to evaluate tool use and Retrieval Augmented Generation (RAG), as well as an oracle planner and oracle RAG information extractor, to ablate the different components of a modern agent architecture. To evaluate decision-making, Plancraft also includes a subset of examples that are intentionally unsolvable, providing a realistic challenge that requires the agent not only to complete tasks but also to decide whether they are solvable at all. We benchmark both open-source and closed-source LLMs and strategies on our task and compare their performance to a handcrafted planner. We find that LLMs and VLMs struggle with the planning problems that Plancraft introduces, and we offer suggestions on how to improve their capabilities.
"Don't Teach Minerva": Guiding LLMs Through Complex Syntax for Faithful Latin Translation with RAG
Translating a morphology-rich, low-resource language like Latin poses significant challenges. This paper introduces a reproducible draft-based refinement pipeline that elevates open-source Large Language Models (LLMs) to a performance level statistically comparable to top-tier proprietary systems. Our method first uses a fine-tuned NLLB-1.3B model to generate a high-quality, structurally faithful draft. A zero-shot LLM (Llama-3.3 or Qwen3) then polishes this draft, a process that can be further enhanced by augmenting the context with retrieved out-context examples (RAG). We demonstrate the robustness of this approach on two distinct benchmarks: a standard in-domain test set (Rosenthal, 2023) and a new, challenging out-of-domain (OOD) set of 12th-century Latin letters (2025). Our central finding is that this open-source RAG system achieves performance statistically comparable to the GPT-5 baseline, without any task-specific LLM fine-tuning. We release the pipeline, the Chartres OOD set, and evaluation scripts and models to facilitate replicability and further research.
SPECS: Specificity-Enhanced CLIP-Score for Long Image Caption Evaluation
As interest grows in generating long, detailed image captions, standard evaluation metrics become increasingly unreliable. N-gram-based metrics though efficient, fail to capture semantic correctness. Representational Similarity (RS) metrics, designed to address this, initially saw limited use due to high computational costs, while today, despite advances in hardware, they remain unpopular due to low correlation to human judgments. Meanwhile, metrics based on large language models (LLMs) show strong correlation with human judgments, but remain too expensive for iterative use during model development. We introduce SPECS (Specificity-Enhanced CLIPScore), a reference-free RS metric tailored to long image captioning. SPECS modifies CLIP with a new objective that emphasizes specificity: rewarding correct details and penalizing incorrect ones. We show that SPECS matches the performance of open-source LLM-based metrics in correlation to human judgments, while being far more efficient. This makes it a practical alternative for iterative checkpoint evaluation during image captioning model development.Our code can be found at https://github.com/mbzuai-nlp/SPECS.
Wisdom of the Crowd: Reinforcement Learning from Coevolutionary Collective Feedback
Reinforcement learning (RL) has significantly enhanced the reasoning capabilities of large language models (LLMs), but its reliance on expensive human-labeled data or complex reward models severely limits scalability. While existing self-feedback methods aim to address this problem, they are constrained by the capabilities of a single model, which can lead to overconfidence in incorrect answers, reward hacking, and even training collapse. To this end, we propose Reinforcement Learning from Coevolutionary Collective Feedback (RLCCF), a novel RL framework that enables multi-model collaborative evolution without external supervision. Specifically, RLCCF optimizes the ability of a model collective by maximizing its Collective Consistency (CC), which jointly trains a diverse ensemble of LLMs and provides reward signals by voting on collective outputs. Moreover, each model's vote is weighted by its Self-Consistency (SC) score, ensuring that more confident models contribute more to the collective decision. Benefiting from the diverse output distributions and complementary abilities of multiple LLMs, RLCCF enables the model collective to continuously enhance its reasoning ability through coevolution. Experiments on four mainstream open-source LLMs across four mathematical reasoning benchmarks demonstrate that our framework yields significant performance gains, achieving an average relative improvement of 16.72\% in accuracy. Notably, RLCCF not only improves the performance of individual models but also enhances the group's majority-voting accuracy by 4.51\%, demonstrating its ability to extend the collective capability boundary of the model collective.
CADS: A Comprehensive Anatomical Dataset and Segmentation for Whole-Body Anatomy in Computed Tomography
Accurate delineation of anatomical structures in volumetric CT scans is crucial for diagnosis and treatment planning. While AI has advanced automated segmentation, current approaches typically target individual structures, creating a fragmented landscape of incompatible models with varying performance and disparate evaluation protocols. Foundational segmentation models address these limitations by providing a holistic anatomical view through a single model. Yet, robust clinical deployment demands comprehensive training data, which is lacking in existing whole-body approaches, both in terms of data heterogeneity and, more importantly, anatomical coverage. In this work, rather than pursuing incremental optimizations in model architecture, we present CADS, an open-source framework that prioritizes the systematic integration, standardization, and labeling of heterogeneous data sources for whole-body CT segmentation. At its core is a large-scale dataset of 22,022 CT volumes with complete annotations for 167 anatomical structures, representing a significant advancement in both scale and coverage, with 18 times more scans than existing collections and 60% more distinct anatomical targets. Building on this diverse dataset, we develop the CADS-model using established architectures for accessible and automated full-body CT segmentation. Through comprehensive evaluation across 18 public datasets and an independent real-world hospital cohort, we demonstrate advantages over SoTA approaches. Notably, thorough testing of the model's performance in segmentation tasks from radiation oncology validates its direct utility for clinical interventions. By making our large-scale dataset, our segmentation models, and our clinical software tool publicly available, we aim to advance robust AI solutions in radiology and make comprehensive anatomical analysis accessible to clinicians and researchers alike.
Text2Vis: A Challenging and Diverse Benchmark for Generating Multimodal Visualizations from Text
Automated data visualization plays a crucial role in simplifying data interpretation, enhancing decision-making, and improving efficiency. While large language models (LLMs) have shown promise in generating visualizations from natural language, the absence of comprehensive benchmarks limits the rigorous evaluation of their capabilities. We introduce Text2Vis, a benchmark designed to assess text-to-visualization models, covering 20+ chart types and diverse data science queries, including trend analysis, correlation, outlier detection, and predictive analytics. It comprises 1,985 samples, each with a data table, natural language query, short answer, visualization code, and annotated charts. The queries involve complex reasoning, conversational turns, and dynamic data retrieval. We benchmark 11 open-source and closed-source models, revealing significant performance gaps, highlighting key challenges, and offering insights for future advancements. To close this gap, we propose the first cross-modal actor-critic agentic framework that jointly refines the textual answer and visualization code, increasing GPT-4o`s pass rate from 26% to 42% over the direct approach and improving chart quality. We also introduce an automated LLM-based evaluation framework that enables scalable assessment across thousands of samples without human annotation, measuring answer correctness, code execution success, visualization readability, and chart accuracy. We release Text2Vis at https://github.com/vis-nlp/Text2Vis.
OpenFace 3.0: A Lightweight Multitask System for Comprehensive Facial Behavior Analysis
In recent years, there has been increasing interest in automatic facial behavior analysis systems from computing communities such as vision, multimodal interaction, robotics, and affective computing. Building upon the widespread utility of prior open-source facial analysis systems, we introduce OpenFace 3.0, an open-source toolkit capable of facial landmark detection, facial action unit detection, eye-gaze estimation, and facial emotion recognition. OpenFace 3.0 contributes a lightweight unified model for facial analysis, trained with a multi-task architecture across diverse populations, head poses, lighting conditions, video resolutions, and facial analysis tasks. By leveraging the benefits of parameter sharing through a unified model and training paradigm, OpenFace 3.0 exhibits improvements in prediction performance, inference speed, and memory efficiency over similar toolkits and rivals state-of-the-art models. OpenFace 3.0 can be installed and run with a single line of code and operate in real-time without specialized hardware. OpenFace 3.0 code for training models and running the system is freely available for research purposes and supports contributions from the community.
OWL: Optimized Workforce Learning for General Multi-Agent Assistance in Real-World Task Automation
Large Language Model (LLM)-based multi-agent systems show promise for automating real-world tasks but struggle to transfer across domains due to their domain-specific nature. Current approaches face two critical shortcomings: they require complete architectural redesign and full retraining of all components when applied to new domains. We introduce Workforce, a hierarchical multi-agent framework that decouples strategic planning from specialized execution through a modular architecture comprising: (i) a domain-agnostic Planner for task decomposition, (ii) a Coordinator for subtask management, and (iii) specialized Workers with domain-specific tool-calling capabilities. This decoupling enables cross-domain transferability during both inference and training phases: During inference, Workforce seamlessly adapts to new domains by adding or modifying worker agents; For training, we introduce Optimized Workforce Learning (OWL), which improves generalization across domains by optimizing a domain-agnostic planner with reinforcement learning from real-world feedback. To validate our approach, we evaluate Workforce on the GAIA benchmark, covering various realistic, multi-domain agentic tasks. Experimental results demonstrate Workforce achieves open-source state-of-the-art performance (69.70%), outperforming commercial systems like OpenAI's Deep Research by 2.34%. More notably, our OWL-trained 32B model achieves 52.73% accuracy (+16.37%) and demonstrates performance comparable to GPT-4o on challenging tasks. To summarize, by enabling scalable generalization and modular domain transfer, our work establishes a foundation for the next generation of general-purpose AI assistants.
