Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeConstraining atmospheric composition from the outflow: helium observations reveal the fundamental properties of two planets straddling the radius gap
TOI-836 is a ~2-3 Gyr K dwarf with an inner super Earth (R=1.7 R_oplus, P=3.8 d) and an outer mini Neptune (R=2.6 R_oplus, P=8.6 d). JWST/NIRSpec 2.8--5.2 mum transmission spectra are flat for both planets. We present Keck/NIRSPEC observations of escaping helium for super-Earth b, which shows no excess absorption in the 1083 nm triplet to deep limits (<0.2%), and mini-Neptune c, which shows strong (0.7%) excess absorption in both visits. These results demonstrate that planet c retains at least some primordial atmosphere, while planet b is consistent with having lost its entire primordial envelope. Self-consistent 1D radiative-hydrodynamic models of planet c reveal that the helium excess absorption signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% the model prediction for 100x metallicity, suggesting an atmospheric metallicity similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds, which can suppress the signal by at least a factor of ~several.
Observations on Building RAG Systems for Technical Documents
Retrieval augmented generation (RAG) for technical documents creates challenges as embeddings do not often capture domain information. We review prior art for important factors affecting RAG and perform experiments to highlight best practices and potential challenges to build RAG systems for technical documents.
Observations on LLMs for Telecom Domain: Capabilities and Limitations
The landscape for building conversational interfaces (chatbots) has witnessed a paradigm shift with recent developments in generative Artificial Intelligence (AI) based Large Language Models (LLMs), such as ChatGPT by OpenAI (GPT3.5 and GPT4), Google's Bard, Large Language Model Meta AI (LLaMA), among others. In this paper, we analyze capabilities and limitations of incorporating such models in conversational interfaces for the telecommunication domain, specifically for enterprise wireless products and services. Using Cradlepoint's publicly available data for our experiments, we present a comparative analysis of the responses from such models for multiple use-cases including domain adaptation for terminology and product taxonomy, context continuity, robustness to input perturbations and errors. We believe this evaluation would provide useful insights to data scientists engaged in building customized conversational interfaces for domain-specific requirements.
JWST observations of photodissociation regions III. Dust modelling at the illuminated edge of the Horsehead PDR
Carbonaceous nano-grains are a significant component of interstellar dust and dominate the mid-infrared emission of photodissociation regions (PDRs). We study the evolution of nano-grains across the illuminated edge of the Horsehead PDR, especially their abundance and size properties. This work is part of the Physics and Chemistry of PDR Fronts program studying dust and gas in PDRs with JWST. We use NIRCam+MIRI photometric bands and NIRSpec+MRS spectroscopy to map the illuminated edge. We model dust emission using the THEMIS dust model with the SOC radiative transfer code. Detailed modeling of high angular resolution JWST data allows us to obtain constraints on nano-grain properties. We find that diffuse ISM dust cannot account for the observed data, requiring evolved grains. A sharp density increase is observed at the illuminated edge, consistent with ALMA observations revealing a sharp transition between molecular and ionized gas. Although the PDR length could not be directly determined, we estimate an upper limit of approximately 0.015 pc. This implies a lower limit on small grain abundance (greater than 0.003), showing small grains are not depleted at the Horsehead edge, unlike in the Orion Bar. Our findings indicate a high-density environment and less steep size distribution for nano-grains at the illuminated edge versus the diffuse ISM. This implies nano-grain destruction mechanisms might be less efficient in the Horsehead's moderate-UV field than in more intense PDRs. These results support a model where nano-grain population recovery is slower in moderate-UV environments, leading to a unique dust size distribution at the edge of the Horsehead Nebula.
XRISM Observations of Cassiopeia A: Overview, Atomic Data, and Spectral Models
Cassiopeia A (Cas A) is the youngest known core-collapse supernova remnant (SNR) in the Galaxy and is perhaps the best-studied SNR in X-rays. Cas A has a line-rich spectrum dominated by thermal emission and given its high flux, it is an appealing target for high-resolution X-ray spectroscopy. Cas A was observed at two different locations during the Performance Verification phase of the XRISM mission, one location in the southeastern part (SE) of the remnant and one in the northwestern part (NW). This paper serves as an overview of these observations and discusses some of the issues relevant for the analysis of the data. We present maps of the so-called ``spatial-spectral mixing'' effect due to the fact that the XRISM point-spread function is larger than a pixel in the Resolve calorimeter array. We analyze spectra from two bright, on-axis regions such that the effects of spatial-spectral mixing are minimized. We find that it is critical to include redshifts/blueshifts and broadening of the emission lines in the two thermal components to achieve a reasonable fit given the high spectral resolution of the Resolve calorimeter. We fit the spectra with two versions of the AtomDB atomic database (3.0.9 and 3.1.0) and two versions of the SPEX (3.08.00 and 3.08.01*) spectral fitting software. Overall we find good agreement between AtomDB 3.1.0 and SPEX 3.08.01* for the spectral models considered in this paper. The most significant difference we found between AtomDB 3.0.9 and 3.1.0 and between AtomDB 3.1.0 and SPEX 3.08.01* is the Ni abundance, with the new atomic data favoring a considerably lower (up to a factor of 3) Ni abundance. Both regions exhibit significantly enhanced abundances compared to Solar values indicating that supernova ejecta dominate the emission in these regions. We find that the abundance ratios of Ti/Fe, Mn/Fe, \& Ni/Fe are significantly lower in the NW than the SE.
Radio observations point to a moderately relativistic outflow in the fast X-ray transient EP241021a
Fast X-ray transients (FXRTs) are short-lived X-ray outbursts with diverse progenitor scenarios, including compact object mergers, stellar core-collapses and tidal disruption events. The Einstein Probe (EP) has enabled the rapid discovery and follow-up of dozens of FXRTs, revealing that while some of them overlap with traditional gamma-ray bursts (GRBs), a larger fraction of FXRTs have no associated gamma-ray counterpart down to deep limits. The origin of these gamma-ray dark FXRTs and their connection to the diverse landscape of stellar explosions remains an open question, which can be tackled through the study of their multi-wavelength counterparts and environment. In this paper, we present long-term radio observations of the gamma-ray dark EP241021a, which exhibits sustained radio emission for over 100 days, placing it among the longest-lived radio afterglows. We detect signature of interstellar scintillation in early epochs, allowing us to constrain the angular size and Lorentz factor of the emitting region. Our observations point to an outflow that is at least mildly relativistic with Lorentz factor > 4. Afterglow modeling favors a moderately relativistic and collimated outflow interacting with a low-density interstellar medium. The derived beaming-corrected kinetic energy and low radiative efficiency are consistent with a standard relativistic explosion which did not produce bright gamma-rays. Alternatively, a highly-relativistic structured jet remains consistent with our observations if seen substantially off-axis. In the latter case, the initial X-ray flare detected by EP would be caused by the slower ejecta from the lateral wings intercepting our line of sight rather than by traditional prompt-emission mechanisms within the jet core.
ALMA observations of massive clouds in the central molecular zone: slim filaments tracing parsec-scale shocks
The central molecular zone (CMZ) of our Galaxy exhibits widespread emission from SiO and various complex organic molecules (COMs), yet the exact origin of such emission is uncertain. Here we report the discovery of a unique class of long (>0.5 pc) and narrow (<0.03 pc) filaments in the emission of SiO 5-4 and eight additional molecular lines, including several COMs, in our ALMA 1.3 mm spectral line observations toward two massive molecular clouds in the CMZ, which we name as slim filaments. However, these filaments are not detected in the 1.3 mm continuum at the 5sigma level. Their line-of-sight velocities are coherent and inconsistent with being outflows. The column densities and relative abundances of the detected molecules are statistically similar to those in protostellar outflows but different from those in dense cores within the same clouds. Turbulent pressure in these filaments dominates over self gravity and leads to hydrostatic inequilibrium, indicating that they are a different class of objects than the dense gas filaments in dynamical equilibrium ubiquitously found in nearby molecular clouds. We argue that these newly detected slim filaments are associated with parsec-scale shocks, likely arising from dynamic interactions between shock waves and molecular clouds. The dissipation of the slim filaments may replenish SiO and COMs in the interstellar medium and lead to their widespread emission in the CMZ.
Constraints on Cosmic Rays Acceleration in Bright Gamma-ray Bursts with Observations of Fermi
Gamma-ray bursts (GRBs) are widely suggested as potential sources of ultrahigh-energy cosmic rays (UHECRs). The kinetic energy of the jets dissipates, leading to the production of an enormous amount of gamma-ray photons and possibly also the acceleration of protons. The accelerated protons will interact with the radiation of the GRB via the photomeson and Bethe-Heitler processes, which can initiate electromagnetic cascades. This process can give rise to broadband radiation up to the GeV-TeV gamma-ray regime. The expected gamma-ray flux from cascades depends on properties of the GRB jet, such as the dissipation radius R_{rm diss}, the bulk Lorentz factor Gamma, and the baryon loading factor eta_p. Therefore, observations of Fermi-LAT can impose constraints on these important parameters. In this study, we select 12 GRBs of high keV-MeV fluence and constrain the baryon loading factor, under different combinations of the bulk Lorentz factor and the dissipation radius based on Fermi-LAT's measurements. Our findings indicate a strong constraint of eta_p<10 for most selected GRBs over a large parameter space except for large dissipation radii (gtrsim 10^{15}rm cm) and high bulk Lorentz factors (gtrsim 600). The constraint is comparable to, and in some GRBs even stronger than, that from high-energy neutrinos for stacked GRBs. Our results suggest that for typical bulk Lorentz factor of several hundreds, the dissipation radii of GRBs need be large to avoid overshooting the GeV gamma-ray flux during the prompt emission phase of GRBs, which can be used to constrain GRBs.
Learning Diffusion Priors from Observations by Expectation Maximization
Diffusion models recently proved to be remarkable priors for Bayesian inverse problems. However, training these models typically requires access to large amounts of clean data, which could prove difficult in some settings. In this work, we present a novel method based on the expectation-maximization algorithm for training diffusion models from incomplete and noisy observations only. Unlike previous works, our method leads to proper diffusion models, which is crucial for downstream tasks. As part of our method, we propose and motivate an improved posterior sampling scheme for unconditional diffusion models. We present empirical evidence supporting the effectiveness of our method.
ReWOO: Decoupling Reasoning from Observations for Efficient Augmented Language Models
Augmented Language Models (ALMs) blend the reasoning capabilities of Large Language Models (LLMs) with tools that allow for knowledge retrieval and action execution. Existing ALM systems trigger LLM thought processes while pulling observations from these tools in an interleaved fashion. Specifically, an LLM reasons to call an external tool, gets halted to fetch the tool's response, and then decides the next action based on all preceding response tokens. Such a paradigm, though straightforward and easy to implement, often leads to huge computation complexity from redundant prompts and repeated execution. This study addresses such challenges for the first time, proposing a modular paradigm ReWOO (Reasoning WithOut Observation) that detaches the reasoning process from external observations, thus significantly reducing token consumption. Comprehensive evaluations across six public NLP benchmarks and a curated dataset reveal consistent performance enhancements with our proposed methodology. Notably, ReWOO achieves 5x token efficiency and 4% accuracy improvement on HotpotQA, a multi-step reasoning benchmark. Furthermore, ReWOO demonstrates robustness under tool-failure scenarios. Beyond prompt efficiency, decoupling parametric modules from non-parametric tool calls enables instruction fine-tuning to offload LLMs into smaller language models, thus substantially reducing model parameters. Our illustrative work offloads reasoning ability from 175B GPT3.5 into 7B LLaMA, demonstrating the significant potential for truly efficient and scalable ALM systems.
