- Nuclei instance segmentation and classification in histopathology images with StarDist Instance segmentation and classification of nuclei is an important task in computational pathology. We show that StarDist, a deep learning nuclei segmentation method originally developed for fluorescence microscopy, can be extended and successfully applied to histopathology images. This is substantiated by conducting experiments on the Lizard dataset, and through entering the Colon Nuclei Identification and Counting (CoNIC) challenge 2022, where our approach achieved the first spot on the leaderboard for the segmentation and classification task for both the preliminary and final test phase. 2 authors · Mar 2, 2022
- Learning Nuclei Representations with Masked Image Modelling Masked image modelling (MIM) is a powerful self-supervised representation learning paradigm, whose potential has not been widely demonstrated in medical image analysis. In this work, we show the capacity of MIM to capture rich semantic representations of Haemotoxylin & Eosin (H&E)-stained images at the nuclear level. Inspired by Bidirectional Encoder representation from Image Transformers (BEiT), we split the images into smaller patches and generate corresponding discrete visual tokens. In addition to the regular grid-based patches, typically used in visual Transformers, we introduce patches of individual cell nuclei. We propose positional encoding of the irregular distribution of these structures within an image. We pre-train the model in a self-supervised manner on H&E-stained whole-slide images of diffuse large B-cell lymphoma, where cell nuclei have been segmented. The pre-training objective is to recover the original discrete visual tokens of the masked image on the one hand, and to reconstruct the visual tokens of the masked object instances on the other. Coupling these two pre-training tasks allows us to build powerful, context-aware representations of nuclei. Our model generalizes well and can be fine-tuned on downstream classification tasks, achieving improved cell classification accuracy on PanNuke dataset by more than 5% compared to current instance segmentation methods. 5 authors · Jun 29, 2023
- Cell nuclei classification in histopathological images using hybrid OLConvNet Computer-aided histopathological image analysis for cancer detection is a major research challenge in the medical domain. Automatic detection and classification of nuclei for cancer diagnosis impose a lot of challenges in developing state of the art algorithms due to the heterogeneity of cell nuclei and data set variability. Recently, a multitude of classification algorithms has used complex deep learning models for their dataset. However, most of these methods are rigid and their architectural arrangement suffers from inflexibility and non-interpretability. In this research article, we have proposed a hybrid and flexible deep learning architecture OLConvNet that integrates the interpretability of traditional object-level features and generalization of deep learning features by using a shallower Convolutional Neural Network (CNN) named as CNN_{3L}. CNN_{3L} reduces the training time by training fewer parameters and hence eliminating space constraints imposed by deeper algorithms. We used F1-score and multiclass Area Under the Curve (AUC) performance parameters to compare the results. To further strengthen the viability of our architectural approach, we tested our proposed methodology with state of the art deep learning architectures AlexNet, VGG16, VGG19, ResNet50, InceptionV3, and DenseNet121 as backbone networks. After a comprehensive analysis of classification results from all four architectures, we observed that our proposed model works well and perform better than contemporary complex algorithms. 2 authors · Feb 21, 2022