TigerLLM -- A Family of Bangla Large Language Models
The development of Large Language Models (LLMs) remains heavily skewed towards English and a few other high-resource languages. This linguistic disparity is particularly evident for Bangla - the 5th most spoken language. A few initiatives attempted to create open-source Bangla LLMs with performance still behind high-resource languages and limited reproducibility. To address this gap, we introduce TigerLLM - a family of Bangla LLMs. Our results demonstrate that these models surpass all open-source alternatives and also outperform larger proprietary models like GPT3.5 across standard benchmarks, establishing TigerLLM as the new baseline for future Bangla language modeling.
Reasoning is All You Need for Video Generalization: A Counterfactual Benchmark with Sub-question Evaluation
Counterfactual reasoning is crucial for robust video understanding but remains underexplored in existing multimodal benchmarks. In this paper, we introduce COVER (\underline{CO}unterfactual \underline{V}id\underline{E}o \underline{R}easoning), a multidimensional multimodal benchmark that systematically evaluates MLLMs across the abstract-concrete and perception-cognition dimensions. Beyond prior multimodal benchmarks, COVER decomposes complex queries into structured sub-questions, enabling fine-grained reasoning analysis. Experiments on commercial and open-source models reveal a strong correlation between sub-question accuracy and counterfactual reasoning performance, highlighting the role of structured inference in video understanding. Furthermore, our results suggest a key insight: enhancing the reasoning capability of models is essential for improving the robustness of video understanding. COVER establishes a new standard for assessing MLLMs' logical reasoning abilities in dynamic environments. Our work is available at https://github.com/gongyifan-hash/COVER-Benchmark.
RoLargeSum: A Large Dialect-Aware Romanian News Dataset for Summary, Headline, and Keyword Generation
Using supervised automatic summarisation methods requires sufficient corpora that include pairs of documents and their summaries. Similarly to many tasks in natural language processing, most of the datasets available for summarization are in English, posing challenges for developing summarization models in other languages. Thus, in this work, we introduce RoLargeSum, a novel large-scale summarization dataset for the Romanian language crawled from various publicly available news websites from Romania and the Republic of Moldova that were thoroughly cleaned to ensure a high-quality standard. RoLargeSum contains more than 615K news articles, together with their summaries, as well as their headlines, keywords, dialect, and other metadata that we found on the targeted websites. We further evaluated the performance of several BART variants and open-source large language models on RoLargeSum for benchmarking purposes. We manually evaluated the results of the best-performing system to gain insight into the potential pitfalls of this data set and future development.
VidComposition: Can MLLMs Analyze Compositions in Compiled Videos?
The advancement of Multimodal Large Language Models (MLLMs) has enabled significant progress in multimodal understanding, expanding their capacity to analyze video content. However, existing evaluation benchmarks for MLLMs primarily focus on abstract video comprehension, lacking a detailed assessment of their ability to understand video compositions, the nuanced interpretation of how visual elements combine and interact within highly compiled video contexts. We introduce VidComposition, a new benchmark specifically designed to evaluate the video composition understanding capabilities of MLLMs using carefully curated compiled videos and cinematic-level annotations. VidComposition includes 982 videos with 1706 multiple-choice questions, covering various compositional aspects such as camera movement, angle, shot size, narrative structure, character actions and emotions, etc. Our comprehensive evaluation of 33 open-source and proprietary MLLMs reveals a significant performance gap between human and model capabilities. This highlights the limitations of current MLLMs in understanding complex, compiled video compositions and offers insights into areas for further improvement. The leaderboard and evaluation code are available at https://yunlong10.github.io/VidComposition/.
GrammaMT: Improving Machine Translation with Grammar-Informed In-Context Learning
We introduce GrammaMT, a grammatically-aware prompting approach for machine translation that uses Interlinear Glossed Text (IGT), a common form of linguistic description providing morphological and lexical annotations for source sentences. GrammaMT proposes three prompting strategies: gloss-shot, chain-gloss and model-gloss. All are training-free, requiring only a few examples that involve minimal effort to collect, and making them well-suited for low-resource setups. Experiments show that GrammaMT enhances translation performance on open-source instruction-tuned LLMs for various low- to high-resource languages across three benchmarks: (1) the largest IGT corpus, (2) the challenging 2023 SIGMORPHON Shared Task data over endangered languages, and (3) even in an out-of-domain setting with FLORES. Moreover, ablation studies reveal that leveraging gloss resources could substantially boost MT performance (by over 17 BLEU points) if LLMs accurately generate or access input sentence glosses.
Golden-Retriever: High-Fidelity Agentic Retrieval Augmented Generation for Industrial Knowledge Base
This paper introduces Golden-Retriever, designed to efficiently navigate vast industrial knowledge bases, overcoming challenges in traditional LLM fine-tuning and RAG frameworks with domain-specific jargon and context interpretation. Golden-Retriever incorporates a reflection-based question augmentation step before document retrieval, which involves identifying jargon, clarifying its meaning based on context, and augmenting the question accordingly. Specifically, our method extracts and lists all jargon and abbreviations in the input question, determines the context against a pre-defined list, and queries a jargon dictionary for extended definitions and descriptions. This comprehensive augmentation ensures the RAG framework retrieves the most relevant documents by providing clear context and resolving ambiguities, significantly improving retrieval accuracy. Evaluations using three open-source LLMs on a domain-specific question-answer dataset demonstrate Golden-Retriever's superior performance, providing a robust solution for efficiently integrating and querying industrial knowledge bases.
BiasDPO: Mitigating Bias in Language Models through Direct Preference Optimization
Large Language Models (LLMs) have become pivotal in advancing natural language processing, yet their potential to perpetuate biases poses significant concerns. This paper introduces a new framework employing Direct Preference Optimization (DPO) to mitigate gender, racial, and religious biases in LLM-generated English text. By developing a loss function that favors less biased over biased completions, our approach cultivates a preference for respectful and non-discriminatory language in LLMs. We also contribute a manually designed dataset for training LLMs to recognize and correct biases. This dataset encompasses a diverse range of prompts paired with both biased and unbiased completions. Implementing this approach on the Microsoft Phi-2 model, we demonstrate substantial reductions in biased outputs as our model outperforms the baseline model on almost all bias benchmarks. Our model also achieves better performance compared to other open-source models on most benchmarks. By reducing biases in the language generated by the model, our study marks a significant step towards developing more ethical and socially responsible LLMs. We publicly release BiasDPO dataset on HuggingFace.
MathOdyssey: Benchmarking Mathematical Problem-Solving Skills in Large Language Models Using Odyssey Math Data
Large language models (LLMs) have significantly advanced natural language understanding and demonstrated strong problem-solving abilities. Despite these successes, most LLMs still struggle with solving mathematical problems due to the intricate reasoning required. This paper investigates the mathematical problem-solving capabilities of LLMs using the newly developed "MathOdyssey" dataset. The dataset includes diverse mathematical problems at high school and university levels, created by experts from notable institutions to rigorously test LLMs in advanced problem-solving scenarios and cover a wider range of subject areas. By providing the MathOdyssey dataset as a resource to the AI community, we aim to contribute to the understanding and improvement of AI capabilities in complex mathematical problem-solving. We conduct benchmarking on open-source models, such as Llama-3 and DBRX-Instruct, and closed-source models from the GPT series and Gemini models. Our results indicate that while LLMs perform well on routine and moderately difficult tasks, they face significant challenges with Olympiad-level problems and complex university-level questions. Our analysis shows a narrowing performance gap between open-source and closed-source models, yet substantial challenges remain, particularly with the most demanding problems. This study highlights the ongoing need for research to enhance the mathematical reasoning of LLMs. The dataset, results, and code are publicly available.
SEED-Bench-2: Benchmarking Multimodal Large Language Models
Multimodal large language models (MLLMs), building upon the foundation of powerful large language models (LLMs), have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs (acting like a combination of GPT-4V and DALL-E 3). However, existing MLLM benchmarks remain limited to assessing only models' comprehension ability of single image-text inputs, failing to keep up with the strides made in MLLMs. A comprehensive benchmark is imperative for investigating the progress and uncovering the limitations of current MLLMs. In this work, we categorize the capabilities of MLLMs into hierarchical levels from L_0 to L_4 based on the modalities they can accept and generate, and propose SEED-Bench-2, a comprehensive benchmark that evaluates the hierarchical capabilities of MLLMs. Specifically, SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions, including the evaluation of both text and image generation. Multiple-choice questions with groundtruth options derived from human annotation enables an objective and efficient assessment of model performance, eliminating the need for human or GPT intervention during evaluation. We further evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations. By revealing the limitations of existing MLLMs through extensive evaluations, we aim for SEED-Bench-2 to provide insights that will motivate future research towards the goal of General Artificial Intelligence. Dataset and evaluation code are available at https://github.com/AILab-CVC/SEED-Bench
LabelBench: A Comprehensive Framework for Benchmarking Label-Efficient Learning
Labeled data are critical to modern machine learning applications, but obtaining labels can be expensive. To mitigate this cost, machine learning methods, such as transfer learning, semi-supervised learning and active learning, aim to be label-efficient: achieving high predictive performance from relatively few labeled examples. While obtaining the best label-efficiency in practice often requires combinations of these techniques, existing benchmark and evaluation frameworks do not capture a concerted combination of all such techniques. This paper addresses this deficiency by introducing LabelBench, a new computationally-efficient framework for joint evaluation of multiple label-efficient learning techniques. As an application of LabelBench, we introduce a novel benchmark of state-of-the-art active learning methods in combination with semi-supervised learning for fine-tuning pretrained vision transformers. Our benchmark demonstrates better label-efficiencies than previously reported in active learning. LabelBench's modular codebase is open-sourced for the broader community to contribute label-efficient learning methods and benchmarks. The repository can be found at: https://github.com/EfficientTraining/LabelBench.
