- Shapley Head Pruning: Identifying and Removing Interference in Multilingual Transformers Multilingual transformer-based models demonstrate remarkable zero and few-shot transfer across languages by learning and reusing language-agnostic features. However, as a fixed-size model acquires more languages, its performance across all languages degrades, a phenomenon termed interference. Often attributed to limited model capacity, interference is commonly addressed by adding additional parameters despite evidence that transformer-based models are overparameterized. In this work, we show that it is possible to reduce interference by instead identifying and pruning language-specific parameters. First, we use Shapley Values, a credit allocation metric from coalitional game theory, to identify attention heads that introduce interference. Then, we show that removing identified attention heads from a fixed model improves performance for a target language on both sentence classification and structural prediction, seeing gains as large as 24.7\%. Finally, we provide insights on language-agnostic and language-specific attention heads using attention visualization. 2 authors · Oct 11, 2022
- A Corpus for Sentence-level Subjectivity Detection on English News Articles We present a novel corpus for subjectivity detection at the sentence level. We develop new annotation guidelines for the task, which are not limited to language-specific cues, and apply them to produce a new corpus in English. The corpus consists of 411 subjective and 638 objective sentences extracted from ongoing coverage of political affairs from online news outlets. This new resource paves the way for the development of models for subjectivity detection in English and across other languages, without relying on language-specific tools like lexicons or machine translation. We evaluate state-of-the-art multilingual transformer-based models on the task, both in mono- and cross-lingual settings, the latter with a similar existing corpus in Italian language. We observe that enriching our corpus with resources in other languages improves the results on the task. 8 authors · May 29, 2023
- GREEK-BERT: The Greeks visiting Sesame Street Transformer-based language models, such as BERT and its variants, have achieved state-of-the-art performance in several downstream natural language processing (NLP) tasks on generic benchmark datasets (e.g., GLUE, SQUAD, RACE). However, these models have mostly been applied to the resource-rich English language. In this paper, we present GREEK-BERT, a monolingual BERT-based language model for modern Greek. We evaluate its performance in three NLP tasks, i.e., part-of-speech tagging, named entity recognition, and natural language inference, obtaining state-of-the-art performance. Interestingly, in two of the benchmarks GREEK-BERT outperforms two multilingual Transformer-based models (M-BERT, XLM-R), as well as shallower neural baselines operating on pre-trained word embeddings, by a large margin (5%-10%). Most importantly, we make both GREEK-BERT and our training code publicly available, along with code illustrating how GREEK-BERT can be fine-tuned for downstream NLP tasks. We expect these resources to boost NLP research and applications for modern Greek. 4 authors · Aug 27, 2020
1 KLEJ: Comprehensive Benchmark for Polish Language Understanding In recent years, a series of Transformer-based models unlocked major improvements in general natural language understanding (NLU) tasks. Such a fast pace of research would not be possible without general NLU benchmarks, which allow for a fair comparison of the proposed methods. However, such benchmarks are available only for a handful of languages. To alleviate this issue, we introduce a comprehensive multi-task benchmark for the Polish language understanding, accompanied by an online leaderboard. It consists of a diverse set of tasks, adopted from existing datasets for named entity recognition, question-answering, textual entailment, and others. We also introduce a new sentiment analysis task for the e-commerce domain, named Allegro Reviews (AR). To ensure a common evaluation scheme and promote models that generalize to different NLU tasks, the benchmark includes datasets from varying domains and applications. Additionally, we release HerBERT, a Transformer-based model trained specifically for the Polish language, which has the best average performance and obtains the best results for three out of nine tasks. Finally, we provide an extensive evaluation, including several standard baselines and recently proposed, multilingual Transformer-based models. 4 authors · May 1, 2020
- Multi Task Learning For Zero Shot Performance Prediction of Multilingual Models Massively Multilingual Transformer based Language Models have been observed to be surprisingly effective on zero-shot transfer across languages, though the performance varies from language to language depending on the pivot language(s) used for fine-tuning. In this work, we build upon some of the existing techniques for predicting the zero-shot performance on a task, by modeling it as a multi-task learning problem. We jointly train predictive models for different tasks which helps us build more accurate predictors for tasks where we have test data in very few languages to measure the actual performance of the model. Our approach also lends us the ability to perform a much more robust feature selection and identify a common set of features that influence zero-shot performance across a variety of tasks. 4 authors · May 12, 2022
- Multi-granular Legal Topic Classification on Greek Legislation In this work, we study the task of classifying legal texts written in the Greek language. We introduce and make publicly available a novel dataset based on Greek legislation, consisting of more than 47 thousand official, categorized Greek legislation resources. We experiment with this dataset and evaluate a battery of advanced methods and classifiers, ranging from traditional machine learning and RNN-based methods to state-of-the-art Transformer-based methods. We show that recurrent architectures with domain-specific word embeddings offer improved overall performance while being competitive even to transformer-based models. Finally, we show that cutting-edge multilingual and monolingual transformer-based models brawl on the top of the classifiers' ranking, making us question the necessity of training monolingual transfer learning models as a rule of thumb. To the best of our knowledge, this is the first time the task of Greek legal text classification is considered in an open research project, while also Greek is a language with very limited NLP resources in general. 5 authors · Sep 30, 2021
- Multilingual Controllable Transformer-Based Lexical Simplification Text is by far the most ubiquitous source of knowledge and information and should be made easily accessible to as many people as possible; however, texts often contain complex words that hinder reading comprehension and accessibility. Therefore, suggesting simpler alternatives for complex words without compromising meaning would help convey the information to a broader audience. This paper proposes mTLS, a multilingual controllable Transformer-based Lexical Simplification (LS) system fined-tuned with the T5 model. The novelty of this work lies in the use of language-specific prefixes, control tokens, and candidates extracted from pre-trained masked language models to learn simpler alternatives for complex words. The evaluation results on three well-known LS datasets -- LexMTurk, BenchLS, and NNSEval -- show that our model outperforms the previous state-of-the-art models like LSBert and ConLS. Moreover, further evaluation of our approach on the part of the recent TSAR-2022 multilingual LS shared-task dataset shows that our model performs competitively when compared with the participating systems for English LS and even outperforms the GPT-3 model on several metrics. Moreover, our model obtains performance gains also for Spanish and Portuguese. 2 authors · Jul 5, 2023 1
- BUSTED at AraGenEval Shared Task: A Comparative Study of Transformer-Based Models for Arabic AI-Generated Text Detection This paper details our submission to the Ara- GenEval Shared Task on Arabic AI-generated text detection, where our team, BUSTED, se- cured 5th place. We investigated the effec- tiveness of three pre-trained transformer mod- els: AraELECTRA, CAMeLBERT, and XLM- RoBERTa. Our approach involved fine-tuning each model on the provided dataset for a binary classification task. Our findings revealed a sur- prising result: the multilingual XLM-RoBERTa model achieved the highest performance with an F1 score of 0.7701, outperforming the spe- cialized Arabic models. This work underscores the complexities of AI-generated text detection and highlights the strong generalization capa- bilities of multilingual models. 3 authors · Oct 23
- Low-Resource Transliteration for Roman-Urdu and Urdu Using Transformer-Based Models As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. Transliteration between Urdu and its Romanized form, Roman Urdu, remains underexplored despite the widespread use of both scripts in South Asia. Prior work using RNNs on the Roman-Urdu-Parl dataset showed promising results but suffered from poor domain adaptability and limited evaluation. We propose a transformer-based approach using the m2m100 multilingual translation model, enhanced with masked language modeling (MLM) pretraining and fine-tuning on both Roman-Urdu-Parl and the domain-diverse Dakshina dataset. To address previous evaluation flaws, we introduce rigorous dataset splits and assess performance using BLEU, character-level BLEU, and CHRF. Our model achieves strong transliteration performance, with Char-BLEU scores of 96.37 for Urdu->Roman-Urdu and 97.44 for Roman-Urdu->Urdu. These results outperform both RNN baselines and GPT-4o Mini and demonstrate the effectiveness of multilingual transfer learning for low-resource transliteration tasks. 3 authors · Mar 27
1 HerBERT: Efficiently Pretrained Transformer-based Language Model for Polish BERT-based models are currently used for solving nearly all Natural Language Processing (NLP) tasks and most often achieve state-of-the-art results. Therefore, the NLP community conducts extensive research on understanding these models, but above all on designing effective and efficient training procedures. Several ablation studies investigating how to train BERT-like models have been carried out, but the vast majority of them concerned only the English language. A training procedure designed for English does not have to be universal and applicable to other especially typologically different languages. Therefore, this paper presents the first ablation study focused on Polish, which, unlike the isolating English language, is a fusional language. We design and thoroughly evaluate a pretraining procedure of transferring knowledge from multilingual to monolingual BERT-based models. In addition to multilingual model initialization, other factors that possibly influence pretraining are also explored, i.e. training objective, corpus size, BPE-Dropout, and pretraining length. Based on the proposed procedure, a Polish BERT-based language model -- HerBERT -- is trained. This model achieves state-of-the-art results on multiple downstream tasks. 4 authors · May 4, 2021
1 Load What You Need: Smaller Versions of Multilingual BERT Pre-trained Transformer-based models are achieving state-of-the-art results on a variety of Natural Language Processing data sets. However, the size of these models is often a drawback for their deployment in real production applications. In the case of multilingual models, most of the parameters are located in the embeddings layer. Therefore, reducing the vocabulary size should have an important impact on the total number of parameters. In this paper, we propose to generate smaller models that handle fewer number of languages according to the targeted corpora. We present an evaluation of smaller versions of multilingual BERT on the XNLI data set, but we believe that this method may be applied to other multilingual transformers. The obtained results confirm that we can generate smaller models that keep comparable results, while reducing up to 45% of the total number of parameters. We compared our models with DistilmBERT (a distilled version of multilingual BERT) and showed that unlike language reduction, distillation induced a 1.7% to 6% drop in the overall accuracy on the XNLI data set. The presented models and code are publicly available. 3 authors · Oct 12, 2020
1 Constructing Multilingual Code Search Dataset Using Neural Machine Translation Code search is a task to find programming codes that semantically match the given natural language queries. Even though some of the existing datasets for this task are multilingual on the programming language side, their query data are only in English. In this research, we create a multilingual code search dataset in four natural and four programming languages using a neural machine translation model. Using our dataset, we pre-train and fine-tune the Transformer-based models and then evaluate them on multiple code search test sets. Our results show that the model pre-trained with all natural and programming language data has performed best in most cases. By applying back-translation data filtering to our dataset, we demonstrate that the translation quality affects the model's performance to a certain extent, but the data size matters more. 4 authors · Jun 27, 2023 1
- Assessment of Massively Multilingual Sentiment Classifiers Models are increasing in size and complexity in the hunt for SOTA. But what if those 2\% increase in performance does not make a difference in a production use case? Maybe benefits from a smaller, faster model outweigh those slight performance gains. Also, equally good performance across languages in multilingual tasks is more important than SOTA results on a single one. We present the biggest, unified, multilingual collection of sentiment analysis datasets. We use these to assess 11 models and 80 high-quality sentiment datasets (out of 342 raw datasets collected) in 27 languages and included results on the internally annotated datasets. We deeply evaluate multiple setups, including fine-tuning transformer-based models for measuring performance. We compare results in numerous dimensions addressing the imbalance in both languages coverage and dataset sizes. Finally, we present some best practices for working with such a massive collection of datasets and models from a multilingual perspective. 6 authors · Apr 11, 2022
- xGQA: Cross-Lingual Visual Question Answering Recent advances in multimodal vision and language modeling have predominantly focused on the English language, mostly due to the lack of multilingual multimodal datasets to steer modeling efforts. In this work, we address this gap and provide xGQA, a new multilingual evaluation benchmark for the visual question answering task. We extend the established English GQA dataset to 7 typologically diverse languages, enabling us to detect and explore crucial challenges in cross-lingual visual question answering. We further propose new adapter-based approaches to adapt multimodal transformer-based models to become multilingual, and -- vice versa -- multilingual models to become multimodal. Our proposed methods outperform current state-of-the-art multilingual multimodal models (e.g., M3P) in zero-shot cross-lingual settings, but the accuracy remains low across the board; a performance drop of around 38 accuracy points in target languages showcases the difficulty of zero-shot cross-lingual transfer for this task. Our results suggest that simple cross-lingual transfer of multimodal models yields latent multilingual multimodal misalignment, calling for more sophisticated methods for vision and multilingual language modeling. 7 authors · Sep 13, 2021
- GAAMA 2.0: An Integrated System that Answers Boolean and Extractive Questions Recent machine reading comprehension datasets include extractive and boolean questions but current approaches do not offer integrated support for answering both question types. We present a multilingual machine reading comprehension system and front-end demo that handles boolean questions by providing both a YES/NO answer and highlighting supporting evidence, and handles extractive questions by highlighting the answer in the passage. Our system, GAAMA 2.0, is ranked first on the Tydi QA leaderboard at the time of this writing. We contrast two different implementations of our approach. The first includes several independent stacks of transformers allowing easy deployment of each component. The second is a single stack of transformers utilizing adapters to reduce GPU memory footprint in a resource-constrained environment. 7 authors · Jun 16, 2022
- Hate and Offensive Speech Detection in Hindi and Marathi Sentiment analysis is the most basic NLP task to determine the polarity of text data. There has been a significant amount of work in the area of multilingual text as well. Still hate and offensive speech detection faces a challenge due to inadequate availability of data, especially for Indian languages like Hindi and Marathi. In this work, we consider hate and offensive speech detection in Hindi and Marathi texts. The problem is formulated as a text classification task using the state of the art deep learning approaches. We explore different deep learning architectures like CNN, LSTM, and variations of BERT like multilingual BERT, IndicBERT, and monolingual RoBERTa. The basic models based on CNN and LSTM are augmented with fast text word embeddings. We use the HASOC 2021 Hindi and Marathi hate speech datasets to compare these algorithms. The Marathi dataset consists of binary labels and the Hindi dataset consists of binary as well as more-fine grained labels. We show that the transformer-based models perform the best and even the basic models along with FastText embeddings give a competitive performance. Moreover, with normal hyper-parameter tuning, the basic models perform better than BERT-based models on the fine-grained Hindi dataset. 5 authors · Oct 23, 2021
- Improving Sequence Tagging for Vietnamese Text Using Transformer-based Neural Models This paper describes our study on using mutilingual BERT embeddings and some new neural models for improving sequence tagging tasks for the Vietnamese language. We propose new model architectures and evaluate them extensively on two named entity recognition datasets of VLSP 2016 and VLSP 2018, and on two part-of-speech tagging datasets of VLSP 2010 and VLSP 2013. Our proposed models outperform existing methods and achieve new state-of-the-art results. In particular, we have pushed the accuracy of part-of-speech tagging to 95.40% on the VLSP 2010 corpus, to 96.77% on the VLSP 2013 corpus; and the F1 score of named entity recognition to 94.07% on the VLSP 2016 corpus, to 90.31% on the VLSP 2018 corpus. Our code and pre-trained models viBERT and vELECTRA are released as open source to facilitate adoption and further research. 3 authors · Jun 29, 2020
- Detection of Somali-written Fake News and Toxic Messages on the Social Media Using Transformer-based Language Models The fact that everyone with a social media account can create and share content, and the increasing public reliance on social media platforms as a news and information source bring about significant challenges such as misinformation, fake news, harmful content, etc. Although human content moderation may be useful to an extent and used by these platforms to flag posted materials, the use of AI models provides a more sustainable, scalable, and effective way to mitigate these harmful contents. However, low-resourced languages such as the Somali language face limitations in AI automation, including scarce annotated training datasets and lack of language models tailored to their unique linguistic characteristics. This paper presents part of our ongoing research work to bridge some of these gaps for the Somali language. In particular, we created two human-annotated social-media-sourced Somali datasets for two downstream applications, fake news \& toxicity classification, and developed a transformer-based monolingual Somali language model (named SomBERTa) -- the first of its kind to the best of our knowledge. SomBERTa is then fine-tuned and evaluated on toxic content, fake news and news topic classification datasets. Comparative evaluation analysis of the proposed model against related multilingual models (e.g., AfriBERTa, AfroXLMR, etc) demonstrated that SomBERTa consistently outperformed these comparators in both fake news and toxic content classification tasks while achieving the best average accuracy (87.99%) across all tasks. This research contributes to Somali NLP by offering a foundational language model and a replicable framework for other low-resource languages, promoting digital and AI inclusivity and linguistic diversity. 6 authors · Mar 23
- Multilingual Models for Check-Worthy Social Media Posts Detection This work presents an extensive study of transformer-based NLP models for detection of social media posts that contain verifiable factual claims and harmful claims. The study covers various activities, including dataset collection, dataset pre-processing, architecture selection, setup of settings, model training (fine-tuning), model testing, and implementation. The study includes a comprehensive analysis of different models, with a special focus on multilingual models where the same model is capable of processing social media posts in both English and in low-resource languages such as Arabic, Bulgarian, Dutch, Polish, Czech, Slovak. The results obtained from the study were validated against state-of-the-art models, and the comparison demonstrated the robustness of the proposed models. The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way. 2 authors · Aug 13, 2024
- Multilingual is not enough: BERT for Finnish Deep learning-based language models pretrained on large unannotated text corpora have been demonstrated to allow efficient transfer learning for natural language processing, with recent approaches such as the transformer-based BERT model advancing the state of the art across a variety of tasks. While most work on these models has focused on high-resource languages, in particular English, a number of recent efforts have introduced multilingual models that can be fine-tuned to address tasks in a large number of different languages. However, we still lack a thorough understanding of the capabilities of these models, in particular for lower-resourced languages. In this paper, we focus on Finnish and thoroughly evaluate the multilingual BERT model on a range of tasks, comparing it with a new Finnish BERT model trained from scratch. The new language-specific model is shown to systematically and clearly outperform the multilingual. While the multilingual model largely fails to reach the performance of previously proposed methods, the custom Finnish BERT model establishes new state-of-the-art results on all corpora for all reference tasks: part-of-speech tagging, named entity recognition, and dependency parsing. We release the model and all related resources created for this study with open licenses at https://turkunlp.org/finbert . 8 authors · Dec 15, 2019
- Shaking Syntactic Trees on the Sesame Street: Multilingual Probing with Controllable Perturbations Recent research has adopted a new experimental field centered around the concept of text perturbations which has revealed that shuffled word order has little to no impact on the downstream performance of Transformer-based language models across many NLP tasks. These findings contradict the common understanding of how the models encode hierarchical and structural information and even question if the word order is modeled with position embeddings. To this end, this paper proposes nine probing datasets organized by the type of controllable text perturbation for three Indo-European languages with a varying degree of word order flexibility: English, Swedish and Russian. Based on the probing analysis of the M-BERT and M-BART models, we report that the syntactic sensitivity depends on the language and model pre-training objectives. We also find that the sensitivity grows across layers together with the increase of the perturbation granularity. Last but not least, we show that the models barely use the positional information to induce syntactic trees from their intermediate self-attention and contextualized representations. 3 authors · Sep 28, 2021
- Transfer Learning of Transformer-based Speech Recognition Models from Czech to Slovak In this paper, we are comparing several methods of training the Slovak speech recognition models based on the Transformers architecture. Specifically, we are exploring the approach of transfer learning from the existing Czech pre-trained Wav2Vec 2.0 model into Slovak. We are demonstrating the benefits of the proposed approach on three Slovak datasets. Our Slovak models scored the best results when initializing the weights from the Czech model at the beginning of the pre-training phase. Our results show that the knowledge stored in the Cezch pre-trained model can be successfully reused to solve tasks in Slovak while outperforming even much larger public multilingual models. 3 authors · Jun 7, 2023
- Graph Neural Network Enhanced Language Models for Efficient Multilingual Text Classification Online social media works as a source of various valuable and actionable information during disasters. These information might be available in multiple languages due to the nature of user generated content. An effective system to automatically identify and categorize these actionable information should be capable to handle multiple languages and under limited supervision. However, existing works mostly focus on English language only with the assumption that sufficient labeled data is available. To overcome these challenges, we propose a multilingual disaster related text classification system which is capable to work under \{mono, cross and multi\} lingual scenarios and under limited supervision. Our end-to-end trainable framework combines the versatility of graph neural networks, by applying over the corpus, with the power of transformer based large language models, over examples, with the help of cross-attention between the two. We evaluate our framework over total nine English, Non-English and monolingual datasets in \{mono, cross and multi\} lingual classification scenarios. Our framework outperforms state-of-the-art models in disaster domain and multilingual BERT baseline in terms of Weighted F_1 score. We also show the generalizability of the proposed model under limited supervision. 3 authors · Mar 6, 2022
- Hybrid Decoding: Rapid Pass and Selective Detailed Correction for Sequence Models Recently, Transformer-based encoder-decoder models have demonstrated strong performance in multilingual speech recognition. However, the decoder's autoregressive nature and large size introduce significant bottlenecks during inference. Additionally, although rare, repetition can occur and negatively affect recognition accuracy. To tackle these challenges, we propose a novel Hybrid Decoding approach that both accelerates inference and alleviates the issue of repetition. Our method extends the transformer encoder-decoder architecture by attaching a lightweight, fast decoder to the pretrained encoder. During inference, the fast decoder rapidly generates an output, which is then verified and, if necessary, selectively corrected by the Transformer decoder. This results in faster decoding and improved robustness against repetitive errors. Experiments on the LibriSpeech and GigaSpeech test sets indicate that, with fine-tuning limited to the added decoder, our method achieves word error rates comparable to or better than the baseline, while more than doubling the inference speed. 5 authors · Aug 27
- PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors EuroVoc is a multilingual thesaurus that was built for organizing the legislative documentary of the European Union institutions. It contains thousands of categories at different levels of specificity and its descriptors are targeted by legal texts in almost thirty languages. In this work we propose a unified framework for EuroVoc classification on 22 languages by fine-tuning modern Transformer-based pretrained language models. We study extensively the performance of our trained models and show that they significantly improve the results obtained by a similar tool - JEX - on the same dataset. The code and the fine-tuned models were open sourced, together with a programmatic interface that eases the process of loading the weights of a trained model and of classifying a new document. 3 authors · Aug 2, 2021
- Transformer and Hybrid Deep Learning Based Models for Machine-Generated Text Detection This paper describes the approach of the UniBuc - NLP team in tackling the SemEval 2024 Task 8: Multigenerator, Multidomain, and Multilingual Black-Box Machine-Generated Text Detection. We explored transformer-based and hybrid deep learning architectures. For subtask B, our transformer-based model achieved a strong second-place out of 77 teams with an accuracy of 86.95\%, demonstrating the architecture's suitability for this task. However, our models showed overfitting in subtask A which could potentially be fixed with less fine-tunning and increasing maximum sequence length. For subtask C (token-level classification), our hybrid model overfit during training, hindering its ability to detect transitions between human and machine-generated text. 3 authors · May 28, 2024
1 Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan Multilingual language models have been a crucial breakthrough as they considerably reduce the need of data for under-resourced languages. Nevertheless, the superiority of language-specific models has already been proven for languages having access to large amounts of data. In this work, we focus on Catalan with the aim to explore to what extent a medium-sized monolingual language model is competitive with state-of-the-art large multilingual models. For this, we: (1) build a clean, high-quality textual Catalan corpus (CaText), the largest to date (but only a fraction of the usual size of the previous work in monolingual language models), (2) train a Transformer-based language model for Catalan (BERTa), and (3) devise a thorough evaluation in a diversity of settings, comprising a complete array of downstream tasks, namely, Part of Speech Tagging, Named Entity Recognition and Classification, Text Classification, Question Answering, and Semantic Textual Similarity, with most of the corresponding datasets being created ex novo. The result is a new benchmark, the Catalan Language Understanding Benchmark (CLUB), which we publish as an open resource, together with the clean textual corpus, the language model, and the cleaning pipeline. Using state-of-the-art multilingual models and a monolingual model trained only on Wikipedia as baselines, we consistently observe the superiority of our model across tasks and settings. 8 authors · Jul 16, 2021
- Cross-lingual transfer of multilingual models on low resource African Languages Large multilingual models have significantly advanced natural language processing (NLP) research. However, their high resource demands and potential biases from diverse data sources have raised concerns about their effectiveness across low-resource languages. In contrast, monolingual models, trained on a single language, may better capture the nuances of the target language, potentially providing more accurate results. This study benchmarks the cross-lingual transfer capabilities from a high-resource language to a low-resource language for both, monolingual and multilingual models, focusing on Kinyarwanda and Kirundi, two Bantu languages. We evaluate the performance of transformer based architectures like Multilingual BERT (mBERT), AfriBERT, and BantuBERTa against neural-based architectures such as BiGRU, CNN, and char-CNN. The models were trained on Kinyarwanda and tested on Kirundi, with fine-tuning applied to assess the extent of performance improvement and catastrophic forgetting. AfriBERT achieved the highest cross-lingual accuracy of 88.3% after fine-tuning, while BiGRU emerged as the best-performing neural model with 83.3% accuracy. We also analyze the degree of forgetting in the original language post-fine-tuning. While monolingual models remain competitive, this study highlights that multilingual models offer strong cross-lingual transfer capabilities in resource limited settings. 4 authors · Sep 17, 2024
