Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeQwen-GUI-3B: A Lightweight Vision-Language Model for Cross-Resolution GUI Grounding
This paper introduces Qwen-GUI-3B, a lightweight Vision-Language Model (VLM) specifically designed for Graphical User Interface grounding tasks, achieving performance competitive with significantly larger models. Unlike large-scale VLMs (>7B parameters) that are computationally intensive and impractical for consumer-grade hardware, Qwen-GUI-3B delivers strong grounding accuracy while being fully trainable on a single GPU (RTX 4090). The model incorporates several key innovations: (i) combine cross-platform, multi-resolution dataset of 24K examples from diverse sources including mobile, desktop, and web GUI screenshots to effectively address data scarcity in high-resolution desktop environments; (ii) a two-stage fine-tuning strategy, where initial cross-platform training establishes robust GUI understanding, followed by specialized fine-tuning on high-resolution data to significantly enhance model adaptability; and (iii) data curation and redundancy reduction strategies, demonstrating that randomly sampling a smaller subset with reduced redundancy achieves performance comparable to larger datasets, emphasizing data diversity over sheer volume. Empirical evaluation on standard GUI grounding benchmarks-including ScreenSpot, ScreenSpot-v2, and the challenging ScreenSpot-Pro, highlights Qwen-GUI-3B's exceptional accuracy, achieving 84.9% on ScreenSpot and 86.4% on ScreenSpot-v2, surpassing prior models under 4B parameters. Ablation studies validate the critical role of balanced sampling and two-stage fine-tuning in enhancing robustness, particularly in high-resolution desktop scenarios. The Qwen-GUI-3B is available at: https://github.com/Han1018/Qwen-GUI-3B
Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera
While recent depth estimation methods exhibit strong zero-shot generalization, achieving accurate metric depth across diverse camera types-particularly those with large fields of view (FoV) such as fisheye and 360-degree cameras-remains a significant challenge. This paper presents Depth Any Camera (DAC), a powerful zero-shot metric depth estimation framework that extends a perspective-trained model to effectively handle cameras with varying FoVs. The framework is designed to ensure that all existing 3D data can be leveraged, regardless of the specific camera types used in new applications. Remarkably, DAC is trained exclusively on perspective images but generalizes seamlessly to fisheye and 360-degree cameras without the need for specialized training data. DAC employs Equi-Rectangular Projection (ERP) as a unified image representation, enabling consistent processing of images with diverse FoVs. Its key components include a pitch-aware Image-to-ERP conversion for efficient online augmentation in ERP space, a FoV alignment operation to support effective training across a wide range of FoVs, and multi-resolution data augmentation to address resolution disparities between training and testing. DAC achieves state-of-the-art zero-shot metric depth estimation, improving delta-1 (delta_1) accuracy by up to 50% on multiple fisheye and 360-degree datasets compared to prior metric depth foundation models, demonstrating robust generalization across camera types.
D3Net: Densely connected multidilated DenseNet for music source separation
Music source separation involves a large input field to model a long-term dependence of an audio signal. Previous convolutional neural network (CNN)-based approaches address the large input field modeling using sequentially down- and up-sampling feature maps or dilated convolution. In this paper, we claim the importance of a rapid growth of a receptive field and a simultaneous modeling of multi-resolution data in a single convolution layer, and propose a novel CNN architecture called densely connected dilated DenseNet (D3Net). D3Net involves a novel multi-dilated convolution that has different dilation factors in a single layer to model different resolutions simultaneously. By combining the multi-dilated convolution with DenseNet architecture, D3Net avoids the aliasing problem that exists when we naively incorporate the dilated convolution in DenseNet. Experimental results on MUSDB18 dataset show that D3Net achieves state-of-the-art performance with an average signal to distortion ratio (SDR) of 6.01 dB.