X-ray Observations of Nova Scorpii 2023 (V1716 Sco) in Outburst
Nova Scorpii 2023 was first detected as a luminous supersoft X-ray source (SSS) 93 days after outburst and continued emitting soft X-rays for over two months, until it was too close to the Sun to observe. The nova was monitored with the Swift X-ray Telescope (XRT) and the Neutron Star Interior Composition Explorer (NICER) on the International Space Station, and in long exposures with the Chandra High Resolution Camera (HRC) and Low Energy Transmission Grating (LETG) on days 128, 129, and 183-185 after optical maximum. Swift detected a rapidly decaying SSS when observations resumed, constraining the constant bolometric luminosity phase to 9 months. The SSS flux was irregularly variable. A nearly three-fold increase in flux was observed between August and October 2023 in the 15 to 35 Angstrom range, from 3.5 x 10^(-11) to 9.4 x 10^(-11) erg cm^(-2) s^(-1). The SSS duration and effective temperature derived from the October LETG spectra indicate a massive white dwarf with temperature fitting nova evolutionary tracks for a 1.2 solar mass WD; emission lines superimposed on the WD continuum are attributed to surrounding shocked ejecta. We present a timing study based on Chandra and archival NICER data. The irregular variability timescale was days, but a 77.9 second periodic modulation in the SSS flux with varying amplitude was measured in many observations. Our analysis shows that this period was stable; short drifts derived with NICER, but not in long, uninterrupted Chandra exposures, are artifacts of measuring variable amplitude modulation. We suggest the modulations are associated with the WD rotation.
Characterising the Atmosphere of 55 Cancri e: 1D Forward Model Grid for Current and Future JWST Observations
Recent JWST observations with NIRCam and MIRI of the ultra-short-period super-Earth 55 Cancri e indicate a possible volatile atmosphere surrounding the planet. Previous analysis of the NIRCam spectra suggested potential absorption features from CO2 or CO and significant sub-weekly variability. The MIRI low-resolution spectrum does not contain substantial features but was found to be consistent with effective heat redistribution models. In this work, we computed a grid of over 25000 self-consistent 1D forward models incorporating H-N-O-C-S-P-Si-Ti equilibrium chemistry and assessed plausible atmospheric compositions based on the current JWST data. Despite exhaustive analysis, the composition and properties of the atmosphere remain elusive. While our results statistically favour a global, hydrogen-free, nitrogen-dominated atmosphere enriched in PO and CO2, various alternative compositions, including H2O-,CO-, PH3-, or Si-bearing remain viable explanations. Unconstrained heat redistribution efficiency and absolute NIRCam flux are among the largest sources of uncertainty in our analysis. We also find that the heat redistribution factor and surface pressure are highly degenerate with atmospheric composition, and that these parameters cannot be independently constrained using current JWST observations. Furthermore, we show that the observed variability may arise from dynamic interactions between the atmosphere and an underlying magma ocean, driving rapid shifts in atmospheric chemistry and thermal emission. Our results highlight the importance of using self-consistent forward models when analysing novel JWST spectra with limited signal-to-noise ratios -- such as those of 55 Cancri e -- as it allows for a more comprehensive evaluation of potential atmospheric scenarios while also being less sensitive to subtle spectral differences than retrievals...
Multifrequency Radio Observations of the Magnetar Swift J1818.0--1607
We report on Green Bank Telescope observations of the radio magnetar Swift J1818.0--1607 between 820 MHz and 35 GHz, taken from six to nine months after its 2020 March outburst. We obtained multi-hour observations at six frequencies, recording polarimetric, spectral, and single-pulse information. The spectrum peaks at a frequency of 5.4 pm 0.6 GHz, making Swift J1818.0--1607 one of many radio magnetars which exhibit a gigahertz-peaked spectrum (GPS). The radio flux decays steeply above the peak frequency, with in-band spectral indices alpha < -2.3 above 9 GHz. The emission is highly (> 50%) linearly polarized, with a lower degree (< 30%) of circular polarization which can change handedness between single pulses. Across the frequency range of our observations, the time-integrated radio profiles share a common shape: a narrow ``pulsar-like'' central component flanked by ``magnetar-like'' components comprised of bright, spiky subpulses. The outer profile components exhibit larger degrees of flux modulation and flatter spectral indices when compared to the central pulse component.
Resolving Pleiades binary stars with Gaia and speckle interferometric observations
The Pleiades is the most prominent open star cluster visible from Earth and an important benchmark for simple stellar populations, unified by common origin, age, and distance. Binary stars are its essential ingredient, yet their contribution remains uncertain due to heavy observational biases. A resolved multiplicity survey was conducted for a magnitude-limited G < 15mag sample of 423 potential cluster members, including sources with poorly fitted astrometric solutions in Gaia DR3. Speckle interferometric observations at the 2.5 meter telescope of SAI MSU observatory were combined with Gaia data, enabling the identification of 61 resolved binary or multiple systems within the 0.04 - 10 arcsec (5 - 1350 au) separation range. With speckle observations, we discovered 21 components in 20 systems. The existence of a Merope (23 Tau) companion is confirmed after several previous unsuccessful attempts. We show that the Gaia multipeak fraction is a strong predictor of subarcsecond multiplicity, as all sources with ipd_frac_multi_peak > 4% are successfully resolved. We found that 10% of Pleiades stars have a companion with a mass ratio q > 0.5 within projected separation of 27 < s < 1350 au, and confirm a deficit of wide binaries with s > 300 au. An observed dearth of wide pairs with large mass ratio (q > 0.55) may imprint the transition from hard to soft binaries regime at the early stages of cluster evolution. The total binary fraction for q > 0.5 systems is extrapolated to be around 25%.
New Radio Observations of the Supernova Remnant CTA 1
We present new radio images of the supernova remnant (SNR) CTA 1 at 1420 and 408 MHz, and in the 21 cm line of H I observed with the Dominion Radio Astrophysical Observatory Synthesis Telescope and at 1420 MHz observed with the Effelsberg 100 m telescope. We confirm previously described continuum features and elaborate further on filamentary features identified using the high-resolution (1') maps from these new observations. We investigate the abrupt change in sign of rotation measure (RM) across the SNR, using the linear polarization observations in the four bands around 1420 MHz. Following X. H. Sun et al.'s (2011) investigation, we both confirm that the distribution of signs of the RMs for extragalactic sources in the area appears to match that of the shell, as well as combine the data from the four bands to estimate the relative depolarization and the intrinsic rotation measure of the SNR. We do not conclusively reject X. H. Sun et al.'s (2011) claim of a Faraday screen in the foreground causing the distribution of RMs that we observe; however, we do suggest an alternative explanation of a swept-up stellar wind from the progenitor star with a toroidal magnetic field. Finally, we expand on the analysis of the H I observations by applying the Rolling Hough Transform to isolate filamentary structure and better identify H I emission with the SNR. Further constraining the H I velocity channels associated with CTA 1, we use more recent Galactic rotation curves to calculate an updated kinematic distance of 1.09 +/- 0.2 kpc.
The Lost Melody: Empirical Observations on Text-to-Video Generation From A Storytelling Perspective
Text-to-video generation task has witnessed a notable progress, with the generated outcomes reflecting the text prompts with high fidelity and impressive visual qualities. However, current text-to-video generation models are invariably focused on conveying the visual elements of a single scene, and have so far been indifferent to another important potential of the medium, namely a storytelling. In this paper, we examine text-to-video generation from a storytelling perspective, which has been hardly investigated, and make empirical remarks that spotlight the limitations of current text-to-video generation scheme. We also propose an evaluation framework for storytelling aspects of videos, and discuss the potential future directions.
ESPORT: Electronic Sports Professionals Observations and Reflections on Training
Esports and high performance human-computer interaction are on the forefront of applying new hardware and software technologies in practice. Despite that, there is a paucity of research on how semi-professional and professional championship level players approach aspects of their preparation. To address that, we have performed, transcribed, and analyzed interviews with top-tournament players, coaches, and managers across multiple game titles. The interviews range from competitive events occuring between 2015-2020. Initial processing included transcription and manual verification. The pre-processed interview data were then organized and structured into relevant categories, touching on psychological, physical, and nutritional aspects of esports preparation. Further, where applicable, interview responses where rated and quantified via consensus judgement by a panel of experts. The results indicate that physical training was most often mentioned as a relevant or consistent activity, while nutrition was indicated as relatively unimportant. Qualitative analysis also indicated that consistency and resiliency were noted as the most key factors recommended for upcoming esports competitors. It is also clear that many players put emphasis on balancing their gameplay time and with activities. Lastly, we identified important areas of inquiry towards a deeper understanding of the mental and physical demands of professional esports players.
The NANOGrav 15-year Data Set: Observations and Timing of 68 Millisecond Pulsars
We present observations and timing analyses of 68 millisecond pulsars (MSPs) comprising the 15-year data set of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). NANOGrav is a pulsar timing array (PTA) experiment that is sensitive to low-frequency gravitational waves. This is NANOGrav's fifth public data release, including both "narrowband" and "wideband" time-of-arrival (TOA) measurements and corresponding pulsar timing models. We have added 21 MSPs and extended our timing baselines by three years, now spanning nearly 16 years for some of our sources. The data were collected using the Arecibo Observatory, the Green Bank Telescope, and the Very Large Array between frequencies of 327 MHz and 3 GHz, with most sources observed approximately monthly. A number of notable methodological and procedural changes were made compared to our previous data sets. These improve the overall quality of the TOA data set and are part of the transition to new pulsar timing and PTA analysis software packages. For the first time, our data products are accompanied by a full suite of software to reproduce data reduction, analysis, and results. Our timing models include a variety of newly detected astrometric and binary pulsar parameters, including several significant improvements to pulsar mass constraints. We find that the time series of 23 pulsars contain detectable levels of red noise, 10 of which are new measurements. In this data set, we find evidence for a stochastic gravitational-wave background.
Xplainer: From X-Ray Observations to Explainable Zero-Shot Diagnosis
Automated diagnosis prediction from medical images is a valuable resource to support clinical decision-making. However, such systems usually need to be trained on large amounts of annotated data, which often is scarce in the medical domain. Zero-shot methods address this challenge by allowing a flexible adaption to new settings with different clinical findings without relying on labeled data. Further, to integrate automated diagnosis in the clinical workflow, methods should be transparent and explainable, increasing medical professionals' trust and facilitating correctness verification. In this work, we introduce Xplainer, a novel framework for explainable zero-shot diagnosis in the clinical setting. Xplainer adapts the classification-by-description approach of contrastive vision-language models to the multi-label medical diagnosis task. Specifically, instead of directly predicting a diagnosis, we prompt the model to classify the existence of descriptive observations, which a radiologist would look for on an X-Ray scan, and use the descriptor probabilities to estimate the likelihood of a diagnosis. Our model is explainable by design, as the final diagnosis prediction is directly based on the prediction of the underlying descriptors. We evaluate Xplainer on two chest X-ray datasets, CheXpert and ChestX-ray14, and demonstrate its effectiveness in improving the performance and explainability of zero-shot diagnosis. Our results suggest that Xplainer provides a more detailed understanding of the decision-making process and can be a valuable tool for clinical diagnosis.