12 LKCell: Efficient Cell Nuclei Instance Segmentation with Large Convolution Kernels The segmentation of cell nuclei in tissue images stained with the blood dye hematoxylin and eosin (H&E) is essential for various clinical applications and analyses. Due to the complex characteristics of cellular morphology, a large receptive field is considered crucial for generating high-quality segmentation. However, previous methods face challenges in achieving a balance between the receptive field and computational burden. To address this issue, we propose LKCell, a high-accuracy and efficient cell segmentation method. Its core insight lies in unleashing the potential of large convolution kernels to achieve computationally efficient large receptive fields. Specifically, (1) We transfer pre-trained large convolution kernel models to the medical domain for the first time, demonstrating their effectiveness in cell segmentation. (2) We analyze the redundancy of previous methods and design a new segmentation decoder based on large convolution kernels. It achieves higher performance while significantly reducing the number of parameters. We evaluate our method on the most challenging benchmark and achieve state-of-the-art results (0.5080 mPQ) in cell nuclei instance segmentation with only 21.6% FLOPs compared with the previous leading method. Our source code and models are available at https://github.com/hustvl/LKCell. 6 authors · Jul 25, 2024 2
- X-ray properties of coronal emission in radio quiet Active Galactic Nuclei Active galactic nuclei (AGN) are powerful sources of panchromatic radiation. All AGN emit in X-rays, contributing around sim 5-10% of the AGN bolometric luminosity. The X-ray emitting region, popularly known as the corona, is geometrically and radiatively compact with a size typically lesssim 10 , R_{rm G} (gravitational radii). The rapid and extreme variability in X-rays also suggest that the corona must be a dynamic structure. Decades of X-ray studies have shed much light on the topic, but the nature and origin of AGN corona are still not clearly understood. This is mostly due to the complexities involved in several physical processes at play in the high-gravity, high-density and high-temperature region in the vicinity of the supermassive black hole (SMBH). It is still not clear how exactly the corona is energetically and physically sustained near a SMBH. The ubiquity of coronal emission in AGN points to their fundamental role in black hole accretion processes. In this review we discuss the X-ray observational properties of corona in radio quiet AGN. 8 authors · Dec 15, 2024
- Optical Emission Model for Binary Black Hole Merger Remnants Travelling through Discs of Active Galactic Nuclei Active galactic nuclei (AGNs) have been proposed as plausible sites for hosting a sizable fraction of the binary black hole (BBH) mergers measured through gravitational waves (GWs) by the LIGO-Virgo-Kagra (LVK) experiment. These GWs could be accompanied by radiation feedback due to the interaction of the BBH merger remnant with the AGN disc. We present a new predicted radiation signature driven by the passage of a kicked BBH remnant throughout a thin AGN disc. We analyse the situation of a merger occurring outside the thin disc, where the merger is of second or higher generation in a merging hierarchical sequence. The coalescence produces a kicked BH remnant that eventually plunges into the disc, accretes material, and inflates jet cocoons. We consider the case of a jet cocoon propagating quasi-parallel to the disc plane and study the outflow that results when the cocoon emerges from the disc. We calculate the transient emission of the emerging cocoon using a photon diffusion model typically employed to describe the light curves of supernovae. Depending on the parameter configuration, the flare produced by the emerging cocoon could be comparable to or exceed the AGN background emission at optical, and extreme ultraviolet wavelengths. For instance, in AGNs with central engines of sim 5times10^{6} M_odot, flares driven by BH remnants with masses of sim 100 M_odot can appear in about sim[10-100] days after the GW, lasting for few days. 4 authors · Apr 20, 2023
- KongNet: A Multi-headed Deep Learning Model for Detection and Classification of Nuclei in Histopathology Images Accurate detection and classification of nuclei in histopathology images are critical for diagnostic and research applications. We present KongNet, a multi-headed deep learning architecture featuring a shared encoder and parallel, cell-type-specialised decoders. Through multi-task learning, each decoder jointly predicts nuclei centroids, segmentation masks, and contours, aided by Spatial and Channel Squeeze-and-Excitation (SCSE) attention modules and a composite loss function. We validate KongNet in three Grand Challenges. The proposed model achieved first place on track 1 and second place on track 2 during the MONKEY Challenge. Its lightweight variant (KongNet-Det) secured first place in the 2025 MIDOG Challenge. KongNet pre-trained on the MONKEY dataset and fine-tuned on the PUMA dataset ranked among the top three in the PUMA Challenge without further optimisation. Furthermore, KongNet established state-of-the-art performance on the publicly available PanNuke and CoNIC datasets. Our results demonstrate that the specialised multi-decoder design is highly effective for nuclei detection and classification across diverse tissue and stain types. The pre-trained model weights along with the inference code have been publicly released to support future research. 7 authors · Oct 27