Pixtral 12B
We introduce Pixtral-12B, a 12--billion-parameter multimodal language model. Pixtral-12B is trained to understand both natural images and documents, achieving leading performance on various multimodal benchmarks, surpassing a number of larger models. Unlike many open-source models, Pixtral is also a cutting-edge text model for its size, and does not compromise on natural language performance to excel in multimodal tasks. Pixtral uses a new vision encoder trained from scratch, which allows it to ingest images at their natural resolution and aspect ratio. This gives users flexibility on the number of tokens used to process an image. Pixtral is also able to process any number of images in its long context window of 128K tokens. Pixtral 12B substanially outperforms other open models of similar sizes (Llama-3.2 11B \& Qwen-2-VL 7B). It also outperforms much larger open models like Llama-3.2 90B while being 7x smaller. We further contribute an open-source benchmark, MM-MT-Bench, for evaluating vision-language models in practical scenarios, and provide detailed analysis and code for standardized evaluation protocols for multimodal LLMs. Pixtral-12B is released under Apache 2.0 license.
SynLogic: Synthesizing Verifiable Reasoning Data at Scale for Learning Logical Reasoning and Beyond
Recent advances such as OpenAI-o1 and DeepSeek R1 have demonstrated the potential of Reinforcement Learning (RL) to enhance reasoning abilities in Large Language Models (LLMs). While open-source replication efforts have primarily focused on mathematical and coding domains, methods and resources for developing general reasoning capabilities remain underexplored. This gap is partly due to the challenge of collecting diverse and verifiable reasoning data suitable for RL. We hypothesize that logical reasoning is critical for developing general reasoning capabilities, as logic forms a fundamental building block of reasoning. In this work, we present SynLogic, a data synthesis framework and dataset that generates diverse logical reasoning data at scale, encompassing 35 diverse logical reasoning tasks. The SynLogic approach enables controlled synthesis of data with adjustable difficulty and quantity. Importantly, all examples can be verified by simple rules, making them ideally suited for RL with verifiable rewards. In our experiments, we validate the effectiveness of RL training on the SynLogic dataset based on 7B and 32B models. SynLogic leads to state-of-the-art logical reasoning performance among open-source datasets, surpassing DeepSeek-R1-Distill-Qwen-32B by 6 points on BBEH. Furthermore, mixing SynLogic data with mathematical and coding tasks improves the training efficiency of these domains and significantly enhances reasoning generalization. Notably, our mixed training model outperforms DeepSeek-R1-Zero-Qwen-32B across multiple benchmarks. These findings position SynLogic as a valuable resource for advancing the broader reasoning capabilities of LLMs. We open-source both the data synthesis pipeline and the SynLogic dataset at https://github.com/MiniMax-AI/SynLogic.
OmniConsistency: Learning Style-Agnostic Consistency from Paired Stylization Data
Diffusion models have advanced image stylization significantly, yet two core challenges persist: (1) maintaining consistent stylization in complex scenes, particularly identity, composition, and fine details, and (2) preventing style degradation in image-to-image pipelines with style LoRAs. GPT-4o's exceptional stylization consistency highlights the performance gap between open-source methods and proprietary models. To bridge this gap, we propose OmniConsistency, a universal consistency plugin leveraging large-scale Diffusion Transformers (DiTs). OmniConsistency contributes: (1) an in-context consistency learning framework trained on aligned image pairs for robust generalization; (2) a two-stage progressive learning strategy decoupling style learning from consistency preservation to mitigate style degradation; and (3) a fully plug-and-play design compatible with arbitrary style LoRAs under the Flux framework. Extensive experiments show that OmniConsistency significantly enhances visual coherence and aesthetic quality, achieving performance comparable to commercial state-of-the-art model GPT-4o.
Step1X-3D: Towards High-Fidelity and Controllable Generation of Textured 3D Assets
While generative artificial intelligence has advanced significantly across text, image, audio, and video domains, 3D generation remains comparatively underdeveloped due to fundamental challenges such as data scarcity, algorithmic limitations, and ecosystem fragmentation. To this end, we present Step1X-3D, an open framework addressing these challenges through: (1) a rigorous data curation pipeline processing >5M assets to create a 2M high-quality dataset with standardized geometric and textural properties; (2) a two-stage 3D-native architecture combining a hybrid VAE-DiT geometry generator with an diffusion-based texture synthesis module; and (3) the full open-source release of models, training code, and adaptation modules. For geometry generation, the hybrid VAE-DiT component produces TSDF representations by employing perceiver-based latent encoding with sharp edge sampling for detail preservation. The diffusion-based texture synthesis module then ensures cross-view consistency through geometric conditioning and latent-space synchronization. Benchmark results demonstrate state-of-the-art performance that exceeds existing open-source methods, while also achieving competitive quality with proprietary solutions. Notably, the framework uniquely bridges the 2D and 3D generation paradigms by supporting direct transfer of 2D control techniques~(e.g., LoRA) to 3D synthesis. By simultaneously advancing data quality, algorithmic fidelity, and reproducibility, Step1X-3D aims to establish new standards for open research in controllable 3D asset generation.
Beyond Ten Turns: Unlocking Long-Horizon Agentic Search with Large-Scale Asynchronous RL
Recent advancements in LLM-based agents have demonstrated remarkable capabilities in handling complex, knowledge-intensive tasks by integrating external tools. Among diverse choices of tools, search tools play a pivotal role in accessing vast external knowledge. However, open-source agents still fall short of achieving expert-level Search Intelligence, the ability to resolve ambiguous queries, generate precise searches, analyze results, and conduct thorough exploration. Existing approaches fall short in scalability, efficiency, and data quality. For example, small turn limits in existing online RL methods, e.g. <=10, restrict complex strategy learning. This paper introduces ASearcher, an open-source project for large-scale RL training of search agents. Our key contributions include: (1) Scalable fully asynchronous RL training that enables long-horizon search while maintaining high training efficiency. (2) A prompt-based LLM agent that autonomously synthesizes high-quality and challenging QAs, creating a large-scale QA dataset. Through RL training, our prompt-based QwQ-32B agent achieves substantial improvements, with 46.7% and 20.8% Avg@4 gains on xBench and GAIA, respectively. Notably, our agent exhibits extreme long-horizon search, with tool calls exceeding 40 turns and output tokens exceeding 150k during training time. With a simple agent design and no external LLMs, ASearcher-Web-QwQ achieves Avg@4 scores of 42.1 on xBench and 52.8 on GAIA, surpassing existing open-source 32B agents. We open-source our models, training data, and codes in https://github.com/inclusionAI/ASearcher.
FLUX-Reason-6M & PRISM-Bench: A Million-Scale Text-to-Image Reasoning Dataset and Comprehensive Benchmark
The advancement of open-source text-to-image (T2I) models has been hindered by the absence of large-scale, reasoning-focused datasets and comprehensive evaluation benchmarks, resulting in a performance gap compared to leading closed-source systems. To address this challenge, We introduce FLUX-Reason-6M and PRISM-Bench (Precise and Robust Image Synthesis Measurement Benchmark). FLUX-Reason-6M is a massive dataset consisting of 6 million high-quality FLUX-generated images and 20 million bilingual (English and Chinese) descriptions specifically designed to teach complex reasoning. The image are organized according to six key characteristics: Imagination, Entity, Text rendering, Style, Affection, and Composition, and design explicit Generation Chain-of-Thought (GCoT) to provide detailed breakdowns of image generation steps. The whole data curation takes 15,000 A100 GPU days, providing the community with a resource previously unattainable outside of large industrial labs. PRISM-Bench offers a novel evaluation standard with seven distinct tracks, including a formidable Long Text challenge using GCoT. Through carefully designed prompts, it utilizes advanced vision-language models for nuanced human-aligned assessment of prompt-image alignment and image aesthetics. Our extensive evaluation of 19 leading models on PRISM-Bench reveals critical performance gaps and highlights specific areas requiring improvement. Our dataset, benchmark, and evaluation code are released to catalyze the next wave of reasoning-oriented T2I generation. Project page: https://flux-reason-6m.github.io/ .
RAG Foundry: A Framework for Enhancing LLMs for Retrieval Augmented Generation
Implementing Retrieval-Augmented Generation (RAG) systems is inherently complex, requiring deep understanding of data, use cases, and intricate design decisions. Additionally, evaluating these systems presents significant challenges, necessitating assessment of both retrieval accuracy and generative quality through a multi-faceted approach. We introduce RAG Foundry, an open-source framework for augmenting large language models for RAG use cases. RAG Foundry integrates data creation, training, inference and evaluation into a single workflow, facilitating the creation of data-augmented datasets for training and evaluating large language models in RAG settings. This integration enables rapid prototyping and experimentation with various RAG techniques, allowing users to easily generate datasets and train RAG models using internal or specialized knowledge sources. We demonstrate the framework effectiveness by augmenting and fine-tuning Llama-3 and Phi-3 models with diverse RAG configurations, showcasing consistent improvements across three knowledge-intensive datasets. Code is released as open-source in https://github.com/IntelLabs/RAGFoundry.