Weak lensing in the blue: a counter-intuitive strategy for stratospheric observations
The statistical power of weak lensing measurements is principally driven by the number of high redshift galaxies whose shapes are resolved. Conventional wisdom and physical intuition suggest this is optimised by deep imaging at long (red or near IR) wavelengths, to avoid losing redshifted Balmer break and Lyman break galaxies. We use the synthetic Emission Line EL-COSMOS catalogue to simulate lensing observations using different filters, from various altitudes. Here were predict the number of exposures to achieve a target z > 0.3 source density, using off-the-shelf and custom filters. Ground-based observations are easily better at red wavelengths, as (more narrowly) are space-based observations. However, we find that SuperBIT, a diffraction-limited observatory operating in the stratosphere, should instead perform its lensing-quality observations at blue wavelengths.
Processing of Crowdsourced Observations of Aircraft in a High Performance Computing Environment
As unmanned aircraft systems (UASs) continue to integrate into the U.S. National Airspace System (NAS), there is a need to quantify the risk of airborne collisions between unmanned and manned aircraft to support regulation and standards development. Both regulators and standards developing organizations have made extensive use of Monte Carlo collision risk analysis simulations using probabilistic models of aircraft flight. We've previously determined that the observations of manned aircraft by the OpenSky Network, a community network of ground-based sensors, are appropriate to develop models of the low altitude environment. This works overviews the high performance computing workflow designed and deployed on the Lincoln Laboratory Supercomputing Center to process 3.9 billion observations of aircraft. We then trained the aircraft models using more than 250,000 flight hours at 5,000 feet above ground level or below. A key feature of the workflow is that all the aircraft observations and supporting datasets are available as open source technologies or been released to the public domain.
VisionLaw: Inferring Interpretable Intrinsic Dynamics from Visual Observations via Bilevel Optimization
The intrinsic dynamics of an object governs its physical behavior in the real world, playing a critical role in enabling physically plausible interactive simulation with 3D assets. Existing methods have attempted to infer the intrinsic dynamics of objects from visual observations, but generally face two major challenges: one line of work relies on manually defined constitutive priors, making it difficult to generalize to complex scenarios; the other models intrinsic dynamics using neural networks, resulting in limited interpretability and poor generalization. To address these challenges, we propose VisionLaw, a bilevel optimization framework that infers interpretable expressions of intrinsic dynamics from visual observations. At the upper level, we introduce an LLMs-driven decoupled constitutive evolution strategy, where LLMs are prompted as a knowledgeable physics expert to generate and revise constitutive laws, with a built-in decoupling mechanism that substantially reduces the search complexity of LLMs. At the lower level, we introduce a vision-guided constitutive evaluation mechanism, which utilizes visual simulation to evaluate the consistency between the generated constitutive law and the underlying intrinsic dynamics, thereby guiding the upper-level evolution. Experiments on both synthetic and real-world datasets demonstrate that VisionLaw can effectively infer interpretable intrinsic dynamics from visual observations. It significantly outperforms existing state-of-the-art methods and exhibits strong generalization for interactive simulation in novel scenarios.
JAGB 2.0: Improved Constraints on the J-region Asymptotic Giant Branch-based Hubble Constant from an Expanded Sample of JWST Observations
The J-region Asymptotic Giant Branch (JAGB) is an overdensity of stars in the near-infrared, attributed to carbon-rich asymptotic giant branch stars, and recently used as a standard candle for measuring extragalactic distances and the Hubble constant. Using JWST in Cycle 2, we extend JAGB measurements to 6 hosts of 9 Type Ia supernovae (SNe Ia) (NGC 2525, NGC 3147, NGC 3370, NGC 3447, NGC 5468, and NGC 5861), with two at D sim 40 Mpc, all calibrated by the maser host NGC 4258. We investigate the effects of incompleteness and find that we are unable to recover a robust JAGB measurement in one of the two most distant hosts at R sim 40 Mpc, NGC 3147. We compile all JWST JAGB observations in SNe Ia hosts, 15 galaxies hosting 18 SNe Ia, from the SH0ES and CCHP programs and employ all literature measures (mode, mean, median, model). We find no significant mean difference between these distances and those from HST Cepheids, -0.03pm0.02 (stat) pm 0.05 (sys) mag. We find a difference of 0.11 pm 0.02 mag between JAGB mode measurements in the CCHP analyses of two fields in NGC 4258, a feature also seen in two SH0ES fields (see field-to-field variations in Li et al. 2024a), indicating significant field-to-field variation of JAGB measurements in NGC 4258 which produce a large absolute calibration uncertainty. Variations are also seen in the shape of the JAGB LF across galaxies so that different measures produce different values of the Hubble constant. We look for but do not (yet) find a standardizing relation between JAGB LF skew or color dependence and the apparent variation. Using the middle result of all JAGB measures to calibrate SNe Ia yields a Hubble constant of H_0 = 73.3 pm 1.4 (stat) pm 2.0 (sys) km/s/Mpc with the systematic dominated by apparent differences across NGC 4258 calibrating fields or their measures.
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
Automated analysis of vast Earth observation data via interactive Vision-Language Models (VLMs) can unlock new opportunities for environmental monitoring, disaster response, and {resource management}. Existing generic VLMs do not perform well on Remote Sensing data, while the recent Geo-spatial VLMs remain restricted to a fixed resolution and few sensor modalities. In this paper, we introduce EarthDial, a conversational assistant specifically designed for Earth Observation (EO) data, transforming complex, multi-sensory Earth observations into interactive, natural language dialogues. EarthDial supports multi-spectral, multi-temporal, and multi-resolution imagery, enabling a wide range of remote sensing tasks, including classification, detection, captioning, question answering, visual reasoning, and visual grounding. To achieve this, we introduce an extensive instruction tuning dataset comprising over 11.11M instruction pairs covering RGB, Synthetic Aperture Radar (SAR), and multispectral modalities such as Near-Infrared (NIR) and infrared. Furthermore, EarthDial handles bi-temporal and multi-temporal sequence analysis for applications like change detection. Our extensive experimental results on 44 downstream datasets demonstrate that EarthDial outperforms existing generic and domain-specific models, achieving better generalization across various EO tasks. Our source codes and pre-trained models are at https://github.com/hiyamdebary/EarthDial.
ImDy: Human Inverse Dynamics from Imitated Observations
Inverse dynamics (ID), which aims at reproducing the driven torques from human kinematic observations, has been a critical tool for gait analysis. However, it is hindered from wider application to general motion due to its limited scalability. Conventional optimization-based ID requires expensive laboratory setups, restricting its availability. To alleviate this problem, we propose to exploit the recently progressive human motion imitation algorithms to learn human inverse dynamics in a data-driven manner. The key insight is that the human ID knowledge is implicitly possessed by motion imitators, though not directly applicable. In light of this, we devise an efficient data collection pipeline with state-of-the-art motion imitation algorithms and physics simulators, resulting in a large-scale human inverse dynamics benchmark as Imitated Dynamics (ImDy). ImDy contains over 150 hours of motion with joint torque and full-body ground reaction force data. With ImDy, we train a data-driven human inverse dynamics solver ImDyS(olver) in a fully supervised manner, which conducts ID and ground reaction force estimation simultaneously. Experiments on ImDy and real-world data demonstrate the impressive competency of ImDyS in human inverse dynamics and ground reaction force estimation. Moreover, the potential of ImDy(-S) as a fundamental motion analysis tool is exhibited with downstream applications. The project page is https://foruck.github.io/ImDy/.
Probing X-ray Timing and Spectral Variability in the Blazar PKS 2155-304 Over a Decade of XMM-Newton Observations
Blazars, a class of active galactic nuclei (AGN) powered by supermassive black holes, are known for their remarkable variability across multiple timescales and wavelengths. With advancements in both ground- and space-based telescopes, our understanding of AGN central engines has significantly improved. However, the mechanisms driving this variability remain elusive, and continue to fascinate both theorists and observers alike. The primary objective of this study is to constrain the X-ray variability properties of the TeV blazar PKS 2155-304. We conduct a comprehensive X-ray spectral and timing analysis, focusing on both long-term and intra-day variability. This analysis uses data from 22 epochs of XMM-Newton EPIC-pn observations, collected over 15 years (2000-2014). To investigate the variability of the source, we applied both timing and spectral analyses. For the timing analysis, we estimated fractional variability, variability amplitude, minimum variability timescales, flux distribution, and power spectral density (PSD). In the spectral analysis, we fitted the X-ray spectra using power-law, log-parabola, and broken power-law (BPL) models to determine the best-fitting parameters. Additionally, we studied the hardness ratio (HR). We observed moderate intra-day variability in most of the light curves. Seven out of the twenty-two observations showed a clear bimodal flux distribution, indicating the presence of two distinct flux states. Our analysis revealed a variable power-law PSD slope. Most HR plots did not show significant variation with flux, except for one observation (OBSID 0124930501), where HR increased with flux (Count/s). The fitted X-ray spectra favored the BPL model for the majority of observations. The findings of this work shed light on the intraday variability of blazars, providing insights into the non-thermal jet processes that drive the observed flux variations.
Stratified Avatar Generation from Sparse Observations
Estimating 3D full-body avatars from AR/VR devices is essential for creating immersive experiences in AR/VR applications. This task is challenging due to the limited input from Head Mounted Devices, which capture only sparse observations from the head and hands. Predicting the full-body avatars, particularly the lower body, from these sparse observations presents significant difficulties. In this paper, we are inspired by the inherent property of the kinematic tree defined in the Skinned Multi-Person Linear (SMPL) model, where the upper body and lower body share only one common ancestor node, bringing the potential of decoupled reconstruction. We propose a stratified approach to decouple the conventional full-body avatar reconstruction pipeline into two stages, with the reconstruction of the upper body first and a subsequent reconstruction of the lower body conditioned on the previous stage. To implement this straightforward idea, we leverage the latent diffusion model as a powerful probabilistic generator, and train it to follow the latent distribution of decoupled motions explored by a VQ-VAE encoder-decoder model. Extensive experiments on AMASS mocap dataset demonstrate our state-of-the-art performance in the reconstruction of full-body motions.
Continuous Field Reconstruction from Sparse Observations with Implicit Neural Networks
Reliably reconstructing physical fields from sparse sensor data is a challenge that frequently arises in many scientific domains. In practice, the process generating the data often is not understood to sufficient accuracy. Therefore, there is a growing interest in using the deep neural network route to address the problem. This work presents a novel approach that learns a continuous representation of the physical field using implicit neural representations (INRs). Specifically, after factorizing spatiotemporal variability into spatial and temporal components using the separation of variables technique, the method learns relevant basis functions from sparsely sampled irregular data points to develop a continuous representation of the data. In experimental evaluations, the proposed model outperforms recent INR methods, offering superior reconstruction quality on simulation data from a state-of-the-art climate model and a second dataset that comprises ultra-high resolution satellite-based sea surface temperature fields.