- ParsBERT: Transformer-based Model for Persian Language Understanding The surge of pre-trained language models has begun a new era in the field of Natural Language Processing (NLP) by allowing us to build powerful language models. Among these models, Transformer-based models such as BERT have become increasingly popular due to their state-of-the-art performance. However, these models are usually focused on English, leaving other languages to multilingual models with limited resources. This paper proposes a monolingual BERT for the Persian language (ParsBERT), which shows its state-of-the-art performance compared to other architectures and multilingual models. Also, since the amount of data available for NLP tasks in Persian is very restricted, a massive dataset for different NLP tasks as well as pre-training the model is composed. ParsBERT obtains higher scores in all datasets, including existing ones as well as composed ones and improves the state-of-the-art performance by outperforming both multilingual BERT and other prior works in Sentiment Analysis, Text Classification and Named Entity Recognition tasks. 4 authors · May 26, 2020
8 Advancing Arabic Reverse Dictionary Systems: A Transformer-Based Approach with Dataset Construction Guidelines This study addresses the critical gap in Arabic natural language processing by developing an effective Arabic Reverse Dictionary (RD) system that enables users to find words based on their descriptions or meanings. We present a novel transformer-based approach with a semi-encoder neural network architecture featuring geometrically decreasing layers that achieves state-of-the-art results for Arabic RD tasks. Our methodology incorporates a comprehensive dataset construction process and establishes formal quality standards for Arabic lexicographic definitions. Experiments with various pre-trained models demonstrate that Arabic-specific models significantly outperform general multilingual embeddings, with ARBERTv2 achieving the best ranking score (0.0644). Additionally, we provide a formal abstraction of the reverse dictionary task that enhances theoretical understanding and develop a modular, extensible Python library (RDTL) with configurable training pipelines. Our analysis of dataset quality reveals important insights for improving Arabic definition construction, leading to eight specific standards for building high-quality reverse dictionary resources. This work contributes significantly to Arabic computational linguistics and provides valuable tools for language learning, academic writing, and professional communication in Arabic. 7 authors · Apr 30 2
- SemiAdapt and SemiLoRA: Efficient Domain Adaptation for Transformer-based Low-Resource Language Translation with a Case Study on Irish Fine-tuning is widely used to tailor large language models for specific tasks such as neural machine translation (NMT). However, leveraging transfer learning is computationally expensive when fine-tuning large multilingual models with billions of parameters, thus creating a barrier to entry for researchers working on low-resource domains such as Irish translation. Parameter-efficient fine-tuning (PEFT) bridges this gap by training on a fraction of the original model parameters, with the Low-Rank Adaptation (LoRA) approach introducing small, trainable adapter layers. We introduce SemiAdapt and SemiLoRA as semi-supervised inference-efficient approaches that strengthen domain adaptation and lead to improved overall performance in NMT. We demonstrate that SemiAdapt can outperform full-domain fine-tuning, while most notably, SemiLoRA can propel PEFT methods to match or even outperform full-model fine-tuning. We further evaluate domain-by-dataset fine-tuning and demonstrate that our embedding-based inference methods perform especially well on larger and noisier corpora. All Irish translation models developed in this work are released as open resources. These methods aim to make high-quality domain adaptation and fine-tuning more accessible to researchers working with low-resource languages. 2 authors · Oct 21
- Multilingual Universal Sentence Encoder for Semantic Retrieval We introduce two pre-trained retrieval focused multilingual sentence encoding models, respectively based on the Transformer and CNN model architectures. The models embed text from 16 languages into a single semantic space using a multi-task trained dual-encoder that learns tied representations using translation based bridge tasks (Chidambaram al., 2018). The models provide performance that is competitive with the state-of-the-art on: semantic retrieval (SR), translation pair bitext retrieval (BR) and retrieval question answering (ReQA). On English transfer learning tasks, our sentence-level embeddings approach, and in some cases exceed, the performance of monolingual, English only, sentence embedding models. Our models are made available for download on TensorFlow Hub. 12 authors · Jul 9, 2019
- Optimized Text Embedding Models and Benchmarks for Amharic Passage Retrieval Neural retrieval methods using transformer-based pre-trained language models have advanced multilingual and cross-lingual retrieval. However, their effectiveness for low-resource, morphologically rich languages such as Amharic remains underexplored due to data scarcity and suboptimal tokenization. We address this gap by introducing Amharic-specific dense retrieval models based on pre-trained Amharic BERT and RoBERTa backbones. Our proposed RoBERTa-Base-Amharic-Embed model (110M parameters) achieves a 17.6% relative improvement in MRR@10 and a 9.86% gain in Recall@10 over the strongest multilingual baseline, Arctic Embed 2.0 (568M parameters). More compact variants, such as RoBERTa-Medium-Amharic-Embed (42M), remain competitive while being over 13x smaller. Additionally, we train a ColBERT-based late interaction retrieval model that achieves the highest MRR@10 score (0.843) among all evaluated models. We benchmark our proposed models against both sparse and dense retrieval baselines to systematically assess retrieval effectiveness in Amharic. Our analysis highlights key challenges in low-resource settings and underscores the importance of language-specific adaptation. To foster future research in low-resource IR, we publicly release our dataset, codebase, and trained models at https://github.com/kidist-amde/amharic-ir-benchmarks. 3 authors · May 25
3 Unsupervised Cross-lingual Representation Learning at Scale This paper shows that pretraining multilingual language models at scale leads to significant performance gains for a wide range of cross-lingual transfer tasks. We train a Transformer-based masked language model on one hundred languages, using more than two terabytes of filtered CommonCrawl data. Our model, dubbed XLM-R, significantly outperforms multilingual BERT (mBERT) on a variety of cross-lingual benchmarks, including +14.6% average accuracy on XNLI, +13% average F1 score on MLQA, and +2.4% F1 score on NER. XLM-R performs particularly well on low-resource languages, improving 15.7% in XNLI accuracy for Swahili and 11.4% for Urdu over previous XLM models. We also present a detailed empirical analysis of the key factors that are required to achieve these gains, including the trade-offs between (1) positive transfer and capacity dilution and (2) the performance of high and low resource languages at scale. Finally, we show, for the first time, the possibility of multilingual modeling without sacrificing per-language performance; XLM-R is very competitive with strong monolingual models on the GLUE and XNLI benchmarks. We will make our code, data and models publicly available. 10 authors · Nov 5, 2019 1
- Behind Closed Words: Creating and Investigating the forePLay Annotated Dataset for Polish Erotic Discourse The surge in online content has created an urgent demand for robust detection systems, especially in non-English contexts where current tools demonstrate significant limitations. We present forePLay, a novel Polish language dataset for erotic content detection, featuring over 24k annotated sentences with a multidimensional taxonomy encompassing ambiguity, violence, and social unacceptability dimensions. Our comprehensive evaluation demonstrates that specialized Polish language models achieve superior performance compared to multilingual alternatives, with transformer-based architectures showing particular strength in handling imbalanced categories. The dataset and accompanying analysis establish essential frameworks for developing linguistically-aware content moderation systems, while highlighting critical considerations for extending such capabilities to morphologically complex languages. 4 authors · Dec 23, 2024
3 Cross-lingual Named Entity Corpus for Slavic Languages This paper presents a corpus manually annotated with named entities for six Slavic languages - Bulgarian, Czech, Polish, Slovenian, Russian, and Ukrainian. This work is the result of a series of shared tasks, conducted in 2017-2023 as a part of the Workshops on Slavic Natural Language Processing. The corpus consists of 5 017 documents on seven topics. The documents are annotated with five classes of named entities. Each entity is described by a category, a lemma, and a unique cross-lingual identifier. We provide two train-tune dataset splits - single topic out and cross topics. For each split, we set benchmarks using a transformer-based neural network architecture with the pre-trained multilingual models - XLM-RoBERTa-large for named entity mention recognition and categorization, and mT5-large for named entity lemmatization and linking. 3 authors · Mar 30, 2024
- Detecting Unassimilated Borrowings in Spanish: An Annotated Corpus and Approaches to Modeling This work presents a new resource for borrowing identification and analyzes the performance and errors of several models on this task. We introduce a new annotated corpus of Spanish newswire rich in unassimilated lexical borrowings -- words from one language that are introduced into another without orthographic adaptation -- and use it to evaluate how several sequence labeling models (CRF, BiLSTM-CRF, and Transformer-based models) perform. The corpus contains 370,000 tokens and is larger, more borrowing-dense, OOV-rich, and topic-varied than previous corpora available for this task. Our results show that a BiLSTM-CRF model fed with subword embeddings along with either Transformer-based embeddings pretrained on codeswitched data or a combination of contextualized word embeddings outperforms results obtained by a multilingual BERT-based model. 2 authors · Mar 30, 2022
2 Scaling Laws of Decoder-Only Models on the Multilingual Machine Translation Task Recent studies have showcased remarkable capabilities of decoder-only models in many NLP tasks, including translation. Yet, the machine translation field has been largely dominated by encoder-decoder models based on the Transformer architecture. As a consequence, scaling laws of encoder-decoder models for neural machine translation have already been well studied, but decoder-only models have received less attention. This work explores the scaling laws of decoder-only models on the multilingual and multidomain translation task. We trained a collection of six decoder-only models, ranging from 70M to 7B parameters, on a sentence-level, multilingual and multidomain dataset. We conducted a series of experiments showing that the loss of decoder-only models can be estimated using a scaling law similar to the one discovered for large language models, but we also show that this scaling law has difficulties to generalize to too large models or to a different data distribution. We also study different scaling methods and show that scaling the depth and the width of a model lead to similar test loss improvements, but with different impact on the model's efficiency. 5 authors · Sep 23, 2024
1 Enhancing Multilingual LLM Pretraining with Model-Based Data Selection Dataset curation has become a basis for strong large language model (LLM) performance. While various rule-based filtering heuristics exist for English and multilingual datasets, model-based filtering techniques have primarily focused on English. To address the disparity stemming from limited research on non-English languages, we propose a model-based filtering framework for multilingual datasets that aims to identify a diverse set of structured and knowledge-rich samples. Our approach emphasizes transparency, simplicity, and efficiency, leveraging Transformer- and FastText-based classifiers to ensure the broad accessibility of our technique and data. We conduct comprehensive ablation studies on the FineWeb-2 web crawl dataset across diverse language families, scripts, and resource availability to demonstrate the effectiveness of our method. Training a 1B-parameter Llama model for 70B and 119B tokens, our approach can match the baseline MMLU score with as little as 15% of the training tokens, while also improving across other benchmarks. These findings provide strong evidence for the generalizability of our approach to other languages. As a result, we extend our framework to 20 languages for which we release the refined pretraining datasets. 3 authors · Feb 14
- A Study of Multilingual End-to-End Speech Recognition for Kazakh, Russian, and English We study training a single end-to-end (E2E) automatic speech recognition (ASR) model for three languages used in Kazakhstan: Kazakh, Russian, and English. We first describe the development of multilingual E2E ASR based on Transformer networks and then perform an extensive assessment on the aforementioned languages. We also compare two variants of output grapheme set construction: combined and independent. Furthermore, we evaluate the impact of LMs and data augmentation techniques on the recognition performance of the multilingual E2E ASR. In addition, we present several datasets for training and evaluation purposes. Experiment results show that the multilingual models achieve comparable performances to the monolingual baselines with a similar number of parameters. Our best monolingual and multilingual models achieved 20.9% and 20.5% average word error rates on the combined test set, respectively. To ensure the reproducibility of our experiments and results, we share our training recipes, datasets, and pre-trained models. 3 authors · Aug 3, 2021
- SimpleSpeech 2: Towards Simple and Efficient Text-to-Speech with Flow-based Scalar Latent Transformer Diffusion Models Scaling Text-to-speech (TTS) to large-scale datasets has been demonstrated as an effective method for improving the diversity and naturalness of synthesized speech. At the high level, previous large-scale TTS models can be categorized into either Auto-regressive (AR) based (e.g., VALL-E) or Non-auto-regressive (NAR) based models (e.g., NaturalSpeech 2/3). Although these works demonstrate good performance, they still have potential weaknesses. For instance, AR-based models are plagued by unstable generation quality and slow generation speed; meanwhile, some NAR-based models need phoneme-level duration alignment information, thereby increasing the complexity of data pre-processing, model design, and loss design. In this work, we build upon our previous publication by implementing a simple and efficient non-autoregressive (NAR) TTS framework, termed SimpleSpeech 2. SimpleSpeech 2 effectively combines the strengths of both autoregressive (AR) and non-autoregressive (NAR) methods, offering the following key advantages: (1) simplified data preparation; (2) straightforward model and loss design; and (3) stable, high-quality generation performance with fast inference speed. Compared to our previous publication, we present ({\romannumeral1}) a detailed analysis of the influence of speech tokenizer and noisy label for TTS performance; ({\romannumeral2}) four distinct types of sentence duration predictors; ({\romannumeral3}) a novel flow-based scalar latent transformer diffusion model. With these improvement, we show a significant improvement in generation performance and generation speed compared to our previous work and other state-of-the-art (SOTA) large-scale TTS models. Furthermore, we show that SimpleSpeech 2 can be seamlessly extended to multilingual TTS by training it on multilingual speech datasets. Demos are available on: {https://dongchaoyang.top/SimpleSpeech2\_demo/}. 8 authors · Aug 25, 2024
- Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{\aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow. 4 authors · Apr 19, 2021
3 AraBERT: Transformer-based Model for Arabic Language Understanding The Arabic language is a morphologically rich language with relatively few resources and a less explored syntax compared to English. Given these limitations, Arabic Natural Language Processing (NLP) tasks like Sentiment Analysis (SA), Named Entity Recognition (NER), and Question Answering (QA), have proven to be very challenging to tackle. Recently, with the surge of transformers based models, language-specific BERT based models have proven to be very efficient at language understanding, provided they are pre-trained on a very large corpus. Such models were able to set new standards and achieve state-of-the-art results for most NLP tasks. In this paper, we pre-trained BERT specifically for the Arabic language in the pursuit of achieving the same success that BERT did for the English language. The performance of AraBERT is compared to multilingual BERT from Google and other state-of-the-art approaches. The results showed that the newly developed AraBERT achieved state-of-the-art performance on most tested Arabic NLP tasks. The pretrained araBERT models are publicly available on https://github.com/aub-mind/arabert hoping to encourage research and applications for Arabic NLP. 3 authors · Feb 28, 2020 6
1 ALBERTI, a Multilingual Domain Specific Language Model for Poetry Analysis The computational analysis of poetry is limited by the scarcity of tools to automatically analyze and scan poems. In a multilingual settings, the problem is exacerbated as scansion and rhyme systems only exist for individual languages, making comparative studies very challenging and time consuming. In this work, we present Alberti, the first multilingual pre-trained large language model for poetry. Through domain-specific pre-training (DSP), we further trained multilingual BERT on a corpus of over 12 million verses from 12 languages. We evaluated its performance on two structural poetry tasks: Spanish stanza type classification, and metrical pattern prediction for Spanish, English and German. In both cases, Alberti outperforms multilingual BERT and other transformers-based models of similar sizes, and even achieves state-of-the-art results for German when compared to rule-based systems, demonstrating the feasibility and effectiveness of DSP in the poetry domain. 4 authors · Jul 3, 2023
- On the Cross-lingual Transferability of Monolingual Representations State-of-the-art unsupervised multilingual models (e.g., multilingual BERT) have been shown to generalize in a zero-shot cross-lingual setting. This generalization ability has been attributed to the use of a shared subword vocabulary and joint training across multiple languages giving rise to deep multilingual abstractions. We evaluate this hypothesis by designing an alternative approach that transfers a monolingual model to new languages at the lexical level. More concretely, we first train a transformer-based masked language model on one language, and transfer it to a new language by learning a new embedding matrix with the same masked language modeling objective, freezing parameters of all other layers. This approach does not rely on a shared vocabulary or joint training. However, we show that it is competitive with multilingual BERT on standard cross-lingual classification benchmarks and on a new Cross-lingual Question Answering Dataset (XQuAD). Our results contradict common beliefs of the basis of the generalization ability of multilingual models and suggest that deep monolingual models learn some abstractions that generalize across languages. We also release XQuAD as a more comprehensive cross-lingual benchmark, which comprises 240 paragraphs and 1190 question-answer pairs from SQuAD v1.1 translated into ten languages by professional translators. 3 authors · Oct 25, 2019
- XF2T: Cross-lingual Fact-to-Text Generation for Low-Resource Languages Multiple business scenarios require an automated generation of descriptive human-readable text from structured input data. Hence, fact-to-text generation systems have been developed for various downstream tasks like generating soccer reports, weather and financial reports, medical reports, person biographies, etc. Unfortunately, previous work on fact-to-text (F2T) generation has focused primarily on English mainly due to the high availability of relevant datasets. Only recently, the problem of cross-lingual fact-to-text (XF2T) was proposed for generation across multiple languages alongwith a dataset, XALIGN for eight languages. However, there has been no rigorous work on the actual XF2T generation problem. We extend XALIGN dataset with annotated data for four more languages: Punjabi, Malayalam, Assamese and Oriya. We conduct an extensive study using popular Transformer-based text generation models on our extended multi-lingual dataset, which we call XALIGNV2. Further, we investigate the performance of different text generation strategies: multiple variations of pretraining, fact-aware embeddings and structure-aware input encoding. Our extensive experiments show that a multi-lingual mT5 model which uses fact-aware embeddings with structure-aware input encoding leads to best results on average across the twelve languages. We make our code, dataset and model publicly available, and hope that this will help advance further research in this critical area. 6 authors · Sep 22, 2022
1 Countering Malicious Content Moderation Evasion in Online Social Networks: Simulation and Detection of Word Camouflage Content moderation is the process of screening and monitoring user-generated content online. It plays a crucial role in stopping content resulting from unacceptable behaviors such as hate speech, harassment, violence against specific groups, terrorism, racism, xenophobia, homophobia, or misogyny, to mention some few, in Online Social Platforms. These platforms make use of a plethora of tools to detect and manage malicious information; however, malicious actors also improve their skills, developing strategies to surpass these barriers and continuing to spread misleading information. Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems. In response to this recent ongoing issue, this paper presents an innovative approach to address this linguistic trend in social networks through the simulation of different content evasion techniques and a multilingual Transformer model for content evasion detection. In this way, we share with the rest of the scientific community a multilingual public tool, named "pyleetspeak" to generate/simulate in a customizable way the phenomenon of content evasion through automatic word camouflage and a multilingual Named-Entity Recognition (NER) Transformer-based model tuned for its recognition and detection. The multilingual NER model is evaluated in different textual scenarios, detecting different types and mixtures of camouflage techniques, achieving an overall weighted F1 score of 0.8795. This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content on social networks, making the fight against information disorders more effective. 4 authors · Dec 27, 2022
- Aksharantar: Towards building open transliteration tools for the next billion users We introduce Aksharantar, the largest publicly available transliteration dataset for 21 Indic languages containing 26 million transliteration pairs. We build this dataset by mining transliteration pairs from large monolingual and parallel corpora, as well as collecting transliterations from human annotators to ensure diversity of words and representation of low-resource languages. We introduce a new, large, diverse testset for Indic language transliteration containing 103k words pairs spanning 19 languages that enables fine-grained analysis of transliteration models. We train the IndicXlit model on the Aksharantar training set. IndicXlit is a single transformer-based multilingual transliteration model for roman to Indic script conversion supporting 21 Indic languages. It achieves state-of-the art results on the Dakshina testset, and establishes strong baselines on the Aksharantar testset released along with this work. All the datasets and models are publicly available at https://indicnlp.ai4bharat.org/aksharantar. We hope the availability of these large-scale, open resources will spur innovation for Indic language transliteration and downstream applications. 8 authors · May 6, 2022
- idT5: Indonesian Version of Multilingual T5 Transformer Indonesian language is spoken by almost 200 million people and is the 10th most spoken language in the world, but it is under-represented in NLP (Natural Language Processing) research. A sparsity of language resources has hampered previous work on Indonesian. The Transformer is a new architecture rapidly becoming dominant for NLP, surpassing alternatives like convolutional and recurrent neural networks. T5 (Text-to-Text Transfer Transformer) is a Transformer model that converts all text-based language problems to text-to-text format for English. The multilingual variant is mT5 (multilingual T5) which has shown promising results on many NLP tasks across languages. However, the size of this multilingual model is a drawback for its application in real production applications, which sometimes require only one language. In this study, the mT5 model was adapted for only one language, Indonesian, resulting in a pre-trained T5 model that was specific only for Indonesian with a smaller size. For performance comparison, we fine-tuned this model and the mT5 model to the Sentiment Analysis (SA), Question Generation (QG), and Question Answering (QA) tasks with the exact mechanism and dataset. Fine-tuned model based on our model achieved 77.18% accuracy on SA, 8% higher than the mT5-based model, and obtained nearly the same score as the mT5-based model on QG and QA. The results confirm that it is possible to produce a smaller pre-trained model that maintains comparable yields while reducing the model size by up to 58%. In addition, the resulting model requires less memory, loads faster, and inference times faster. 3 authors · Feb 1, 2023
7 PaLM 2 Technical Report We introduce PaLM 2, a new state-of-the-art language model that has better multilingual and reasoning capabilities and is more compute-efficient than its predecessor PaLM. PaLM 2 is a Transformer-based model trained using a mixture of objectives. Through extensive evaluations on English and multilingual language, and reasoning tasks, we demonstrate that PaLM 2 has significantly improved quality on downstream tasks across different model sizes, while simultaneously exhibiting faster and more efficient inference compared to PaLM. This improved efficiency enables broader deployment while also allowing the model to respond faster, for a more natural pace of interaction. PaLM 2 demonstrates robust reasoning capabilities exemplified by large improvements over PaLM on BIG-Bench and other reasoning tasks. PaLM 2 exhibits stable performance on a suite of responsible AI evaluations, and enables inference-time control over toxicity without additional overhead or impact on other capabilities. Overall, PaLM 2 achieves state-of-the-art performance across a diverse set of tasks and capabilities. When discussing the PaLM 2 family, it is important to distinguish between pre-trained models (of various sizes), fine-tuned variants of these models, and the user-facing products that use these models. In particular, user-facing products typically include additional pre- and post-processing steps. Additionally, the underlying models may evolve over time. Therefore, one should not expect the performance of user-facing products to exactly match the results reported in this report. 128 authors · May 17, 2023 4
- WangchanBERTa: Pretraining transformer-based Thai Language Models Transformer-based language models, more specifically BERT-based architectures have achieved state-of-the-art performance in many downstream tasks. However, for a relatively low-resource language such as Thai, the choices of models are limited to training a BERT-based model based on a much smaller dataset or finetuning multi-lingual models, both of which yield suboptimal downstream performance. Moreover, large-scale multi-lingual pretraining does not take into account language-specific features for Thai. To overcome these limitations, we pretrain a language model based on RoBERTa-base architecture on a large, deduplicated, cleaned training set (78GB in total size), curated from diverse domains of social media posts, news articles and other publicly available datasets. We apply text processing rules that are specific to Thai most importantly preserving spaces, which are important chunk and sentence boundaries in Thai before subword tokenization. We also experiment with word-level, syllable-level and SentencePiece tokenization with a smaller dataset to explore the effects on tokenization on downstream performance. Our model wangchanberta-base-att-spm-uncased trained on the 78.5GB dataset outperforms strong baselines (NBSVM, CRF and ULMFit) and multi-lingual models (XLMR and mBERT) on both sequence classification and token classification tasks in human-annotated, mono-lingual contexts. 4 authors · Jan 23, 2021
- Charformer: Fast Character Transformers via Gradient-based Subword Tokenization State-of-the-art models in natural language processing rely on separate rigid subword tokenization algorithms, which limit their generalization ability and adaptation to new settings. In this paper, we propose a new model inductive bias that learns a subword tokenization end-to-end as part of the model. To this end, we introduce a soft gradient-based subword tokenization module (GBST) that automatically learns latent subword representations from characters in a data-driven fashion. Concretely, GBST enumerates candidate subword blocks and learns to score them in a position-wise fashion using a block scoring network. We additionally introduce Charformer, a deep Transformer model that integrates GBST and operates on the byte level. Via extensive experiments on English GLUE, multilingual, and noisy text datasets, we show that Charformer outperforms a series of competitive byte-level baselines while generally performing on par and sometimes outperforming subword-based models. Additionally, Charformer is fast, improving the speed of both vanilla byte-level and subword-level Transformers by 28%-100% while maintaining competitive quality. We believe this work paves the way for highly performant token-free models that are trained completely end-to-end. 10 authors · Jun 23, 2021 2
- L3Cube-HindBERT and DevBERT: Pre-Trained BERT Transformer models for Devanagari based Hindi and Marathi Languages The monolingual Hindi BERT models currently available on the model hub do not perform better than the multi-lingual models on downstream tasks. We present L3Cube-HindBERT, a Hindi BERT model pre-trained on Hindi monolingual corpus. Further, since Indic languages, Hindi and Marathi share the Devanagari script, we train a single model for both languages. We release DevBERT, a Devanagari BERT model trained on both Marathi and Hindi monolingual datasets. We evaluate these models on downstream Hindi and Marathi text classification and named entity recognition tasks. The HindBERT and DevBERT-based models show significant improvements over multi-lingual MuRIL, IndicBERT, and XLM-R. Based on these observations we also release monolingual BERT models for other Indic languages Kannada, Telugu, Malayalam, Tamil, Gujarati, Assamese, Odia, Bengali, and Punjabi. These models are shared at https://huggingface.co/l3cube-pune . 1 authors · Nov 21, 2022