- Dynamic Pseudo Label Optimization in Point-Supervised Nuclei Segmentation Deep learning has achieved impressive results in nuclei segmentation, but the massive requirement for pixel-wise labels remains a significant challenge. To alleviate the annotation burden, existing methods generate pseudo masks for model training using point labels. However, the generated masks are inevitably different from the ground truth, and these dissimilarities are not handled reasonably during the network training, resulting in the subpar performance of the segmentation model. To tackle this issue, we propose a framework named DoNuSeg, enabling Dynamic pseudo label Optimization in point-supervised Nuclei Segmentation. Specifically, DoNuSeg takes advantage of class activation maps (CAMs) to adaptively capture regions with semantics similar to annotated points. To leverage semantic diversity in the hierarchical feature levels, we design a dynamic selection module to choose the optimal one among CAMs from different encoder blocks as pseudo masks. Meanwhile, a CAM-guided contrastive module is proposed to further enhance the accuracy of pseudo masks. In addition to exploiting the semantic information provided by CAMs, we consider location priors inherent to point labels, developing a task-decoupled structure for effectively differentiating nuclei. Extensive experiments demonstrate that DoNuSeg outperforms state-of-the-art point-supervised methods. The code is available at https://github.com/shinning0821/MICCAI24-DoNuSeg. 5 authors · Jun 24, 2024
- Predication of novel effects in rotational nuclei at high speed The study of high-speed rotating matter is a crucial research topic in physics due to the emergence of novel phenomena. In this paper, we combined cranking covariant density functional theory (CDFT) with a similar renormalization group approach to decompose the Hamiltonian from the cranking CDFT into different Hermit components, including the non-relativistic term, the dynamical term, the spin-orbit coupling, and the Darwin term. Especially, we obtained the rotational term, the term relating to Zeeman effect-like, and the spin-rotation coupling due to consideration of rotation and spatial component of vector potential. By exploring these operators, we aim to identify novel phenomena that may occur in rotating nuclei. Signature splitting, Zeeman effect-like, spin-rotation coupling, and spin current are among the potential novelties that may arise in rotating nuclei. Additionally, we investigated the observability of these phenomena and their dependence on various factors such as nuclear deformation, rotational angular velocity, and strength of magnetic field. 1 authors · Sep 1, 2023
- Separable-HoverNet and Instance-YOLO for Colon Nuclei Identification and Counting Nuclear segmentation, classification and quantification within Haematoxylin & Eosin stained histology images enables the extraction of interpretable cell-based features that can be used in downstream explainable models in computational pathology (CPath). However, automatic recognition of different nuclei is faced with a major challenge in that there are several different types of nuclei, some of them exhibiting large intraclass variability. In this work, we propose an approach that combine Separable-HoverNet and Instance-YOLOv5 to indentify colon nuclei small and unbalanced. Our approach can achieve mPQ+ 0.389 on the Segmentation and Classification-Preliminary Test Dataset and r2 0.599 on the Cellular Composition-Preliminary Test Dataset on ISBI 2022 CoNIC Challenge. 5 authors · Mar 1, 2022