Advancing Multimodal Reasoning via Reinforcement Learning with Cold Start
Recent advancements in large language models (LLMs) have demonstrated impressive chain-of-thought reasoning capabilities, with reinforcement learning (RL) playing a crucial role in this progress. While "aha moment" patterns--where models exhibit self-correction through reflection--are often attributed to emergent properties from RL, we first demonstrate that these patterns exist in multimodal LLMs (MLLMs) prior to RL training but may not necessarily correlate with improved reasoning performance. Building on these insights, we present a comprehensive study on enhancing multimodal reasoning through a two-stage approach: (1) supervised fine-tuning (SFT) as a cold start with structured chain-of-thought reasoning patterns, followed by (2) reinforcement learning via GRPO to further refine these capabilities. Our extensive experiments show that this combined approach consistently outperforms both SFT-only and RL-only methods across challenging multimodal reasoning benchmarks. The resulting models achieve state-of-the-art performance among open-source MLLMs at both 3B and 7B scales, with our 7B model showing substantial improvements over base models (e.g., 66.3 %rightarrow73.4 % on MathVista, 62.9 %rightarrow70.4 % on We-Math) and our 3B model achieving performance competitive with several 7B models. Overall, this work provides practical guidance for building advanced multimodal reasoning models. Our code is available at https://github.com/waltonfuture/RL-with-Cold-Start.
CharXiv: Charting Gaps in Realistic Chart Understanding in Multimodal LLMs
Chart understanding plays a pivotal role when applying Multimodal Large Language Models (MLLMs) to real-world tasks such as analyzing scientific papers or financial reports. However, existing datasets often focus on oversimplified and homogeneous charts with template-based questions, leading to an over-optimistic measure of progress. We demonstrate that although open-source models can appear to outperform strong proprietary models on these benchmarks, a simple stress test with slightly different charts or questions can deteriorate performance by up to 34.5%. In this work, we propose CharXiv, a comprehensive evaluation suite involving 2,323 natural, challenging, and diverse charts from arXiv papers. CharXiv includes two types of questions: 1) descriptive questions about examining basic chart elements and 2) reasoning questions that require synthesizing information across complex visual elements in the chart. To ensure quality, all charts and questions are handpicked, curated, and verified by human experts. Our results reveal a substantial, previously underestimated gap between the reasoning skills of the strongest proprietary model (i.e., GPT-4o), which achieves 47.1% accuracy, and the strongest open-source model (i.e., InternVL Chat V1.5), which achieves 29.2%. All models lag far behind human performance of 80.5%, underscoring weaknesses in the chart understanding capabilities of existing MLLMs. We hope CharXiv facilitates future research on MLLM chart understanding by providing a more realistic and faithful measure of progress. Project page and leaderboard: https://charxiv.github.io/
Arcee's MergeKit: A Toolkit for Merging Large Language Models
The rapid expansion of the open-source language model landscape presents an opportunity to merge the competencies of these model checkpoints by combining their parameters. Advances in transfer learning, the process of fine-tuning pretrained models for specific tasks, has resulted in the development of vast amounts of task-specific models, typically specialized in individual tasks and unable to utilize each other's strengths. Model merging facilitates the creation of multitask models without the need for additional training, offering a promising avenue for enhancing model performance and versatility. By preserving the intrinsic capabilities of the original models, model merging addresses complex challenges in AI - including the difficulties of catastrophic forgetting and multitask learning. To support this expanding area of research, we introduce MergeKit, a comprehensive, open-source library designed to facilitate the application of model merging strategies. MergeKit offers an extensible framework to efficiently merge models on any hardware, providing utility to researchers and practitioners. To date, thousands of models have been merged by the open-source community, leading to the creation of some of the worlds most powerful open-source model checkpoints, as assessed by the Open LLM Leaderboard. The library is accessible at https://github.com/arcee-ai/MergeKit.
Seed-X: Building Strong Multilingual Translation LLM with 7B Parameters
Multilingual translation stands as a challenging task for large language models (LLMs) to handle intricate language patterns and stilted translations that arise in automated translations. In this paper, we introduce Seed-X, a family of open-source LLMs comprising instruct and reasoning models, pushing the limits of translation capability with 7B parameter size. The base model is pre-trained on a diverse, high-quality dataset encompassing both monolingual and bilingual content across 28 languages, harnessing the full potential of multilingual data. The instruct model is then finetuned to translate by Chain-of-Thought (CoT) reasoning and further enhanced through reinforcement learning (RL) to achieve better generalization across diverse language pairs. Seed-X achieves performance comparable to leading closed-source models, including Gemini-2.5 and GPT-4o, across 28 languages, and significantly outperforms larger open-source models in both automatic metrics and human evaluations. We share the best practices through our optimization process, and make the parameter public available for advancing translation research and applications.
Eagle 2: Building Post-Training Data Strategies from Scratch for Frontier Vision-Language Models
Recently, promising progress has been made by open-source vision-language models (VLMs) in bringing their capabilities closer to those of proprietary frontier models. However, most open-source models only publish their final model weights, leaving the critical details of data strategies and implementation largely opaque. In this work, we address VLM post-training from a data-centric perspective, showing the key role of data strategy in developing frontier VLMs. By studying and building our post-training data strategy from scratch, we share detailed insights into the development processes, aiming to benefit the development of competitive models for the open-source community. Our introduced data strategy, together with training recipes and model design, leads to a family of performant VLMs named Eagle2. Specifically, Eagle2-9B achieves state-of-the-art results across various multimodal benchmarks, matching certain competitive models with up to 70B parameters.
MATATA: a weak-supervised MAthematical Tool-Assisted reasoning for Tabular Applications
Mathematical reasoning capabilities are increasing with tool-augmented language agents, but methods often rely either on closed-source or large models, external data, or extensive prompt engineering. This work introduces MATATA, a novel cost-effective method to train LLM agents for tabular data problems through reasoning, planning, and tool use. With a progressive self-improvement paradigm and an iterative weak supervision, it empowers 3.8B/8B Small Language Models (SLMs), particularly suited for local hosting and sensitive business contexts where data privacy is crucial. By employing a flexible and reusable tools across different datasets, it achieves robust performance with effective scalability across shared tasks. Experiments show that MATATA reaches state-of-the-art performances on FinQA and TAT-QA among reasoning frameworks based on open-source models. Moreover, MATATA models compete with GPT-4 based frameworks on TabMWP, while being SLMs.
TeleChat Technical Report
In this technical report, we present TeleChat, a collection of large language models (LLMs) with parameters of 3 billion, 7 billion and 12 billion. It includes pretrained language models as well as fine-tuned chat models that is aligned with human preferences. TeleChat is initially pretrained on an extensive corpus containing a diverse collection of texts from both English and Chinese languages, including trillions of tokens. Subsequently, the model undergoes fine-tuning to align with human preferences, following a detailed methodology that we describe. We evaluate the performance of TeleChat on various tasks, including language understanding, mathematics, reasoning, code generation, and knowledge-based question answering. Our findings indicate that TeleChat achieves comparable performance to other open-source models of similar size across a wide range of public benchmarks. To support future research and applications utilizing LLMs, we release the fine-tuned model checkpoints of TeleChat's 7B and 12B variant, along with code and a portion of our pretraining data, to the public community.
MMAU-Pro: A Challenging and Comprehensive Benchmark for Holistic Evaluation of Audio General Intelligence
Audio comprehension-including speech, non-speech sounds, and music-is essential for achieving human-level intelligence. Consequently, AI agents must demonstrate holistic audio understanding to qualify as generally intelligent. However, evaluating auditory intelligence comprehensively remains challenging. To address this gap, we introduce MMAU-Pro, the most comprehensive and rigorously curated benchmark for assessing audio intelligence in AI systems. MMAU-Pro contains 5,305 instances, where each instance has one or more audios paired with human expert-generated question-answer pairs, spanning speech, sound, music, and their combinations. Unlike existing benchmarks, MMAU-Pro evaluates auditory intelligence across 49 unique skills and multiple complex dimensions, including long-form audio comprehension, spatial audio reasoning, multi-audio understanding, among others. All questions are meticulously designed to require deliberate multi-hop reasoning, including both multiple-choice and open-ended response formats. Importantly, audio data is sourced directly ``from the wild" rather than from existing datasets with known distributions. We evaluate 22 leading open-source and proprietary multimodal AI models, revealing significant limitations: even state-of-the-art models such as Gemini 2.5 Flash and Audio Flamingo 3 achieve only 59.2% and 51.7% accuracy, respectively, approaching random performance in multiple categories. Our extensive analysis highlights specific shortcomings and provides novel insights, offering actionable perspectives for the community to enhance future AI systems' progression toward audio general intelligence. The benchmark and code is available at https://sonalkum.github.io/mmau-pro.
From TOWER to SPIRE: Adding the Speech Modality to a Text-Only LLM
Large language models (LLMs) have shown remarkable performance and generalization capabilities across multiple languages and tasks, making them very attractive targets for multi-modality integration (e.g., images or speech). In this work, we extend an existing LLM to the speech modality via speech discretization and continued pre-training. In particular, we are interested in multilingual LLMs, such as TOWER, as their pre-training setting allows us to treat discretized speech input as an additional translation language. The resulting open-source model, SPIRE, is able to transcribe and translate English speech input while maintaining TOWER's original performance on translation-related tasks, showcasing that discretized speech input integration as an additional language is feasible during LLM adaptation. We make our code and models available to the community.