3 Evaluation of HTR models without Ground Truth Material The evaluation of Handwritten Text Recognition (HTR) models during their development is straightforward: because HTR is a supervised problem, the usual data split into training, validation, and test data sets allows the evaluation of models in terms of accuracy or error rates. However, the evaluation process becomes tricky as soon as we switch from development to application. A compilation of a new (and forcibly smaller) ground truth (GT) from a sample of the data that we want to apply the model on and the subsequent evaluation of models thereon only provides hints about the quality of the recognised text, as do confidence scores (if available) the models return. Moreover, if we have several models at hand, we face a model selection problem since we want to obtain the best possible result during the application phase. This calls for GT-free metrics to select the best model, which is why we (re-)introduce and compare different metrics, from simple, lexicon-based to more elaborate ones using standard language models and masked language models (MLM). We show that MLM-based evaluation can compete with lexicon-based methods, with the advantage that large and multilingual transformers are readily available, thus making compiling lexical resources for other metrics superfluous. 6 authors · Jan 16, 2022
- GreenMind: A Next-Generation Vietnamese Large Language Model for Structured and Logical Reasoning Chain-of-Thought (CoT) is a robust approach for tackling LLM tasks that require intermediate reasoning steps prior to generating a final answer. In this paper, we present GreenMind-Medium-14B-R1, the Vietnamese reasoning model inspired by the finetuning strategy based on Group Relative Policy Optimization. We also leverage a high-quality Vietnamese synthesized reasoning dataset and design two reward functions to tackle the main limitations of this technique: (i) language mixing, where we explicitly detect the presence of biased language characters during the process of sampling tokens, and (ii) we leverage Sentence Transformer-based models to ensure that the generated reasoning content maintains factual correctness and does not distort the final output. Experimental results on the Vietnamese dataset from the VLSP 2023 Challenge demonstrate that our model outperforms prior works and enhances linguistic consistency in its responses. Furthermore, we extend our evaluation to SeaExam-a multilingual multiple-choice dataset, showing the effectiveness of our reasoning method compared to few-shot prompting techniques. 3 authors · Apr 23
- ChrEn: Cherokee-English Machine Translation for Endangered Language Revitalization Cherokee is a highly endangered Native American language spoken by the Cherokee people. The Cherokee culture is deeply embedded in its language. However, there are approximately only 2,000 fluent first language Cherokee speakers remaining in the world, and the number is declining every year. To help save this endangered language, we introduce ChrEn, a Cherokee-English parallel dataset, to facilitate machine translation research between Cherokee and English. Compared to some popular machine translation language pairs, ChrEn is extremely low-resource, only containing 14k sentence pairs in total. We split our parallel data in ways that facilitate both in-domain and out-of-domain evaluation. We also collect 5k Cherokee monolingual data to enable semi-supervised learning. Besides these datasets, we propose several Cherokee-English and English-Cherokee machine translation systems. We compare SMT (phrase-based) versus NMT (RNN-based and Transformer-based) systems; supervised versus semi-supervised (via language model, back-translation, and BERT/Multilingual-BERT) methods; as well as transfer learning versus multilingual joint training with 4 other languages. Our best results are 15.8/12.7 BLEU for in-domain and 6.5/5.0 BLEU for out-of-domain Chr-En/EnChr translations, respectively, and we hope that our dataset and systems will encourage future work by the community for Cherokee language revitalization. Our data, code, and demo will be publicly available at https://github.com/ZhangShiyue/ChrEn 3 authors · Oct 9, 2020
- MultiLegalSBD: A Multilingual Legal Sentence Boundary Detection Dataset Sentence Boundary Detection (SBD) is one of the foundational building blocks of Natural Language Processing (NLP), with incorrectly split sentences heavily influencing the output quality of downstream tasks. It is a challenging task for algorithms, especially in the legal domain, considering the complex and different sentence structures used. In this work, we curated a diverse multilingual legal dataset consisting of over 130'000 annotated sentences in 6 languages. Our experimental results indicate that the performance of existing SBD models is subpar on multilingual legal data. We trained and tested monolingual and multilingual models based on CRF, BiLSTM-CRF, and transformers, demonstrating state-of-the-art performance. We also show that our multilingual models outperform all baselines in the zero-shot setting on a Portuguese test set. To encourage further research and development by the community, we have made our dataset, models, and code publicly available. 3 authors · May 2, 2023 1
- VLSP2022-EVJVQA Challenge: Multilingual Visual Question Answering Visual Question Answering (VQA) is a challenging task of natural language processing (NLP) and computer vision (CV), attracting significant attention from researchers. English is a resource-rich language that has witnessed various developments in datasets and models for visual question answering. Visual question answering in other languages also would be developed for resources and models. In addition, there is no multilingual dataset targeting the visual content of a particular country with its own objects and cultural characteristics. To address the weakness, we provide the research community with a benchmark dataset named EVJVQA, including 33,000+ pairs of question-answer over three languages: Vietnamese, English, and Japanese, on approximately 5,000 images taken from Vietnam for evaluating multilingual VQA systems or models. EVJVQA is used as a benchmark dataset for the challenge of multilingual visual question answering at the 9th Workshop on Vietnamese Language and Speech Processing (VLSP 2022). This task attracted 62 participant teams from various universities and organizations. In this article, we present details of the organization of the challenge, an overview of the methods employed by shared-task participants, and the results. The highest performances are 0.4392 in F1-score and 0.4009 in BLUE on the private test set. The multilingual QA systems proposed by the top 2 teams use ViT for the pre-trained vision model and mT5 for the pre-trained language model, a powerful pre-trained language model based on the transformer architecture. EVJVQA is a challenging dataset that motivates NLP and CV researchers to further explore the multilingual models or systems for visual question answering systems. We released the challenge on the Codalab evaluation system for further research. 5 authors · Feb 22, 2023
1 TCSinger 2: Customizable Multilingual Zero-shot Singing Voice Synthesis Customizable multilingual zero-shot singing voice synthesis (SVS) has various potential applications in music composition and short video dubbing. However, existing SVS models overly depend on phoneme and note boundary annotations, limiting their robustness in zero-shot scenarios and producing poor transitions between phonemes and notes. Moreover, they also lack effective multi-level style control via diverse prompts. To overcome these challenges, we introduce TCSinger 2, a multi-task multilingual zero-shot SVS model with style transfer and style control based on various prompts. TCSinger 2 mainly includes three key modules: 1) Blurred Boundary Content (BBC) Encoder, predicts duration, extends content embedding, and applies masking to the boundaries to enable smooth transitions. 2) Custom Audio Encoder, uses contrastive learning to extract aligned representations from singing, speech, and textual prompts. 3) Flow-based Custom Transformer, leverages Cus-MOE, with F0 supervision, enhancing both the synthesis quality and style modeling of the generated singing voice. Experimental results show that TCSinger 2 outperforms baseline models in both subjective and objective metrics across multiple related tasks. Singing voice samples are available at https://aaronz345.github.io/TCSinger2Demo/. 9 authors · May 20
3 IntelliCode Compose: Code Generation Using Transformer In software development through integrated development environments (IDEs), code completion is one of the most widely used features. Nevertheless, majority of integrated development environments only support completion of methods and APIs, or arguments. In this paper, we introduce IntelliCode Compose - a general-purpose multilingual code completion tool which is capable of predicting sequences of code tokens of arbitrary types, generating up to entire lines of syntactically correct code. It leverages state-of-the-art generative transformer model trained on 1.2 billion lines of source code in Python, C#, JavaScript and TypeScript programming languages. IntelliCode Compose is deployed as a cloud-based web service. It makes use of client-side tree-based caching, efficient parallel implementation of the beam search decoder, and compute graph optimizations to meet edit-time completion suggestion requirements in the Visual Studio Code IDE and Azure Notebook. Our best model yields an average edit similarity of 86.7% and a perplexity of 1.82 for Python programming language. 4 authors · May 16, 2020
- Document Intelligence in the Era of Large Language Models: A Survey Document AI (DAI) has emerged as a vital application area, and is significantly transformed by the advent of large language models (LLMs). While earlier approaches relied on encoder-decoder architectures, decoder-only LLMs have revolutionized DAI, bringing remarkable advancements in understanding and generation. This survey provides a comprehensive overview of DAI's evolution, highlighting current research attempts and future prospects of LLMs in this field. We explore key advancements and challenges in multimodal, multilingual, and retrieval-augmented DAI, while also suggesting future research directions, including agent-based approaches and document-specific foundation models. This paper aims to provide a structured analysis of the state-of-the-art in DAI and its implications for both academic and practical applications. 6 authors · Oct 15
- The Ubiqus English-Inuktitut System for WMT20 This paper describes Ubiqus' submission to the WMT20 English-Inuktitut shared news translation task. Our main system, and only submission, is based on a multilingual approach, jointly training a Transformer model on several agglutinative languages. The English-Inuktitut translation task is challenging at every step, from data selection, preparation and tokenization to quality evaluation down the line. Difficulties emerge both because of the peculiarities of the Inuktitut language as well as the low-resource context. 2 authors · Nov 18, 2020
- Comparison of Czech Transformers on Text Classification Tasks In this paper, we present our progress in pre-training monolingual Transformers for Czech and contribute to the research community by releasing our models for public. The need for such models emerged from our effort to employ Transformers in our language-specific tasks, but we found the performance of the published multilingual models to be very limited. Since the multilingual models are usually pre-trained from 100+ languages, most of low-resourced languages (including Czech) are under-represented in these models. At the same time, there is a huge amount of monolingual training data available in web archives like Common Crawl. We have pre-trained and publicly released two monolingual Czech Transformers and compared them with relevant public models, trained (at least partially) for Czech. The paper presents the Transformers pre-training procedure as well as a comparison of pre-trained models on text classification task from various domains. 2 authors · Jul 21, 2021
4 CamemBERT: a Tasty French Language Model Pretrained language models are now ubiquitous in Natural Language Processing. Despite their success, most available models have either been trained on English data or on the concatenation of data in multiple languages. This makes practical use of such models --in all languages except English-- very limited. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for other languages, taking French as an example and evaluating our language models on part-of-speech tagging, dependency parsing, named entity recognition and natural language inference tasks. We show that the use of web crawled data is preferable to the use of Wikipedia data. More surprisingly, we show that a relatively small web crawled dataset (4GB) leads to results that are as good as those obtained using larger datasets (130+GB). Our best performing model CamemBERT reaches or improves the state of the art in all four downstream tasks. 8 authors · Nov 10, 2019 1
- Cascading Adaptors to Leverage English Data to Improve Performance of Question Answering for Low-Resource Languages Transformer based architectures have shown notable results on many down streaming tasks including question answering. The availability of data, on the other hand, impedes obtaining legitimate performance for low-resource languages. In this paper, we investigate the applicability of pre-trained multilingual models to improve the performance of question answering in low-resource languages. We tested four combinations of language and task adapters using multilingual transformer architectures on seven languages similar to MLQA dataset. Additionally, we have also proposed zero-shot transfer learning of low-resource question answering using language and task adapters. We observed that stacking the language and the task adapters improves the multilingual transformer models' performance significantly for low-resource languages. 3 authors · Dec 18, 2021
4 mT5: A massively multilingual pre-trained text-to-text transformer The recent "Text-to-Text Transfer Transformer" (T5) leveraged a unified text-to-text format and scale to attain state-of-the-art results on a wide variety of English-language NLP tasks. In this paper, we introduce mT5, a multilingual variant of T5 that was pre-trained on a new Common Crawl-based dataset covering 101 languages. We detail the design and modified training of mT5 and demonstrate its state-of-the-art performance on many multilingual benchmarks. We also describe a simple technique to prevent "accidental translation" in the zero-shot setting, where a generative model chooses to (partially) translate its prediction into the wrong language. All of the code and model checkpoints used in this work are publicly available. 8 authors · Oct 22, 2020
2 mLongT5: A Multilingual and Efficient Text-To-Text Transformer for Longer Sequences We present our work on developing a multilingual, efficient text-to-text transformer that is suitable for handling long inputs. This model, called mLongT5, builds upon the architecture of LongT5, while leveraging the multilingual datasets used for pretraining mT5 and the pretraining tasks of UL2. We evaluate this model on a variety of multilingual summarization and question-answering tasks, and the results show stronger performance for mLongT5 when compared to existing multilingual models such as mBART or M-BERT. 4 authors · May 18, 2023 1
1 Language Models are Universal Embedders In the large language model (LLM) revolution, embedding is a key component of various systems. For example, it is used to retrieve knowledge or memories for LLMs, to build content moderation filters, etc. As such cases span from English to other natural or programming languages, from retrieval to classification and beyond, it is desirable to build a unified embedding model rather than dedicated ones for each scenario. In this work, we make an initial step towards this goal, demonstrating that multiple languages (both natural and programming) pre-trained transformer decoders can embed universally when finetuned on limited English data. We provide a comprehensive practice with thorough evaluations. On English MTEB, our models achieve competitive performance on different embedding tasks by minimal training data. On other benchmarks, such as multilingual classification and code search, our models (without any supervision) perform comparably to, or even surpass heavily supervised baselines and/or APIs. These results provide evidence of a promising path towards building powerful unified embedders that can be applied across tasks and languages. 7 authors · Oct 12, 2023
1 Massively Multilingual Lexical Specialization of Multilingual Transformers While pretrained language models (PLMs) primarily serve as general-purpose text encoders that can be fine-tuned for a wide variety of downstream tasks, recent work has shown that they can also be rewired to produce high-quality word representations (i.e., static word embeddings) and yield good performance in type-level lexical tasks. While existing work primarily focused on the lexical specialization of monolingual PLMs with immense quantities of monolingual constraints, in this work we expose massively multilingual transformers (MMTs, e.g., mBERT or XLM-R) to multilingual lexical knowledge at scale, leveraging BabelNet as the readily available rich source of multilingual and cross-lingual type-level lexical knowledge. Concretely, we use BabelNet's multilingual synsets to create synonym pairs (or synonym-gloss pairs) across 50 languages and then subject the MMTs (mBERT and XLM-R) to a lexical specialization procedure guided by a contrastive objective. We show that such massively multilingual lexical specialization brings substantial gains in two standard cross-lingual lexical tasks, bilingual lexicon induction and cross-lingual word similarity, as well as in cross-lingual sentence retrieval. Crucially, we observe gains for languages unseen in specialization, indicating that multilingual lexical specialization enables generalization to languages with no lexical constraints. In a series of subsequent controlled experiments, we show that the number of specialization constraints plays a much greater role than the set of languages from which they originate. 3 authors · Aug 1, 2022
- The Less the Merrier? Investigating Language Representation in Multilingual Models Multilingual Language Models offer a way to incorporate multiple languages in one model and utilize cross-language transfer learning to improve performance for different Natural Language Processing (NLP) tasks. Despite progress in multilingual models, not all languages are supported as well, particularly in low-resource settings. In this work, we investigate the linguistic representation of different languages in multilingual models. We start by asking the question which languages are supported in popular multilingual models and which languages are left behind. Then, for included languages, we look at models' learned representations based on language family and dialect and try to understand how models' learned representations for~(1) seen and~(2) unseen languages vary across different language groups. In addition, we test and analyze performance on downstream tasks such as text generation and Named Entity Recognition. We observe from our experiments that community-centered models -- models that focus on languages of a given family or geographical location and are built by communities who speak them -- perform better at distinguishing between languages in the same family for low-resource languages. Our paper contributes to the literature in understanding multilingual models and their shortcomings and offers insights on potential ways to improve them. 3 authors · Oct 19, 2023
- Czert -- Czech BERT-like Model for Language Representation This paper describes the training process of the first Czech monolingual language representation models based on BERT and ALBERT architectures. We pre-train our models on more than 340K of sentences, which is 50 times more than multilingual models that include Czech data. We outperform the multilingual models on 9 out of 11 datasets. In addition, we establish the new state-of-the-art results on nine datasets. At the end, we discuss properties of monolingual and multilingual models based upon our results. We publish all the pre-trained and fine-tuned models freely for the research community. 6 authors · Mar 24, 2021
1 Distilling Efficient Language-Specific Models for Cross-Lingual Transfer Massively multilingual Transformers (MMTs), such as mBERT and XLM-R, are widely used for cross-lingual transfer learning. While these are pretrained to represent hundreds of languages, end users of NLP systems are often interested only in individual languages. For such purposes, the MMTs' language coverage makes them unnecessarily expensive to deploy in terms of model size, inference time, energy, and hardware cost. We thus propose to extract compressed, language-specific models from MMTs which retain the capacity of the original MMTs for cross-lingual transfer. This is achieved by distilling the MMT bilingually, i.e., using data from only the source and target language of interest. Specifically, we use a two-phase distillation approach, termed BiStil: (i) the first phase distils a general bilingual model from the MMT, while (ii) the second, task-specific phase sparsely fine-tunes the bilingual "student" model using a task-tuned variant of the original MMT as its "teacher". We evaluate this distillation technique in zero-shot cross-lingual transfer across a number of standard cross-lingual benchmarks. The key results indicate that the distilled models exhibit minimal degradation in target language performance relative to the base MMT despite being significantly smaller and faster. Furthermore, we find that they outperform multilingually distilled models such as DistilmBERT and MiniLMv2 while having a very modest training budget in comparison, even on a per-language basis. We also show that bilingual models distilled from MMTs greatly outperform bilingual models trained from scratch. Our code and models are available at https://github.com/AlanAnsell/bistil. 4 authors · Jun 2, 2023
- Facebook AI WMT21 News Translation Task Submission We describe Facebook's multilingual model submission to the WMT2021 shared task on news translation. We participate in 14 language directions: English to and from Czech, German, Hausa, Icelandic, Japanese, Russian, and Chinese. To develop systems covering all these directions, we focus on multilingual models. We utilize data from all available sources --- WMT, large-scale data mining, and in-domain backtranslation --- to create high quality bilingual and multilingual baselines. Subsequently, we investigate strategies for scaling multilingual model size, such that one system has sufficient capacity for high quality representations of all eight languages. Our final submission is an ensemble of dense and sparse Mixture-of-Expert multilingual translation models, followed by finetuning on in-domain news data and noisy channel reranking. Compared to previous year's winning submissions, our multilingual system improved the translation quality on all language directions, with an average improvement of 2.0 BLEU. In the WMT2021 task, our system ranks first in 10 directions based on automatic evaluation. 6 authors · Aug 6, 2021
1 Power Law Graph Transformer for Machine Translation and Representation Learning We present the Power Law Graph Transformer, a transformer model with well defined deductive and inductive tasks for prediction and representation learning. The deductive task learns the dataset level (global) and instance level (local) graph structures in terms of learnable power law distribution parameters. The inductive task outputs the prediction probabilities using the deductive task output, similar to a transductive model. We trained our model with Turkish-English and Portuguese-English datasets from TED talk transcripts for machine translation and compared the model performance and characteristics to a transformer model with scaled dot product attention trained on the same experimental setup. We report BLEU scores of 17.79 and 28.33 on the Turkish-English and Portuguese-English translation tasks with our model, respectively. We also show how a duality between a quantization set and N-dimensional manifold representation can be leveraged to transform between local and global deductive-inductive outputs using successive application of linear and non-linear transformations end-to-end. Fromthesky Research Labs · Jun 27, 2021
1 A General-Purpose Multilingual Document Encoder Massively multilingual pretrained transformers (MMTs) have tremendously pushed the state of the art on multilingual NLP and cross-lingual transfer of NLP models in particular. While a large body of work leveraged MMTs to mine parallel data and induce bilingual document embeddings, much less effort has been devoted to training general-purpose (massively) multilingual document encoder that can be used for both supervised and unsupervised document-level tasks. In this work, we pretrain a massively multilingual document encoder as a hierarchical transformer model (HMDE) in which a shallow document transformer contextualizes sentence representations produced by a state-of-the-art pretrained multilingual sentence encoder. We leverage Wikipedia as a readily available source of comparable documents for creating training data, and train HMDE by means of a cross-lingual contrastive objective, further exploiting the category hierarchy of Wikipedia for creation of difficult negatives. We evaluate the effectiveness of HMDE in two arguably most common and prominent cross-lingual document-level tasks: (1) cross-lingual transfer for topical document classification and (2) cross-lingual document retrieval. HMDE is significantly more effective than (i) aggregations of segment-based representations and (ii) multilingual Longformer. Crucially, owing to its massively multilingual lower transformer, HMDE successfully generalizes to languages unseen in document-level pretraining. We publicly release our code and models at https://github.com/ogaloglu/pre-training-multilingual-document-encoders . 3 authors · May 11, 2023
- xVLM2Vec: Adapting LVLM-based embedding models to multilinguality using Self-Knowledge Distillation In the current literature, most embedding models are based on the encoder-only transformer architecture to extract a dense and meaningful representation of the given input, which can be a text, an image, and more. With the recent advances in language modeling thanks to the introduction of Large Language Models, the possibility of extracting embeddings from these large and extensively trained models has been explored. However, current studies focus on textual embeddings in English, which is also the main language on which these models have been trained. Furthermore, there are very few models that consider multimodal and multilingual input. In light of this, we propose an adaptation methodology for Large Vision-Language Models trained on English language data to improve their performance in extracting multilingual and multimodal embeddings. Finally, we design and introduce a benchmark to evaluate the effectiveness of multilingual and multimodal embedding models. 4 authors · Mar 12
1 Bootstrapping Multilingual AMR with Contextual Word Alignments We develop high performance multilingualAbstract Meaning Representation (AMR) sys-tems by projecting English AMR annotationsto other languages with weak supervision. Weachieve this goal by bootstrapping transformer-based multilingual word embeddings, in partic-ular those from cross-lingual RoBERTa (XLM-R large). We develop a novel technique forforeign-text-to-English AMR alignment, usingthe contextual word alignment between En-glish and foreign language tokens. This wordalignment is weakly supervised and relies onthe contextualized XLM-R word embeddings.We achieve a highly competitive performancethat surpasses the best published results forGerman, Italian, Spanish and Chinese. 7 authors · Feb 3, 2021
- Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT'14 benchmarks, a single multilingual model achieves comparable performance for EnglishrightarrowFrench and surpasses state-of-the-art results for EnglishrightarrowGerman. Similarly, a single multilingual model surpasses state-of-the-art results for FrenchrightarrowEnglish and GermanrightarrowEnglish on WMT'14 and WMT'15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages. 12 authors · Nov 14, 2016
53 Speed Always Wins: A Survey on Efficient Architectures for Large Language Models Large Language Models (LLMs) have delivered impressive results in language understanding, generation, reasoning, and pushes the ability boundary of multimodal models. Transformer models, as the foundation of modern LLMs, offer a strong baseline with excellent scaling properties. However, the traditional transformer architecture requires substantial computations and poses significant obstacles for large-scale training and practical deployment. In this survey, we offer a systematic examination of innovative LLM architectures that address the inherent limitations of transformers and boost the efficiency. Starting from language modeling, this survey covers the background and technical details of linear and sparse sequence modeling methods, efficient full attention variants, sparse mixture-of-experts, hybrid model architectures incorporating the above techniques, and emerging diffusion LLMs. Additionally, we discuss applications of these techniques to other modalities and consider their wider implications for developing scalable, resource-aware foundation models. By grouping recent studies into the above category, this survey presents a blueprint of modern efficient LLM architectures, and we hope this could help motivate future research toward more efficient, versatile AI systems. 15 authors · Aug 13 2
- On the Usability of Transformers-based models for a French Question-Answering task For many tasks, state-of-the-art results have been achieved with Transformer-based architectures, resulting in a paradigmatic shift in practices from the use of task-specific architectures to the fine-tuning of pre-trained language models. The ongoing trend consists in training models with an ever-increasing amount of data and parameters, which requires considerable resources. It leads to a strong search to improve resource efficiency based on algorithmic and hardware improvements evaluated only for English. This raises questions about their usability when applied to small-scale learning problems, for which a limited amount of training data is available, especially for under-resourced languages tasks. The lack of appropriately sized corpora is a hindrance to applying data-driven and transfer learning-based approaches with strong instability cases. In this paper, we establish a state-of-the-art of the efforts dedicated to the usability of Transformer-based models and propose to evaluate these improvements on the question-answering performances of French language which have few resources. We address the instability relating to data scarcity by investigating various training strategies with data augmentation, hyperparameters optimization and cross-lingual transfer. We also introduce a new compact model for French FrALBERT which proves to be competitive in low-resource settings. 3 authors · Jul 19, 2022
1 Dynamic Position Encoding for Transformers Recurrent models have been dominating the field of neural machine translation (NMT) for the past few years. Transformers vaswani2017attention, have radically changed it by proposing a novel architecture that relies on a feed-forward backbone and self-attention mechanism. Although Transformers are powerful, they could fail to properly encode sequential/positional information due to their non-recurrent nature. To solve this problem, position embeddings are defined exclusively for each time step to enrich word information. However, such embeddings are fixed after training regardless of the task and the word ordering system of the source or target language. In this paper, we propose a novel architecture with new position embeddings depending on the input text to address this shortcoming by taking the order of target words into consideration. Instead of using predefined position embeddings, our solution generates new embeddings to refine each word's position information. Since we do not dictate the position of source tokens and learn them in an end-to-end fashion, we refer to our method as dynamic position encoding (DPE). We evaluated the impact of our model on multiple datasets to translate from English into German, French, and Italian and observed meaningful improvements in comparison to the original Transformer. 3 authors · Apr 17, 2022