- The Stellar Morphology & Size of X-ray-selected Active Galactic Nuclei Host Galaxies Revealed by JWST We investigate the stellar shape and size-mass relationship of X-ray selected Active Galactic Nuclei (AGN) host galaxies using the high-angular resolution and deep sensitivity in the near-infrared of the COSMOS-Web JWST survey field. We present the rest-frame 1-mu m size, stellar mass, Sersic index, axis-ratio, Gini-M_{20} parameters of 690 moderate luminosity AGNs between redshift 0-3 and with stellar mass log M_ssim 10.75. We find that AGN host galaxies have an effective radius of 1-5 kpc, which is between star-forming (SFG) and quiescent galaxies (QGs) of the same stellar mass. AGN hosts have similar size-mass trends as SFG and QGs, being smaller at higher redshift for the same stellar mass. The slope of the size-mass relationship of AGN host galaxies is steeper than that of star-forming galaxies. Their rest-frame 1mu m stellar morphology indicates a significant spheroidal component. We observed a low merger fraction (6%) in our sample as well as substructures similar to disks, bars, and spiral arms in the residual images, which are in tension with evolutionary pathways that require major mergers. However, it may also be due to the different timescales between mergers and AGN activity. 23 authors · Oct 15
1 Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. 274 authors · Mar 19
- Next highest weight and other lower $SU(3)$ irreducible representations with proxy-$SU(4)$ symmetry for nuclei with $32 \le \mbox{Z,N} \le 46$ In the applications of proxy-SU(3) model in the context of determining (beta,gamma) values for nuclei across the periodic table, for understanding the preponderance of triaxial shapes in nuclei with Z ge 30, it is seen that one needs not only the highest weight (hw) or leading SU(3) irreducible representation (irrep) (lambda_H, mu_H) but also the lower SU(3) irreps (lambda ,mu) such that 2lambda + mu =2lambda_H + mu_H-3r with r=0,1 and 2 [Bonatsos et al., Symmetry {\bf 16}, 1625 (2024)]. These give the next highest weight (nhw) irrep, next-to-next highest irrep (nnhw) and so on. Recently, it is shown that for nuclei with 32 le Z,N le 46, there will be not only proxy-SU(3) but also proxy-SU(4) symmetry [Kota and Sahu, Physica Scripta {\bf 99}, 065306 (2024)]. Following these developments, presented in this paper are the SU(3) irreps (lambda ,mu) with 2lambda + mu =2lambda_H + mu_H-3r, r=0,1,2 for various isotopes of Ge, Se, Kr, Sr, Zr, Mo, Ru and Pd (with 32 le N le 46) assuming good proxy-SU(4) symmetry. A simple method for obtaining the SU(3) irreps is described and applied. The tabulations for proxy-SU(3) irreps provided in this paper will be useful in further investigations of triaxial shapes in these nuclei. 1 authors · Oct 1
- Extremely Dense Gas around Little Red Dots and High-redshift Active Galactic Nuclei: A Non-stellar Origin of the Balmer Break and Absorption Features The James Webb Space Telescope (JWST) has uncovered low-luminosity active galactic nuclei (AGNs) at high redshifts of zgtrsim 4-7, powered by accreting black holes (BHs) with masses of sim 10^{6-8}~M_odot. One remarkable distinction of these JWST-identified AGNs, compared to their low-redshift counterparts, is that at least sim 20% of them present Halpha and/or Hbeta absorption, which must be associated with extremely dense (gtrsim 10^9~{rm cm}^{-3}) gas in the broad-line region or its immediate surroundings. These Balmer absorption features unavoidably imply the presence of a Balmer break caused by the same dense gas. In this Letter, we quantitatively demonstrate that a Balmer break can form in AGN spectra without stellar components, when the accretion disk is heavily embedded in dense neutral gas clumps with densities of sim 10^{9-11}~{rm cm}^{-3}, where hydrogen atoms are collisionally excited to the n=2 states and effectively absorb the AGN continuum at the bluer side of the Balmer limit. The non-stellar origin of a Balmer break offers a potential solution to the large stellar masses and densities inferred for little red dots (LRDs) when assuming that their continuum is primarily due to stellar light. Our calculations indicate that the observed Balmer absorption blueshifted by a few hundreds {rm km~s}^{-1} suggests the presence of dense outflows in the nucleus at rates exceeding the Eddington value. Other spectral features such as higher equivalent widths of broad Halpha emission and presence of OI lines observed in high-redshift AGNs including LRDs align with the predicted signatures of a dense super-Eddington accretion disk. 2 authors · Sep 12, 2024