SynthCypher: A Fully Synthetic Data Generation Framework for Text-to-Cypher Querying in Knowledge Graphs
Cypher, the query language for Neo4j graph databases, plays a critical role in enabling graph-based analytics and data exploration. While substantial research has been dedicated to natural language to SQL query generation (Text2SQL), the analogous problem for graph databases referred to as Text2Cypher remains underexplored. In this work, we introduce SynthCypher, a fully synthetic and automated data generation pipeline designed to address this gap. SynthCypher employs a novel LLMSupervised Generation-Verification framework, ensuring syntactically and semantically correct Cypher queries across diverse domains and query complexities. Using this pipeline, we create SynthCypher Dataset, a large-scale benchmark containing 29.8k Text2Cypher instances. Fine-tuning open-source large language models (LLMs), including LLaMa-3.1- 8B, Mistral-7B, and QWEN-7B, on SynthCypher yields significant performance improvements of up to 40% on the Text2Cypher test set and 30% on the SPIDER benchmark adapted for graph databases. This work demonstrates that high-quality synthetic data can effectively advance the state-of-the-art in Text2Cypher tasks.
A Survey on Knowledge Distillation of Large Language Models
This survey presents an in-depth exploration of knowledge distillation (KD) techniques within the realm of Large Language Models (LLMs), spotlighting the pivotal role of KD in transferring sophisticated capabilities from proprietary giants such as GPT-4 to accessible, open-source models like LLaMA and Mistral. Amidst the evolving AI landscape, this work elucidates the critical disparities between proprietary and open-source LLMs, demonstrating how KD serves as an essential conduit for imbuing the latter with the former's advanced functionalities and nuanced understandings. Our survey is meticulously structured around three foundational pillars: algorithm, skill, and verticalization -- providing a comprehensive examination of KD mechanisms, the enhancement of specific cognitive abilities, and their practical implications across diverse fields. Crucially, the survey navigates the intricate interplay between data augmentation (DA) and KD, illustrating how DA emerges as a powerful paradigm within the KD framework to bolster LLMs' performance. By leveraging DA to generate context-rich, skill-specific training data, KD transcends traditional boundaries, enabling open-source models to approximate the contextual adeptness, ethical alignment, and deep semantic insights characteristic of their proprietary counterparts. This work aims to provide an insightful guide for researchers and practitioners, offering a detailed overview of current methodologies in knowledge distillation and proposing future research directions. By bridging the gap between proprietary and open-source LLMs, this survey underscores the potential for more accessible, efficient, and sustainable AI solutions, fostering a more inclusive and equitable landscape in AI advancements. An associated Github repository is available at https://github.com/Tebmer/Awesome-Knowledge-Distillation-of-LLMs.
InternBootcamp Technical Report: Boosting LLM Reasoning with Verifiable Task Scaling
Large language models (LLMs) have revolutionized artificial intelligence by enabling complex reasoning capabilities. While recent advancements in reinforcement learning (RL) have primarily focused on domain-specific reasoning tasks (e.g., mathematics or code generation), real-world reasoning scenarios often require models to handle diverse and complex environments that narrow-domain benchmarks cannot fully capture. To address this gap, we present InternBootcamp, an open-source framework comprising 1000+ domain-diverse task environments specifically designed for LLM reasoning research. Our codebase offers two key functionalities: (1) automated generation of unlimited training/testing cases with configurable difficulty levels, and (2) integrated verification modules for objective response evaluation. These features make InternBootcamp fundamental infrastructure for RL-based model optimization, synthetic data generation, and model evaluation. Although manually developing such a framework with enormous task coverage is extremely cumbersome, we accelerate the development procedure through an automated agent workflow supplemented by manual validation protocols, which enables the task scope to expand rapidly. % With these bootcamps, we further establish Bootcamp-EVAL, an automatically generated benchmark for comprehensive performance assessment. Evaluation reveals that frontier models still underperform in many reasoning tasks, while training with InternBootcamp provides an effective way to significantly improve performance, leading to our 32B model that achieves state-of-the-art results on Bootcamp-EVAL and excels on other established benchmarks. In particular, we validate that consistent performance gains come from including more training tasks, namely task scaling, over two orders of magnitude, offering a promising route towards capable reasoning generalist.
Evaluating LLM Reasoning in the Operations Research Domain with ORQA
In this paper, we introduce and apply Operations Research Question Answering (ORQA), a new benchmark designed to assess the generalization capabilities of Large Language Models (LLMs) in the specialized technical domain of Operations Research (OR). This benchmark evaluates whether LLMs can emulate the knowledge and reasoning skills of OR experts when confronted with diverse and complex optimization problems. The dataset, developed by OR experts, features real-world optimization problems that demand multistep reasoning to construct their mathematical models. Our evaluations of various open source LLMs, such as LLaMA 3.1, DeepSeek, and Mixtral, reveal their modest performance, highlighting a gap in their ability to generalize to specialized technical domains. This work contributes to the ongoing discourse on LLMs generalization capabilities, offering valuable insights for future research in this area. The dataset and evaluation code are publicly available.
Me LLaMA: Foundation Large Language Models for Medical Applications
Recent large language models (LLMs) such as ChatGPT and LLaMA have shown great promise in many AI applications. However, their performance on medical tasks is suboptimal and can be improved by training on extensive domain-specific datasets. This study introduces Me LLaMA, a medical LLM family that includes foundation models - Me LLaMA 13/70B, along with their chat-enhanced versions - Me LLaMA 13/70B-chat, developed through continual pre-training and instruction tuning of LLaMA2 using large medical datasets. Our domain-specific data suite for training and evaluation includes a large-scale, continual pre-training dataset with 129B tokens, an instruction tuning dataset with 214k samples, and a new medical evaluation benchmark (MIBE) across six tasks with 12 datasets. Our extensive evaluation using the MIBE shows that Me LLaMA models achieve overall better performance than existing open-source medical LLMs in zero-shot, few-shot and supervised learning abilities. Their zero-shot performance is comparable with ChatGPT across 7 out of 8 datasets, with a slight variance of within 3%, and yet falls short when compared to GPT-4. In addition, we investigated the catastrophic forgetting problem, and our results show that Me LLaMA models outperform other open-source medical LLMs in mitigating this issue. Me LLaMA is one of the largest open-source medical foundation LLMs that use both biomedical and clinical data. It exhibits superior performance across both general and medical tasks compared to other open-source medical LLMs, rendering it an attractive choice for medical AI applications. We release our models, datasets, and evaluation scripts at: https://github.com/BIDS-Xu-Lab/Me-LLaMA.
InstructCoder: Empowering Language Models for Code Editing
Code editing encompasses a variety of pragmatic tasks that developers deal with daily. Despite its relevance and practical usefulness, automatic code editing remains an underexplored area in the evolution of deep learning models, partly due to data scarcity. In this work, we explore the use of large language models (LLMs) to edit code based on user instructions, covering a broad range of implicit tasks such as comment insertion, code optimization, and code refactoring. To facilitate this, we introduce InstructCoder, the first dataset designed to adapt LLMs for general-purpose code editing, containing highdiversity code-editing tasks. It consists of over 114,000 instruction-input-output triplets and covers multiple distinct code editing scenarios. The dataset is systematically expanded through an iterative process that commences with code editing data sourced from GitHub commits as seed tasks. Seed and generated tasks are used subsequently to prompt ChatGPT for more task data. Our experiments demonstrate that open-source LLMs fine-tuned on InstructCoder can edit code correctly based on users' instructions most of the time, exhibiting unprecedented code-editing performance levels. Such results suggest that proficient instruction-finetuning can lead to significant amelioration in code editing abilities. The dataset and the source code are available at https://github.com/qishenghu/CodeInstruct.
Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attacks pose a significant security threat to LLM-integrated applications. Model-level defenses have shown strong effectiveness, but are currently deployed into commercial-grade models in a closed-source manner. We believe open-source models are needed by the AI security community, where co-development of attacks and defenses through open research drives scientific progress in mitigation against prompt injection attacks. To this end, we develop Meta SecAlign, the first open-source and open-weight LLM with built-in model-level defense that achieves commercial-grade model performance. We provide complete details of our training recipe, which utilizes an improved version of the SOTA SecAlign defense. Evaluations on 9 utility benchmarks and 7 security benchmarks show that Meta SecAlign, despite being trained on a generic instruction-tuning dataset, confers security in unseen downstream tasks, including tool-calling and agentic web navigation, in addition general instruction-following. Our best model -- Meta-SecAlign-70B -- achieves state-of-the-art robustness against prompt injection attacks and comparable utility to closed-source commercial LLM with model-level defense.
LawGPT: Knowledge-Guided Data Generation and Its Application to Legal LLM
Large language models (LLMs), both proprietary and open-source, have demonstrated remarkable capabilities across various natural language processing tasks. However, they face significant limitations in legal reasoning tasks. Proprietary models introduce data privacy risks and high inference costs, while open-source models underperform due to insufficient legal domain training data. To address these limitations, we study data generation for legal reasoning to improve the legal reasoning performance of open-source LLMs with the help of proprietary LLMs. This is challenging due to the lack of legal knowledge in proprietary LLMs and the difficulty in verifying the generated data. We propose KgDG, a knowledge-guided data generation framework for legal reasoning. Our framework enables leveraging legal knowledge to enhance generation diversity and introduces a refinement and verification process to ensure the quality of generated data. Moreover, we expand the generated dataset to further enhance the LLM reasoning capabilities. Using KgDG, we create a synthetic legal reasoning dataset containing 50K high-quality examples. Our trained model LawGPT outperforms existing legal-specific LLMs and achieves performance comparable to proprietary LLMs, demonstrating the effectiveness of KgDG and LawGPT. Our code and resources is publicly available at https://anonymous.4open.science/r/KgDG-45F5 .