91 Attention Is All You Need The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 8 authors · Jun 12, 2017 4
1 Lingua Custodia's participation at the WMT 2021 Machine Translation using Terminologies shared task This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a building block, and we explore a method which introduces two main changes to the standard procedure to handle terminologies. The first one consists in augmenting the training data in such a way as to encourage the model to learn a copy behavior when it encounters terminology constraint terms. The second change is constraint token masking, whose purpose is to ease copy behavior learning and to improve model generalization. Empirical results show that our method satisfies most terminology constraints while maintaining high translation quality. 3 authors · Nov 3, 2021
1 The birth of Romanian BERT Large-scale pretrained language models have become ubiquitous in Natural Language Processing. However, most of these models are available either in high-resource languages, in particular English, or as multilingual models that compromise performance on individual languages for coverage. This paper introduces Romanian BERT, the first purely Romanian transformer-based language model, pretrained on a large text corpus. We discuss corpus composition and cleaning, the model training process, as well as an extensive evaluation of the model on various Romanian datasets. We open source not only the model itself, but also a repository that contains information on how to obtain the corpus, fine-tune and use this model in production (with practical examples), and how to fully replicate the evaluation process. 3 authors · Sep 18, 2020
- Efficient Language Modeling for Low-Resource Settings with Hybrid RNN-Transformer Architectures Transformer-based language models have recently been at the forefront of active research in text generation. However, these models' advances come at the price of prohibitive training costs, with parameter counts in the billions and compute requirements measured in petaflop/s-decades. In this paper, we investigate transformer-based architectures for improving model performance in a low-data regime by selectively replacing attention layers with feed-forward and quasi-recurrent neural network layers. We test these architectures on the standard Enwik8 and Wikitext-103 corpora. Our results show that our reduced architectures outperform existing models with a comparable number of parameters, and obtain comparable performance to larger models while significantly reducing the number of parameters. 3 authors · Feb 1
- Monolingual and Cross-Lingual Acceptability Judgments with the Italian CoLA corpus The development of automated approaches to linguistic acceptability has been greatly fostered by the availability of the English CoLA corpus, which has also been included in the widely used GLUE benchmark. However, this kind of research for languages other than English, as well as the analysis of cross-lingual approaches, has been hindered by the lack of resources with a comparable size in other languages. We have therefore developed the ItaCoLA corpus, containing almost 10,000 sentences with acceptability judgments, which has been created following the same approach and the same steps as the English one. In this paper we describe the corpus creation, we detail its content, and we present the first experiments on this new resource. We compare in-domain and out-of-domain classification, and perform a specific evaluation of nine linguistic phenomena. We also present the first cross-lingual experiments, aimed at assessing whether multilingual transformerbased approaches can benefit from using sentences in two languages during fine-tuning. 4 authors · Sep 24, 2021
2 Efficient Language Model Training through Cross-Lingual and Progressive Transfer Learning Most Transformer language models are primarily pretrained on English text, limiting their use for other languages. As the model sizes grow, the performance gap between English and other languages with fewer compute and data resources increases even further. Consequently, more resource-efficient training methods are needed to bridge the gap for languages with fewer resources available. To address this problem, we introduce a cross-lingual and progressive transfer learning approach, called CLP-Transfer, that transfers models from a source language, for which pretrained models are publicly available, like English, to a new target language. As opposed to prior work, which focused on the cross-lingual transfer between two languages, we extend the transfer to the model size. Given a pretrained model in a source language, we aim for a same-sized model in a target language. Instead of training a model from scratch, we exploit a smaller model that is in the target language but requires much fewer resources. Both small and source models are then used to initialize the token embeddings of the larger model based on the overlapping vocabulary of the source and target language. All remaining weights are reused from the model in the source language. This approach outperforms the sole cross-lingual transfer and can save up to 80% of the training steps compared to the random initialization. 2 authors · Jan 23, 2023
- Language Models on a Diet: Cost-Efficient Development of Encoders for Closely-Related Languages via Additional Pretraining The world of language models is going through turbulent times, better and ever larger models are coming out at an unprecedented speed. However, we argue that, especially for the scientific community, encoder models of up to 1 billion parameters are still very much needed, their primary usage being in enriching large collections of data with metadata necessary for downstream research. We investigate the best way to ensure the existence of such encoder models on the set of very closely related languages - Croatian, Serbian, Bosnian and Montenegrin, by setting up a diverse benchmark for these languages, and comparing the trained-from-scratch models with the new models constructed via additional pretraining of existing multilingual models. We show that comparable performance to dedicated from-scratch models can be obtained by additionally pretraining available multilingual models even with a limited amount of computation. We also show that neighboring languages, in our case Slovenian, can be included in the additional pretraining with little to no loss in the performance of the final model. 5 authors · Apr 8, 2024
- The University of Helsinki submissions to the WMT19 news translation task In this paper, we present the University of Helsinki submissions to the WMT 2019 shared task on news translation in three language pairs: English-German, English-Finnish and Finnish-English. This year, we focused first on cleaning and filtering the training data using multiple data-filtering approaches, resulting in much smaller and cleaner training sets. For English-German, we trained both sentence-level transformer models and compared different document-level translation approaches. For Finnish-English and English-Finnish we focused on different segmentation approaches, and we also included a rule-based system for English-Finnish. 8 authors · Jun 10, 2019
- FinEst BERT and CroSloEngual BERT: less is more in multilingual models Large pretrained masked language models have become state-of-the-art solutions for many NLP problems. The research has been mostly focused on English language, though. While massively multilingual models exist, studies have shown that monolingual models produce much better results. We train two trilingual BERT-like models, one for Finnish, Estonian, and English, the other for Croatian, Slovenian, and English. We evaluate their performance on several downstream tasks, NER, POS-tagging, and dependency parsing, using the multilingual BERT and XLM-R as baselines. The newly created FinEst BERT and CroSloEngual BERT improve the results on all tasks in most monolingual and cross-lingual situations 2 authors · Jun 14, 2020
- BERTić -- The Transformer Language Model for Bosnian, Croatian, Montenegrin and Serbian In this paper we describe a transformer model pre-trained on 8 billion tokens of crawled text from the Croatian, Bosnian, Serbian and Montenegrin web domains. We evaluate the transformer model on the tasks of part-of-speech tagging, named-entity-recognition, geo-location prediction and commonsense causal reasoning, showing improvements on all tasks over state-of-the-art models. For commonsense reasoning evaluation, we introduce COPA-HR -- a translation of the Choice of Plausible Alternatives (COPA) dataset into Croatian. The BERTi\'c model is made available for free usage and further task-specific fine-tuning through HuggingFace. 2 authors · Apr 19, 2021
- Pre-training Polish Transformer-based Language Models at Scale Transformer-based language models are now widely used in Natural Language Processing (NLP). This statement is especially true for English language, in which many pre-trained models utilizing transformer-based architecture have been published in recent years. This has driven forward the state of the art for a variety of standard NLP tasks such as classification, regression, and sequence labeling, as well as text-to-text tasks, such as machine translation, question answering, or summarization. The situation have been different for low-resource languages, such as Polish, however. Although some transformer-based language models for Polish are available, none of them have come close to the scale, in terms of corpus size and the number of parameters, of the largest English-language models. In this study, we present two language models for Polish based on the popular BERT architecture. The larger model was trained on a dataset consisting of over 1 billion polish sentences, or 135GB of raw text. We describe our methodology for collecting the data, preparing the corpus, and pre-training the model. We then evaluate our models on thirteen Polish linguistic tasks, and demonstrate improvements over previous approaches in eleven of them. 3 authors · Jun 7, 2020
5 IT5: Large-scale Text-to-text Pretraining for Italian Language Understanding and Generation The T5 model and its unified text-to-text paradigm contributed in advancing the state-of-the-art for many natural language processing tasks. While some multilingual variants of the T5 model have recently been introduced, their performances were found to provide suboptimal performances for languages other than English if compared to monolingual variants. We are motivated by these findings to introduce IT5, the first family of encoder-decoder transformer models pretrained specifically on Italian. We perform a thorough cleaning of a web-crawled Italian corpus including more than 40 billion words and use it to pretrain three IT5 models of different sizes. The performance of IT5 models and their multilingual counterparts is then evaluated on a broad range of natural language understanding and generation benchmarks for Italian. We find the monolingual IT5 models to provide the best scale-to-performance ratio across tested models, consistently outperforming their multilingual counterparts and setting a new state-of-the-art for most Italian conditional language generation tasks. 2 authors · Mar 7, 2022
- mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models Recent studies have shown that multilingual pretrained language models can be effectively improved with cross-lingual alignment information from Wikipedia entities. However, existing methods only exploit entity information in pretraining and do not explicitly use entities in downstream tasks. In this study, we explore the effectiveness of leveraging entity representations for downstream cross-lingual tasks. We train a multilingual language model with 24 languages with entity representations and show the model consistently outperforms word-based pretrained models in various cross-lingual transfer tasks. We also analyze the model and the key insight is that incorporating entity representations into the input allows us to extract more language-agnostic features. We also evaluate the model with a multilingual cloze prompt task with the mLAMA dataset. We show that entity-based prompt elicits correct factual knowledge more likely than using only word representations. Our source code and pretrained models are available at https://github.com/studio-ousia/luke. 3 authors · Oct 15, 2021
- Exploiting News Article Structure for Automatic Corpus Generation of Entailment Datasets Transformers represent the state-of-the-art in Natural Language Processing (NLP) in recent years, proving effective even in tasks done in low-resource languages. While pretrained transformers for these languages can be made, it is challenging to measure their true performance and capacity due to the lack of hard benchmark datasets, as well as the difficulty and cost of producing them. In this paper, we present three contributions: First, we propose a methodology for automatically producing Natural Language Inference (NLI) benchmark datasets for low-resource languages using published news articles. Through this, we create and release NewsPH-NLI, the first sentence entailment benchmark dataset in the low-resource Filipino language. Second, we produce new pretrained transformers based on the ELECTRA technique to further alleviate the resource scarcity in Filipino, benchmarking them on our dataset against other commonly-used transfer learning techniques. Lastly, we perform analyses on transfer learning techniques to shed light on their true performance when operating in low-data domains through the use of degradation tests. 5 authors · Oct 22, 2020
- GTrans: Grouping and Fusing Transformer Layers for Neural Machine Translation Transformer structure, stacked by a sequence of encoder and decoder network layers, achieves significant development in neural machine translation. However, vanilla Transformer mainly exploits the top-layer representation, assuming the lower layers provide trivial or redundant information and thus ignoring the bottom-layer feature that is potentially valuable. In this work, we propose the Group-Transformer model (GTrans) that flexibly divides multi-layer representations of both encoder and decoder into different groups and then fuses these group features to generate target words. To corroborate the effectiveness of the proposed method, extensive experiments and analytic experiments are conducted on three bilingual translation benchmarks and two multilingual translation tasks, including the IWLST-14, IWLST-17, LDC, WMT-14 and OPUS-100 benchmark. Experimental and analytical results demonstrate that our model outperforms its Transformer counterparts by a consistent gain. Furthermore, it can be successfully scaled up to 60 encoder layers and 36 decoder layers. 8 authors · Jul 29, 2022
- L3Cube-IndicSBERT: A simple approach for learning cross-lingual sentence representations using multilingual BERT The multilingual Sentence-BERT (SBERT) models map different languages to common representation space and are useful for cross-language similarity and mining tasks. We propose a simple yet effective approach to convert vanilla multilingual BERT models into multilingual sentence BERT models using synthetic corpus. We simply aggregate translated NLI or STS datasets of the low-resource target languages together and perform SBERT-like fine-tuning of the vanilla multilingual BERT model. We show that multilingual BERT models are inherent cross-lingual learners and this simple baseline fine-tuning approach without explicit cross-lingual training yields exceptional cross-lingual properties. We show the efficacy of our approach on 10 major Indic languages and also show the applicability of our approach to non-Indic languages German and French. Using this approach, we further present L3Cube-IndicSBERT, the first multilingual sentence representation model specifically for Indian languages Hindi, Marathi, Kannada, Telugu, Malayalam, Tamil, Gujarati, Odia, Bengali, and Punjabi. The IndicSBERT exhibits strong cross-lingual capabilities and performs significantly better than alternatives like LaBSE, LASER, and paraphrase-multilingual-mpnet-base-v2 on Indic cross-lingual and monolingual sentence similarity tasks. We also release monolingual SBERT models for each of the languages and show that IndicSBERT performs competitively with its monolingual counterparts. These models have been evaluated using embedding similarity scores and classification accuracy. 5 authors · Apr 22, 2023
- How Effective are State Space Models for Machine Translation? Transformers are the current architecture of choice for NLP, but their attention layers do not scale well to long contexts. Recent works propose to replace attention with linear recurrent layers -- this is the case for state space models, which enjoy efficient training and inference. However, it remains unclear whether these models are competitive with transformers in machine translation (MT). In this paper, we provide a rigorous and comprehensive experimental comparison between transformers and linear recurrent models for MT. Concretely, we experiment with RetNet, Mamba, and hybrid versions of Mamba which incorporate attention mechanisms. Our findings demonstrate that Mamba is highly competitive with transformers on sentence and paragraph-level datasets, where in the latter both models benefit from shifting the training distribution towards longer sequences. Further analysis show that integrating attention into Mamba improves translation quality, robustness to sequence length extrapolation, and the ability to recall named entities. 4 authors · Jul 7, 2024 1
- TunBERT: Pretrained Contextualized Text Representation for Tunisian Dialect Pretrained contextualized text representation models learn an effective representation of a natural language to make it machine understandable. After the breakthrough of the attention mechanism, a new generation of pretrained models have been proposed achieving good performances since the introduction of the Transformer. Bidirectional Encoder Representations from Transformers (BERT) has become the state-of-the-art model for language understanding. Despite their success, most of the available models have been trained on Indo-European languages however similar research for under-represented languages and dialects remains sparse. In this paper, we investigate the feasibility of training monolingual Transformer-based language models for under represented languages, with a specific focus on the Tunisian dialect. We evaluate our language model on sentiment analysis task, dialect identification task and reading comprehension question-answering task. We show that the use of noisy web crawled data instead of structured data (Wikipedia, articles, etc.) is more convenient for such non-standardized language. Moreover, results indicate that a relatively small web crawled dataset leads to performances that are as good as those obtained using larger datasets. Finally, our best performing TunBERT model reaches or improves the state-of-the-art in all three downstream tasks. We release the TunBERT pretrained model and the datasets used for fine-tuning. 9 authors · Nov 25, 2021
1 Augmenting Self-attention with Persistent Memory Transformer networks have lead to important progress in language modeling and machine translation. These models include two consecutive modules, a feed-forward layer and a self-attention layer. The latter allows the network to capture long term dependencies and are often regarded as the key ingredient in the success of Transformers. Building upon this intuition, we propose a new model that solely consists of attention layers. More precisely, we augment the self-attention layers with persistent memory vectors that play a similar role as the feed-forward layer. Thanks to these vectors, we can remove the feed-forward layer without degrading the performance of a transformer. Our evaluation shows the benefits brought by our model on standard character and word level language modeling benchmarks. 5 authors · Jul 2, 2019
- Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation We study the power of cross-attention in the Transformer architecture within the context of transfer learning for machine translation, and extend the findings of studies into cross-attention when training from scratch. We conduct a series of experiments through fine-tuning a translation model on data where either the source or target language has changed. These experiments reveal that fine-tuning only the cross-attention parameters is nearly as effective as fine-tuning all parameters (i.e., the entire translation model). We provide insights into why this is the case and observe that limiting fine-tuning in this manner yields cross-lingually aligned embeddings. The implications of this finding for researchers and practitioners include a mitigation of catastrophic forgetting, the potential for zero-shot translation, and the ability to extend machine translation models to several new language pairs with reduced parameter storage overhead. 3 authors · Apr 18, 2021
- Speechformer: Reducing Information Loss in Direct Speech Translation Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer's quadratic complexity with respect to the input sequence length prevents its adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en->de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario. 4 authors · Sep 9, 2021
- LOLA -- An Open-Source Massively Multilingual Large Language Model This paper presents LOLA, a massively multilingual large language model trained on more than 160 languages using a sparse Mixture-of-Experts Transformer architecture. Our architectural and implementation choices address the challenge of harnessing linguistic diversity while maintaining efficiency and avoiding the common pitfalls of multilinguality. Our analysis of the evaluation results shows competitive performance in natural language generation and understanding tasks. Additionally, we demonstrate how the learned expert-routing mechanism exploits implicit phylogenetic linguistic patterns to potentially alleviate the curse of multilinguality. We provide an in-depth look at the training process, an analysis of the datasets, and a balanced exploration of the model's strengths and limitations. As an open-source model, LOLA promotes reproducibility and serves as a robust foundation for future research. Our findings enable the development of compute-efficient multilingual models with strong, scalable performance across languages. 8 authors · Sep 17, 2024
- CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines. 2 authors · Oct 25, 2023
1 Rethinking embedding coupling in pre-trained language models We re-evaluate the standard practice of sharing weights between input and output embeddings in state-of-the-art pre-trained language models. We show that decoupled embeddings provide increased modeling flexibility, allowing us to significantly improve the efficiency of parameter allocation in the input embedding of multilingual models. By reallocating the input embedding parameters in the Transformer layers, we achieve dramatically better performance on standard natural language understanding tasks with the same number of parameters during fine-tuning. We also show that allocating additional capacity to the output embedding provides benefits to the model that persist through the fine-tuning stage even though the output embedding is discarded after pre-training. Our analysis shows that larger output embeddings prevent the model's last layers from overspecializing to the pre-training task and encourage Transformer representations to be more general and more transferable to other tasks and languages. Harnessing these findings, we are able to train models that achieve strong performance on the XTREME benchmark without increasing the number of parameters at the fine-tuning stage. 5 authors · Oct 24, 2020
- Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine Pre-trained language models (PLM) based on transformer neural networks developed in the field of natural language processing (NLP) offer great opportunities to improve automatic content analysis in communication science, especially for the coding of complex semantic categories in large datasets via supervised machine learning. However, three characteristics so far impeded the widespread adoption of the methods in the applying disciplines: the dominance of English language models in NLP research, the necessary computing resources, and the effort required to produce training data to fine-tune PLMs. In this study, we address these challenges by using a multilingual transformer model in combination with the adapter extension to transformers, and few-shot learning methods. We test our approach on a realistic use case from communication science to automatically detect claims and arguments together with their stance in the German news debate on arms deliveries to Ukraine. In three experiments, we evaluate (1) data preprocessing strategies and model variants for this task, (2) the performance of different few-shot learning methods, and (3) how well the best setup performs on varying training set sizes in terms of validity, reliability, replicability and reproducibility of the results. We find that our proposed combination of transformer adapters with pattern exploiting training provides a parameter-efficient and easily shareable alternative to fully fine-tuning PLMs. It performs on par in terms of validity, while overall, provides better properties for application in communication studies. The results also show that pre-fine-tuning for a task on a near-domain dataset leads to substantial improvement, in particular in the few-shot setting. Further, the results indicate that it is useful to bias the dataset away from the viewpoints of specific prominent individuals. 6 authors · Dec 28, 2023
- Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training 3 authors · May 26, 2023
- Understanding Cross-Lingual Alignment -- A Survey Cross-lingual alignment, the meaningful similarity of representations across languages in multilingual language models, has been an active field of research in recent years. We survey the literature of techniques to improve cross-lingual alignment, providing a taxonomy of methods and summarising insights from throughout the field. We present different understandings of cross-lingual alignment and their limitations. We provide a qualitative summary of results from a large number of surveyed papers. Finally, we discuss how these insights may be applied not only to encoder models, where this topic has been heavily studied, but also to encoder-decoder or even decoder-only models, and argue that an effective trade-off between language-neutral and language-specific information is key. 3 authors · Apr 9, 2024
4 Sabiá: Portuguese Large Language Models As the capabilities of language models continue to advance, it is conceivable that "one-size-fits-all" model will remain as the main paradigm. For instance, given the vast number of languages worldwide, many of which are low-resource, the prevalent practice is to pretrain a single model on multiple languages. In this paper, we add to the growing body of evidence that challenges this practice, demonstrating that monolingual pretraining on the target language significantly improves models already extensively trained on diverse corpora. More specifically, we further pretrain GPT-J and LLaMA models on Portuguese texts using 3% or less of their original pretraining budget. Few-shot evaluations on Poeta, a suite of 14 Portuguese datasets, reveal that our models outperform English-centric and multilingual counterparts by a significant margin. Our best model, Sabi\'a-65B, performs on par with GPT-3.5-turbo. By evaluating on datasets originally conceived in the target language as well as translated ones, we study the contributions of language-specific pretraining in terms of 1) capturing linguistic nuances and structures inherent to the target language, and 2) enriching the model's knowledge about a domain or culture. Our results indicate that the majority of the benefits stem from the domain-specific knowledge acquired through monolingual pretraining. 4 authors · Apr 16, 2023
1 Do Llamas Work in English? On the Latent Language of Multilingual Transformers We ask whether multilingual language models trained on unbalanced, English-dominated corpora use English as an internal pivot language -- a question of key importance for understanding how language models function and the origins of linguistic bias. Focusing on the Llama-2 family of transformer models, our study uses carefully constructed non-English prompts with a unique correct single-token continuation. From layer to layer, transformers gradually map an input embedding of the final prompt token to an output embedding from which next-token probabilities are computed. Tracking intermediate embeddings through their high-dimensional space reveals three distinct phases, whereby intermediate embeddings (1) start far away from output token embeddings; (2) already allow for decoding a semantically correct next token in the middle layers, but give higher probability to its version in English than in the input language; (3) finally move into an input-language-specific region of the embedding space. We cast these results into a conceptual model where the three phases operate in "input space", "concept space", and "output space", respectively. Crucially, our evidence suggests that the abstract "concept space" lies closer to English than to other languages, which may have important consequences regarding the biases held by multilingual language models. 4 authors · Feb 16, 2024 2
- MonoByte: A Pool of Monolingual Byte-level Language Models The zero-shot cross-lingual ability of models pretrained on multilingual and even monolingual corpora has spurred many hypotheses to explain this intriguing empirical result. However, due to the costs of pretraining, most research uses public models whose pretraining methodology, such as the choice of tokenization, corpus size, and computational budget, might differ drastically. When researchers pretrain their own models, they often do so under a constrained budget, and the resulting models might underperform significantly compared to SOTA models. These experimental differences led to various inconsistent conclusions about the nature of the cross-lingual ability of these models. To help further research on the topic, we released 10 monolingual byte-level models rigorously pretrained under the same configuration with a large compute budget (equivalent to 420 days on a V100) and corpora that are 4 times larger than the original BERT's. Because they are tokenizer-free, the problem of unseen token embeddings is eliminated, thus allowing researchers to try a wider range of cross-lingual experiments in languages with different scripts. Additionally, we release two models pretrained on non-natural language texts that can be used in sanity-check experiments. Experiments on QA and NLI tasks show that our monolingual models achieve competitive performance to the multilingual one, and hence can be served to strengthen our understanding of cross-lingual transferability in language models. 4 authors · Sep 22, 2022 1
- LayAlign: Enhancing Multilingual Reasoning in Large Language Models via Layer-Wise Adaptive Fusion and Alignment Strategy Despite being pretrained on multilingual corpora, large language models (LLMs) exhibit suboptimal performance on low-resource languages. Recent approaches have leveraged multilingual encoders alongside LLMs by introducing trainable parameters connecting the two models. However, these methods typically focus on the encoder's output, overlooking valuable information from other layers. We propose \aname (\mname), a framework that integrates representations from all encoder layers, coupled with the \attaname mechanism to enable layer-wise interaction between the LLM and the multilingual encoder. Extensive experiments on multilingual reasoning tasks, along with analyses of learned representations, show that our approach consistently outperforms existing baselines. 8 authors · Feb 16