Realistic Full-Body Tracking from Sparse Observations via Joint-Level Modeling
To bridge the physical and virtual worlds for rapidly developed VR/AR applications, the ability to realistically drive 3D full-body avatars is of great significance. Although real-time body tracking with only the head-mounted displays (HMDs) and hand controllers is heavily under-constrained, a carefully designed end-to-end neural network is of great potential to solve the problem by learning from large-scale motion data. To this end, we propose a two-stage framework that can obtain accurate and smooth full-body motions with the three tracking signals of head and hands only. Our framework explicitly models the joint-level features in the first stage and utilizes them as spatiotemporal tokens for alternating spatial and temporal transformer blocks to capture joint-level correlations in the second stage. Furthermore, we design a set of loss terms to constrain the task of a high degree of freedom, such that we can exploit the potential of our joint-level modeling. With extensive experiments on the AMASS motion dataset and real-captured data, we validate the effectiveness of our designs and show our proposed method can achieve more accurate and smooth motion compared to existing approaches.
Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight
This paper studies the sample-efficiency of learning in Partially Observable Markov Decision Processes (POMDPs), a challenging problem in reinforcement learning that is known to be exponentially hard in the worst-case. Motivated by real-world settings such as loading in game playing, we propose an enhanced feedback model called ``multiple observations in hindsight'', where after each episode of interaction with the POMDP, the learner may collect multiple additional observations emitted from the encountered latent states, but may not observe the latent states themselves. We show that sample-efficient learning under this feedback model is possible for two new subclasses of POMDPs: multi-observation revealing POMDPs and distinguishable POMDPs. Both subclasses generalize and substantially relax revealing POMDPs -- a widely studied subclass for which sample-efficient learning is possible under standard trajectory feedback. Notably, distinguishable POMDPs only require the emission distributions from different latent states to be different instead of linearly independent as required in revealing POMDPs.
One-sided Matrix Completion from Two Observations Per Row
Given only a few observed entries from a low-rank matrix X, matrix completion is the problem of imputing the missing entries, and it formalizes a wide range of real-world settings that involve estimating missing data. However, when there are too few observed entries to complete the matrix, what other aspects of the underlying matrix can be reliably recovered? We study one such problem setting, that of "one-sided" matrix completion, where our goal is to recover the right singular vectors of X, even in the regime where recovering the left singular vectors is impossible, which arises when there are more rows than columns and very few observations. We propose a natural algorithm that involves imputing the missing values of the matrix X^TX and show that even with only two observations per row in X, we can provably recover X^TX as long as we have at least Omega(r^2 d log d) rows, where r is the rank and d is the number of columns. We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing. In these settings, our algorithm substantially outperforms standard matrix completion and a variety of direct factorization methods.
Delayed Bandits: When Do Intermediate Observations Help?
We study a K-armed bandit with delayed feedback and intermediate observations. We consider a model where intermediate observations have a form of a finite state, which is observed immediately after taking an action, whereas the loss is observed after an adversarially chosen delay. We show that the regime of the mapping of states to losses determines the complexity of the problem, irrespective of whether the mapping of actions to states is stochastic or adversarial. If the mapping of states to losses is adversarial, then the regret rate is of order (K+d)T (within log factors), where T is the time horizon and d is a fixed delay. This matches the regret rate of a K-armed bandit with delayed feedback and without intermediate observations, implying that intermediate observations are not helpful. However, if the mapping of states to losses is stochastic, we show that the regret grows at a rate of big(K+min{|mathcal{S|,d}big)T} (within log factors), implying that if the number |S| of states is smaller than the delay, then intermediate observations help. We also provide refined high-probability regret upper bounds for non-uniform delays, together with experimental validation of our algorithms.
CARSO: Counter-Adversarial Recall of Synthetic Observations
In this paper, we propose a novel adversarial defence mechanism for image classification -- CARSO -- inspired by cues from cognitive neuroscience. The method is synergistically complementary to adversarial training and relies on knowledge of the internal representation of the attacked classifier. Exploiting a generative model for adversarial purification, conditioned on such representation, it samples reconstructions of inputs to be finally classified. Experimental evaluation by a well-established benchmark of varied, strong adaptive attacks, across diverse image datasets and classifier architectures, shows that CARSO is able to defend the classifier significantly better than state-of-the-art adversarial training alone -- with a tolerable clean accuracy toll. Furthermore, the defensive architecture succeeds in effectively shielding itself from unforeseen threats, and end-to-end attacks adapted to fool stochastic defences. Code and pre-trained models are available at https://github.com/emaballarin/CARSO .
Learning Neural Constitutive Laws From Motion Observations for Generalizable PDE Dynamics
We propose a hybrid neural network (NN) and PDE approach for learning generalizable PDE dynamics from motion observations. Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and constitutive models (or material models). Without explicit PDE knowledge, these approaches cannot guarantee physical correctness and have limited generalizability. We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned. Instead, constitutive models are particularly suitable for learning due to their data-fitting nature. To this end, we introduce a new framework termed "Neural Constitutive Laws" (NCLaw), which utilizes a network architecture that strictly guarantees standard constitutive priors, including rotation equivariance and undeformed state equilibrium. We embed this network inside a differentiable simulation and train the model by minimizing a loss function based on the difference between the simulation and the motion observation. We validate NCLaw on various large-deformation dynamical systems, ranging from solids to fluids. After training on a single motion trajectory, our method generalizes to new geometries, initial/boundary conditions, temporal ranges, and even multi-physics systems. On these extremely out-of-distribution generalization tasks, NCLaw is orders-of-magnitude more accurate than previous NN approaches. Real-world experiments demonstrate our method's ability to learn constitutive laws from videos.
Regression with Sensor Data Containing Incomplete Observations
This paper addresses a regression problem in which output label values are the results of sensing the magnitude of a phenomenon. A low value of such labels can mean either that the actual magnitude of the phenomenon was low or that the sensor made an incomplete observation. This leads to a bias toward lower values in labels and the resultant learning because labels may have lower values due to incomplete observations, even if the actual magnitude of the phenomenon was high. Moreover, because an incomplete observation does not provide any tags indicating incompleteness, we cannot eliminate or impute them. To address this issue, we propose a learning algorithm that explicitly models incomplete observations corrupted with an asymmetric noise that always has a negative value. We show that our algorithm is unbiased as if it were learned from uncorrupted data that does not involve incomplete observations. We demonstrate the advantages of our algorithm through numerical experiments.
Learning Actionable Representations from Visual Observations
In this work we explore a new approach for robots to teach themselves about the world simply by observing it. In particular we investigate the effectiveness of learning task-agnostic representations for continuous control tasks. We extend Time-Contrastive Networks (TCN) that learn from visual observations by embedding multiple frames jointly in the embedding space as opposed to a single frame. We show that by doing so, we are now able to encode both position and velocity attributes significantly more accurately. We test the usefulness of this self-supervised approach in a reinforcement learning setting. We show that the representations learned by agents observing themselves take random actions, or other agents perform tasks successfully, can enable the learning of continuous control policies using algorithms like Proximal Policy Optimization (PPO) using only the learned embeddings as input. We also demonstrate significant improvements on the real-world Pouring dataset with a relative error reduction of 39.4% for motion attributes and 11.1% for static attributes compared to the single-frame baseline. Video results are available at https://sites.google.com/view/actionablerepresentations .
PhysAvatar: Learning the Physics of Dressed 3D Avatars from Visual Observations
Modeling and rendering photorealistic avatars is of crucial importance in many applications. Existing methods that build a 3D avatar from visual observations, however, struggle to reconstruct clothed humans. We introduce PhysAvatar, a novel framework that combines inverse rendering with inverse physics to automatically estimate the shape and appearance of a human from multi-view video data along with the physical parameters of the fabric of their clothes. For this purpose, we adopt a mesh-aligned 4D Gaussian technique for spatio-temporal mesh tracking as well as a physically based inverse renderer to estimate the intrinsic material properties. PhysAvatar integrates a physics simulator to estimate the physical parameters of the garments using gradient-based optimization in a principled manner. These novel capabilities enable PhysAvatar to create high-quality novel-view renderings of avatars dressed in loose-fitting clothes under motions and lighting conditions not seen in the training data. This marks a significant advancement towards modeling photorealistic digital humans using physically based inverse rendering with physics in the loop. Our project website is at: https://qingqing-zhao.github.io/PhysAvatar
Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations
Existing research predominantly focuses on developing powerful language learning models (LLMs) for mathematical reasoning within monolingual languages, with few explorations in preserving efficacy in a multilingual context. To bridge this gap, this paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs. Firstly, by utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages, thus addressing the issue of training data scarcity in xMR tasks. Based on the collected dataset, we propose different training strategies to build powerful xMR LLMs, named MathOctopus, notably outperform conventional open-source LLMs and exhibit superiority over ChatGPT in few-shot scenarios. Notably, MathOctopus-13B reaches 47.6% accuracy which exceeds ChatGPT 46.3% on MGSM testset. Beyond remarkable results, we unearth several pivotal observations and insights from extensive experiments: (1) When extending the rejection sampling strategy to the multilingual context, it proves effective for model performances, albeit limited. (2) Employing parallel corpora for math Supervised Fine-Tuning (SFT) across multiple languages not only significantly enhances model performance multilingually but also elevates their monolingual performance. This indicates that crafting multilingual corpora can be regarded as a vital strategy for enhancing model performance in a specific language, especially in mathematical reasoning tasks. For instance, MathOctopus-7B improves its counterparts that trained on English from 42.2% to 50.8% on GSM8K testset.
VISION: Prompting Ocean Vertical Velocity Reconstruction from Incomplete Observations
Reconstructing subsurface ocean dynamics, such as vertical velocity fields, from incomplete surface observations poses a critical challenge in Earth science, a field long hampered by the lack of standardized, analysis-ready benchmarks. To systematically address this issue and catalyze research, we first build and release KD48, a high-resolution ocean dynamics benchmark derived from petascale simulations and curated with expert-driven denoising. Building on this benchmark, we introduce VISION, a novel reconstruction paradigm based on Dynamic Prompting designed to tackle the core problem of missing data in real-world observations. The essence of VISION lies in its ability to generate a visual prompt on-the-fly from any available subset of observations, which encodes both data availability and the ocean's physical state. More importantly, we design a State-conditioned Prompting module that efficiently injects this prompt into a universal backbone, endowed with geometry- and scale-aware operators, to guide its adaptive adjustment of computational strategies. This mechanism enables VISION to precisely handle the challenges posed by varying input combinations. Extensive experiments on the KD48 benchmark demonstrate that VISION not only substantially outperforms state-of-the-art models but also exhibits strong generalization under extreme data missing scenarios. By providing a high-quality benchmark and a robust model, our work establishes a solid infrastructure for ocean science research under data uncertainty. Our codes are available at: https://github.com/YuanGao-YG/VISION.
Learning Fused State Representations for Control from Multi-View Observations
Multi-View Reinforcement Learning (MVRL) seeks to provide agents with multi-view observations, enabling them to perceive environment with greater effectiveness and precision. Recent advancements in MVRL focus on extracting latent representations from multiview observations and leveraging them in control tasks. However, it is not straightforward to learn compact and task-relevant representations, particularly in the presence of redundancy, distracting information, or missing views. In this paper, we propose Multi-view Fusion State for Control (MFSC), firstly incorporating bisimulation metric learning into MVRL to learn task-relevant representations. Furthermore, we propose a multiview-based mask and latent reconstruction auxiliary task that exploits shared information across views and improves MFSC's robustness in missing views by introducing a mask token. Extensive experimental results demonstrate that our method outperforms existing approaches in MVRL tasks. Even in more realistic scenarios with interference or missing views, MFSC consistently maintains high performance.
Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts
Air pollution poses a significant threat to public health and well-being, particularly in urban areas. This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants. The investigation delineates the process of data collection, detailing the combination of diverse data sources utilized in the study. Through experiments conducted in the Milan metropolitan area, the models demonstrate their efficacy in predicting pollutant levels for the forthcoming day, achieving a percentage error of around 30%. The proposed models are advantageous as they are independent of monitoring stations, facilitating their use in areas without existing infrastructure. Additionally, we have released the collected dataset to the public, aiming to stimulate further research in this field. This research contributes to advancing our understanding of urban air quality dynamics and emphasizes the importance of amalgamating satellite, meteorological, and topographical data to develop robust pollution forecasting models.
Graph-based Virtual Sensing from Sparse and Partial Multivariate Observations
Virtual sensing techniques allow for inferring signals at new unmonitored locations by exploiting spatio-temporal measurements coming from physical sensors at different locations. However, as the sensor coverage becomes sparse due to costs or other constraints, physical proximity cannot be used to support interpolation. In this paper, we overcome this challenge by leveraging dependencies between the target variable and a set of correlated variables (covariates) that can frequently be associated with each location of interest. From this viewpoint, covariates provide partial observability, and the problem consists of inferring values for unobserved channels by exploiting observations at other locations to learn how such variables can correlate. We introduce a novel graph-based methodology to exploit such relationships and design a graph deep learning architecture, named GgNet, implementing the framework. The proposed approach relies on propagating information over a nested graph structure that is used to learn dependencies between variables as well as locations. GgNet is extensively evaluated under different virtual sensing scenarios, demonstrating higher reconstruction accuracy compared to the state-of-the-art.
Space and Time Continuous Physics Simulation From Partial Observations
Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.
UpFusion: Novel View Diffusion from Unposed Sparse View Observations
We propose UpFusion, a system that can perform novel view synthesis and infer 3D representations for an object given a sparse set of reference images without corresponding pose information. Current sparse-view 3D inference methods typically rely on camera poses to geometrically aggregate information from input views, but are not robust in-the-wild when such information is unavailable/inaccurate. In contrast, UpFusion sidesteps this requirement by learning to implicitly leverage the available images as context in a conditional generative model for synthesizing novel views. We incorporate two complementary forms of conditioning into diffusion models for leveraging the input views: a) via inferring query-view aligned features using a scene-level transformer, b) via intermediate attentional layers that can directly observe the input image tokens. We show that this mechanism allows generating high-fidelity novel views while improving the synthesis quality given additional (unposed) images. We evaluate our approach on the Co3Dv2 and Google Scanned Objects datasets and demonstrate the benefits of our method over pose-reliant sparse-view methods as well as single-view methods that cannot leverage additional views. Finally, we also show that our learned model can generalize beyond the training categories and even allow reconstruction from self-captured images of generic objects in-the-wild.
HMD-NeMo: Online 3D Avatar Motion Generation From Sparse Observations
Generating both plausible and accurate full body avatar motion is the key to the quality of immersive experiences in mixed reality scenarios. Head-Mounted Devices (HMDs) typically only provide a few input signals, such as head and hands 6-DoF. Recently, different approaches achieved impressive performance in generating full body motion given only head and hands signal. However, to the best of our knowledge, all existing approaches rely on full hand visibility. While this is the case when, e.g., using motion controllers, a considerable proportion of mixed reality experiences do not involve motion controllers and instead rely on egocentric hand tracking. This introduces the challenge of partial hand visibility owing to the restricted field of view of the HMD. In this paper, we propose the first unified approach, HMD-NeMo, that addresses plausible and accurate full body motion generation even when the hands may be only partially visible. HMD-NeMo is a lightweight neural network that predicts the full body motion in an online and real-time fashion. At the heart of HMD-NeMo is the spatio-temporal encoder with novel temporally adaptable mask tokens that encourage plausible motion in the absence of hand observations. We perform extensive analysis of the impact of different components in HMD-NeMo and introduce a new state-of-the-art on AMASS dataset through our evaluation.
EgoPoser: Robust Real-Time Egocentric Pose Estimation from Sparse and Intermittent Observations Everywhere
Full-body egocentric pose estimation from head and hand poses alone has become an active area of research to power articulate avatar representations on headset-based platforms. However, existing methods over-rely on the indoor motion-capture spaces in which datasets were recorded, while simultaneously assuming continuous joint motion capture and uniform body dimensions. We propose EgoPoser to overcome these limitations with four main contributions. 1) EgoPoser robustly models body pose from intermittent hand position and orientation tracking only when inside a headset's field of view. 2) We rethink input representations for headset-based ego-pose estimation and introduce a novel global motion decomposition method that predicts full-body pose independent of global positions. 3) We enhance pose estimation by capturing longer motion time series through an efficient SlowFast module design that maintains computational efficiency. 4) EgoPoser generalizes across various body shapes for different users. We experimentally evaluate our method and show that it outperforms state-of-the-art methods both qualitatively and quantitatively while maintaining a high inference speed of over 600fps. EgoPoser establishes a robust baseline for future work where full-body pose estimation no longer needs to rely on outside-in capture and can scale to large-scale and unseen environments.
MAHALO: Unifying Offline Reinforcement Learning and Imitation Learning from Observations
We study a new paradigm for sequential decision making, called offline Policy Learning from Observation (PLfO). Offline PLfO aims to learn policies using datasets with substandard qualities: 1) only a subset of trajectories is labeled with rewards, 2) labeled trajectories may not contain actions, 3) labeled trajectories may not be of high quality, and 4) the overall data may not have full coverage. Such imperfection is common in real-world learning scenarios, so offline PLfO encompasses many existing offline learning setups, including offline imitation learning (IL), ILfO, and reinforcement learning (RL). In this work, we present a generic approach, called Modality-agnostic Adversarial Hypothesis Adaptation for Learning from Observations (MAHALO), for offline PLfO. Built upon the pessimism concept in offline RL, MAHALO optimizes the policy using a performance lower bound that accounts for uncertainty due to the dataset's insufficient converge. We implement this idea by adversarially training data-consistent critic and reward functions in policy optimization, which forces the learned policy to be robust to the data deficiency. We show that MAHALO consistently outperforms or matches specialized algorithms across a variety of offline PLfO tasks in theory and experiments.
Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations
Offline reinforcement learning has shown great promise in leveraging large pre-collected datasets for policy learning, allowing agents to forgo often-expensive online data collection. However, to date, offline reinforcement learning from visual observations with continuous action spaces has been relatively under-explored, and there is a lack of understanding of where the remaining challenges lie. In this paper, we seek to establish simple baselines for continuous control in the visual domain. We show that simple modifications to two state-of-the-art vision-based online reinforcement learning algorithms, DreamerV2 and DrQ-v2, suffice to outperform prior work and establish a competitive baseline. We rigorously evaluate these algorithms on both existing offline datasets and a new testbed for offline reinforcement learning from visual observations that better represents the data distributions present in real-world offline RL problems, and open-source our code and data to facilitate progress in this important domain. Finally, we present and analyze several key desiderata unique to offline RL from visual observations, including visual distractions and visually identifiable changes in dynamics.
FLAG: Flow-based 3D Avatar Generation from Sparse Observations
To represent people in mixed reality applications for collaboration and communication, we need to generate realistic and faithful avatar poses. However, the signal streams that can be applied for this task from head-mounted devices (HMDs) are typically limited to head pose and hand pose estimates. While these signals are valuable, they are an incomplete representation of the human body, making it challenging to generate a faithful full-body avatar. We address this challenge by developing a flow-based generative model of the 3D human body from sparse observations, wherein we learn not only a conditional distribution of 3D human pose, but also a probabilistic mapping from observations to the latent space from which we can generate a plausible pose along with uncertainty estimates for the joints. We show that our approach is not only a strong predictive model, but can also act as an efficient pose prior in different optimization settings where a good initial latent code plays a major role.
NightVision: Generating Nighttime Satellite Imagery from Infra-Red Observations
The recent explosion in applications of machine learning to satellite imagery often rely on visible images and therefore suffer from a lack of data during the night. The gap can be filled by employing available infra-red observations to generate visible images. This work presents how deep learning can be applied successfully to create those images by using U-Net based architectures. The proposed methods show promising results, achieving a structural similarity index (SSIM) up to 86\% on an independent test set and providing visually convincing output images, generated from infra-red observations.
Variational Inference of Disentangled Latent Concepts from Unlabeled Observations
Disentangled representations, where the higher level data generative factors are reflected in disjoint latent dimensions, offer several benefits such as ease of deriving invariant representations, transferability to other tasks, interpretability, etc. We consider the problem of unsupervised learning of disentangled representations from large pool of unlabeled observations, and propose a variational inference based approach to infer disentangled latent factors. We introduce a regularizer on the expectation of the approximate posterior over observed data that encourages the disentanglement. We also propose a new disentanglement metric which is better aligned with the qualitative disentanglement observed in the decoder's output. We empirically observe significant improvement over existing methods in terms of both disentanglement and data likelihood (reconstruction quality).
Robotic Compliant Object Prying Using Diffusion Policy Guided by Vision and Force Observations
The growing adoption of batteries in the electric vehicle industry and various consumer products has created an urgent need for effective recycling solutions. These products often contain a mix of compliant and rigid components, making robotic disassembly a critical step toward achieving scalable recycling processes. Diffusion policy has emerged as a promising approach for learning low-level skills in robotics. To effectively apply diffusion policy to contact-rich tasks, incorporating force as feedback is essential. In this paper, we apply diffusion policy with vision and force in a compliant object prying task. However, when combining low-dimensional contact force with high-dimensional image, the force information may be diluted. To address this issue, we propose a method that effectively integrates force with image data for diffusion policy observations. We validate our approach on a battery prying task that demands high precision and multi-step execution. Our model achieves a 96\% success rate in diverse scenarios, marking a 57\% improvement over the vision-only baseline. Our method also demonstrates zero-shot transfer capability to handle unseen objects and battery types. Supplementary videos and implementation codes are available on our project website. https://rros-lab.github.io/diffusion-with-force.github.io/
GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations
We introduce GraphDOP, a new data-driven, end-to-end forecast system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) that is trained and initialised exclusively from Earth System observations, with no physics-based (re)analysis inputs or feedbacks. GraphDOP learns the correlations between observed quantities - such as brightness temperatures from polar orbiters and geostationary satellites - and geophysical quantities of interest (that are measured by conventional observations), to form a coherent latent representation of Earth System state dynamics and physical processes, and is capable of producing skilful predictions of relevant weather parameters up to five days into the future.
How does the teacher rate? Observations from the NeuroPiano dataset
This paper provides a detailed analysis of the NeuroPiano dataset, which comprise 104 audio recordings of student piano performances accompanied with 2255 textual feedback and ratings given by professional pianists. We offer a statistical overview of the dataset, focusing on the standardization of annotations and inter-annotator agreement across 12 evaluative questions concerning performance quality. We also explore the predictive relationship between audio features and teacher ratings via machine learning, as well as annotations provided for text analysis of the responses.