Grounding Large Language Models In Embodied Environment With Imperfect World Models
Despite a widespread success in various applications, large language models (LLMs) often stumble when tackling basic physical reasoning or executing robotics tasks, due to a lack of direct experience with the physical nuances of the real world. To address these issues, we propose a Grounding Large language model with Imperfect world MOdel (GLIMO), which utilizes proxy world models such as simulators to collect and synthesize trining data. GLIMO incorporates an LLM agent-based data generator to automatically create high-quality and diverse instruction datasets. The generator includes an iterative self-refining module for temporally consistent experience sampling, a diverse set of question-answering instruction seeds, and a retrieval-augmented generation module for reflecting on prior experiences. Comprehensive experiments show that our approach improve the performance of strong open-source LLMs like LLaMA-3 with a performance boost of 2.04 times, 1.54 times, and 1.82 times across three different benchmarks, respectively. The performance is able to compete with or surpass their larger counterparts such as GPT-4.
Detection Made Easy: Potentials of Large Language Models for Solidity Vulnerabilities
The large-scale deployment of Solidity smart contracts on the Ethereum mainnet has increasingly attracted financially-motivated attackers in recent years. A few now-infamous attacks in Ethereum's history includes DAO attack in 2016 (50 million dollars lost), Parity Wallet hack in 2017 (146 million dollars locked), Beautychain's token BEC in 2018 (900 million dollars market value fell to 0), and NFT gaming blockchain breach in 2022 ($600 million in Ether stolen). This paper presents a comprehensive investigation of the use of large language models (LLMs) and their capabilities in detecting OWASP Top Ten vulnerabilities in Solidity. We introduce a novel, class-balanced, structured, and labeled dataset named VulSmart, which we use to benchmark and compare the performance of open-source LLMs such as CodeLlama, Llama2, CodeT5 and Falcon, alongside closed-source models like GPT-3.5 Turbo and GPT-4o Mini. Our proposed SmartVD framework is rigorously tested against these models through extensive automated and manual evaluations, utilizing BLEU and ROUGE metrics to assess the effectiveness of vulnerability detection in smart contracts. We also explore three distinct prompting strategies-zero-shot, few-shot, and chain-of-thought-to evaluate the multi-class classification and generative capabilities of the SmartVD framework. Our findings reveal that SmartVD outperforms its open-source counterparts and even exceeds the performance of closed-source base models like GPT-3.5 and GPT-4 Mini. After fine-tuning, the closed-source models, GPT-3.5 Turbo and GPT-4o Mini, achieved remarkable performance with 99% accuracy in detecting vulnerabilities, 94% in identifying their types, and 98% in determining severity. Notably, SmartVD performs best with the `chain-of-thought' prompting technique, whereas the fine-tuned closed-source models excel with the `zero-shot' prompting approach.
ATOMMIC: An Advanced Toolbox for Multitask Medical Imaging Consistency to facilitate Artificial Intelligence applications from acquisition to analysis in Magnetic Resonance Imaging
AI is revolutionizing MRI along the acquisition and processing chain. Advanced AI frameworks have been developed to apply AI in various successive tasks, such as image reconstruction, quantitative parameter map estimation, and image segmentation. Existing frameworks are often designed to perform tasks independently or are focused on specific models or datasets, limiting generalization. We introduce ATOMMIC, an open-source toolbox that streamlines AI applications for accelerated MRI reconstruction and analysis. ATOMMIC implements several tasks using DL networks and enables MultiTask Learning (MTL) to perform related tasks integrated, targeting generalization in the MRI domain. We first review the current state of AI frameworks for MRI through a comprehensive literature search and by parsing 12,479 GitHub repositories. We benchmark 25 DL models on eight publicly available datasets to present distinct applications of ATOMMIC on accelerated MRI reconstruction, image segmentation, quantitative parameter map estimation, and joint accelerated MRI reconstruction and image segmentation utilizing MTL. Our findings demonstrate that ATOMMIC is the only MTL framework with harmonized complex-valued and real-valued data support. Evaluations on single tasks show that physics-based models, which enforce data consistency by leveraging the physical properties of MRI, outperform other models in reconstructing highly accelerated acquisitions. Physics-based models that produce high reconstruction quality can accurately estimate quantitative parameter maps. When high-performing reconstruction models are combined with robust segmentation networks utilizing MTL, performance is improved in both tasks. ATOMMIC facilitates MRI reconstruction and analysis by standardizing workflows, enhancing data interoperability, integrating unique features like MTL, and effectively benchmarking DL models.
LLM Comparative Assessment: Zero-shot NLG Evaluation through Pairwise Comparisons using Large Language Models
Current developments in large language models (LLMs) have enabled impressive zero-shot capabilities across various natural language tasks. An interesting application of these systems is in the automated assessment of natural language generation (NLG), a highly challenging area with great practical benefit. In this paper, we explore two options for exploiting the emergent abilities of LLMs for zero-shot NLG assessment: absolute score prediction, and comparative assessment which uses relative comparisons between pairs of candidates. Though comparative assessment has not been extensively studied in NLG assessment, we note that humans often find it more intuitive to compare two options rather than scoring each one independently. This work examines comparative assessment from multiple perspectives: performance compared to absolute grading; positional biases in the prompt; and efficient ranking in terms of the number of comparisons. We illustrate that LLM comparative assessment is a simple, general and effective approach for NLG assessment. For moderate-sized open-source LLMs, such as FlanT5 and Llama2-chat, comparative assessment is superior to prompt scoring, and in many cases can achieve performance competitive with state-of-the-art methods. Additionally, we demonstrate that LLMs often exhibit strong positional biases when making pairwise comparisons, and we propose debiasing methods that can further improve performance.
The Fused Kernel Library: A C++ API to Develop Highly-Efficient GPU Libraries
Existing GPU libraries often struggle to fully exploit the parallel resources and on-chip memory (SRAM) of GPUs when chaining multiple GPU functions as individual kernels. While Kernel Fusion (KF) techniques like Horizontal Fusion (HF) and Vertical Fusion (VF) can mitigate this, current library implementations often require library developers to manually create fused kernels. Hence, library users rely on limited sets of pre-compiled or template-based fused kernels. This limits the use cases that can benefit from HF and VF and increases development costs. In order to solve these issues, we present a novel methodology for building GPU libraries that enables automatic on-demand HF and VF for arbitrary combinations of GPU library functions. Our methodology defines reusable, fusionable components that users combine via high-level programming interfaces. Leveraging C++17 metaprogramming features available in compilers like nvcc, our methodology generates a single and optimized fused kernel tailored to the user's specific sequence of operations at compile time, without needing a custom compiler or manual development and pre-compilation of kernel combinations. This approach abstracts low-level GPU complexities while maximizing GPU resource utilization and keeping intermediate data in SRAM. We provide an open-source implementation demonstrating significant speedups compared to traditional libraries in various benchmarks, validating the effectiveness of this methodology for improving GPU performance in the range of 2x to more than 1000x, while preserving high-level programmability.
Draw Your Mind: Personalized Generation via Condition-Level Modeling in Text-to-Image Diffusion Models
Personalized generation in T2I diffusion models aims to naturally incorporate individual user preferences into the generation process with minimal user intervention. However, existing studies primarily rely on prompt-level modeling with large-scale models, often leading to inaccurate personalization due to the limited input token capacity of T2I diffusion models. To address these limitations, we propose DrUM, a novel method that integrates user profiling with a transformer-based adapter to enable personalized generation through condition-level modeling in the latent space. DrUM demonstrates strong performance on large-scale datasets and seamlessly integrates with open-source text encoders, making it compatible with widely used foundation T2I models without requiring additional fine-tuning.
An Efficient and Adaptive Next Edit Suggestion Framework with Zero Human Instructions in IDEs
Code editing, including modifying, refactoring, and maintaining existing code, is the most frequent task in software development and has garnered significant attention from AI-powered tools. However, existing solutions that translate explicit natural language instructions into code edits face critical limitations, such as heavy reliance on human instruction input and high latency, which hinder their effective integration into a developer's workflow. We observe that developers' habitual behaviors and coding objectives are often reflected in their historical editing patterns, making this data key to addressing existing limitations. To leverage these insights, we propose NES (Next Edit Suggestion), an LLM-driven code editing framework that delivers an instruction-free and low-latency experience. Built on a dual-model architecture and trained with our high-quality SFT and DAPO datasets, NES enhances productivity by understanding developer intent while optimizing inference to minimize latency. NES is a scalable, industry-ready solution with a continuous Tab key interaction workflow, seamlessly adopted by a FinTech company with over 20,000 developers. Evaluations on real-world datasets show NES achieves 75.6% and 81.6% accuracy in two tasks of predicting next edit locations, alongside 91.36% ES and 27.7% EMR for intent-aligned edits, outperforming SOTA models. Our open-sourced SFT and DAPO datasets have been demonstrated to enhance the performance of open-source CodeLLMs. The demonstration of NES is available at https://youtu.be/yGoyYOe6fbY.