- Align after Pre-train: Improving Multilingual Generative Models with Cross-lingual Alignment Multilingual generative models obtain remarkable cross-lingual capabilities through pre-training on large-scale corpora. However, they still exhibit a performance bias toward high-resource languages, and learn isolated distributions of sentence representations across languages. To bridge this gap, we propose a simple yet effective alignment framework exploiting pairs of translation sentences. It aligns the internal sentence representations across different languages via multilingual contrastive learning and aligns model outputs by answering prompts in different languages. Experimental results demonstrate that even with less than 0.1 {\textperthousand} of pre-training tokens, our alignment framework significantly boosts the cross-lingual abilities of generative models and mitigates the performance gap. Further analysis reveals that it results in a better internal multilingual representation distribution of multilingual models. 4 authors · Nov 14, 2023
- Exploring the Representation of Word Meanings in Context: A Case Study on Homonymy and Synonymy This paper presents a multilingual study of word meaning representations in context. We assess the ability of both static and contextualized models to adequately represent different lexical-semantic relations, such as homonymy and synonymy. To do so, we created a new multilingual dataset that allows us to perform a controlled evaluation of several factors such as the impact of the surrounding context or the overlap between words, conveying the same or different senses. A systematic assessment on four scenarios shows that the best monolingual models based on Transformers can adequately disambiguate homonyms in context. However, as they rely heavily on context, these models fail at representing words with different senses when occurring in similar sentences. Experiments are performed in Galician, Portuguese, English, and Spanish, and both the dataset (with more than 3,000 evaluation items) and new models are freely released with this study. 1 authors · Jun 25, 2021
- Improving Massively Multilingual Neural Machine Translation and Zero-Shot Translation Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations. In this paper, we explore ways to improve them. We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics, and overcome this bottleneck via language-specific components and deepening NMT architectures. We identify the off-target translation issue (i.e. translating into a wrong target language) as the major source of the inferior zero-shot performance, and propose random online backtranslation to enforce the translation of unseen training language pairs. Experiments on OPUS-100 (a novel multilingual dataset with 100 languages) show that our approach substantially narrows the performance gap with bilingual models in both one-to-many and many-to-many settings, and improves zero-shot performance by ~10 BLEU, approaching conventional pivot-based methods. 4 authors · Apr 24, 2020
1 Self-Attention with Relative Position Representations Relying entirely on an attention mechanism, the Transformer introduced by Vaswani et al. (2017) achieves state-of-the-art results for machine translation. In contrast to recurrent and convolutional neural networks, it does not explicitly model relative or absolute position information in its structure. Instead, it requires adding representations of absolute positions to its inputs. In this work we present an alternative approach, extending the self-attention mechanism to efficiently consider representations of the relative positions, or distances between sequence elements. On the WMT 2014 English-to-German and English-to-French translation tasks, this approach yields improvements of 1.3 BLEU and 0.3 BLEU over absolute position representations, respectively. Notably, we observe that combining relative and absolute position representations yields no further improvement in translation quality. We describe an efficient implementation of our method and cast it as an instance of relation-aware self-attention mechanisms that can generalize to arbitrary graph-labeled inputs. 3 authors · Mar 6, 2018
3 Spanish Pre-trained BERT Model and Evaluation Data The Spanish language is one of the top 5 spoken languages in the world. Nevertheless, finding resources to train or evaluate Spanish language models is not an easy task. In this paper we help bridge this gap by presenting a BERT-based language model pre-trained exclusively on Spanish data. As a second contribution, we also compiled several tasks specifically for the Spanish language in a single repository much in the spirit of the GLUE benchmark. By fine-tuning our pre-trained Spanish model, we obtain better results compared to other BERT-based models pre-trained on multilingual corpora for most of the tasks, even achieving a new state-of-the-art on some of them. We have publicly released our model, the pre-training data, and the compilation of the Spanish benchmarks. 6 authors · Aug 5, 2023
18 KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model As retrieval-augmented generation prevails in large language models, embedding models are becoming increasingly crucial. Despite the growing number of general embedding models, prior work often overlooks the critical role of training data quality. In this work, we introduce KaLM-Embedding, a general multilingual embedding model that leverages a large quantity of cleaner, more diverse, and domain-specific training data. Our model has been trained with key techniques proven to enhance performance: (1) persona-based synthetic data to create diversified examples distilled from LLMs, (2) ranking consistency filtering to remove less informative samples, and (3) semi-homogeneous task batch sampling to improve training efficacy. Departing from traditional BERT-like architectures, we adopt Qwen2-0.5B as the pre-trained model, facilitating the adaptation of auto-regressive language models for general embedding tasks. Extensive evaluations of the MTEB benchmark across multiple languages show that our model outperforms others of comparable size, setting a new standard for multilingual embedding models with <1B parameters. KaLM-Embedding · Jan 1
13 Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) defies this and instead selects different parameters for each incoming example. The result is a sparsely-activated model -- with outrageous numbers of parameters -- but a constant computational cost. However, despite several notable successes of MoE, widespread adoption has been hindered by complexity, communication costs and training instability -- we address these with the Switch Transformer. We simplify the MoE routing algorithm and design intuitive improved models with reduced communication and computational costs. Our proposed training techniques help wrangle the instabilities and we show large sparse models may be trained, for the first time, with lower precision (bfloat16) formats. We design models based off T5-Base and T5-Large to obtain up to 7x increases in pre-training speed with the same computational resources. These improvements extend into multilingual settings where we measure gains over the mT5-Base version across all 101 languages. Finally, we advance the current scale of language models by pre-training up to trillion parameter models on the "Colossal Clean Crawled Corpus" and achieve a 4x speedup over the T5-XXL model. 3 authors · Jan 11, 2021
- MLMA: Towards Multilingual with Mamba Based Architectures Multilingual automatic speech recognition (ASR) remains a challenging task, especially when balancing performance across high- and low-resource languages. Recent advances in sequence modeling suggest that architectures beyond Transformers may offer better scalability and efficiency. In this work, we introduce MLMA (Multilingual Language Modeling with Mamba for ASR), a new approach that leverages the Mamba architecture -- an efficient state-space model optimized for long-context sequence processing -- for multilingual ASR. Using Mamba, MLMA implicitly incorporates language-aware conditioning and shared representations to support robust recognition across diverse languages. Experiments on standard multilingual benchmarks show that MLMA achieves competitive performance compared to Transformer-based architectures. These results highlight Mamba's potential as a strong backbone for scalable, efficient, and accurate multilingual speech recognition. 3 authors · Oct 21
1 Fine-tuning Transformer-based Encoder for Turkish Language Understanding Tasks Deep learning-based and lately Transformer-based language models have been dominating the studies of natural language processing in the last years. Thanks to their accurate and fast fine-tuning characteristics, they have outperformed traditional machine learning-based approaches and achieved state-of-the-art results for many challenging natural language understanding (NLU) problems. Recent studies showed that the Transformer-based models such as BERT, which is Bidirectional Encoder Representations from Transformers, have reached impressive achievements on many tasks. Moreover, thanks to their transfer learning capacity, these architectures allow us to transfer pre-built models and fine-tune them to specific NLU tasks such as question answering. In this study, we provide a Transformer-based model and a baseline benchmark for the Turkish Language. We successfully fine-tuned a Turkish BERT model, namely BERTurk that is trained with base settings, to many downstream tasks and evaluated with a the Turkish Benchmark dataset. We showed that our studies significantly outperformed other existing baseline approaches for Named-Entity Recognition, Sentiment Analysis, Question Answering and Text Classification in Turkish Language. We publicly released these four fine-tuned models and resources in reproducibility and with the view of supporting other Turkish researchers and applications. 1 authors · Jan 30, 2024
1 Parameter-Efficient Neural Reranking for Cross-Lingual and Multilingual Retrieval State-of-the-art neural (re)rankers are notoriously data-hungry which -- given the lack of large-scale training data in languages other than English -- makes them rarely used in multilingual and cross-lingual retrieval settings. Current approaches therefore commonly transfer rankers trained on English data to other languages and cross-lingual setups by means of multilingual encoders: they fine-tune all parameters of pretrained massively multilingual Transformers (MMTs, e.g., multilingual BERT) on English relevance judgments, and then deploy them in the target language(s). In this work, we show that two parameter-efficient approaches to cross-lingual transfer, namely Sparse Fine-Tuning Masks (SFTMs) and Adapters, allow for a more lightweight and more effective zero-shot transfer to multilingual and cross-lingual retrieval tasks. We first train language adapters (or SFTMs) via Masked Language Modelling and then train retrieval (i.e., reranking) adapters (SFTMs) on top, while keeping all other parameters fixed. At inference, this modular design allows us to compose the ranker by applying the (re)ranking adapter (or SFTM) trained with source language data together with the language adapter (or SFTM) of a target language. We carry out a large scale evaluation on the CLEF-2003 and HC4 benchmarks and additionally, as another contribution, extend the former with queries in three new languages: Kyrgyz, Uyghur and Turkish. The proposed parameter-efficient methods outperform standard zero-shot transfer with full MMT fine-tuning, while being more modular and reducing training times. The gains are particularly pronounced for low-resource languages, where our approaches also substantially outperform the competitive machine translation-based rankers. 3 authors · Apr 5, 2022
- Multilingual Sentence Transformer as A Multilingual Word Aligner Multilingual pretrained language models (mPLMs) have shown their effectiveness in multilingual word alignment induction. However, these methods usually start from mBERT or XLM-R. In this paper, we investigate whether multilingual sentence Transformer LaBSE is a strong multilingual word aligner. This idea is non-trivial as LaBSE is trained to learn language-agnostic sentence-level embeddings, while the alignment extraction task requires the more fine-grained word-level embeddings to be language-agnostic. We demonstrate that the vanilla LaBSE outperforms other mPLMs currently used in the alignment task, and then propose to finetune LaBSE on parallel corpus for further improvement. Experiment results on seven language pairs show that our best aligner outperforms previous state-of-the-art models of all varieties. In addition, our aligner supports different language pairs in a single model, and even achieves new state-of-the-art on zero-shot language pairs that does not appear in the finetuning process. 5 authors · Jan 28, 2023
- Improving Multilingual Language Models by Aligning Representations through Steering In this paper, we investigate how large language models (LLMS) process non-English tokens within their layer representations, an open question despite significant advancements in the field. Using representation steering, specifically by adding a learned vector to a single model layer's activations, we demonstrate that steering a single model layer can notably enhance performance. Our analysis shows that this approach achieves results comparable to translation baselines and surpasses state of the art prompt optimization methods. Additionally, we highlight how advanced techniques like supervised fine tuning (sft) and reinforcement learning from human feedback (rlhf) improve multilingual capabilities by altering representation spaces. We further illustrate how these methods align with our approach to reshaping LLMS layer representations. 4 authors · May 18
- T-NER: An All-Round Python Library for Transformer-based Named Entity Recognition Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross-lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine-tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub. 2 authors · Sep 9, 2022
- Training Effective Neural Sentence Encoders from Automatically Mined Paraphrases Sentence embeddings are commonly used in text clustering and semantic retrieval tasks. State-of-the-art sentence representation methods are based on artificial neural networks fine-tuned on large collections of manually labeled sentence pairs. Sufficient amount of annotated data is available for high-resource languages such as English or Chinese. In less popular languages, multilingual models have to be used, which offer lower performance. In this publication, we address this problem by proposing a method for training effective language-specific sentence encoders without manually labeled data. Our approach is to automatically construct a dataset of paraphrase pairs from sentence-aligned bilingual text corpora. We then use the collected data to fine-tune a Transformer language model with an additional recurrent pooling layer. Our sentence encoder can be trained in less than a day on a single graphics card, achieving high performance on a diverse set of sentence-level tasks. We evaluate our method on eight linguistic tasks in Polish, comparing it with the best available multilingual sentence encoders. 1 authors · Jul 26, 2022
12 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
- Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya In recent years, transformer models have achieved great success in natural language processing (NLP) tasks. Most of the current state-of-the-art NLP results are achieved by using monolingual transformer models, where the model is pre-trained using a single language unlabelled text corpus. Then, the model is fine-tuned to the specific downstream task. However, the cost of pre-training a new transformer model is high for most languages. In this work, we propose a cost-effective transfer learning method to adopt a strong source language model, trained from a large monolingual corpus to a low-resource language. Thus, using XLNet language model, we demonstrate competitive performance with mBERT and a pre-trained target language model on the cross-lingual sentiment (CLS) dataset and on a new sentiment analysis dataset for low-resourced language Tigrinya. With only 10k examples of the given Tigrinya sentiment analysis dataset, English XLNet has achieved 78.88% F1-Score outperforming BERT and mBERT by 10% and 7%, respectively. More interestingly, fine-tuning (English) XLNet model on the CLS dataset has promising results compared to mBERT and even outperformed mBERT for one dataset of the Japanese language. 3 authors · Jun 13, 2020
3 Static Word Embeddings for Sentence Semantic Representation We propose new static word embeddings optimised for sentence semantic representation. We first extract word embeddings from a pre-trained Sentence Transformer, and improve them with sentence-level principal component analysis, followed by either knowledge distillation or contrastive learning. During inference, we represent sentences by simply averaging word embeddings, which requires little computational cost. We evaluate models on both monolingual and cross-lingual tasks and show that our model substantially outperforms existing static models on sentence semantic tasks, and even rivals a basic Sentence Transformer model (SimCSE) on some data sets. Lastly, we perform a variety of analyses and show that our method successfully removes word embedding components that are irrelevant to sentence semantics, and adjusts the vector norms based on the influence of words on sentence semantics. 5 authors · Jun 5
- cs60075_team2 at SemEval-2021 Task 1 : Lexical Complexity Prediction using Transformer-based Language Models pre-trained on various text corpora This paper describes the performance of the team cs60075_team2 at SemEval 2021 Task 1 - Lexical Complexity Prediction. The main contribution of this paper is to fine-tune transformer-based language models pre-trained on several text corpora, some being general (E.g., Wikipedia, BooksCorpus), some being the corpora from which the CompLex Dataset was extracted, and others being from other specific domains such as Finance, Law, etc. We perform ablation studies on selecting the transformer models and how their individual complexity scores are aggregated to get the resulting complexity scores. Our method achieves a best Pearson Correlation of 0.784 in sub-task 1 (single word) and 0.836 in sub-task 2 (multiple word expressions). 4 authors · Jun 4, 2021
1 A Multilingual Translator to SQL with Database Schema Pruning to Improve Self-Attention Long sequences of text are challenging in the context of transformers, due to quadratic memory increase in the self-attention mechanism. As this issue directly affects the translation from natural language to SQL queries (as techniques usually take as input a concatenated text with the question and the database schema), we present techniques that allow long text sequences to be handled by transformers with up to 512 input tokens. We propose a training process with database schema pruning (removal of tables and columns names that are useless for the query of interest). In addition, we used a multilingual approach with the mT5-large model fine-tuned with a data-augmented Spider dataset in four languages simultaneously: English, Portuguese, Spanish, and French. Our proposed technique used the Spider dataset and increased the exact set match accuracy results from 0.718 to 0.736 in a validation dataset (Dev). Source code, evaluations, and checkpoints are available at: https://github.com/C4AI/gap-text2sql. 2 authors · Jun 25, 2023
- Domain-Specific Text Generation for Machine Translation Preservation of domain knowledge from the source to target is crucial in any translation workflow. It is common in the translation industry to receive highly specialized projects, where there is hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain data to fine-tune Machine Translation (MT) models, producing translations that are consistent with the relevant context is challenging. In this work, we propose a novel approach to domain adaptation leveraging state-of-the-art pretrained language models (LMs) for domain-specific data augmentation for MT, simulating the domain characteristics of either (a) a small bilingual dataset, or (b) the monolingual source text to be translated. Combining this idea with back-translation, we can generate huge amounts of synthetic bilingual in-domain data for both use cases. For our investigation, we use the state-of-the-art Transformer architecture. We employ mixed fine-tuning to train models that significantly improve translation of in-domain texts. More specifically, in both scenarios, our proposed methods achieve improvements of approximately 5-6 BLEU and 2-3 BLEU, respectively, on the Arabic-to-English and English-to-Arabic language pairs. Furthermore, the outcome of human evaluation corroborates the automatic evaluation results. 4 authors · Aug 11, 2022
1 How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models In this work, we provide a systematic and comprehensive empirical comparison of pretrained multilingual language models versus their monolingual counterparts with regard to their monolingual task performance. We study a set of nine typologically diverse languages with readily available pretrained monolingual models on a set of five diverse monolingual downstream tasks. We first aim to establish, via fair and controlled comparisons, if a gap between the multilingual and the corresponding monolingual representation of that language exists, and subsequently investigate the reason for any performance difference. To disentangle conflating factors, we train new monolingual models on the same data, with monolingually and multilingually trained tokenizers. We find that while the pretraining data size is an important factor, a designated monolingual tokenizer plays an equally important role in the downstream performance. Our results show that languages that are adequately represented in the multilingual model's vocabulary exhibit negligible performance decreases over their monolingual counterparts. We further find that replacing the original multilingual tokenizer with the specialized monolingual tokenizer improves the downstream performance of the multilingual model for almost every task and language. 5 authors · Dec 31, 2020 1
- FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding Large-scale cross-lingual language models (LM), such as mBERT, Unicoder and XLM, have achieved great success in cross-lingual representation learning. However, when applied to zero-shot cross-lingual transfer tasks, most existing methods use only single-language input for LM finetuning, without leveraging the intrinsic cross-lingual alignment between different languages that proves essential for multilingual tasks. In this paper, we propose FILTER, an enhanced fusion method that takes cross-lingual data as input for XLM finetuning. Specifically, FILTER first encodes text input in the source language and its translation in the target language independently in the shallow layers, then performs cross-language fusion to extract multilingual knowledge in the intermediate layers, and finally performs further language-specific encoding. During inference, the model makes predictions based on the text input in the target language and its translation in the source language. For simple tasks such as classification, translated text in the target language shares the same label as the source language. However, this shared label becomes less accurate or even unavailable for more complex tasks such as question answering, NER and POS tagging. To tackle this issue, we further propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language. Extensive experiments demonstrate that FILTER achieves new state of the art on two challenging multilingual multi-task benchmarks, XTREME and XGLUE. 5 authors · Sep 10, 2020
- Are Multilingual Models Effective in Code-Switching? Multilingual language models have shown decent performance in multilingual and cross-lingual natural language understanding tasks. However, the power of these multilingual models in code-switching tasks has not been fully explored. In this paper, we study the effectiveness of multilingual language models to understand their capability and adaptability to the mixed-language setting by considering the inference speed, performance, and number of parameters to measure their practicality. We conduct experiments in three language pairs on named entity recognition and part-of-speech tagging and compare them with existing methods, such as using bilingual embeddings and multilingual meta-embeddings. Our findings suggest that pre-trained multilingual models do not necessarily guarantee high-quality representations on code-switching, while using meta-embeddings achieves similar results with significantly fewer parameters. 6 authors · Mar 24, 2021
- MultiTACRED: A Multilingual Version of the TAC Relation Extraction Dataset Relation extraction (RE) is a fundamental task in information extraction, whose extension to multilingual settings has been hindered by the lack of supervised resources comparable in size to large English datasets such as TACRED (Zhang et al., 2017). To address this gap, we introduce the MultiTACRED dataset, covering 12 typologically diverse languages from 9 language families, which is created by machine-translating TACRED instances and automatically projecting their entity annotations. We analyze translation and annotation projection quality, identify error categories, and experimentally evaluate fine-tuned pretrained mono- and multilingual language models in common transfer learning scenarios. Our analyses show that machine translation is a viable strategy to transfer RE instances, with native speakers judging more than 83% of the translated instances to be linguistically and semantically acceptable. We find monolingual RE model performance to be comparable to the English original for many of the target languages, and that multilingual models trained on a combination of English and target language data can outperform their monolingual counterparts. However, we also observe a variety of translation and annotation projection errors, both due to the MT systems and linguistic features of the target languages, such as pronoun-dropping, compounding and inflection, that degrade dataset quality and RE model performance. 3 authors · May 8, 2023
- MFAQ: a Multilingual FAQ Dataset In this paper, we present the first multilingual FAQ dataset publicly available. We collected around 6M FAQ pairs from the web, in 21 different languages. Although this is significantly larger than existing FAQ retrieval datasets, it comes with its own challenges: duplication of content and uneven distribution of topics. We adopt a similar setup as Dense Passage Retrieval (DPR) and test various bi-encoders on this dataset. Our experiments reveal that a multilingual model based on XLM-RoBERTa achieves the best results, except for English. Lower resources languages seem to learn from one another as a multilingual model achieves a higher MRR than language-specific ones. Our qualitative analysis reveals the brittleness of the model on simple word changes. We publicly release our dataset, model and training script. 4 authors · Sep 27, 2021
5 A Family of Pretrained Transformer Language Models for Russian Nowadays, Transformer language models (LMs) represent a fundamental component of the NLP research methodologies and applications. However, the development of such models specifically for the Russian language has received little attention. This paper presents a collection of 13 Russian Transformer LMs based on the encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) models in multiple sizes. Access to these models is readily available via the HuggingFace platform. We provide a report of the model architecture design and pretraining, and the results of evaluating their generalization abilities on Russian natural language understanding and generation datasets and benchmarks. By pretraining and releasing these specialized Transformer LMs, we hope to broaden the scope of the NLP research directions and enable the development of industrial solutions for the Russian language. 12 authors · Sep 19, 2023
3 ByT5: Towards a token-free future with pre-trained byte-to-byte models Most widely-used pre-trained language models operate on sequences of tokens corresponding to word or subword units. By comparison, token-free models that operate directly on raw text (bytes or characters) have many benefits: they can process text in any language out of the box, they are more robust to noise, and they minimize technical debt by removing complex and error-prone text preprocessing pipelines. Since byte or character sequences are longer than token sequences, past work on token-free models has often introduced new model architectures designed to amortize the cost of operating directly on raw text. In this paper, we show that a standard Transformer architecture can be used with minimal modifications to process byte sequences. We characterize the trade-offs in terms of parameter count, training FLOPs, and inference speed, and show that byte-level models are competitive with their token-level counterparts. We also demonstrate that byte-level models are significantly more robust to noise and perform better on tasks that are sensitive to spelling and pronunciation. As part of our contribution, we release a new set of pre-trained byte-level Transformer models based on the T5 architecture, as well as all code and data used in our experiments. 8 authors · May 28, 2021
- Discovering Useful Sentence Representations from Large Pretrained Language Models Despite the extensive success of pretrained language models as encoders for building NLP systems, they haven't seen prominence as decoders for sequence generation tasks. We explore the question of whether these models can be adapted to be used as universal decoders. To be considered "universal," a decoder must have an implicit representation for any target sentence s, such that it can recover that sentence exactly when conditioned on its representation. For large transformer-based language models trained on vast amounts of English text, we investigate whether such representations can be easily discovered using standard optimization methods. We present and compare three representation injection techniques for transformer-based models and three accompanying methods which map sentences to and from this representation space. Experiments show that not only do representations exist for sentences from a variety of genres. More importantly, without needing complex optimization algorithms, our methods recover these sentences almost perfectly without fine-tuning the underlying language model at all. 2 authors · Aug 20, 2020
- Fine-tuning Large Language Models for Multigenerator, Multidomain, and Multilingual Machine-Generated Text Detection SemEval-2024 Task 8 introduces the challenge of identifying machine-generated texts from diverse Large Language Models (LLMs) in various languages and domains. The task comprises three subtasks: binary classification in monolingual and multilingual (Subtask A), multi-class classification (Subtask B), and mixed text detection (Subtask C). This paper focuses on Subtask A & B. Each subtask is supported by three datasets for training, development, and testing. To tackle this task, two methods: 1) using traditional machine learning (ML) with natural language preprocessing (NLP) for feature extraction, and 2) fine-tuning LLMs for text classification. The results show that transformer models, particularly LoRA-RoBERTa, exceed traditional ML methods in effectiveness, with majority voting being particularly effective in multilingual contexts for identifying machine-generated texts. 6 authors · Jan 22, 2024
- The Cascade Transformer: an Application for Efficient Answer Sentence Selection Large transformer-based language models have been shown to be very effective in many classification tasks. However, their computational complexity prevents their use in applications requiring the classification of a large set of candidates. While previous works have investigated approaches to reduce model size, relatively little attention has been paid to techniques to improve batch throughput during inference. In this paper, we introduce the Cascade Transformer, a simple yet effective technique to adapt transformer-based models into a cascade of rankers. Each ranker is used to prune a subset of candidates in a batch, thus dramatically increasing throughput at inference time. Partial encodings from the transformer model are shared among rerankers, providing further speed-up. When compared to a state-of-the-art transformer model, our approach reduces computation by 37% with almost no impact on accuracy, as measured on two English Question Answering datasets. 2 authors · May 5, 2020