E2MoCase: A Dataset for Emotional, Event and Moral Observations in News Articles on High-impact Legal Cases
The way media reports on legal cases can significantly shape public opinion, often embedding subtle biases that influence societal views on justice and morality. Analyzing these biases requires a holistic approach that captures the emotional tone, moral framing, and specific events within the narratives. In this work we introduce E2MoCase, a novel dataset designed to facilitate the integrated analysis of emotions, moral values, and events within legal narratives and media coverage. By leveraging advanced models for emotion detection, moral value identification, and event extraction, E2MoCase offers a multi-dimensional perspective on how legal cases are portrayed in news articles.
Fuxi-DA: A Generalized Deep Learning Data Assimilation Framework for Assimilating Satellite Observations
Data assimilation (DA), as an indispensable component within contemporary Numerical Weather Prediction (NWP) systems, plays a crucial role in generating the analysis that significantly impacts forecast performance. Nevertheless, the development of an efficient DA system poses significant challenges, particularly in establishing intricate relationships between the background data and the vast amount of multi-source observation data within limited time windows in operational settings. To address these challenges, researchers design complex pre-processing methods for each observation type, leveraging approximate modeling and the power of super-computing clusters to expedite solutions. The emergence of deep learning (DL) models has been a game-changer, offering unified multi-modal modeling, enhanced nonlinear representation capabilities, and superior parallelization. These advantages have spurred efforts to integrate DL models into various domains of weather modeling. Remarkably, DL models have shown promise in matching, even surpassing, the forecast accuracy of leading operational NWP models worldwide. This success motivates the exploration of DL-based DA frameworks tailored for weather forecasting models. In this study, we introduces FuxiDA, a generalized DL-based DA framework for assimilating satellite observations. By assimilating data from Advanced Geosynchronous Radiation Imager (AGRI) aboard Fengyun-4B, FuXi-DA consistently mitigates analysis errors and significantly improves forecast performance. Furthermore, through a series of single-observation experiments, Fuxi-DA has been validated against established atmospheric physics, demonstrating its consistency and reliability.
Can an Anti-de Sitter Vacuum in the Dark Energy Sector Explain JWST High-Redshift Galaxy and Reionization Observations?
The James Webb Space Telescope's (JWST) discovery of an unexpectedly high abundance of UV-bright galaxies at redshifts z > 10 poses a significant challenge to the standard LambdaCDM cosmology. This work tests whether this tension can be resolved solely by modifying the cosmological background, without invoking significant evolution in the astrophysical properties of early galaxies. We investigate an alternative framework featuring the presence of an anti-de Sitter vacuum in the dark energy sector, a model that naturally arises in quantum gravity models like string theory and can enhance early structure formation. Using a self-consistent semi-analytical model that couples galaxy evolution with reionization, we confront this scenario with a wide range of observations. We first show that while a model tailored to fit the high-z UV luminosity functions (UVLFs) shows promise, it is in strong tension with well-established cosmological constraints from the CMB and other low-redshift probes. Conversely, models within this framework that are consistent with these constraints provide only a modest boost to structure formation and fail to reproduce the observed JWST galaxy abundances at z > 10. While these models remain consistent with the cosmic reionization history, our primary result is that this class of cosmological modifications is insufficient on its own to explain the galaxy excess. Our study underscores the critical importance of holistic testing for any beyond-LambdaCDM proposal; apparent success in one observational regime does not guarantee overall viability. By demonstrating the limitations of a purely cosmological solution, our results strengthen the case that evolving astrophysical properties are a necessary ingredient for solving the challenge of early galaxy formation.
What Determines the Brightness of the Magnetically Open Solar Corona?: Insights from Three-dimensional Radiative Magnetohydrodynamic Simulations and Observations
We investigate the relationship between solar coronal holes and open-field regions using three-dimensional radiative magnetohydrodynamic (MHD) simulations combined with remote-sensing observations from the Solar Dynamics Observatory (SDO). Our numerical simulations reveal that magnetically open regions in the corona can exhibit brightness comparable to quiet regions, challenging the conventional view that open-field regions are inherently dark coronal holes. We find that the coronal brightness is primarily determined by the total energy input from photospheric magnetic activities, such as the small-scale dynamo, rather than differences in dissipative processes within the corona. Using synthesized EUV intensity maps, we show that brightness thresholds commonly used to identify coronal holes may overlook open-field regions, especially at lower spatial resolutions. Observational analysis utilizing SDO/HMI and AIA synoptic maps supports our simulation results, demonstrating that magnetic field extrapolation techniques, such as the Potential Field Source Surface (PFSS) model, are sensitive to the chosen parameters, including the source surface height. We suggest that discrepancies in estimates of open magnetic flux (the ``open flux problem'') arise both from the modeling assumptions in coronal magnetic field extrapolation and systematic biases in solar surface magnetic field observations. Our findings indicate the need for reconsidering criteria used to identify coronal holes as indicators of open-field regions to better characterize the solar open magnetic flux.
Estimating constraints on cosmological parameters via the canonical and the differential redshift drift with SKA HI 21-cm observations
Redshift drift effect, an observational probe that indenpendent of cosmological models, presents unique applications in specific cosmological epoch. By quantifying redshift drift signal , researchers can determine the rate of the Universe's accelerated expansion and impose constraints on cosmological models and parameters. This study evaluates the precision in cosmological parameters estimation derived from this signal via HI 21cm signal, that observed by the Square Kilometre Array (SKA) telescope, with spectral resolutions of 0.001 Hz and 0.002 Hz over an observational period of Delta T = 0.5 year, utilizing two established techniques: the canonical redshift drift and the differential redshift drift method. The primary objective of this project is to ascertain the rate of cosmic acceleration and establish a solid foundation for real-time cosmology. The results reveal that both the two methods impose highly precise constraints on cosmological parameters, with accuracy reaching the level of millimeter per second (mm/s) or better. However, the canonical method provides relatively less stringent compared to the differential approach. Furthermore, when solely constraining the matter density parameter Omega_m, the strategy can be adapted to the canonical method. Nonetheless, the differential method exhibits clear advantages when simultaneously constraining the matter density parameter Omega_m and the equation of state of dark energy. These findings validate SKA's capability in detecting redshift drift and refining observational cosmology and indicates the effect can offer superior diagnostic capabilities compared to other techniques, provided that appropriate observational equipment or sufficient observational time is employed.
Deriving pulsar pair-production multiplicities from pulsar wind nebulae using H.E.S.S. and LHAASO observations
Pulsar Wind Nebulae (PWNe) dominate the galactic gamma-ray sky at very high energies, and are major contributors to the leptonic cosmic ray flux. However, whether or not pulsars also accelerate ions to comparable energies is not yet experimentally confirmed. We aim to constrain the birth period and pair-production multiplicity for a set of pulsars. In doing so, we aim to constrain the proportion of ions in the pulsar magnetosphere and hence the proportion of ions that could enter the pulsar wind. We estimate possible ranges of the value of the average pair production multiplicity for a sample of 26 pulsars in the Australia Telescope National Facility (ATNF) catalogue, which have also been observed by the High Energy Stereoscopic System (H.E.S.S.) telescopes. We then derive lower limits for the pulsar birth periods and average pair production multiplicities for a subset of these sources where the extent of the pulsar wind nebula and surrounding supernova shell have been measured in the radio. We also derive curves for the average pair production multiplicities as a function of birth period for sources recently observed by the Large High Altitude Air Shower Observatory (LHAASO). We show that there is a potential for hadrons entering the pulsar wind for most of the H.E.S.S. and LHAASO sources we consider, dependent upon the efficiency of luminosity conversion into particles. We also present estimates of the pulsar birth period for six of these sources, which all fall into the range of simeq10-50 ms.
Eulerian-Lagrangian particle-based model for diffusional growth for the better parameterization of ISM clouds: A road map for improving climate model through small-scale model using observations
The quantitative prediction of the intensity of rainfall events (light or heavy) has remained a challenge in Numerical Weather Prediction (NWP) models. For the first time the mean coefficient of diffusional growth rates are calculated using an Eulerian-Lagrangian particle-based small-scale model on in situ airborne measurement data of Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) during monsoon over Indian sub-continent. The results show that diffusional growth rates varies in the range of 0.00025 - 0.0015(cm/s). The generic problem of the overestimation of light rain in NWP models might be related with the choice of cm in the model. It is also shown from DNS experiment using Eulerian-Lagrangian particle-based small-scale model that the relative dispersion is constrained with average values in the range of ~ 0.2 - 0.37 (~ 0.1- 0.26) in less humid (more humid) conditions. This is in agreement with in situ airborne observation (dispersion ~ 0.36) and previous study over Indian sub-continent. The linear relationship between relative dispersion and cloud droplet number concentration (NC) is obtained from this study using CAIPEEX observation over Indian subcontinent. The dispersion based autoconversion-scheme for Indian region must be useful for the Indian summer monsoon precipitation calculation in the general circulation model. The present study also provide valuable guidance for the parameterization of effective radius, important for radiation scheme.
EPOCHS Paper V. The dependence of galaxy formation on galaxy structure at z < 7 from JWST observations
We measure the broad impact of galaxy structure on galaxy formation by examining the ongoing star formation and integrated star formation history as revealed through the stellar masses of galaxies at z < 7 based on JWST CEERS data from the Extended Groth Strip (EGS). Using the morphological catalog of 3965 visually classified JWST galaxies from Ferreira et al. (2023), we investigate the evolution of stars, and when they form, as a function of morphological type as well as galaxies classified as passive and starburst through spectral energy distributions. Although disk galaxies dominate the structures of galaxies at z < 7, we find that these disks are in general either `passive', or on the main-sequence of star formation, and do not contain a large population of starburst galaxies. We also find no significant correlation between morphological type and the star formation rate or colours of galaxies at z < 7. In fact, we find that the morphologically classified `spheroids' tend to be blue and are not found to be predominately passive systems at z > 1.5. We also find that the stellar mass function for disk galaxies does not evolve significantly during this time, whereas other galaxy types, such as the peculiar population, evolve dramatically, declining at lower redshifts. This indicates that massive peculiars are more common at higher redshifts. We further find that up to z sim 7, the specific star formation rate (sSFR) does not vary with visual morphology, but strongly depends on stellar mass and internal galaxy mass density. This demonstrates that at early epochs galaxy assembly is a mass-driven, rather than a morphologically-driven, process. Quenching of star formation is therefore a mass-dominated process throughout the universe's history, likely due to the presence of supermassive black holes.
Integrating Earth Observation Data into Causal Inference: Challenges and Opportunities
Observational studies require adjustment for confounding factors that are correlated with both the treatment and outcome. In the setting where the observed variables are tabular quantities such as average income in a neighborhood, tools have been developed for addressing such confounding. However, in many parts of the developing world, features about local communities may be scarce. In this context, satellite imagery can play an important role, serving as a proxy for the confounding variables otherwise unobserved. In this paper, we study confounder adjustment in this non-tabular setting, where patterns or objects found in satellite images contribute to the confounder bias. Using the evaluation of anti-poverty aid programs in Africa as our running example, we formalize the challenge of performing causal adjustment with such unstructured data -- what conditions are sufficient to identify causal effects, how to perform estimation, and how to quantify the ways in which certain aspects of the unstructured image object are most predictive of the treatment decision. Via simulation, we also explore the sensitivity of satellite image-based observational inference to image resolution and to misspecification of the image-associated confounder. Finally, we apply these tools in estimating the effect of anti-poverty interventions in African communities from satellite imagery.