FinChart-Bench: Benchmarking Financial Chart Comprehension in Vision-Language Models
Large vision-language models (LVLMs) have made significant progress in chart understanding. However, financial charts, characterized by complex temporal structures and domain-specific terminology, remain notably underexplored. We introduce FinChart-Bench, the first benchmark specifically focused on real-world financial charts. FinChart-Bench comprises 1,200 financial chart images collected from 2015 to 2024, each annotated with True/False (TF), Multiple Choice (MC), and Question Answering (QA) questions, totaling 7,016 questions. We conduct a comprehensive evaluation of 25 state-of-the-art LVLMs on FinChart-Bench. Our evaluation reveals critical insights: (1) the performance gap between open-source and closed-source models is narrowing, (2) performance degradation occurs in upgraded models within families, (3) many models struggle with instruction following, (4) both advanced models show significant limitations in spatial reasoning abilities, and (5) current LVLMs are not reliable enough to serve as automated evaluators. These findings highlight important limitations in current LVLM capabilities for financial chart understanding. The FinChart-Bench dataset is available at https://huggingface.co/datasets/Tizzzzy/FinChart-Bench.
EvoAgentX: An Automated Framework for Evolving Agentic Workflows
Multi-agent systems (MAS) have emerged as a powerful paradigm for orchestrating large language models (LLMs) and specialized tools to collaboratively address complex tasks. However, existing MAS frameworks often require manual workflow configuration and lack native support for dynamic evolution and performance optimization. In addition, many MAS optimization algorithms are not integrated into a unified framework. In this paper, we present EvoAgentX, an open-source platform that automates the generation, execution, and evolutionary optimization of multi-agent workflows. EvoAgentX employs a modular architecture consisting of five core layers: the basic components, agent, workflow, evolving, and evaluation layers. Specifically, within the evolving layer, EvoAgentX integrates three MAS optimization algorithms, TextGrad, AFlow, and MIPRO, to iteratively refine agent prompts, tool configurations, and workflow topologies. We evaluate EvoAgentX on HotPotQA, MBPP, and MATH for multi-hop reasoning, code generation, and mathematical problem solving, respectively, and further assess it on real-world tasks using GAIA. Experimental results show that EvoAgentX consistently achieves significant performance improvements, including a 7.44% increase in HotPotQA F1, a 10.00% improvement in MBPP pass@1, a 10.00% gain in MATH solve accuracy, and an overall accuracy improvement of up to 20.00% on GAIA. The source code is available at: https://github.com/EvoAgentX/EvoAgentX
ClinBench-HPB: A Clinical Benchmark for Evaluating LLMs in Hepato-Pancreato-Biliary Diseases
Hepato-pancreato-biliary (HPB) disorders represent a global public health challenge due to their high morbidity and mortality. Although large language models (LLMs) have shown promising performance in general medical question-answering tasks, the current evaluation benchmarks are mostly derived from standardized examinations or manually designed questions, lacking HPB coverage and clinical cases. To address these issues, we systematically eatablish an HPB disease evaluation benchmark comprising 3,535 closed-ended multiple-choice questions and 337 open-ended real diagnosis cases, which encompasses all the 33 main categories and 465 subcategories of HPB diseases defined in the International Statistical Classification of Diseases, 10th Revision (ICD-10). The multiple-choice questions are curated from public datasets and synthesized data, and the clinical cases are collected from prestigious medical journals, case-sharing platforms, and collaborating hospitals. By evalauting commercial and open-source general and medical LLMs on our established benchmark, namely ClinBench-HBP, we find that while commercial LLMs perform competently on medical exam questions, they exhibit substantial performance degradation on HPB diagnosis tasks, especially on complex, inpatient clinical cases. Those medical LLMs also show limited generalizability to HPB diseases. Our results reveal the critical limitations of current LLMs in the domain of HPB diseases, underscoring the imperative need for future medical LLMs to handle real, complex clinical diagnostics rather than simple medical exam questions. The benchmark will be released at https://clinbench-hpb.github.io.
Training LLM-Based Agents with Synthetic Self-Reflected Trajectories and Partial Masking
Autonomous agents, which perceive environments and take actions to achieve goals, have become increasingly feasible with the advancements in large language models (LLMs). However, current powerful agents often depend on sophisticated prompt engineering combined with closed-source LLMs like GPT-4. Although training open-source LLMs using expert trajectories from teacher models has yielded some improvements in agent capabilities, this approach still faces limitations such as performance plateauing and error propagation. To mitigate these challenges, we propose STeP, a novel method for improving LLM-based agent training. We synthesize self-reflected trajectories that include reflections and corrections of error steps, which enhance the effectiveness of LLM agents in learning from teacher models, enabling them to become agents capable of self-reflecting and correcting. We also introduce partial masking strategy that prevents the LLM from internalizing incorrect or suboptimal steps. Experiments demonstrate that our method improves agent performance across three representative tasks: ALFWorld, WebShop, and SciWorld. For the open-source model LLaMA2-7B-Chat, when trained using self-reflected trajectories constructed with Qwen1.5-110B-Chat as the teacher model, it achieves comprehensive improvements with less training data compared to agents trained exclusively on expert trajectories.
Risk-aware Direct Preference Optimization under Nested Risk Measure
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
Can We Enhance Bug Report Quality Using LLMs?: An Empirical Study of LLM-Based Bug Report Generation
Bug reports contain the information developers need to triage and fix software bugs. However, unclear, incomplete, or ambiguous information may lead to delays and excessive manual effort spent on bug triage and resolution. In this paper, we explore whether Instruction fine-tuned Large Language Models (LLMs) can automatically transform casual, unstructured bug reports into high-quality, structured bug reports adhering to a standard template. We evaluate three open-source instruction-tuned LLMs (Qwen 2.5, Mistral, and Llama 3.2) against ChatGPT-4o, measuring performance on established metrics such as CTQRS, ROUGE, METEOR, and SBERT. Our experiments show that fine-tuned Qwen 2.5 achieves a CTQRS score of 77%, outperforming both fine-tuned Mistral (71%), Llama 3.2 (63%) and ChatGPT in 3-shot learning (75%). Further analysis reveals that Llama 3.2 shows higher accuracy of detecting missing fields particularly Expected Behavior and Actual Behavior, while Qwen 2.5 demonstrates superior performance in capturing Steps-to-Reproduce, with an F1 score of 76%. Additional testing of the models on other popular projects (e.g., Eclipse, GCC) demonstrates that our approach generalizes well, achieving up to 70% CTQRS in unseen projects' bug reports. These findings highlight the potential of instruction fine-tuning in automating structured bug report generation, reducing manual effort for developers and streamlining the software maintenance process.
LEMUR Neural Network Dataset: Towards Seamless AutoML
Neural networks are fundamental in artificial intelligence, driving progress in computer vision and natural language processing. High-quality datasets are crucial for their development, and there is growing interest in datasets composed of neural networks themselves to support benchmarking, automated machine learning (AutoML), and model analysis. We introduce LEMUR, an open source dataset of neural network models with well-structured code for diverse architectures across tasks such as object detection, image classification, segmentation, and natural language processing. LEMUR is primarily designed to provide a rich source of structured model representations and associated performance data, enabling the fine-tuning of large language models for AutoML applications. Leveraging Python and PyTorch, LEMUR enables seamless extension to new datasets and models while maintaining consistency. It integrates an Optuna-powered framework for evaluation, hyperparameter optimization, statistical analysis, and graphical insights. LEMUR VR extension enables the seamless deployment of models in virtual reality, optimizing their performance on resource-constrained devices. Providing tools for model evaluation, preprocessing, and database management, LEMUR supports researchers and practitioners in developing, testing, and analyzing neural networks. It offers an API that delivers comprehensive information about neural network models and their complete performance statistics with a single request, which can be used in experiments with code-generating large language models. The LEMUR and its plugins are accessible as open source projects under the MIT license at https://github.com/ABrain-One/nn-dataset, https://github.com/ABrain-One/nn-plots and https://github.com/ABrain-One/nn-vr.
DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL
Recent text-to-SQL systems powered by large language models (LLMs) have demonstrated remarkable performance in translating natural language queries into SQL. However, these systems often struggle with complex database structures and domain-specific queries, as they primarily focus on enhancing logical reasoning and SQL syntax while overlooking the critical need for comprehensive database understanding. To address this limitation, we propose DB-Explore, a novel framework that systematically aligns LLMs with database knowledge through automated exploration and instruction synthesis. DB-Explore constructs database graphs to capture complex relational schemas, leverages GPT-4 to systematically mine structural patterns and semantic knowledge, and synthesizes instructions to distill this knowledge for efficient fine-tuning of LLMs. Our framework enables comprehensive database understanding through diverse sampling strategies and automated instruction generation, bridging the gap between database structures and language models. Experiments conducted on the SPIDER and BIRD benchmarks validate the effectiveness of DB-Explore, achieving an execution accuracy of 52.1% on BIRD and 84.0% on SPIDER. Notably, our open-source implementation, based on the Qwen2.5-coder-7B model, outperforms multiple GPT-4-driven text-to-SQL systems in comparative evaluations, and achieves near state-of-the-art performance with minimal computational cost.