LMR: A Large-Scale Multi-Reference Dataset for Reference-based Super-Resolution
It is widely agreed that reference-based super-resolution (RefSR) achieves superior results by referring to similar high quality images, compared to single image super-resolution (SISR). Intuitively, the more references, the better performance. However, previous RefSR methods have all focused on single-reference image training, while multiple reference images are often available in testing or practical applications. The root cause of such training-testing mismatch is the absence of publicly available multi-reference SR training datasets, which greatly hinders research efforts on multi-reference super-resolution. To this end, we construct a large-scale, multi-reference super-resolution dataset, named LMR. It contains 112,142 groups of 300x300 training images, which is 10x of the existing largest RefSR dataset. The image size is also much larger. More importantly, each group is equipped with 5 reference images with different similarity levels. Furthermore, we propose a new baseline method for multi-reference super-resolution: MRefSR, including a Multi-Reference Attention Module (MAM) for feature fusion of an arbitrary number of reference images, and a Spatial Aware Filtering Module (SAFM) for the fused feature selection. The proposed MRefSR achieves significant improvements over state-of-the-art approaches on both quantitative and qualitative evaluations. Our code and data would be made available soon.
M4-SAR: A Multi-Resolution, Multi-Polarization, Multi-Scene, Multi-Source Dataset and Benchmark for Optical-SAR Fusion Object Detection
Single-source remote sensing object detection using optical or SAR images struggles in complex environments. Optical images offer rich textural details but are often affected by low-light, cloud-obscured, or low-resolution conditions, reducing the detection performance. SAR images are robust to weather, but suffer from speckle noise and limited semantic expressiveness. Optical and SAR images provide complementary advantages, and fusing them can significantly improve the detection accuracy. However, progress in this field is hindered by the lack of large-scale, standardized datasets. To address these challenges, we propose the first comprehensive dataset for optical-SAR fusion object detection, named Multi-resolution, Multi-polarization, Multi-scene, Multi-source SAR dataset (M4-SAR). It contains 112,184 precisely aligned image pairs and nearly one million labeled instances with arbitrary orientations, spanning six key categories. To enable standardized evaluation, we develop a unified benchmarking toolkit that integrates six state-of-the-art multi-source fusion methods. Furthermore, we propose E2E-OSDet, a novel end-to-end multi-source fusion detection framework that mitigates cross-domain discrepancies and establishes a robust baseline for future studies. Extensive experiments on M4-SAR demonstrate that fusing optical and SAR data can improve mAP by 5.7\% over single-source inputs, with particularly significant gains in complex environments. The dataset and code are publicly available at https://github.com/wchao0601/M4-SAR.
Multi-resolution Time-Series Transformer for Long-term Forecasting
The performance of transformers for time-series forecasting has improved significantly. Recent architectures learn complex temporal patterns by segmenting a time-series into patches and using the patches as tokens. The patch size controls the ability of transformers to learn the temporal patterns at different frequencies: shorter patches are effective for learning localized, high-frequency patterns, whereas mining long-term seasonalities and trends requires longer patches. Inspired by this observation, we propose a novel framework, Multi-resolution Time-Series Transformer (MTST), which consists of a multi-branch architecture for simultaneous modeling of diverse temporal patterns at different resolutions. In contrast to many existing time-series transformers, we employ relative positional encoding, which is better suited for extracting periodic components at different scales. Extensive experiments on several real-world datasets demonstrate the effectiveness of MTST in comparison to state-of-the-art forecasting techniques.
AerialFormer: Multi-resolution Transformer for Aerial Image Segmentation
Aerial Image Segmentation is a top-down perspective semantic segmentation and has several challenging characteristics such as strong imbalance in the foreground-background distribution, complex background, intra-class heterogeneity, inter-class homogeneity, and tiny objects. To handle these problems, we inherit the advantages of Transformers and propose AerialFormer, which unifies Transformers at the contracting path with lightweight Multi-Dilated Convolutional Neural Networks (MD-CNNs) at the expanding path. Our AerialFormer is designed as a hierarchical structure, in which Transformer encoder outputs multi-scale features and MD-CNNs decoder aggregates information from the multi-scales. Thus, it takes both local and global contexts into consideration to render powerful representations and high-resolution segmentation. We have benchmarked AerialFormer on three common datasets including iSAID, LoveDA, and Potsdam. Comprehensive experiments and extensive ablation studies show that our proposed AerialFormer outperforms previous state-of-the-art methods with remarkable performance. Our source code will be publicly available upon acceptance.