Causal Estimation of Memorisation Profiles
Understanding memorisation in language models has practical and societal implications, e.g., studying models' training dynamics or preventing copyright infringements. Prior work defines memorisation as the causal effect of training with an instance on the model's ability to predict that instance. This definition relies on a counterfactual: the ability to observe what would have happened had the model not seen that instance. Existing methods struggle to provide computationally efficient and accurate estimates of this counterfactual. Further, they often estimate memorisation for a model architecture rather than for a specific model instance. This paper fills an important gap in the literature, proposing a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics. Using this method, we characterise a model's memorisation profile--its memorisation trends across training--by only observing its behaviour on a small set of instances throughout training. In experiments with the Pythia model suite, we find that memorisation (i) is stronger and more persistent in larger models, (ii) is determined by data order and learning rate, and (iii) has stable trends across model sizes, thus making memorisation in larger models predictable from smaller ones.
First Light And Reionisation Epoch Simulations (FLARES) VI: The colour evolution of galaxies z=5-15
With its exquisite sensitivity, wavelength coverage, and spatial and spectral resolution, the James Webb Space Telescope is poised to revolutionise our view of the distant, high-redshift (z>5) Universe. While Webb's spectroscopic observations will be transformative for the field, photometric observations play a key role in identifying distant objects and providing more comprehensive samples than accessible to spectroscopy alone. In addition to identifying objects, photometric observations can also be used to infer physical properties and thus be used to constrain galaxy formation models. However, inferred physical properties from broadband photometric observations, particularly in the absence of spectroscopic redshifts, often have large uncertainties. With the development of new tools for forward modelling simulations it is now routinely possible to predict observational quantities, enabling a direct comparison with observations. With this in mind, in this work, we make predictions for the colour evolution of galaxies at z=5-15 using the FLARES: First Light And Reionisation Epoch Simulations cosmological hydrodynamical simulation suite. We predict a complex evolution, driven predominantly by strong nebular line emission passing through individual bands. These predictions are in good agreement with existing constraints from Hubble and Spitzer as well as some of the first results from Webb. We also contrast our predictions with other models in the literature: while the general trends are similar we find key differences, particularly in the strength of features associated with strong nebular line emission. This suggests photometric observations alone should provide useful discriminating power between different models.
Using remotely sensed data for air pollution assessment
Air pollution constitutes a global problem of paramount importance that affects not only human health, but also the environment. The existence of spatial and temporal data regarding the concentrations of pollutants is crucial for performing air pollution studies and monitor emissions. However, although observation data presents great temporal coverage, the number of stations is very limited and they are usually built in more populated areas. The main objective of this work is to create models capable of inferring pollutant concentrations in locations where no observation data exists. A machine learning model, more specifically the random forest model, was developed for predicting concentrations in the Iberian Peninsula in 2019 for five selected pollutants: NO_2, O_3 SO_2, PM10, and PM2.5. Model features include satellite measurements, meteorological variables, land use classification, temporal variables (month, day of year), and spatial variables (latitude, longitude, altitude). The models were evaluated using various methods, including station 10-fold cross-validation, in which in each fold observations from 10\% of the stations are used as testing data and the rest as training data. The R^2, RMSE and mean bias were determined for each model. The NO_2 and O_3 models presented good values of R^2, 0.5524 and 0.7462, respectively. However, the SO_2, PM10, and PM2.5 models performed very poorly in this regard, with R^2 values of -0.0231, 0.3722, and 0.3303, respectively. All models slightly overestimated the ground concentrations, except the O_3 model. All models presented acceptable cross-validation RMSE, except the O_3 and PM10 models where the mean value was a little higher (12.5934 mu g/m^3 and 10.4737 mu g/m^3, respectively).
Disentangling Linkage and Population Structure in Association Mapping
Genome-wide association study (GWAS) tests single nucleotide polymorphism (SNP) markers across the genome to localize the underlying causal variant of a trait. Because causal variants are seldom observed directly, a surrogate model based on genotyped markers are widely considered. Although many methods estimating the parameters of the surrogate model have been proposed, the connection between the surrogate model and the true causal model is yet investigated. In this work, we establish the connection between the surrogate model and the true causal model. The connection shows that population structure is accounted in GWAS by modelling the variant of interest and not the trait. Such observation explains how environmental confounding can be partially corrected using genetic covariates and why the previously claimed connection between PC correction and linear mixed models is incorrect.
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
Accounting For Informative Sampling When Learning to Forecast Treatment Outcomes Over Time
Machine learning (ML) holds great potential for accurately forecasting treatment outcomes over time, which could ultimately enable the adoption of more individualized treatment strategies in many practical applications. However, a significant challenge that has been largely overlooked by the ML literature on this topic is the presence of informative sampling in observational data. When instances are observed irregularly over time, sampling times are typically not random, but rather informative -- depending on the instance's characteristics, past outcomes, and administered treatments. In this work, we formalize informative sampling as a covariate shift problem and show that it can prohibit accurate estimation of treatment outcomes if not properly accounted for. To overcome this challenge, we present a general framework for learning treatment outcomes in the presence of informative sampling using inverse intensity-weighting, and propose a novel method, TESAR-CDE, that instantiates this framework using Neural CDEs. Using a simulation environment based on a clinical use case, we demonstrate the effectiveness of our approach in learning under informative sampling.
Forecasting Patient Flows with Pandemic Induced Concept Drift using Explainable Machine Learning
Accurately forecasting patient arrivals at Urgent Care Clinics (UCCs) and Emergency Departments (EDs) is important for effective resourcing and patient care. However, correctly estimating patient flows is not straightforward since it depends on many drivers. The predictability of patient arrivals has recently been further complicated by the COVID-19 pandemic conditions and the resulting lockdowns. This study investigates how a suite of novel quasi-real-time variables like Google search terms, pedestrian traffic, the prevailing incidence levels of influenza, as well as the COVID-19 Alert Level indicators can both generally improve the forecasting models of patient flows and effectively adapt the models to the unfolding disruptions of pandemic conditions. This research also uniquely contributes to the body of work in this domain by employing tools from the eXplainable AI field to investigate more deeply the internal mechanics of the models than has previously been done. The Voting ensemble-based method combining machine learning and statistical techniques was the most reliable in our experiments. Our study showed that the prevailing COVID-19 Alert Level feature together with Google search terms and pedestrian traffic were effective at producing generalisable forecasts. The implications of this study are that proxy variables can effectively augment standard autoregressive features to ensure accurate forecasting of patient flows. The experiments showed that the proposed features are potentially effective model inputs for preserving forecast accuracies in the event of future pandemic outbreaks.
ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets
Several studies have compared the in-distribution (ID) and out-of-distribution (OOD) performance of models in computer vision and NLP. They report a frequent positive correlation and some surprisingly never even observe an inverse correlation indicative of a necessary trade-off. The possibility of inverse patterns is important to determine whether ID performance can serve as a proxy for OOD generalization capabilities. This paper shows with multiple datasets that inverse correlations between ID and OOD performance do happen in real-world data - not only in theoretical worst-case settings. We also explain theoretically how these cases can arise even in a minimal linear setting, and why past studies could miss such cases due to a biased selection of models. Our observations lead to recommendations that contradict those found in much of the current literature. - High OOD performance sometimes requires trading off ID performance. - Focusing on ID performance alone may not lead to optimal OOD performance. It may produce diminishing (eventually negative) returns in OOD performance. - In these cases, studies on OOD generalization that use ID performance for model selection (a common recommended practice) will necessarily miss the best-performing models, making these studies blind to a whole range of phenomena.
Aligning Language Models with Observational Data: Opportunities and Risks from a Causal Perspective
Large language models are being widely used across industries to generate content that contributes directly to key performance metrics, such as conversion rates. Pretrained models, however, often fall short when it comes to aligning with human preferences or optimizing for business objectives. As a result, fine-tuning with good-quality labeled data is essential to guide models to generate content that achieves better results. Controlled experiments, like A/B tests, can provide such data, but they are often expensive and come with significant engineering and logistical challenges. Meanwhile, companies have access to a vast amount of historical (observational) data that remains underutilized. In this work, we study the challenges and opportunities of fine-tuning LLMs using observational data. We show that while observational outcomes can provide valuable supervision, directly fine-tuning models on such data can lead them to learn spurious correlations. We present empirical evidence of this issue using various real-world datasets and propose DeconfoundLM, a method that explicitly removes the effect of known confounders from reward signals. Using simulation experiments, we demonstrate that DeconfoundLM improves the recovery of causal relationships and mitigates failure modes found in fine-tuning methods that ignore or naively incorporate confounding variables. Our findings highlight that while observational data presents risks, with the right causal corrections, it can be a powerful source of signal for LLM alignment. Please refer to the project page for code and related resources.
Early Warning Signals and the Prosecutor's Fallacy
Early warning signals have been proposed to forecast the possibility of a critical transition, such as the eutrophication of a lake, the collapse of a coral reef, or the end of a glacial period. Because such transitions often unfold on temporal and spatial scales that can be difficult to approach by experimental manipulation, research has often relied on historical observations as a source of natural experiments. Here we examine a critical difference between selecting systems for study based on the fact that we have observed a critical transition and those systems for which we wish to forecast the approach of a transition. This difference arises by conditionally selecting systems known to experience a transition of some sort and failing to account for the bias this introduces -- a statistical error often known as the Prosecutor's Fallacy. By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated rate of false positives in common warning signal statistics. We further demonstrate a model-based approach that is less subject to this bias than these more commonly used summary statistics. We note that experimental studies with replicates avoid this pitfall entirely.
Newly Discovered Eclipsing Binary 2MASS J18024395+4003309 (VSX J180243.9+400331):Two-Color Photometry vs Phenomenological Modeling
We report on analysis of the two-color VR CCD observations of the newly discovered variable 2MASS J18024395+4003309=VSX J180243.9+400331 obtained using the 1-m telescope of the Mt. Lemmon Observatory (LOAO) in the field of the intermediate polar V1323 Her. The extended version of this conference talk we published in 2015JASS...32..127A. The variability was reported in 2012OAP....25..150A, and the object was monitored. The two-color observations covered all phase interval. The object is classified as an Algol-type variable with tidally distorted components, and shows an asymmetry of the maxima (the O\'Connell effect). For phenomenological modeling, we used the trigonometric polynomial approximation of statistically optimal degree, and a recent method "NAV" (New Algol Variable) using local specific shapes for the eclipse. Methodological aspects are described, especially for the case of few color observations. Estimates of the physical parameters based on analysis of phenomenological parameters, are presented.