- GroupBERT: Enhanced Transformer Architecture with Efficient Grouped Structures Attention based language models have become a critical component in state-of-the-art natural language processing systems. However, these models have significant computational requirements, due to long training times, dense operations and large parameter count. In this work we demonstrate a set of modifications to the structure of a Transformer layer, producing a more efficient architecture. First, we add a convolutional module to complement the self-attention module, decoupling the learning of local and global interactions. Secondly, we rely on grouped transformations to reduce the computational cost of dense feed-forward layers and convolutions, while preserving the expressivity of the model. We apply the resulting architecture to language representation learning and demonstrate its superior performance compared to BERT models of different scales. We further highlight its improved efficiency, both in terms of floating-point operations (FLOPs) and time-to-train. 7 authors · Jun 10, 2021
- Beyond Contrastive Learning: A Variational Generative Model for Multilingual Retrieval Contrastive learning has been successfully used for retrieval of semantically aligned sentences, but it often requires large batch sizes or careful engineering to work well. In this paper, we instead propose a generative model for learning multilingual text embeddings which can be used to retrieve or score sentence pairs. Our model operates on parallel data in N languages and, through an approximation we introduce, efficiently encourages source separation in this multilingual setting, separating semantic information that is shared between translations from stylistic or language-specific variation. We show careful large-scale comparisons between contrastive and generation-based approaches for learning multilingual text embeddings, a comparison that has not been done to the best of our knowledge despite the popularity of these approaches. We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval -- the last of which we introduce in this paper. Overall, our Variational Multilingual Source-Separation Transformer (VMSST) model outperforms both a strong contrastive and generative baseline on these tasks. 5 authors · Dec 20, 2022
- Similarity of Sentence Representations in Multilingual LMs: Resolving Conflicting Literature and Case Study of Baltic Languages Low-resource languages, such as Baltic languages, benefit from Large Multilingual Models (LMs) that possess remarkable cross-lingual transfer performance capabilities. This work is an interpretation and analysis study into cross-lingual representations of Multilingual LMs. Previous works hypothesized that these LMs internally project representations of different languages into a shared cross-lingual space. However, the literature produced contradictory results. In this paper, we revisit the prior work claiming that "BERT is not an Interlingua" and show that different languages do converge to a shared space in such language models with another choice of pooling strategy or similarity index. Then, we perform cross-lingual representational analysis for the two most popular multilingual LMs employing 378 pairwise language comparisons. We discover that while most languages share joint cross-lingual space, some do not. However, we observe that Baltic languages do belong to that shared space. The code is available at https://github.com/TartuNLP/xsim. 2 authors · Sep 2, 2021
- Parameter-Efficient Transformer Embeddings Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings. 2 authors · May 4
- ERNIE-M: Enhanced Multilingual Representation by Aligning Cross-lingual Semantics with Monolingual Corpora Recent studies have demonstrated that pre-trained cross-lingual models achieve impressive performance in downstream cross-lingual tasks. This improvement benefits from learning a large amount of monolingual and parallel corpora. Although it is generally acknowledged that parallel corpora are critical for improving the model performance, existing methods are often constrained by the size of parallel corpora, especially for low-resource languages. In this paper, we propose ERNIE-M, a new training method that encourages the model to align the representation of multiple languages with monolingual corpora, to overcome the constraint that the parallel corpus size places on the model performance. Our key insight is to integrate back-translation into the pre-training process. We generate pseudo-parallel sentence pairs on a monolingual corpus to enable the learning of semantic alignments between different languages, thereby enhancing the semantic modeling of cross-lingual models. Experimental results show that ERNIE-M outperforms existing cross-lingual models and delivers new state-of-the-art results in various cross-lingual downstream tasks. 7 authors · Dec 31, 2020
- Embedding structure matters: Comparing methods to adapt multilingual vocabularies to new languages Pre-trained multilingual language models underpin a large portion of modern NLP tools outside of English. A strong baseline for specializing these models for specific languages is Language-Adaptive Pre-Training (LAPT). However, retaining a large cross-lingual vocabulary and embedding matrix comes at considerable excess computational cost during adaptation. In this study, we propose several simple techniques to replace a cross-lingual vocabulary with a compact, language-specific one. Namely, we address strategies for re-initializing the token embedding matrix after vocabulary specialization. We then provide a systematic experimental comparison of our techniques, in addition to the recently-proposed Focus method. We demonstrate that: 1) Embedding-replacement techniques in the monolingual transfer literature are inadequate for adapting multilingual models. 2) Replacing cross-lingual vocabularies with smaller specialized ones provides an efficient method to improve performance in low-resource languages. 3) Simple embedding re-initialization techniques based on script-wise sub-distributions rival techniques such as Focus, which rely on similarity scores obtained from an auxiliary model. 4 authors · Sep 9, 2023
- ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot Multilingual Information Retrieval State-of-the-art neural retrievers predominantly focus on high-resource languages like English, which impedes their adoption in retrieval scenarios involving other languages. Current approaches circumvent the lack of high-quality labeled data in non-English languages by leveraging multilingual pretrained language models capable of cross-lingual transfer. However, these models require substantial task-specific fine-tuning across multiple languages, often perform poorly in languages with minimal representation in the pretraining corpus, and struggle to incorporate new languages after the pretraining phase. In this work, we present a novel modular dense retrieval model that learns from the rich data of a single high-resource language and effectively zero-shot transfers to a wide array of languages, thereby eliminating the need for language-specific labeled data. Our model, ColBERT-XM, demonstrates competitive performance against existing state-of-the-art multilingual retrievers trained on more extensive datasets in various languages. Further analysis reveals that our modular approach is highly data-efficient, effectively adapts to out-of-distribution data, and significantly reduces energy consumption and carbon emissions. By demonstrating its proficiency in zero-shot scenarios, ColBERT-XM marks a shift towards more sustainable and inclusive retrieval systems, enabling effective information accessibility in numerous languages. We publicly release our code and models for the community. 4 authors · Feb 22, 2024
1 Challenges and Opportunities of Using Transformer-Based Multi-Task Learning in NLP Through ML Lifecycle: A Survey The increasing adoption of natural language processing (NLP) models across industries has led to practitioners' need for machine learning systems to handle these models efficiently, from training to serving them in production. However, training, deploying, and updating multiple models can be complex, costly, and time-consuming, mainly when using transformer-based pre-trained language models. Multi-Task Learning (MTL) has emerged as a promising approach to improve efficiency and performance through joint training, rather than training separate models. Motivated by this, we first provide an overview of transformer-based MTL approaches in NLP. Then, we discuss the challenges and opportunities of using MTL approaches throughout typical ML lifecycle phases, specifically focusing on the challenges related to data engineering, model development, deployment, and monitoring phases. This survey focuses on transformer-based MTL architectures and, to the best of our knowledge, is novel in that it systematically analyses how transformer-based MTL in NLP fits into ML lifecycle phases. Furthermore, we motivate research on the connection between MTL and continual learning (CL), as this area remains unexplored. We believe it would be practical to have a model that can handle both MTL and CL, as this would make it easier to periodically re-train the model, update it due to distribution shifts, and add new capabilities to meet real-world requirements. 6 authors · Aug 16, 2023
- The unreasonable effectiveness of few-shot learning for machine translation We demonstrate the potential of few-shot translation systems, trained with unpaired language data, for both high and low-resource language pairs. We show that with only 5 examples of high-quality translation data shown at inference, a transformer decoder-only model trained solely with self-supervised learning, is able to match specialized supervised state-of-the-art models as well as more general commercial translation systems. In particular, we outperform the best performing system on the WMT'21 English - Chinese news translation task by only using five examples of English - Chinese parallel data at inference. Moreover, our approach in building these models does not necessitate joint multilingual training or back-translation, is conceptually simple and shows the potential to extend to the multilingual setting. Furthermore, the resulting models are two orders of magnitude smaller than state-of-the-art language models. We then analyze the factors which impact the performance of few-shot translation systems, and highlight that the quality of the few-shot demonstrations heavily determines the quality of the translations generated by our models. Finally, we show that the few-shot paradigm also provides a way to control certain attributes of the translation -- we show that we are able to control for regional varieties and formality using only a five examples at inference, paving the way towards controllable machine translation systems. 8 authors · Feb 2, 2023
- Learning Compact Metrics for MT Recent developments in machine translation and multilingual text generation have led researchers to adopt trained metrics such as COMET or BLEURT, which treat evaluation as a regression problem and use representations from multilingual pre-trained models such as XLM-RoBERTa or mBERT. Yet studies on related tasks suggest that these models are most efficient when they are large, which is costly and impractical for evaluation. We investigate the trade-off between multilinguality and model capacity with RemBERT, a state-of-the-art multilingual language model, using data from the WMT Metrics Shared Task. We present a series of experiments which show that model size is indeed a bottleneck for cross-lingual transfer, then demonstrate how distillation can help addressing this bottleneck, by leveraging synthetic data generation and transferring knowledge from one teacher to multiple students trained on related languages. Our method yields up to 10.5% improvement over vanilla fine-tuning and reaches 92.6% of RemBERT's performance using only a third of its parameters. 5 authors · Oct 12, 2021
- NormXLogit: The Head-on-Top Never Lies The Transformer architecture has emerged as the dominant choice for building large language models (LLMs). However, with new LLMs emerging on a frequent basis, it is important to consider the potential value of architecture-agnostic approaches that can provide interpretability across a variety of architectures. Despite recent successes in the interpretability of LLMs, many existing approaches rely on complex methods that are often tied to a specific model design and come with a significant computational cost. To address these limitations, we propose a novel technique, called NormXLogit, for assessing the significance of individual input tokens. This method operates based on the input and output representations associated with each token. First, we demonstrate that during the pre-training of LLMs, the norms of word embeddings capture the importance of input tokens. Second, we reveal a significant relationship between a token's importance and the extent to which its representation can resemble the model's final prediction. Through extensive analysis, we show that our approach consistently outperforms existing gradient-based methods in terms of faithfulness. Additionally, our method achieves better performance in layer-wise explanations compared to the most prominent architecture-specific methods. 3 authors · Nov 25, 2024
- RuSentEval: Linguistic Source, Encoder Force! The success of pre-trained transformer language models has brought a great deal of interest on how these models work, and what they learn about language. However, prior research in the field is mainly devoted to English, and little is known regarding other languages. To this end, we introduce RuSentEval, an enhanced set of 14 probing tasks for Russian, including ones that have not been explored yet. We apply a combination of complementary probing methods to explore the distribution of various linguistic properties in five multilingual transformers for two typologically contrasting languages -- Russian and English. Our results provide intriguing findings that contradict the common understanding of how linguistic knowledge is represented, and demonstrate that some properties are learned in a similar manner despite the language differences. 4 authors · Feb 28, 2021
- Adaptation of Deep Bidirectional Multilingual Transformers for Russian Language The paper introduces methods of adaptation of multilingual masked language models for a specific language. Pre-trained bidirectional language models show state-of-the-art performance on a wide range of tasks including reading comprehension, natural language inference, and sentiment analysis. At the moment there are two alternative approaches to train such models: monolingual and multilingual. While language specific models show superior performance, multilingual models allow to perform a transfer from one language to another and solve tasks for different languages simultaneously. This work shows that transfer learning from a multilingual model to monolingual model results in significant growth of performance on such tasks as reading comprehension, paraphrase detection, and sentiment analysis. Furthermore, multilingual initialization of monolingual model substantially reduces training time. Pre-trained models for the Russian language are open sourced. 2 authors · May 17, 2019
- RoBERTuito: a pre-trained language model for social media text in Spanish Since BERT appeared, Transformer language models and transfer learning have become state-of-the-art for Natural Language Understanding tasks. Recently, some works geared towards pre-training specially-crafted models for particular domains, such as scientific papers, medical documents, user-generated texts, among others. These domain-specific models have been shown to improve performance significantly in most tasks. However, for languages other than English such models are not widely available. In this work, we present RoBERTuito, a pre-trained language model for user-generated text in Spanish, trained on over 500 million tweets. Experiments on a benchmark of tasks involving user-generated text showed that RoBERTuito outperformed other pre-trained language models in Spanish. In addition to this, our model achieves top results for some English-Spanish tasks of the Linguistic Code-Switching Evaluation benchmark (LinCE) and has also competitive performance against monolingual models in English tasks. To facilitate further research, we make RoBERTuito publicly available at the HuggingFace model hub together with the dataset used to pre-train it. 4 authors · Nov 17, 2021
79 EuroBERT: Scaling Multilingual Encoders for European Languages General-purpose multilingual vector representations, used in retrieval, regression and classification, are traditionally obtained from bidirectional encoder models. Despite their wide applicability, encoders have been recently overshadowed by advances in generative decoder-only models. However, many innovations driving this progress are not inherently tied to decoders. In this paper, we revisit the development of multilingual encoders through the lens of these advances, and introduce EuroBERT, a family of multilingual encoders covering European and widely spoken global languages. Our models outperform existing alternatives across a diverse range of tasks, spanning multilingual capabilities, mathematics, and coding, and natively supporting sequences of up to 8,192 tokens. We also examine the design decisions behind EuroBERT, offering insights into our dataset composition and training pipeline. We publicly release the EuroBERT models, including intermediate training checkpoints, together with our training framework. 19 authors · Mar 7 9
3 Learning Language-Specific Layers for Multilingual Machine Translation Multilingual Machine Translation promises to improve translation quality between non-English languages. This is advantageous for several reasons, namely lower latency (no need to translate twice), and reduced error cascades (e.g., avoiding losing gender and formality information when translating through English). On the downside, adding more languages reduces model capacity per language, which is usually countered by increasing the overall model size, making training harder and inference slower. In this work, we introduce Language-Specific Transformer Layers (LSLs), which allow us to increase model capacity, while keeping the amount of computation and the number of parameters used in the forward pass constant. The key idea is to have some layers of the encoder be source or target language-specific, while keeping the remaining layers shared. We study the best way to place these layers using a neural architecture search inspired approach, and achieve an improvement of 1.3 chrF (1.5 spBLEU) points over not using LSLs on a separate decoder architecture, and 1.9 chrF (2.2 spBLEU) on a shared decoder one. 4 authors · May 4, 2023
- Input Combination Strategies for Multi-Source Transformer Decoder In multi-source sequence-to-sequence tasks, the attention mechanism can be modeled in several ways. This topic has been thoroughly studied on recurrent architectures. In this paper, we extend the previous work to the encoder-decoder attention in the Transformer architecture. We propose four different input combination strategies for the encoder-decoder attention: serial, parallel, flat, and hierarchical. We evaluate our methods on tasks of multimodal translation and translation with multiple source languages. The experiments show that the models are able to use multiple sources and improve over single source baselines. 3 authors · Nov 12, 2018
1 Utilizing BERT for Information Retrieval: Survey, Applications, Resources, and Challenges Recent years have witnessed a substantial increase in the use of deep learning to solve various natural language processing (NLP) problems. Early deep learning models were constrained by their sequential or unidirectional nature, such that they struggled to capture the contextual relationships across text inputs. The introduction of bidirectional encoder representations from transformers (BERT) leads to a robust encoder for the transformer model that can understand the broader context and deliver state-of-the-art performance across various NLP tasks. This has inspired researchers and practitioners to apply BERT to practical problems, such as information retrieval (IR). A survey that focuses on a comprehensive analysis of prevalent approaches that apply pretrained transformer encoders like BERT to IR can thus be useful for academia and the industry. In light of this, we revisit a variety of BERT-based methods in this survey, cover a wide range of techniques of IR, and group them into six high-level categories: (i) handling long documents, (ii) integrating semantic information, (iii) balancing effectiveness and efficiency, (iv) predicting the weights of terms, (v) query expansion, and (vi) document expansion. We also provide links to resources, including datasets and toolkits, for BERT-based IR systems. A key highlight of our survey is the comparison between BERT's encoder-based models and the latest generative Large Language Models (LLMs), such as ChatGPT, which rely on decoders. Despite the popularity of LLMs, we find that for specific tasks, finely tuned BERT encoders still outperform, and at a lower deployment cost. Finally, we summarize the comprehensive outcomes of the survey and suggest directions for future research in the area. 7 authors · Feb 18, 2024
8 Tucano: Advancing Neural Text Generation for Portuguese Significant advances have been made in natural language processing in recent years. However, our current deep learning approach to language modeling requires substantial resources in terms of data and computation. One of the side effects of this data-hungry paradigm is the current schism between languages, separating those considered high-resource, where most of the development happens and resources are available, and the low-resource ones, which struggle to attain the same level of performance and autonomy. This study aims to introduce a new set of resources to stimulate the future development of neural text generation in Portuguese. In this work, we document the development of GigaVerbo, a concatenation of deduplicated Portuguese text corpora amounting to 200 billion tokens. Via this corpus, we trained a series of decoder-transformers named Tucano. Our models perform equal or superior to other Portuguese and multilingual language models of similar size in several Portuguese benchmarks. The evaluation of our models also reveals that model performance on many currently available benchmarks used by the Portuguese NLP community has little to no correlation with the scaling of token ingestion during training, highlighting the limitations of such evaluations when it comes to the assessment of Portuguese generative language models. All derivatives of our study are openly released on GitHub and Hugging Face. See https://nkluge-correa.github.io/Tucano/ 4 authors · Nov 12, 2024
- Spanish TrOCR: Leveraging Transfer Learning for Language Adaptation This study explores the transfer learning capabilities of the TrOCR architecture to Spanish. TrOCR is a transformer-based Optical Character Recognition (OCR) model renowned for its state-of-the-art performance in English benchmarks. Inspired by Li et al. assertion regarding its adaptability to multilingual text recognition, we investigate two distinct approaches to adapt the model to a new language: integrating an English TrOCR encoder with a language specific decoder and train the model on this specific language, and fine-tuning the English base TrOCR model on a new language data. Due to the scarcity of publicly available datasets, we present a resource-efficient pipeline for creating OCR datasets in any language, along with a comprehensive benchmark of the different image generation methods employed with a focus on Visual Rich Documents (VRDs). Additionally, we offer a comparative analysis of the two approaches for the Spanish language, demonstrating that fine-tuning the English TrOCR on Spanish yields superior recognition than the language specific decoder for a fixed dataset size. We evaluate our model employing character and word error rate metrics on a public available printed dataset, comparing the performance against other open-source and cloud OCR spanish models. As far as we know, these resources represent the best open-source model for OCR in Spanish. The Spanish TrOCR models are publicly available on HuggingFace [20] and the code to generate the dataset is available on Github [25]. 2 authors · Jul 9, 2024
1 MiniLMv2: Multi-Head Self-Attention Relation Distillation for Compressing Pretrained Transformers We generalize deep self-attention distillation in MiniLM (Wang et al., 2020) by only using self-attention relation distillation for task-agnostic compression of pretrained Transformers. In particular, we define multi-head self-attention relations as scaled dot-product between the pairs of query, key, and value vectors within each self-attention module. Then we employ the above relational knowledge to train the student model. Besides its simplicity and unified principle, more favorably, there is no restriction in terms of the number of student's attention heads, while most previous work has to guarantee the same head number between teacher and student. Moreover, the fine-grained self-attention relations tend to fully exploit the interaction knowledge learned by Transformer. In addition, we thoroughly examine the layer selection strategy for teacher models, rather than just relying on the last layer as in MiniLM. We conduct extensive experiments on compressing both monolingual and multilingual pretrained models. Experimental results demonstrate that our models distilled from base-size and large-size teachers (BERT, RoBERTa and XLM-R) outperform the state-of-the-art. 5 authors · Dec 31, 2020
2 Registering Source Tokens to Target Language Spaces in Multilingual Neural Machine Translation The multilingual neural machine translation (MNMT) enables arbitrary translations across multiple languages by training a model with limited parameters using parallel data only. However, the performance of such MNMT models still lags behind that of large language models (LLMs), limiting their practicality. In this work, we address this limitation by introducing registering to achieve the new state-of-the-art of decoder-only MNMT models. Specifically, we insert a set of artificial tokens specifying the target language, called registers, into the input sequence between the source and target tokens. By modifying the attention mask, the target token generation only pays attention to the activation of registers, representing the source tokens in the target language space. Experiments on EC-40, a large-scale benchmark, show that our method outperforms related methods driven by optimizing multilingual representations. We further scale up and collect 9.3 billion sentence pairs across 24 languages from public datasets to pre-train two models, namely MITRE (multilingual translation with registers). One of them, MITRE-913M, outperforms NLLB-3.3B, achieves comparable performance with commercial LLMs, and shows strong adaptability in fine-tuning. Finally, we open-source our models to facilitate further research and development in MNMT: https://github.com/zhiqu22/mitre. 7 authors · Jan 6
1 MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer The main goal behind state-of-the-art pre-trained multilingual models such as multilingual BERT and XLM-R is enabling and bootstrapping NLP applications in low-resource languages through zero-shot or few-shot cross-lingual transfer. However, due to limited model capacity, their transfer performance is the weakest exactly on such low-resource languages and languages unseen during pre-training. We propose MAD-X, an adapter-based framework that enables high portability and parameter-efficient transfer to arbitrary tasks and languages by learning modular language and task representations. In addition, we introduce a novel invertible adapter architecture and a strong baseline method for adapting a pre-trained multilingual model to a new language. MAD-X outperforms the state of the art in cross-lingual transfer across a representative set of typologically diverse languages on named entity recognition and causal commonsense reasoning, and achieves competitive results on question answering. Our code and adapters are available at AdapterHub.ml 4 authors · Apr 30, 2020
- 75 Languages, 1 Model: Parsing Universal Dependencies Universally We present UDify, a multilingual multi-task model capable of accurately predicting universal part-of-speech, morphological features, lemmas, and dependency trees simultaneously for all 124 Universal Dependencies treebanks across 75 languages. By leveraging a multilingual BERT self-attention model pretrained on 104 languages, we found that fine-tuning it on all datasets concatenated together with simple softmax classifiers for each UD task can result in state-of-the-art UPOS, UFeats, Lemmas, UAS, and LAS scores, without requiring any recurrent or language-specific components. We evaluate UDify for multilingual learning, showing that low-resource languages benefit the most from cross-linguistic annotations. We also evaluate for zero-shot learning, with results suggesting that multilingual training provides strong UD predictions even for languages that neither UDify nor BERT have ever been trained on. Code for UDify is available at https://github.com/hyperparticle/udify. 2 authors · Apr 3, 2019
2 Conciseness: An Overlooked Language Task We report on novel investigations into training models that make sentences concise. We define the task and show that it is different from related tasks such as summarization and simplification. For evaluation, we release two test sets, consisting of 2000 sentences each, that were annotated by two and five human annotators, respectively. We demonstrate that conciseness is a difficult task for which zero-shot setups with large neural language models often do not perform well. Given the limitations of these approaches, we propose a synthetic data generation method based on round-trip translations. Using this data to either train Transformers from scratch or fine-tune T5 models yields our strongest baselines that can be further improved by fine-tuning on an artificial conciseness dataset that we derived from multi-annotator machine translation test sets. 4 authors · Nov 8, 2022
1 Not all layers are equally as important: Every Layer Counts BERT This paper introduces a novel modification of the transformer architecture, tailored for the data-efficient pretraining of language models. This aspect is evaluated by participating in the BabyLM challenge, where our solution won both the strict and strict-small tracks. Our approach allows each transformer layer to select which outputs of previous layers to process. The empirical results verify the potential of this simple modification and show that not all layers are equally as important. 2 authors · Nov 3, 2023
- Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource languages. A promising approach has been to train one-for-all multilingual models capable of cross-lingual transfer, but these models often suffer from insufficient capacity and interference between unrelated languages. Instead, we move away from this approach and focus on training multiple language (family) specific representations, but most prominently enable all languages to still be encoded in the same representational space. To achieve this, we focus on teacher-student training, allowing all encoders to be mutually compatible for bitext mining, and enabling fast learning of new languages. We introduce a new teacher-student training scheme which combines supervised and self-supervised training, allowing encoders to take advantage of monolingual training data, which is valuable in the low-resource setting. Our approach significantly outperforms the original LASER encoder. We study very low-resource languages and handle 50 African languages, many of which are not covered by any other model. For these languages, we train sentence encoders, mine bitexts, and validate the bitexts by training NMT systems. 3 authors · May 25, 2022
- CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment Multilingual proficiency presents a significant challenge for large language models (LLMs). English-centric models are usually suboptimal in other languages, particularly those that are linguistically distant from English. This performance discrepancy mainly stems from the imbalanced distribution of training data across languages during pre-training and instruction tuning stages. To address this problem, we propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data. Our method leverages the compressed representation shared by various languages to efficiently enhance the model's task-solving capabilities and multilingual proficiency within a single process. In addition, we introduce a multi-task and multi-faceted benchmark to evaluate the effectiveness of CrossIn. Experimental results demonstrate that our method substantially improves performance across tasks and languages, and we provide extensive insights into the impact of cross-lingual data volume and the integration of translation data on enhancing multilingual consistency and accuracy. 4 authors · Apr 18, 2024
1 An Expanded Massive Multilingual Dataset for High-Performance Language Technologies Training state-of-the-art large language models requires vast amounts of clean and diverse textual data. However, building suitable multilingual datasets remains a challenge. In this work, we present HPLT v2, a collection of high-quality multilingual monolingual and parallel corpora. The monolingual portion of the data contains 8T tokens covering 193 languages, while the parallel data contains 380M sentence pairs covering 51 languages. We document the entire data pipeline and release the code to reproduce it. We provide extensive analysis of the quality and characteristics of our data. Finally, we evaluate the performance of language models and machine translation systems trained on HPLT v2, demonstrating its value. 35 authors · Mar 13
- Improving Portuguese Semantic Role Labeling with Transformers and Transfer Learning The Natural Language Processing task of determining "Who did what to whom" is called Semantic Role Labeling. For English, recent methods based on Transformer models have allowed for major improvements in this task over the previous state of the art. However, for low resource languages, like Portuguese, currently available semantic role labeling models are hindered by scarce training data. In this paper, we explore a model architecture with only a pre-trained Transformer-based model, a linear layer, softmax and Viterbi decoding. We substantially improve the state-of-the-art performance in Portuguese by over 15 F1. Additionally, we improve semantic role labeling results in Portuguese corpora by exploiting cross-lingual transfer learning using multilingual pre-trained models, and transfer learning from dependency parsing in Portuguese, evaluating the various proposed approaches empirically. 3 authors · Jan 4, 2021
- BERTuit: Understanding Spanish language in Twitter through a native transformer The appearance of complex attention-based language models such as BERT, Roberta or GPT-3 has allowed to address highly complex tasks in a plethora of scenarios. However, when applied to specific domains, these models encounter considerable difficulties. This is the case of Social Networks such as Twitter, an ever-changing stream of information written with informal and complex language, where each message requires careful evaluation to be understood even by humans given the important role that context plays. Addressing tasks in this domain through Natural Language Processing involves severe challenges. When powerful state-of-the-art multilingual language models are applied to this scenario, language specific nuances use to get lost in translation. To face these challenges we present BERTuit, the larger transformer proposed so far for Spanish language, pre-trained on a massive dataset of 230M Spanish tweets using RoBERTa optimization. Our motivation is to provide a powerful resource to better understand Spanish Twitter and to be used on applications focused on this social network, with special emphasis on solutions devoted to tackle the spreading of misinformation in this platform. BERTuit is evaluated on several tasks and compared against M-BERT, XLM-RoBERTa and XLM-T, very competitive multilingual transformers. The utility of our approach is shown with applications, in this case: a zero-shot methodology to visualize groups of hoaxes and profiling authors spreading disinformation. Misinformation spreads wildly on platforms such as Twitter in languages other than English, meaning performance of transformers may suffer when transferred outside English speaking communities. 3 authors · Apr 7, 2022
5 Advancing Transformer Architecture in Long-Context Large Language Models: A Comprehensive Survey With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at https://github.com/Strivin0311/long-llms-learning. 10 authors · Nov 20, 2023
- XLM-T: Scaling up Multilingual Machine Translation with Pretrained Cross-lingual Transformer Encoders Multilingual machine translation enables a single model to translate between different languages. Most existing multilingual machine translation systems adopt a randomly initialized Transformer backbone. In this work, inspired by the recent success of language model pre-training, we present XLM-T, which initializes the model with an off-the-shelf pretrained cross-lingual Transformer encoder and fine-tunes it with multilingual parallel data. This simple method achieves significant improvements on a WMT dataset with 10 language pairs and the OPUS-100 corpus with 94 pairs. Surprisingly, the method is also effective even upon the strong baseline with back-translation. Moreover, extensive analysis of XLM-T on unsupervised syntactic parsing, word alignment, and multilingual classification explains its effectiveness for machine translation. The code will be at https://aka.ms/xlm-t. 13 authors · Dec 31, 2020
- Resona: Improving Context Copying in Linear Recurrence Models with Retrieval Recent shifts in the space of large language model (LLM) research have shown an increasing focus on novel architectures to compete with prototypical Transformer-based models that have long dominated this space. Linear recurrent models have proven to be a viable competitor due to their computational efficiency. However, such models still demonstrate a sizable gap compared to Transformers in terms of in-context learning among other tasks that require recalling information from a context. In this work, we introduce __Resona__, a simple and scalable framework for augmenting linear recurrent models with retrieval. __Resona__~augments models with the ability to integrate retrieved information from the provided input context, enabling tailored behavior to diverse task requirements. Experiments on a variety of linear recurrent models demonstrate that __Resona__-augmented models observe significant performance gains on a variety of synthetic as well as real-world natural language tasks, highlighting its ability to act as a general purpose method to improve the in-context learning and language modeling abilities of linear recurrent LLMs. 8 authors · Mar 28
6 MuBench: Assessment of Multilingual Capabilities of Large Language Models Across 61 Languages Multilingual large language models (LLMs) are advancing rapidly, with new models frequently claiming support for an increasing number of languages. However, existing evaluation datasets are limited and lack cross-lingual alignment, leaving assessments of multilingual capabilities fragmented in both language and skill coverage. To address this, we introduce MuBench, a benchmark covering 61 languages and evaluating a broad range of capabilities. We evaluate several state-of-the-art multilingual LLMs and find notable gaps between claimed and actual language coverage, particularly a persistent performance disparity between English and low-resource languages. Leveraging MuBench's alignment, we propose Multilingual Consistency (MLC) as a complementary metric to accuracy for analyzing performance bottlenecks and guiding model improvement. Finally, we pretrain a suite of 1.2B-parameter models on English and Chinese with 500B tokens, varying language ratios and parallel data proportions to investigate cross-lingual transfer dynamics. 10 authors · Jun 24
- Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models: A Critical Review and Assessment With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs. 5 authors · Dec 19, 2023
- SlovakBERT: Slovak Masked Language Model We introduce a new Slovak masked language model called SlovakBERT. This is to our best knowledge the first paper discussing Slovak transformers-based language models. We evaluate our model on several NLP tasks and achieve state-of-the-art results. This evaluation is likewise the first attempt to establish a benchmark for Slovak language models. We publish the masked language model, as well as the fine-tuned models for part-of-speech tagging, sentiment analysis and semantic textual similarity. 10 authors · Sep 30, 2021
- NeoDictaBERT: Pushing the Frontier of BERT models for Hebrew Since their initial release, BERT models have demonstrated exceptional performance on a variety of tasks, despite their relatively small size (BERT-base has ~100M parameters). Nevertheless, the architectural choices used in these models are outdated compared to newer transformer-based models such as Llama3 and Qwen3. In recent months, several architectures have been proposed to close this gap. ModernBERT and NeoBERT both show strong improvements on English benchmarks and significantly extend the supported context window. Following their successes, we introduce NeoDictaBERT and NeoDictaBERT-bilingual: BERT-style models trained using the same architecture as NeoBERT, with a dedicated focus on Hebrew texts. These models outperform existing ones on almost all Hebrew benchmarks and provide a strong foundation for downstream tasks. Notably, the NeoDictaBERT-bilingual model shows strong results on retrieval tasks, outperforming other multilingual models of similar size. In this paper, we describe the training process and report results across various benchmarks. We release the models to the community as part of our goal to advance research and development in Hebrew NLP. 3 authors · Oct 23
- LLMic: Romanian Foundation Language Model Recent advances in Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks with commercial models leading the way. While open models usually operate at a smaller scale, they maintain competitiveness through specialization and fine-tuning. However, a significant challenge persists: open models often underperform in low-resource languages due to limited representation in the training corpus. In this paper, we present LLMic, a bilingual foundation language model designed specifically for the Romanian Language. We document the complete process of pretraining a foundation model for a low-resource language, including corpus construction, architecture selection, and hyper-parameter optimization. Our evaluation demonstrates that LLMic can be specialized for tasks in the target language, achieving results comparable to other much larger open models. We show that fine-tuning LLMic for language translation after the initial pretraining phase outperforms existing solutions in English-to-Romanian translation tasks. This opens the path for efficient large-scale processing for the Romanian language community, using the much smaller LLMic model 5 authors · Jan 13
- UM4: Unified Multilingual Multiple Teacher-Student Model for Zero-Resource Neural Machine Translation Most translation tasks among languages belong to the zero-resource translation problem where parallel corpora are unavailable. Multilingual neural machine translation (MNMT) enables one-pass translation using shared semantic space for all languages compared to the two-pass pivot translation but often underperforms the pivot-based method. In this paper, we propose a novel method, named as Unified Multilingual Multiple teacher-student Model for NMT (UM4). Our method unifies source-teacher, target-teacher, and pivot-teacher models to guide the student model for the zero-resource translation. The source teacher and target teacher force the student to learn the direct source to target translation by the distilled knowledge on both source and target sides. The monolingual corpus is further leveraged by the pivot-teacher model to enhance the student model. Experimental results demonstrate that our model of 72 directions significantly outperforms previous methods on the WMT benchmark. 8 authors · Jul 11, 2022
- Bertinho: Galician BERT Representations This paper presents a monolingual BERT model for Galician. We follow the recent trend that shows that it is feasible to build robust monolingual BERT models even for relatively low-resource languages, while performing better than the well-known official multilingual BERT (mBERT). More particularly, we release two monolingual Galician BERT models, built using 6 and 12 transformer layers, respectively; trained with limited resources (~45 million tokens on a single GPU of 24GB). We then provide an exhaustive evaluation on a number of tasks such as POS-tagging, dependency parsing and named entity recognition. For this purpose, all these tasks are cast in a pure sequence labeling setup in order to run BERT without the need to include any additional layers on top of it (we only use an output classification layer to map the contextualized representations into the predicted label). The experiments show that our models, especially the 12-layer one, outperform the results of mBERT in most tasks. 3 authors · Mar 25, 2021
41 MMTEB: Massive Multilingual Text Embedding Benchmark Text embeddings are typically evaluated on a limited set of tasks, which are constrained by language, domain, and task diversity. To address these limitations and provide a more comprehensive evaluation, we introduce the Massive Multilingual Text Embedding Benchmark (MMTEB) - a large-scale, community-driven expansion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+ languages. MMTEB includes a diverse set of challenging, novel tasks such as instruction following, long-document retrieval, and code retrieval, representing the largest multilingual collection of evaluation tasks for embedding models to date. Using this collection, we develop several highly multilingual benchmarks, which we use to evaluate a representative set of models. We find that while large language models (LLMs) with billions of parameters can achieve state-of-the-art performance on certain language subsets and task categories, the best-performing publicly available model is multilingual-e5-large-instruct with only 560 million parameters. To facilitate accessibility and reduce computational cost, we introduce a novel downsampling method based on inter-task correlation, ensuring a diverse selection while preserving relative model rankings. Furthermore, we optimize tasks such as retrieval by sampling hard negatives, creating smaller but effective splits. These optimizations allow us to introduce benchmarks that drastically reduce computational demands. For instance, our newly introduced zero-shot English benchmark maintains a ranking order similar to the full-scale version but at a fraction of the computational cost. Massive Text Embedding Benchmark · Feb 19 3
1 Adapting Language Models to Compress Contexts Transformer-based language models (LMs) are powerful and widely-applicable tools, but their usefulness is constrained by a finite context window and the expensive computational cost of processing long text documents. We propose to adapt pre-trained LMs into AutoCompressors. These models are capable of compressing long contexts into compact summary vectors, which are then accessible to the model as soft prompts. Summary vectors are trained with an unsupervised objective, whereby long documents are processed in segments and summary vectors from all previous segments are used in language modeling. We fine-tune OPT models on sequences of up to 30,720 tokens and show that AutoCompressors can utilize long contexts to improve perplexity. We evaluate AutoCompressors on in-context learning by compressing task demonstrations. We find that summary vectors are good substitutes for plain-text demonstrations, increasing accuracy while reducing inference cost. Finally, we explore the benefits of pre-computing summary vectors for large corpora by applying summary vectors to retrieval-augmented language modeling. Overall, AutoCompressors emerge as a simple and inexpensive solution for extending the context window of LMs while speeding up inference over long contexts. 4 authors · May 24, 2023
- InfoXLM: An Information-Theoretic Framework for Cross-Lingual Language Model Pre-Training In this work, we present an information-theoretic framework that formulates cross-lingual language model pre-training as maximizing mutual information between multilingual-multi-granularity texts. The unified view helps us to better understand the existing methods for learning cross-lingual representations. More importantly, inspired by the framework, we propose a new pre-training task based on contrastive learning. Specifically, we regard a bilingual sentence pair as two views of the same meaning and encourage their encoded representations to be more similar than the negative examples. By leveraging both monolingual and parallel corpora, we jointly train the pretext tasks to improve the cross-lingual transferability of pre-trained models. Experimental results on several benchmarks show that our approach achieves considerably better performance. The code and pre-trained models are available at https://aka.ms/infoxlm. 10 authors · Jul 15, 2020
- fact check AI at SemEval-2025 Task 7: Multilingual and Crosslingual Fact-checked Claim Retrieval SemEval-2025 Task 7: Multilingual and Crosslingual Fact-Checked Claim Retrieval is approached as a Learning-to-Rank task using a bi-encoder model fine-tuned from a pre-trained transformer optimized for sentence similarity. Training used both the source languages and their English translations for multilingual retrieval and only English translations for cross-lingual retrieval. Using lightweight models with fewer than 500M parameters and training on Kaggle T4 GPUs, the method achieved 92% Success@10 in multilingual and 80% Success@10 in 5th in crosslingual and 10th in multilingual tracks. 1 authors · Aug 5
1 Zero- and Few-Shot Prompting with LLMs: A Comparative Study with Fine-tuned Models for Bangla Sentiment Analysis The rapid expansion of the digital world has propelled sentiment analysis into a critical tool across diverse sectors such as marketing, politics, customer service, and healthcare. While there have been significant advancements in sentiment analysis for widely spoken languages, low-resource languages, such as Bangla, remain largely under-researched due to resource constraints. Furthermore, the recent unprecedented performance of Large Language Models (LLMs) in various applications highlights the need to evaluate them in the context of low-resource languages. In this study, we present a sizeable manually annotated dataset encompassing 33,605 Bangla news tweets and Facebook comments. We also investigate zero- and few-shot in-context learning with several language models, including Flan-T5, GPT-4, and Bloomz, offering a comparative analysis against fine-tuned models. Our findings suggest that monolingual transformer-based models consistently outperform other models, even in zero and few-shot scenarios. To foster continued exploration, we intend to make this dataset and our research tools publicly available to the broader research community. In the spirit of further research, we plan to make this dataset and our experimental resources publicly accessible to the wider research community. 7 authors · Aug 21, 2023
- Language Model Prior for Low-Resource Neural Machine Translation The scarcity of large parallel corpora is an important obstacle for neural machine translation. A common solution is to exploit the knowledge of language models (LM) trained on abundant monolingual data. In this work, we propose a novel approach to incorporate a LM as prior in a neural translation model (TM). Specifically, we add a regularization term, which pushes the output distributions of the TM to be probable under the LM prior, while avoiding wrong predictions when the TM "disagrees" with the LM. This objective relates to knowledge distillation, where the LM can be viewed as teaching the TM about the target language. The proposed approach does not compromise decoding speed, because the LM is used only at training time, unlike previous work that requires it during inference. We present an analysis of the effects that different methods have on the distributions of the TM. Results on two low-resource machine translation datasets show clear improvements even with limited monolingual data. 3 authors · Apr 30, 2020
1 Vcc: Scaling Transformers to 128K Tokens or More by Prioritizing Important Tokens Transformer models are foundational to natural language processing (NLP) and computer vision. Despite various recent works devoted to reducing the quadratic cost of such models (as a function of the sequence length n), dealing with ultra long sequences efficiently (e.g., with more than 16K tokens) remains challenging. Applications such as answering questions based on an entire book or summarizing a scientific article are inefficient or infeasible. In this paper, we propose to significantly reduce the dependency of a Transformer model's complexity on n, by compressing the input into a representation whose size r is independent of n at each layer. Specifically, by exploiting the fact that in many tasks, only a small subset of special tokens (we call VIP-tokens) are most relevant to the final prediction, we propose a VIP-token centric compression (Vcc) scheme which selectively compresses the input sequence based on their impact on approximating the representation of these VIP-tokens. Compared with competitive baselines, the proposed algorithm not only is efficient (achieving more than 3times efficiency improvement compared to baselines on 4K and 16K lengths), but also achieves competitive or better performance on a large number of tasks. Further, we show that our algorithm can be scaled to 128K tokens (or more) while consistently offering accuracy improvement. 7 authors · May 7, 2023 1
31 Over-Tokenized Transformer: Vocabulary is Generally Worth Scaling Tokenization is a fundamental component of large language models (LLMs), yet its influence on model scaling and performance is not fully explored. In this paper, we introduce Over-Tokenized Transformers, a novel framework that decouples input and output vocabularies to improve language modeling performance. Specifically, our approach scales up input vocabularies to leverage multi-gram tokens. Through extensive experiments, we uncover a log-linear relationship between input vocabulary size and training loss, demonstrating that larger input vocabularies consistently enhance model performance, regardless of model size. Using a large input vocabulary, we achieve performance comparable to double-sized baselines with no additional cost. Our findings highlight the importance of tokenization in scaling laws and provide practical insight for tokenizer design, paving the way for more efficient and powerful LLMs. 7 authors · Jan 28 4
2 A Mixture of h-1 Heads is Better than h Heads Multi-head attentive neural architectures have achieved state-of-the-art results on a variety of natural language processing tasks. Evidence has shown that they are overparameterized; attention heads can be pruned without significant performance loss. In this work, we instead "reallocate" them -- the model learns to activate different heads on different inputs. Drawing connections between multi-head attention and mixture of experts, we propose the mixture of attentive experts model (MAE). MAE is trained using a block coordinate descent algorithm that alternates between updating (1) the responsibilities of the experts and (2) their parameters. Experiments on machine translation and language modeling show that MAE outperforms strong baselines on both tasks. Particularly, on the WMT14 English to German translation dataset, MAE improves over "transformer-base" by 0.8 BLEU, with a comparable number of parameters. Our analysis shows that our model learns to specialize different experts to different inputs. 4 authors · May 13, 2020
1 A Comparative Analysis of Task-Agnostic Distillation Methods for Compressing Transformer Language Models Large language models have become a vital component in modern NLP, achieving state of the art performance in a variety of tasks. However, they are often inefficient for real-world deployment due to their expensive inference costs. Knowledge distillation is a promising technique to improve their efficiency while retaining most of their effectiveness. In this paper, we reproduce, compare and analyze several representative methods for task-agnostic (general-purpose) distillation of Transformer language models. Our target of study includes Output Distribution (OD) transfer, Hidden State (HS) transfer with various layer mapping strategies, and Multi-Head Attention (MHA) transfer based on MiniLMv2. Through our extensive experiments, we study the effectiveness of each method for various student architectures in both monolingual (English) and multilingual settings. Overall, we show that MHA transfer based on MiniLMv2 is generally the best option for distillation and explain the potential reasons behind its success. Moreover, we show that HS transfer remains as a competitive baseline, especially under a sophisticated layer mapping strategy, while OD transfer consistently lags behind other approaches. Findings from this study helped us deploy efficient yet effective student models for latency-critical applications. 4 authors · Oct 12, 2023
- Cloze-driven Pretraining of Self-attention Networks We present a new approach for pretraining a bi-directional transformer model that provides significant performance gains across a variety of language understanding problems. Our model solves a cloze-style word reconstruction task, where each word is ablated and must be predicted given the rest of the text. Experiments demonstrate large performance gains on GLUE and new state of the art results on NER as well as constituency parsing benchmarks, consistent with the concurrently introduced BERT model. We also present a detailed analysis of a number of factors that contribute to effective pretraining, including data domain and size, model capacity, and variations on the cloze objective. 5 authors · Mar 18, 2019
1 ETC: Encoding Long and Structured Inputs in Transformers Transformer models have advanced the state of the art in many Natural Language Processing (NLP) tasks. In this paper, we present a new Transformer architecture, Extended Transformer Construction (ETC), that addresses two key challenges of standard Transformer architectures, namely scaling input length and encoding structured inputs. To scale attention to longer inputs, we introduce a novel global-local attention mechanism between global tokens and regular input tokens. We also show that combining global-local attention with relative position encodings and a Contrastive Predictive Coding (CPC) pre-training objective allows ETC to encode structured inputs. We achieve state-of-the-art results on four natural language datasets requiring long and/or structured inputs. 10 authors · Apr 17, 2020
2 UltraLink: An Open-Source Knowledge-Enhanced Multilingual Supervised Fine-tuning Dataset Open-source large language models (LLMs) have gained significant strength across diverse fields. Nevertheless, the majority of studies primarily concentrate on English, with only limited exploration into the realm of multilingual supervised fine-tuning. In this work, we therefore construct an open-source multilingual supervised fine-tuning dataset. Different from previous works that simply translate English instructions, we consider both the language-specific and language-agnostic abilities of LLMs. For language-specific abilities, we introduce a knowledge-grounded data augmentation approach to elicit more culture-specific knowledge of LLMs, improving their ability to serve users from different countries. For language-agnostic abilities, we find through experiments that modern LLMs exhibit strong cross-lingual transfer capabilities, thus repeatedly learning identical content in various languages is not necessary. Consequently, we can substantially prune the language-agnostic SFT data without any performance degradation, making the SFT process more efficient. The resulting UltraLink dataset comprises approximately 1 million samples across five languages, and the proposed data construction method can also be easily extended to other languages. UltraLink-LM, which is trained on UltraLink, outperforms several representative baselines across many tasks. 11 authors · Feb 7, 2024
- Modular Adaptation of Multilingual Encoders to Written Swiss German Dialect Creating neural text encoders for written Swiss German is challenging due to a dearth of training data combined with dialectal variation. In this paper, we build on several existing multilingual encoders and adapt them to Swiss German using continued pre-training. Evaluation on three diverse downstream tasks shows that simply adding a Swiss German adapter to a modular encoder achieves 97.5% of fully monolithic adaptation performance. We further find that for the task of retrieving Swiss German sentences given Standard German queries, adapting a character-level model is more effective than the other adaptation strategies. We release our code and the models trained for our experiments at https://github.com/ZurichNLP/swiss-german-text-encoders 3 authors · Jan 25, 2024
- Large-Scale Contextualised Language Modelling for Norwegian We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience report for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see http://norlm.nlpl.eu 5 authors · Apr 13, 2021
- mRobust04: A Multilingual Version of the TREC Robust 2004 Benchmark Robust 2004 is an information retrieval benchmark whose large number of judgments per query make it a reliable evaluation dataset. In this paper, we present mRobust04, a multilingual version of Robust04 that was translated to 8 languages using Google Translate. We also provide results of three different multilingual retrievers on this dataset. The dataset is available at https://huggingface.co/datasets/unicamp-dl/mrobust 4 authors · Sep 27, 2022
- Transforming LLMs into Cross-modal and Cross-lingual Retrieval Systems Large language models (LLMs) are trained on text-only data that go far beyond the languages with paired speech and text data. At the same time, Dual Encoder (DE) based retrieval systems project queries and documents into the same embedding space and have demonstrated their success in retrieval and bi-text mining. To match speech and text in many languages, we propose using LLMs to initialize multi-modal DE retrieval systems. Unlike traditional methods, our system doesn't require speech data during LLM pre-training and can exploit LLM's multilingual text understanding capabilities to match speech and text in languages unseen during retrieval training. Our multi-modal LLM-based retrieval system is capable of matching speech and text in 102 languages despite only training on 21 languages. Our system outperforms previous systems trained explicitly on all 102 languages. We achieve a 10% absolute improvement in Recall@1 averaged across these languages. Additionally, our model demonstrates cross-lingual speech and text matching, which is further enhanced by readily available machine translation data. 6 authors · Apr 1, 2024 2