Multi-resolution Networks For Flexible Irregular Time Series Modeling (Multi-FIT)
Missing values, irregularly collected samples, and multi-resolution signals commonly occur in multivariate time series data, making predictive tasks difficult. These challenges are especially prevalent in the healthcare domain, where patients' vital signs and electronic records are collected at different frequencies and have occasionally missing information due to the imperfections in equipment or patient circumstances. Researchers have handled each of these issues differently, often handling missing data through mean value imputation and then using sequence models over the multivariate signals while ignoring the different resolution of signals. We propose a unified model named Multi-resolution Flexible Irregular Time series Network (Multi-FIT). The building block for Multi-FIT is the FIT network. The FIT network creates an informative dense representation at each time step using signal information such as last observed value, time difference since the last observed time stamp and overall mean for the signal. Vertical FIT (FIT-V) is a variant of FIT which also models the relationship between different temporal signals while creating the informative dense representations for the signal. The multi-FIT model uses multiple FIT networks for sets of signals with different resolutions, further facilitating the construction of flexible representations. Our model has three main contributions: a.) it does not impute values but rather creates informative representations to provide flexibility to the model for creating task-specific representations b.) it models the relationship between different signals in the form of support signals c.) it models different resolutions in parallel before merging them for the final prediction task. The FIT, FIT-V and Multi-FIT networks improve upon the state-of-the-art models for three predictive tasks, including the forecasting of patient survival.
Hunyuan-DiT: A Powerful Multi-Resolution Diffusion Transformer with Fine-Grained Chinese Understanding
We present Hunyuan-DiT, a text-to-image diffusion transformer with fine-grained understanding of both English and Chinese. To construct Hunyuan-DiT, we carefully design the transformer structure, text encoder, and positional encoding. We also build from scratch a whole data pipeline to update and evaluate data for iterative model optimization. For fine-grained language understanding, we train a Multimodal Large Language Model to refine the captions of the images. Finally, Hunyuan-DiT can perform multi-turn multimodal dialogue with users, generating and refining images according to the context. Through our holistic human evaluation protocol with more than 50 professional human evaluators, Hunyuan-DiT sets a new state-of-the-art in Chinese-to-image generation compared with other open-source models. Code and pretrained models are publicly available at github.com/Tencent/HunyuanDiT
Multi-Resolution Audio-Visual Feature Fusion for Temporal Action Localization
Temporal Action Localization (TAL) aims to identify actions' start, end, and class labels in untrimmed videos. While recent advancements using transformer networks and Feature Pyramid Networks (FPN) have enhanced visual feature recognition in TAL tasks, less progress has been made in the integration of audio features into such frameworks. This paper introduces the Multi-Resolution Audio-Visual Feature Fusion (MRAV-FF), an innovative method to merge audio-visual data across different temporal resolutions. Central to our approach is a hierarchical gated cross-attention mechanism, which discerningly weighs the importance of audio information at diverse temporal scales. Such a technique not only refines the precision of regression boundaries but also bolsters classification confidence. Importantly, MRAV-FF is versatile, making it compatible with existing FPN TAL architectures and offering a significant enhancement in performance when audio data is available.
SEMPART: Self-supervised Multi-resolution Partitioning of Image Semantics
Accurately determining salient regions of an image is challenging when labeled data is scarce. DINO-based self-supervised approaches have recently leveraged meaningful image semantics captured by patch-wise features for locating foreground objects. Recent methods have also incorporated intuitive priors and demonstrated value in unsupervised methods for object partitioning. In this paper, we propose SEMPART, which jointly infers coarse and fine bi-partitions over an image's DINO-based semantic graph. Furthermore, SEMPART preserves fine boundary details using graph-driven regularization and successfully distills the coarse mask semantics into the fine mask. Our salient object detection and single object localization findings suggest that SEMPART produces high-quality masks rapidly without additional post-processing and benefits from co-optimizing the coarse and fine branches.
ImagiNet: A Multi-Content Dataset for Generalizable Synthetic Image Detection via Contrastive Learning
Generative models, such as diffusion models (DMs), variational autoencoders (VAEs), and generative adversarial networks (GANs), produce images with a level of authenticity that makes them nearly indistinguishable from real photos and artwork. While this capability is beneficial for many industries, the difficulty of identifying synthetic images leaves online media platforms vulnerable to impersonation and misinformation attempts. To support the development of defensive methods, we introduce ImagiNet, a high-resolution and balanced dataset for synthetic image detection, designed to mitigate potential biases in existing resources. It contains 200K examples, spanning four content categories: photos, paintings, faces, and uncategorized. Synthetic images are produced with open-source and proprietary generators, whereas real counterparts of the same content type are collected from public datasets. The structure of ImagiNet allows for a two-track evaluation system: i) classification as real or synthetic and ii) identification of the generative model. To establish a baseline, we train a ResNet-50 model using a self-supervised contrastive objective (SelfCon) for each track. The model demonstrates state-of-the-art performance and high inference speed across established benchmarks, achieving an AUC of up to 0.99 and balanced accuracy ranging from 86% to 95%, even under social network conditions that involve compression and resizing. Our data and code are available at https://github.com/delyan-boychev/imaginet.