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation
Earth observation is a fundamental tool for monitoring the evolution of land use in specific areas of interest. Observing and precisely defining change, in this context, requires both time-series data and pixel-wise segmentations. To that end, we propose the DynamicEarthNet dataset that consists of daily, multi-spectral satellite observations of 75 selected areas of interest distributed over the globe with imagery from Planet Labs. These observations are paired with pixel-wise monthly semantic segmentation labels of 7 land use and land cover (LULC) classes. DynamicEarthNet is the first dataset that provides this unique combination of daily measurements and high-quality labels. In our experiments, we compare several established baselines that either utilize the daily observations as additional training data (semi-supervised learning) or multiple observations at once (spatio-temporal learning) as a point of reference for future research. Finally, we propose a new evaluation metric SCS that addresses the specific challenges associated with time-series semantic change segmentation. The data is available at: https://mediatum.ub.tum.de/1650201.
Cosmic Evolution Early Release Science (CEERS) survey: The colour evolution of galaxies in the distant Universe
The wavelength-coverage and sensitivity of JWST now enables us to probe the rest-frame UV - optical spectral energy distributions (SEDs) of galaxies at high-redshift (z>4). From these SEDs it is, in principle, through SED fitting possible to infer key physical properties, including stellar masses, star formation rates, and dust attenuation. These in turn can be compared with the predictions of galaxy formation simulations allowing us to validate and refine the incorporated physics. However, the inference of physical properties, particularly from photometry alone, can lead to large uncertainties and potential biases. Instead, it is now possible, and common, for simulations to be forward-modelled to yield synthetic observations that can be compared directly to real observations. In this work, we measure the JWST broadband fluxes and colours of a robust sample of 5<z<10 galaxies using the Cosmic Evolution Early Release Science (CEERS) Survey. We then analyse predictions from a variety of models using the same methodology and compare the NIRCam/F277W magnitude distribution and NIRCam colours with observations. We find that the predicted and observed magnitude distributions are similar, at least at 5<z<8. At z>8 the distributions differ somewhat, though our observed sample size is small and thus susceptible to statistical fluctuations. Likewise, the predicted and observed colour evolution show broad agreement, at least at 5<z<8. There is however some disagreement between the observed and modelled strength of the strong line contribution. In particular all the models fails to reproduce the F410M-F444W colour at z>8, though, again, the sample size is small here.
Proximity Ascertainment Bias in Early Covid Case Locations
A comparison of the distances to the Huanan Seafood Market of early Covid cases with known links to the market versus cases without known links shows results apparently incompatible with a location model lacking proximity ascertainment bias. The sign of the difference instead agrees with a model in which such ascertainment bias is large. In the presence of such bias inferences based on the clustering of case locations become unreliable.
Chinese vs. World Bank Development Projects: Insights from Earth Observation and Computer Vision on Wealth Gains in Africa, 2002-2013
Debates about whether development projects improve living conditions persist, partly because observational estimates can be biased by incomplete adjustment and because reliable outcome data are scarce at the neighborhood level. We address both issues in a continent-scale, sector-specific evaluation of Chinese and World Bank projects across 9,899 neighborhoods in 36 African countries (2002 to 2013), representative of 88% of the population. First, we use a recent dataset that measures living conditions with a machine-learned wealth index derived from contemporaneous satellite imagery, yielding a consistent panel of 6.7 km square mosaics. Second, to strengthen identification, we proxy officials' map-based placement criteria using pre-treatment daytime satellite images and fuse these with rich tabular covariates to estimate funder- and sector-specific ATEs via inverse-probability weighting. Incorporating imagery systematically shrinks effects relative to tabular-only models, indicating prior work likely overstated benefits. On average, both donors raise wealth, with larger gains for China; sector extremes in our sample include Trade and Tourism for the World Bank (+6.27 IWI points), and Emergency Response for China (+14.32). Assignment-mechanism analyses show World Bank placement is generally more predictable from imagery alone, as well as from tabular covariates. This suggests that Chinese project placements are more driven by non-visible, political, or event-driven factors than World Bank placements. To probe residual concerns about selection on observables, we also estimate within-neighborhood (unit) fixed-effects models at a spatial resolution about 450 times finer than prior fixed effects analyses, leveraging the computer-vision-imputed IWI panels; these deliver smaller but directionally consistent effects.
Model-Twin Randomization (MoTR): A Monte Carlo Method for Estimating the Within-Individual Average Treatment Effect Using Wearable Sensors
Temporally dense single-person "small data" have become widely available thanks to mobile apps and wearable sensors. Many caregivers and self-trackers want to use these data to help a specific person change their behavior to achieve desired health outcomes. Ideally, this involves discerning possible causes from correlations using that person's own observational time series data. In this paper, we estimate within-individual average treatment effects of physical activity on sleep duration, and vice-versa. We introduce the model twin randomization (MoTR; "motor") method for analyzing an individual's intensive longitudinal data. Formally, MoTR is an application of the g-formula (i.e., standardization, back-door adjustment) under serial interference. It estimates stable recurring effects, as is done in n-of-1 trials and single case experimental designs. We compare our approach to standard methods (with possible confounding) to show how to use causal inference to make better personalized recommendations for health behavior change, and analyze 222 days of Fitbit sleep and steps data for one of the authors.
Value of the Teaching Career and Factors in Its Path in Peru
The teaching career shares common global characteristics, such as internal promotion, performance evaluation, recruitment of top candidates, continuous training, specialization, and peer learning. This study aims to describe the factors associated with the value placed on the teaching career in Peru. A total of 28217 public school teachers were analyzed using data from the 2020 National Teacher Survey. A variable measuring the "value of the teaching career" was constructed using eight indicators and categorized as low, medium, or high. Another variable, vision of the future, was classified as pessimistic, conformist, or optimistic. This observational, cross-sectional, and analytical study included variables related to in-service training, working conditions, professional recognition, and sociodemographic characteristics. Among the teachers surveyed, 45.8 % expressed an optimistic outlook on the future of the profession, 48 % held a conformist view, and only 6.2 % reported a pessimistic perspective. A generalized linear model revealed that the value placed on the teaching career was significantly associated with male gender (p = 0.002), a professional career (p < 0.001), an optimistic outlook (p = 0.033), and working at the primary level (p < 0.001). It was concluded that Peruvian teachers predominantly hold conformist or optimistic views of their profession. This highlights the need to reinforce merit-based advancement, competency-based training, intrinsic motivation, and ongoing professional development
Photometric Data-driven Classification of Type Ia Supernovae in the Open Supernova Catalog
We propose a novel approach for a machine-learning-based detection of the type Ia supernovae using photometric information. Unlike other approaches, only real observation data is used during training. Despite being trained on a relatively small sample, the method shows good results on real data from the Open Supernovae Catalog. We also investigate model transfer from the PLAsTiCC simulations train dataset to real data application, and the reverse, and find the performance significantly decreases in both cases, highlighting the existing differences between simulated and real data.
The FAST HI 21-cm absorption blind survey. II. -- Statistic Exploration for Associated and Intervening systems
We present an extragalactic HI 21-cm absorption lines catalog from a blind search at z leqslant 0.35, using drift-scan data collected in 1325.6 hours by the ongoing Commensal Radio Astronomy FasT Survey (CRAFTS) and FAST All Sky HI Survey (FASHI), which spans a sky area of 6072.0 deg^{2} and covers 84533 radio sources with a flux density greater than 12 mJy. 14 previously identified HI absorbers and 20 newly discovered HI absorbers were detected, comprising 15 associated systems, 10 intervening systems, and 9 systems with undetermined classifications. Through spectral stacking, the mean peak optical path, mean velocity-integrated optical path, mean FWHM and mean HI column density are measured to be 0.47 and 0.30; 27.19 and 4.36 km s^{-1}; 42.61 and 9.33 km s^{-1}; 0.49 and 0.08 T_{s} times 10^{20}cm^{-2}K^{-1}, for the associated and intervening samples, respectively. Statistical analysis also reveals that associated systems tend to be hosted by red (g-r>0.7) galaxies at lower redshifts, whereas galaxies hosting intervening HI absorption are typically found at higher redshifts and are of a bluer (g-rleqslant0.7) type. A noticeable difference is observed in the positions of foregrounds, backgrounds of intervening systems, and high-redshift and low-redshift associated systems on the WISE color-color diagram. All identified foreground sources in our sample have W1-W2 magnitudes below 0.8, suggesting no Active Galactic Nuclei (AGN). In contrast, backgrounds of intervening systems tend to have W1-W2 magnitudes above 0.8, indicating AGN presence. For associated absorption, most low-redshift (zleqslant0.5) systems show W1-W2 values below 0.8, while higher-redshift associated absorption (z>0.5) displays a broader range of W1-W2 values.
Perpetual Observational Studies: New strategies to support efficient implementation of observational studies and randomized trials in the infectious diseases arena
The increasing threat of emerging infectious diseases and antimicrobial resistance requires more efficient, high-quality research. Perpetual Observational Studies (POS) nested within a clinical research network can improve planning, quality and efficiency of interventional and observational studies, although real-life benefits and challenges need to be assessed. Ecraid (European Clinical Research Alliance on Infectious Diseases) has initiated POS and will monitor the impact for five specific infectious syndromes.
Two pathways to resolve relational inconsistencies
When individuals encounter observations that violate their expectations, when will they adjust their expectations and when will they maintain them despite these observations? For example, when individuals expect objects of type A to be smaller than objects B, but observe the opposite, when will they adjust their expectation about the relationship between the two objects (to A being larger than B)? Naively, one would predict that the larger the violation, the greater the adaptation. However, experiments reveal that when violations are extreme, individuals are more likely to hold on to their prior expectations rather than adjust them. To address this puzzle, we tested the adaptation of artificial neural networks (ANNs) capable of relational learning and found a similar phenomenon: Standard learning dynamics dictates that small violations would lead to adjustments of expected relations while larger ones would be resolved using a different mechanism -- a change in object representation that bypasses the need for adaptation of the relational expectations. These results suggest that the experimentally-observed stability of prior expectations when facing large expectation violations is a natural consequence of learning dynamics and does not require any additional mechanisms. We conclude by discussing the effect of intermediate adaptation steps on this stability.
Contamination Bias in Linear Regressions
We study regressions with multiple treatments and a set of controls that is flexible enough to purge omitted variable bias. We show that these regressions generally fail to estimate convex averages of heterogeneous treatment effects -- instead, estimates of each treatment's effect are contaminated by non-convex averages of the effects of other treatments. We discuss three estimation approaches that avoid such contamination bias, including the targeting of easiest-to-estimate weighted average effects. A re-analysis of nine empirical applications finds economically and statistically meaningful contamination bias in observational studies; contamination bias in experimental studies is more limited due to smaller variability in propensity scores.
Forecast constraints on cosmic strings from future CMB, pulsar timing and gravitational wave direct detection experiments
We study future observational constraints on cosmic string parameters from various types of next-generation experiments: direct detection of gravitational waves (GWs), pulsar timing array, and the cosmic microwave background (CMB). We consider both GW burst and stochastic GW background searches by ground- and space-based interferometers as well as GW background detection in pulsar timing experiments. We also consider cosmic string contributions to the CMB temperature and polarization anisotropies. These different types of observations offer independent probes of cosmic strings and may enable us to investigate cosmic string properties if the signature is detected. In this paper, we evaluate the power of future experiments to constrain cosmic string parameters, such as the string tension Gmu, the initial loop size alpha, and the reconnection probability p, by performing Fisher information matrix calculations. We find that combining the information from the different types of observations breaks parameter degeneracies and provides more stringent constraints on the parameters. We also find future space-borne interferometers independently provide a highly precise determination of the parameters.