- AraT5: Text-to-Text Transformers for Arabic Language Generation Transfer learning with a unified Transformer framework (T5) that converts all language problems into a text-to-text format was recently proposed as a simple and effective transfer learning approach. Although a multilingual version of the T5 model (mT5) was also introduced, it is not clear how well it can fare on non-English tasks involving diverse data. To investigate this question, we apply mT5 on a language with a wide variety of dialects--Arabic. For evaluation, we introduce a novel benchmark for ARabic language GENeration (ARGEN), covering seven important tasks. For model comparison, we pre-train three powerful Arabic T5-style models and evaluate them on ARGEN. Although pre-trained with ~49 less data, our new models perform significantly better than mT5 on all ARGEN tasks (in 52 out of 59 test sets) and set several new SOTAs. Our models also establish new SOTA on the recently-proposed, large Arabic language understanding evaluation benchmark ARLUE (Abdul-Mageed et al., 2021). Our new models are publicly available. We also link to ARGEN datasets through our repository: https://github.com/UBC-NLP/araT5. 3 authors · Aug 30, 2021
11 A Primer on the Inner Workings of Transformer-based Language Models The rapid progress of research aimed at interpreting the inner workings of advanced language models has highlighted a need for contextualizing the insights gained from years of work in this area. This primer provides a concise technical introduction to the current techniques used to interpret the inner workings of Transformer-based language models, focusing on the generative decoder-only architecture. We conclude by presenting a comprehensive overview of the known internal mechanisms implemented by these models, uncovering connections across popular approaches and active research directions in this area. 4 authors · Apr 30, 2024
20 Aligning LLMs for Multilingual Consistency in Enterprise Applications Large language models (LLMs) remain unreliable for global enterprise applications due to substantial performance gaps between high-resource and mid/low-resource languages, driven by English-centric pretraining and internal reasoning biases. This inconsistency undermines customer experience and operational reliability in multilingual settings such as customer support, content moderation, and information retrieval. Even with advanced Retrieval-Augmented Generation (RAG) systems, we observe up to an 29% accuracy drop in non-English languages compared to English. We propose a practical, batch-wise alignment strategy for fine-tuning LLMs, leveraging semantically equivalent multilingual data in each training batch to directly align model outputs across languages. This approach improves non-English accuracy by up to 23.9\% without compromising English performance, model reasoning, or retrieval quality. Our method is simple to implement, scalable, and integrates seamlessly with existing LLM training \& deployment pipelines, enabling more robust and equitable multilingual AI solutions in industry. 6 authors · Sep 28
1 Semantics-aware Attention Improves Neural Machine Translation The integration of syntactic structures into Transformer machine translation has shown positive results, but to our knowledge, no work has attempted to do so with semantic structures. In this work we propose two novel parameter-free methods for injecting semantic information into Transformers, both rely on semantics-aware masking of (some of) the attention heads. One such method operates on the encoder, through a Scene-Aware Self-Attention (SASA) head. Another on the decoder, through a Scene-Aware Cross-Attention (SACrA) head. We show a consistent improvement over the vanilla Transformer and syntax-aware models for four language pairs. We further show an additional gain when using both semantic and syntactic structures in some language pairs. 3 authors · Oct 13, 2021
11 Marco-LLM: Bridging Languages via Massive Multilingual Training for Cross-Lingual Enhancement Large Language Models (LLMs) have achieved remarkable progress in recent years; however, their excellent performance is still largely limited to major world languages, primarily English. Many LLMs continue to face challenges with multilingual tasks, especially when it comes to low-resource languages. To address this issue, we introduced Marco-LLM: Massive multilingual training for cross-lingual enhancement LLM. We have collected a substantial amount of multilingual data for several low-resource languages and conducted extensive continual pre-training using the Qwen2 models. This effort has resulted in a multilingual LLM named Marco-LLM. Through comprehensive evaluations on various multilingual benchmarks, including MMMLU, AGIEval, Belebele, Flores-200, XCOPA and many others, Marco-LLM has demonstrated substantial improvements over state-of-the-art LLMs. Furthermore, Marco-LLM achieved substantial enhancements in any-to-any machine translation tasks, showing the effectiveness of our multilingual LLM. Marco-LLM is a pioneering multilingual LLM designed to not only perform exceptionally well in multilingual tasks, including low-resource languages, but also maintain strong performance in English and other major languages, closing the performance gap between high- and low-resource language capabilities. By bridging languages, this effort demonstrates our dedication to ensuring LLMs work accurately across various languages. 20 authors · Dec 5, 2024 2
1 Larger-Scale Transformers for Multilingual Masked Language Modeling Recent work has demonstrated the effectiveness of cross-lingual language model pretraining for cross-lingual understanding. In this study, we present the results of two larger multilingual masked language models, with 3.5B and 10.7B parameters. Our two new models dubbed XLM-R XL and XLM-R XXL outperform XLM-R by 1.8% and 2.4% average accuracy on XNLI. Our model also outperforms the RoBERTa-Large model on several English tasks of the GLUE benchmark by 0.3% on average while handling 99 more languages. This suggests pretrained models with larger capacity may obtain both strong performance on high-resource languages while greatly improving low-resource languages. We make our code and models publicly available. 5 authors · May 2, 2021
3 Massively Multilingual Adaptation of Large Language Models Using Bilingual Translation Data This paper investigates a critical design decision in the practice of massively multilingual continual pre-training -- the inclusion of parallel data. Specifically, we study the impact of bilingual translation data for massively multilingual language adaptation of the Llama3 family of models to 500 languages. To this end, we construct the MaLA bilingual translation corpus, containing data from more than 2,500 language pairs. Subsequently, we develop the EMMA-500 Llama 3 suite of four massively multilingual models -- continually pre-trained from the Llama 3 family of base models extensively on diverse data mixes up to 671B tokens -- and explore the effect of continual pre-training with or without bilingual translation data. Comprehensive evaluation across 7 tasks and 12 benchmarks demonstrates that bilingual data tends to enhance language transfer and performance, particularly for low-resource languages. We open-source the MaLA corpus, EMMA-500 Llama 3 suite artefacts, code, and model generations. 6 authors · May 31 2
- Adapting Monolingual Models: Data can be Scarce when Language Similarity is High For many (minority) languages, the resources needed to train large models are not available. We investigate the performance of zero-shot transfer learning with as little data as possible, and the influence of language similarity in this process. We retrain the lexical layers of four BERT-based models using data from two low-resource target language varieties, while the Transformer layers are independently fine-tuned on a POS-tagging task in the model's source language. By combining the new lexical layers and fine-tuned Transformer layers, we achieve high task performance for both target languages. With high language similarity, 10MB of data appears sufficient to achieve substantial monolingual transfer performance. Monolingual BERT-based models generally achieve higher downstream task performance after retraining the lexical layer than multilingual BERT, even when the target language is included in the multilingual model. 4 authors · May 6, 2021
54 BenchMAX: A Comprehensive Multilingual Evaluation Suite for Large Language Models Previous multilingual benchmarks focus primarily on simple understanding tasks, but for large language models(LLMs), we emphasize proficiency in instruction following, reasoning, long context understanding, code generation, and so on. However, measuring these advanced capabilities across languages is underexplored. To address the disparity, we introduce BenchMAX, a multi-way multilingual evaluation benchmark that allows for fair comparisons of these important abilities across languages. To maintain high quality, three distinct native-speaking annotators independently annotate each sample within all tasks after the data was machine-translated from English into 16 other languages. Additionally, we present a novel translation challenge stemming from dataset construction. Extensive experiments on BenchMAX reveal varying effectiveness of core capabilities across languages, highlighting performance gaps that cannot be bridged by simply scaling up model size. BenchMAX serves as a comprehensive multilingual evaluation platform, providing a promising test bed to promote the development of multilingual language models. The dataset and code are publicly accessible. 7 authors · Feb 11 2
- LAReQA: Language-agnostic answer retrieval from a multilingual pool We present LAReQA, a challenging new benchmark for language-agnostic answer retrieval from a multilingual candidate pool. Unlike previous cross-lingual tasks, LAReQA tests for "strong" cross-lingual alignment, requiring semantically related cross-language pairs to be closer in representation space than unrelated same-language pairs. Building on multilingual BERT (mBERT), we study different strategies for achieving strong alignment. We find that augmenting training data via machine translation is effective, and improves significantly over using mBERT out-of-the-box. Interestingly, the embedding baseline that performs the best on LAReQA falls short of competing baselines on zero-shot variants of our task that only target "weak" alignment. This finding underscores our claim that languageagnostic retrieval is a substantively new kind of cross-lingual evaluation. 6 authors · Apr 11, 2020
1 Beyond English-Centric Multilingual Machine Translation Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model. 17 authors · Oct 21, 2020
- Multilingual Sentence-T5: Scalable Sentence Encoders for Multilingual Applications Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference (NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits from the recent ``exponential'' growth of language models with billions of parameters have not yet been fully explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank adaptation (LoRA) technique, we have achieved a successful scaling of the model's size to 5.7 billion parameters. We conducted experiments to evaluate the performance of sentence embedding and verified that the method outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at https://huggingface.co/pkshatech/m-ST5. 5 authors · Mar 26, 2024
- Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models Large language models (LLMs) have demonstrated strong multilingual capabilities; yet, they are mostly English-centric due to the imbalanced training corpora. Existing works leverage this phenomenon to improve their multilingual performances on NLP tasks. In this work, we extend the evaluation from NLP tasks to real user queries. We find that even though translation into English can help improve the performance of multilingual NLP tasks for English-centric LLMs, it may not be optimal for all scenarios. For culture-related tasks that need deep language understanding, prompting in the native language proves to be more promising since it can capture the nuances related to culture and language. Therefore, we advocate for more efforts towards the development of strong multilingual LLMs instead of just English-centric LLMs. 5 authors · Mar 15, 2024
1 LSG Attention: Extrapolation of pretrained Transformers to long sequences Transformer models achieve state-of-the-art performance on a wide range of NLP tasks. They however suffer from a prohibitive limitation due to the self-attention mechanism, inducing O(n^2) complexity with regard to sequence length. To answer this limitation we introduce the LSG architecture which relies on Local, Sparse and Global attention. We show that LSG attention is fast, efficient and competitive in classification and summarization tasks on long documents. Interestingly, it can also be used to adapt existing pretrained models to efficiently extrapolate to longer sequences with no additional training. Along with the introduction of the LSG attention mechanism, we propose tools to train new models and adapt existing ones based on this mechanism. 2 authors · Oct 13, 2022
- How multilingual is Multilingual BERT? In this paper, we show that Multilingual BERT (M-BERT), released by Devlin et al. (2018) as a single language model pre-trained from monolingual corpora in 104 languages, is surprisingly good at zero-shot cross-lingual model transfer, in which task-specific annotations in one language are used to fine-tune the model for evaluation in another language. To understand why, we present a large number of probing experiments, showing that transfer is possible even to languages in different scripts, that transfer works best between typologically similar languages, that monolingual corpora can train models for code-switching, and that the model can find translation pairs. From these results, we can conclude that M-BERT does create multilingual representations, but that these representations exhibit systematic deficiencies affecting certain language pairs. 3 authors · Jun 4, 2019
10 The Translation Barrier Hypothesis: Multilingual Generation with Large Language Models Suffers from Implicit Translation Failure Multilingual generation with large language models (LLMs) is often of poor quality for mid- to low-resource languages. Building on insights from interpretability, we demonstrate the existence of an implicit task-solving-->translation pipeline for generation, whereby the model first solves the required task in a largely target-language-agnostic manner, and subsequently translates answer concepts into the intended target language. We hypothesize that the failure of the translation stage is an important culprit for the observed low quality of final outputs, and formalize this as the translation barrier hypothesis. We test this hypothesis for a word translation task across 108 language pairs, using logit lens to observe model processing in intermediate layers. We find that a significant portion of overall failures indeed stems from translation failure, or the model's inability to translate correctly solved intermediate concepts into the target language. This is especially true for low-resource target languages. Our results highlight an important hurdle for end-to-end multilingual generation, and lend guiding insights for future work seeking to improve multilinguality in LLMs. 7 authors · Jun 27
- Vega-MT: The JD Explore Academy Translation System for WMT22 We describe the JD Explore Academy's submission of the WMT 2022 shared general translation task. We participated in all high-resource tracks and one medium-resource track, including Chinese-English, German-English, Czech-English, Russian-English, and Japanese-English. We push the limit of our previous work -- bidirectional training for translation by scaling up two main factors, i.e. language pairs and model sizes, namely the Vega-MT system. As for language pairs, we scale the "bidirectional" up to the "multidirectional" settings, covering all participating languages, to exploit the common knowledge across languages, and transfer them to the downstream bilingual tasks. As for model sizes, we scale the Transformer-Big up to the extremely large model that owns nearly 4.7 Billion parameters, to fully enhance the model capacity for our Vega-MT. Also, we adopt the data augmentation strategies, e.g. cycle translation for monolingual data, and bidirectional self-training for bilingual and monolingual data, to comprehensively exploit the bilingual and monolingual data. To adapt our Vega-MT to the general domain test set, generalization tuning is designed. Based on the official automatic scores of constrained systems, in terms of the sacreBLEU shown in Figure-1, we got the 1st place on {Zh-En (33.5), En-Zh (49.7), De-En (33.7), En-De (37.8), Cs-En (54.9), En-Cs (41.4) and En-Ru (32.7)}, 2nd place on {Ru-En (45.1) and Ja-En (25.6)}, and 3rd place on {En-Ja(41.5)}, respectively; W.R.T the COMET, we got the 1st place on {Zh-En (45.1), En-Zh (61.7), De-En (58.0), En-De (63.2), Cs-En (74.7), Ru-En (64.9), En-Ru (69.6) and En-Ja (65.1)}, 2nd place on {En-Cs (95.3) and Ja-En (40.6)}, respectively. 12 authors · Sep 19, 2022
2 A Multiscale Visualization of Attention in the Transformer Model The Transformer is a sequence model that forgoes traditional recurrent architectures in favor of a fully attention-based approach. Besides improving performance, an advantage of using attention is that it can also help to interpret a model by showing how the model assigns weight to different input elements. However, the multi-layer, multi-head attention mechanism in the Transformer model can be difficult to decipher. To make the model more accessible, we introduce an open-source tool that visualizes attention at multiple scales, each of which provides a unique perspective on the attention mechanism. We demonstrate the tool on BERT and OpenAI GPT-2 and present three example use cases: detecting model bias, locating relevant attention heads, and linking neurons to model behavior. 1 authors · Jun 12, 2019
- LaoPLM: Pre-trained Language Models for Lao Trained on the large corpus, pre-trained language models (PLMs) can capture different levels of concepts in context and hence generate universal language representations. They can benefit multiple downstream natural language processing (NLP) tasks. Although PTMs have been widely used in most NLP applications, especially for high-resource languages such as English, it is under-represented in Lao NLP research. Previous work on Lao has been hampered by the lack of annotated datasets and the sparsity of language resources. In this work, we construct a text classification dataset to alleviate the resource-scare situation of the Lao language. We additionally present the first transformer-based PTMs for Lao with four versions: BERT-small, BERT-base, ELECTRA-small and ELECTRA-base, and evaluate it over two downstream tasks: part-of-speech tagging and text classification. Experiments demonstrate the effectiveness of our Lao models. We will release our models and datasets to the community, hoping to facilitate the future development of Lao NLP applications. 5 authors · Oct 12, 2021
1 Robust Open-Vocabulary Translation from Visual Text Representations Machine translation models have discrete vocabularies and commonly use subword segmentation techniques to achieve an 'open vocabulary.' This approach relies on consistent and correct underlying unicode sequences, and makes models susceptible to degradation from common types of noise and variation. Motivated by the robustness of human language processing, we propose the use of visual text representations, which dispense with a finite set of text embeddings in favor of continuous vocabularies created by processing visually rendered text with sliding windows. We show that models using visual text representations approach or match performance of traditional text models on small and larger datasets. More importantly, models with visual embeddings demonstrate significant robustness to varied types of noise, achieving e.g., 25.9 BLEU on a character permuted German-English task where subword models degrade to 1.9. 3 authors · Apr 16, 2021
- Give your Text Representation Models some Love: the Case for Basque Word embeddings and pre-trained language models allow to build rich representations of text and have enabled improvements across most NLP tasks. Unfortunately they are very expensive to train, and many small companies and research groups tend to use models that have been pre-trained and made available by third parties, rather than building their own. This is suboptimal as, for many languages, the models have been trained on smaller (or lower quality) corpora. In addition, monolingual pre-trained models for non-English languages are not always available. At best, models for those languages are included in multilingual versions, where each language shares the quota of substrings and parameters with the rest of the languages. This is particularly true for smaller languages such as Basque. In this paper we show that a number of monolingual models (FastText word embeddings, FLAIR and BERT language models) trained with larger Basque corpora produce much better results than publicly available versions in downstream NLP tasks, including topic classification, sentiment classification, PoS tagging and NER. This work sets a new state-of-the-art in those tasks for Basque. All benchmarks and models used in this work are publicly available. 7 authors · Mar 31, 2020
1 Bird-Eye Transformers for Text Generation Models Transformers have become an indispensable module for text generation models since their great success in machine translation. Previous works attribute the~success of transformers to the query-key-value dot-product attention, which provides a robust inductive bias by the fully connected token graphs. However, we found that self-attention has a severe limitation. When predicting the (i+1)-th token, self-attention only takes the i-th token as an information collector, and it tends to give a high attention weight to those tokens similar to itself. Therefore, most of the historical information that occurred before the i-th token is not taken into consideration. Based on this observation, in this paper, we propose a new architecture, called bird-eye transformer(BET), which goes one step further to improve the performance of transformers by reweighting self-attention to encourage it to focus more on important historical information. We have conducted experiments on multiple text generation tasks, including machine translation (2 datasets) and language models (3 datasets). These experimental~results show that our proposed model achieves a better performance than the baseline transformer architectures on~all~datasets. The code is released at: https://sites.google.com/view/bet-transformer/home. 5 authors · Oct 8, 2022
- Taking a Deep Breath: Enhancing Language Modeling of Large Language Models with Sentinel Tokens Large language models (LLMs) have shown promising efficacy across various tasks, becoming powerful tools in numerous aspects of human life. However, Transformer-based LLMs suffer a performance degradation when modeling long-term contexts due to they discard some information to reduce computational overhead. In this work, we propose a simple yet effective method to enable LLMs to take a deep breath, encouraging them to summarize information contained within discrete text chunks. Specifically, we segment the text into multiple chunks and insert special token <SR> at the end of each chunk. We then modify the attention mask to integrate the chunk's information into the corresponding <SR> token. This facilitates LLMs to interpret information not only from historical individual tokens but also from the <SR> token, aggregating the chunk's semantic information. Experiments on language modeling and out-of-domain downstream tasks validate the superiority of our approach. 8 authors · Jun 16, 2024 2
- The NLP Task Effectiveness of Long-Range Transformers Transformer models cannot easily scale to long sequences due to their O(N^2) time and space complexity. This has led to Transformer variants seeking to lower computational complexity, such as Longformer and Performer. While such models have theoretically greater efficiency, their effectiveness on real NLP tasks has not been well studied. We benchmark 7 variants of Transformer models on 5 difficult NLP tasks and 7 datasets. We design experiments to isolate the effect of pretraining and hyperparameter settings, to focus on their capacity for long-range attention. Moreover, we present various methods to investigate attention behaviors to illuminate model details beyond metric scores. We find that the modified attention in long-range transformers has advantages on content selection and query-guided decoding, but they come with previously unrecognized drawbacks such as insufficient attention to distant tokens and accumulated approximation error. 3 authors · Feb 15, 2022
- Language Fusion for Parameter-Efficient Cross-lingual Transfer Limited availability of multilingual text corpora for training language models often leads to poor performance on downstream tasks due to undertrained representation spaces for languages other than English. This 'under-representation' has motivated recent cross-lingual transfer methods to leverage the English representation space by e.g. mixing English and 'non-English' tokens at the input level or extending model parameters to accommodate new languages. However, these approaches often come at the cost of increased computational complexity. We propose Fusion forLanguage Representations (FLARE) in adapters, a novel method that enhances representation quality and downstream performance for languages other than English while maintaining parameter efficiency. FLARE integrates source and target language representations within low-rank (LoRA) adapters using lightweight linear transformations, maintaining parameter efficiency while improving transfer performance. A series of experiments across representative cross-lingual natural language understanding tasks, including natural language inference, question-answering and sentiment analysis, demonstrate FLARE's effectiveness. FLARE achieves performance improvements of 4.9% for Llama 3.1 and 2.2% for Gemma~2 compared to standard LoRA fine-tuning on question-answering tasks, as measured by the exact match metric. 4 authors · Jan 12
8 Training Sparse Mixture Of Experts Text Embedding Models Transformer-based text embedding models have improved their performance on benchmarks like MIRACL and BEIR by increasing their parameter counts. However, this scaling approach introduces significant deployment challenges, including increased inference latency and memory usage. These challenges are particularly severe in retrieval-augmented generation (RAG) applications, where large models' increased memory requirements constrain dataset ingestion capacity, and their higher latency directly impacts query-time performance. While causal language models have addressed similar efficiency challenges using Mixture of Experts (MoE) architectures, this approach hasn't been successfully adapted to the general text embedding setting. In this paper, we introduce Nomic Embed v2, the first general purpose MoE text embedding model. Our model outperforms models in the same parameter class on both monolingual and multilingual benchmarks while also maintaining competitive performance with models twice its size. We open-source all code, models, and evaluation data to ensure full reproducibility of our training pipeline. 2 authors · Feb 11 1
- An Efficient Approach for Machine Translation on Low-resource Languages: A Case Study in Vietnamese-Chinese Despite the rise of recent neural networks in machine translation, those networks do not work well if the training data is insufficient. In this paper, we proposed an approach for machine translation in low-resource languages such as Vietnamese-Chinese. Our proposed method leveraged the power of the multilingual pre-trained language model (mBART) and both Vietnamese and Chinese monolingual corpus. Firstly, we built an early bird machine translation model using the bilingual training dataset. Secondly, we used TF-IDF technique to select sentences from the monolingual corpus which are the most related to domains of the parallel dataset. Finally, the first model was used to synthesize the augmented training data from the selected monolingual corpus for the translation model. Our proposed scheme showed that it outperformed 8% compared to the transformer model. The augmented dataset also pushed the model performance. 3 authors · Jan 31
- Scaling Laws for Multilingual Neural Machine Translation In this work, we provide a large-scale empirical study of the scaling properties of multilingual neural machine translation models. We examine how increases in the model size affect the model performance and investigate the role of the training mixture composition on the scaling behavior. We find that changing the weightings of the individual language pairs in the training mixture only affect the multiplicative factor of the scaling law. In particular, we observe that multilingual models trained using different mixing rates all exhibit the same scaling exponent. Through a novel joint scaling law formulation, we compute the effective number of parameters allocated to each language pair and examine the role of language similarity in the scaling behavior of our models. We find little evidence that language similarity has any impact. In contrast, the direction of the multilinguality plays a significant role, with models translating from multiple languages into English having a larger number of effective parameters per task than their reversed counterparts. Finally, we leverage our observations to predict the performance of multilingual models trained with any language weighting at any scale, significantly reducing efforts required for language balancing in large multilingual models. Our findings apply to both in-domain and out-of-domain test sets and to multiple evaluation metrics, such as ChrF and BLEURT. 5 authors · Feb 19, 2023
- Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation We present an easy and efficient method to extend existing sentence embedding models to new languages. This allows to create multilingual versions from previously monolingual models. The training is based on the idea that a translated sentence should be mapped to the same location in the vector space as the original sentence. We use the original (monolingual) model to generate sentence embeddings for the source language and then train a new system on translated sentences to mimic the original model. Compared to other methods for training multilingual sentence embeddings, this approach has several advantages: It is easy to extend existing models with relatively few samples to new languages, it is easier to ensure desired properties for the vector space, and the hardware requirements for training is lower. We demonstrate the effectiveness of our approach for 50+ languages from various language families. Code to extend sentence embeddings models to more than 400 languages is publicly available. 2 authors · Apr 21, 2020
- UNKs Everywhere: Adapting Multilingual Language Models to New Scripts Massively multilingual language models such as multilingual BERT offer state-of-the-art cross-lingual transfer performance on a range of NLP tasks. However, due to limited capacity and large differences in pretraining data sizes, there is a profound performance gap between resource-rich and resource-poor target languages. The ultimate challenge is dealing with under-resourced languages not covered at all by the models and written in scripts unseen during pretraining. In this work, we propose a series of novel data-efficient methods that enable quick and effective adaptation of pretrained multilingual models to such low-resource languages and unseen scripts. Relying on matrix factorization, our methods capitalize on the existing latent knowledge about multiple languages already available in the pretrained model's embedding matrix. Furthermore, we show that learning of the new dedicated embedding matrix in the target language can be improved by leveraging a small number of vocabulary items (i.e., the so-called lexically overlapping tokens) shared between mBERT's and target language vocabulary. Our adaptation techniques offer substantial performance gains for languages with unseen scripts. We also demonstrate that they can yield improvements for low-resource languages written in scripts covered by the pretrained model. 4 authors · Dec 31, 2020