MdEval: Massively Multilingual Code Debugging
Code large language models (LLMs) have made significant progress in code debugging by directly generating the correct code based on the buggy code snippet. Programming benchmarks, typically consisting of buggy code snippet and their associated test cases, are used to assess the debugging capabilities of LLMs. However, many existing benchmarks primarily focus on Python and are often limited in terms of language diversity (e.g., DebugBench and DebugEval). To advance the field of multilingual debugging with LLMs, we propose the first massively multilingual debugging benchmark, which includes 3.6K test samples of 18 programming languages and covers the automated program repair (APR) task, the code review (CR) task, and the bug identification (BI) task. Further, we introduce the debugging instruction corpora MDEVAL-INSTRUCT by injecting bugs into the correct multilingual queries and solutions (xDebugGen). Further, a multilingual debugger xDebugCoder trained on MDEVAL-INSTRUCT as a strong baseline specifically to handle the bugs of a wide range of programming languages (e.g. "Missing Mut" in language Rust and "Misused Macro Definition" in language C). Our extensive experiments on MDEVAL reveal a notable performance gap between open-source models and closed-source LLMs (e.g., GPT and Claude series), highlighting huge room for improvement in multilingual code debugging scenarios.
MultiMath: Bridging Visual and Mathematical Reasoning for Large Language Models
The rapid development of large language models (LLMs) has spurred extensive research into their domain-specific capabilities, particularly mathematical reasoning. However, most open-source LLMs focus solely on mathematical reasoning, neglecting the integration with visual injection, despite the fact that many mathematical tasks rely on visual inputs such as geometric diagrams, charts, and function plots. To fill this gap, we introduce MultiMath-7B, a multimodal large language model that bridges the gap between math and vision. MultiMath-7B is trained through a four-stage process, focusing on vision-language alignment, visual and math instruction-tuning, and process-supervised reinforcement learning. We also construct a novel, diverse and comprehensive multimodal mathematical dataset, MultiMath-300K, which spans K-12 levels with image captions and step-wise solutions. MultiMath-7B achieves state-of-the-art (SOTA) performance among open-source models on existing multimodal mathematical benchmarks and also excels on text-only mathematical benchmarks. Our model and dataset are available at {blue{https://github.com/pengshuai-rin/MultiMath}}.
OptiBench Meets ReSocratic: Measure and Improve LLMs for Optimization Modeling
Large language models (LLMs) have exhibited their problem-solving abilities in mathematical reasoning. Solving realistic optimization (OPT) problems in application scenarios requires advanced and applied mathematics ability. However, current OPT benchmarks that merely solve linear programming are far from complex realistic situations. In this work, we propose OptiBench, a benchmark for End-to-end optimization problem-solving with human-readable inputs and outputs. OptiBench contains rich optimization problems, including linear and nonlinear programming with or without tabular data, which can comprehensively evaluate LLMs' solving ability. In our benchmark, LLMs are required to call a code solver to provide precise numerical answers. Furthermore, to alleviate the data scarcity for optimization problems, and to bridge the gap between open-source LLMs on a small scale (e.g., Llama-3-8b) and closed-source LLMs (e.g., GPT-4), we further propose a data synthesis method namely ReSocratic. Unlike general data synthesis methods that proceed from questions to answers, \ReSocratic first incrementally synthesizes formatted optimization demonstration with mathematical formulations step by step and then back-translates the generated demonstrations into questions. Based on this, we synthesize the ReSocratic-29k dataset. We further conduct supervised fine-tuning with ReSocratic-29k on multiple open-source models. Experimental results show that ReSocratic-29k significantly improves the performance of open-source models.
VisualWebBench: How Far Have Multimodal LLMs Evolved in Web Page Understanding and Grounding?
Multimodal Large Language models (MLLMs) have shown promise in web-related tasks, but evaluating their performance in the web domain remains a challenge due to the lack of comprehensive benchmarks. Existing benchmarks are either designed for general multimodal tasks, failing to capture the unique characteristics of web pages, or focus on end-to-end web agent tasks, unable to measure fine-grained abilities such as OCR, understanding, and grounding. In this paper, we introduce , a multimodal benchmark designed to assess the capabilities of MLLMs across a variety of web tasks. consists of seven tasks, and comprises 1.5K human-curated instances from 139 real websites, covering 87 sub-domains. We evaluate 14 open-source MLLMs, Gemini Pro, Claude-3 series, and GPT-4V(ision) on , revealing significant challenges and performance gaps. Further analysis highlights the limitations of current MLLMs, including inadequate grounding in text-rich environments and subpar performance with low-resolution image inputs. We believe will serve as a valuable resource for the research community and contribute to the creation of more powerful and versatile MLLMs for web-related applications.
HateCOT: An Explanation-Enhanced Dataset for Generalizable Offensive Speech Detection via Large Language Models
The widespread use of social media necessitates reliable and efficient detection of offensive content to mitigate harmful effects. Although sophisticated models perform well on individual datasets, they often fail to generalize due to varying definitions and labeling of "offensive content." In this paper, we introduce HateCOT, an English dataset with over 52,000 samples from diverse sources, featuring explanations generated by GPT-3.5Turbo and curated by humans. We demonstrate that pretraining on HateCOT significantly enhances the performance of open-source Large Language Models on three benchmark datasets for offensive content detection in both zero-shot and few-shot settings, despite differences in domain and task. Additionally, HateCOT facilitates effective K-shot fine-tuning of LLMs with limited data and improves the quality of their explanations, as confirmed by our human evaluation.
VIM: Probing Multimodal Large Language Models for Visual Embedded Instruction Following
We introduce VISUAL EMBEDDED INSTRUCTION (VIM), a new framework designed to evaluate the visual instruction following capability of Multimodal Large Language Models (MLLMs). As illustrated in Figure 2, VIM challenges the MLLMs by embedding the instructions into the visual scenes, demanding strong visual interpretative skills for instruction following. We adapt VIM to various benchmarks, including VQAv2, MME, MM-Vet, and RefCOCO series, compose a VIM bench, and probe diverse MLLMs across three distinct in-context learning settings: Zero Shot, One Shot, and Pair Shot. We observe that there is a significant performance disparity between the open-source MLLMs and GPT-4V, implying that their proficiency in visual instruction comprehension is not up to par. Our results highlight a promising direction for the enhancement of MLLMs capabilities on instruction following. We aim VIM to serve as a useful norm for advancing the state of the art and driving further progress in the field.
In-Context Learning for Text Classification with Many Labels
In-context learning (ICL) using large language models for tasks with many labels is challenging due to the limited context window, which makes it difficult to fit a sufficient number of examples in the prompt. In this paper, we use a pre-trained dense retrieval model to bypass this limitation, giving the model only a partial view of the full label space for each inference call. Testing with recent open-source LLMs (OPT, LLaMA), we set new state of the art performance in few-shot settings for three common intent classification datasets, with no finetuning. We also surpass fine-tuned performance on fine-grained sentiment classification in certain cases. We analyze the performance across number of in-context examples and different model scales, showing that larger models are necessary to effectively and consistently make use of larger context lengths for ICL. By running several ablations, we analyze the model's use of: a) the similarity of the in-context examples to the current input, b) the semantic content of the class names, and c) the correct correspondence between examples and labels. We demonstrate that all three are needed to varying degrees depending on the domain, contrary to certain recent works.
AutoGluon-TimeSeries: AutoML for Probabilistic Time Series Forecasting
We introduce AutoGluon-TimeSeries - an open-source AutoML library for probabilistic time series forecasting. Focused on ease of use and robustness, AutoGluon-TimeSeries enables users to generate accurate point and quantile forecasts with just 3 lines of Python code. Built on the design philosophy of AutoGluon, AutoGluon-TimeSeries leverages ensembles of diverse forecasting models to deliver high accuracy within a short training time. AutoGluon-TimeSeries combines both conventional statistical models, machine-learning based forecasting approaches, and ensembling techniques. In our evaluation on 29 benchmark datasets, AutoGluon-TimeSeries demonstrates strong empirical performance, outperforming a range of forecasting methods in terms of both point and quantile forecast accuracy, and often even improving upon the best-in-hindsight combination of prior methods.
Phoenix: Democratizing ChatGPT across Languages
This paper presents our efforts to democratize ChatGPT across language. We release a large language model "Phoenix", achieving competitive performance among open-source English and Chinese models while excelling in languages with limited resources (covering both Latin and non-Latin languages). We believe this work will be beneficial to make ChatGPT more accessible, especially in countries where people cannot use ChatGPT due to restrictions from OpenAI or local goverments. Our data, code, and models are available at https://github.com/FreedomIntelligence/LLMZoo.
TorchScale: Transformers at Scale
Large Transformers have achieved state-of-the-art performance across many tasks. Most open-source libraries on scaling Transformers focus on improving training or inference with better parallelization. In this work, we present TorchScale, an open-source toolkit that allows researchers and developers to scale up Transformers efficiently and effectively. TorchScale has the implementation of several modeling techniques, which can improve modeling generality and capability, as well as training stability and efficiency. Experimental results on language modeling and neural machine translation demonstrate that TorchScale can successfully scale Transformers to different sizes without tears. The library is available at https://aka.ms/torchscale.
SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for Text Summarization
Novel neural architectures, training strategies, and the availability of large-scale corpora haven been the driving force behind recent progress in abstractive text summarization. However, due to the black-box nature of neural models, uninformative evaluation metrics, and scarce tooling for model and data analysis, the true performance and failure modes of summarization models remain largely unknown. To address this limitation, we introduce SummVis, an open-source tool for visualizing abstractive summaries that enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization. Through its lexical and semantic visualizations, the tools offers an easy entry point for in-depth model prediction exploration across important dimensions such as factual consistency or abstractiveness. The tool together with several pre-computed model outputs is available at https://github.com/robustness-gym/summvis.