Dragonfly: Multi-Resolution Zoom Supercharges Large Visual-Language Model
Recent advances in large multimodal models (LMMs) suggest that higher image resolution enhances the fine-grained understanding of image details, crucial for tasks such as visual commonsense reasoning and analyzing biomedical images. However, increasing input resolution poses two main challenges: 1) It extends the context length required by the language model, leading to inefficiencies and hitting the model's context limit; 2) It increases the complexity of visual features, necessitating more training data or more complex architecture. We introduce Dragonfly, a new LMM architecture that enhances fine-grained visual understanding and reasoning about image regions to address these challenges. Dragonfly employs two key strategies: multi-resolution visual encoding and zoom-in patch selection. These strategies allow the model to process high-resolution images efficiently while maintaining reasonable context length. Our experiments on eight popular benchmarks demonstrate that Dragonfly achieves competitive or better performance compared to other architectures, highlighting the effectiveness of our design. Additionally, we finetuned Dragonfly on biomedical instructions, achieving state-of-the-art results on multiple biomedical tasks requiring fine-grained visual understanding, including 92.3% accuracy on the Path-VQA dataset (compared to 83.3% for Med-Gemini) and the highest reported results on biomedical image captioning. To support model training, we curated a visual instruction-tuning dataset with 5.5 million image-instruction samples in the general domain and 1.4 million samples in the biomedical domain. We also conducted ablation studies to characterize the impact of various architectural designs and image resolutions, providing insights for future research on visual instruction alignment. The codebase and model are available at https://github.com/togethercomputer/Dragonfly.
Robust Camera Pose Refinement for Multi-Resolution Hash Encoding
Multi-resolution hash encoding has recently been proposed to reduce the computational cost of neural renderings, such as NeRF. This method requires accurate camera poses for the neural renderings of given scenes. However, contrary to previous methods jointly optimizing camera poses and 3D scenes, the naive gradient-based camera pose refinement method using multi-resolution hash encoding severely deteriorates performance. We propose a joint optimization algorithm to calibrate the camera pose and learn a geometric representation using efficient multi-resolution hash encoding. Showing that the oscillating gradient flows of hash encoding interfere with the registration of camera poses, our method addresses the issue by utilizing smooth interpolation weighting to stabilize the gradient oscillation for the ray samplings across hash grids. Moreover, the curriculum training procedure helps to learn the level-wise hash encoding, further increasing the pose refinement. Experiments on the novel-view synthesis datasets validate that our learning frameworks achieve state-of-the-art performance and rapid convergence of neural rendering, even when initial camera poses are unknown.
Acoustic To Articulatory Speech Inversion Using Multi-Resolution Spectro-Temporal Representations Of Speech Signals
Multi-resolution spectro-temporal features of a speech signal represent how the brain perceives sounds by tuning cortical cells to different spectral and temporal modulations. These features produce a higher dimensional representation of the speech signals. The purpose of this paper is to evaluate how well the auditory cortex representation of speech signals contribute to estimate articulatory features of those corresponding signals. Since obtaining articulatory features from acoustic features of speech signals has been a challenging topic of interest for different speech communities, we investigate the possibility of using this multi-resolution representation of speech signals as acoustic features. We used U. of Wisconsin X-ray Microbeam (XRMB) database of clean speech signals to train a feed-forward deep neural network (DNN) to estimate articulatory trajectories of six tract variables. The optimal set of multi-resolution spectro-temporal features to train the model were chosen using appropriate scale and rate vector parameters to obtain the best performing model. Experiments achieved a correlation of 0.675 with ground-truth tract variables. We compared the performance of this speech inversion system with prior experiments conducted using Mel Frequency Cepstral Coefficients (MFCCs).
UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Most neural vocoders employ band-limited mel-spectrograms to generate waveforms. If full-band spectral features are used as the input, the vocoder can be provided with as much acoustic information as possible. However, in some models employing full-band mel-spectrograms, an over-smoothing problem occurs as part of which non-sharp spectrograms are generated. To address this problem, we propose UnivNet, a neural vocoder that synthesizes high-fidelity waveforms in real time. Inspired by works in the field of voice activity detection, we added a multi-resolution spectrogram discriminator that employs multiple linear spectrogram magnitudes computed using various parameter sets. Using full-band mel-spectrograms as input, we expect to generate high-resolution signals by adding a discriminator that employs spectrograms of multiple resolutions as the input. In an evaluation on a dataset containing information on hundreds of speakers, UnivNet obtained the best objective and subjective results among competing models for both seen and unseen speakers. These results, including the best subjective score for text-to-speech, demonstrate the potential for fast adaptation to new speakers without a need for training from scratch.
FUSU: A Multi-temporal-source Land Use Change Segmentation Dataset for Fine-grained Urban Semantic Understanding
Fine urban change segmentation using multi-temporal remote sensing images is essential for understanding human-environment interactions in urban areas. Although there have been advances in high-quality land cover datasets that reveal the physical features of urban landscapes, the lack of fine-grained land use datasets hinders a deeper understanding of how human activities are distributed across the landscape and the impact of these activities on the environment, thus constraining proper technique development. To address this, we introduce FUSU, the first fine-grained land use change segmentation dataset for Fine-grained Urban Semantic Understanding. FUSU features the most detailed land use classification system to date, with 17 classes and 30 billion pixels of annotations. It includes bi-temporal high-resolution satellite images with 0.2-0.5 m ground sample distance and monthly optical and radar satellite time series, covering 847 km^2 across five urban areas in the southern and northern of China with different geographical features. The fine-grained land use pixel-wise annotations and high spatial-temporal resolution data provide a robust foundation for developing proper deep learning models to provide contextual insights on human activities and urbanization. To fully leverage FUSU, we propose a unified time-series architecture for both change detection and segmentation. We benchmark FUSU on various methods for several tasks. Dataset and code are available at: https://github.com/yuanshuai0914/FUSU.
Q-Frame: Query-aware Frame Selection and Multi-Resolution Adaptation for Video-LLMs
Multimodal Large Language Models (MLLMs) have demonstrated significant success in visual understanding tasks. However, challenges persist in adapting these models for video comprehension due to the large volume of data and temporal complexity. Existing Video-LLMs using uniform frame sampling often struggle to capture the query-related crucial spatiotemporal clues of videos effectively. In this paper, we introduce Q-Frame, a novel approach for adaptive frame selection and multi-resolution scaling tailored to the video's content and the specific query. Q-Frame employs a training-free, plug-and-play strategy generated by a text-image matching network like CLIP, utilizing the Gumbel-Max trick for efficient frame selection. Q-Frame allows Video-LLMs to process more frames without exceeding computational limits, thereby preserving critical temporal and spatial information. We demonstrate Q-Frame's effectiveness through extensive experiments on benchmark datasets, including MLVU, LongVideoBench, and Video-MME, illustrating its superiority over existing methods and its applicability across various video understanding tasks.
Breathing deformation model -- application to multi-resolution abdominal MRI
Dynamic MRI is a technique of acquiring a series of images continuously to follow the physiological changes over time. However, such fast imaging results in low resolution images. In this work, abdominal deformation model computed from dynamic low resolution images have been applied to high resolution image, acquired previously, to generate dynamic high resolution MRI. Dynamic low resolution images were simulated into different breathing phases (inhale and exhale). Then, the image registration between breathing time points was performed using the B-spline SyN deformable model and using cross-correlation as a similarity metric. The deformation model between different breathing phases were estimated from highly undersampled data. This deformation model was then applied to the high resolution images to obtain high resolution images of different breathing phases. The results indicated that the deformation model could be computed from relatively very low resolution images.
Fish-Vista: A Multi-Purpose Dataset for Understanding & Identification of Traits from Images
Fishes are integral to both ecological systems and economic sectors, and studying fish traits is crucial for understanding biodiversity patterns and macro-evolution trends. To enable the analysis of visual traits from fish images, we introduce the Fish-Visual Trait Analysis (Fish-Vista) dataset - a large, annotated collection of about 60K fish images spanning 1900 different species, supporting several challenging and biologically relevant tasks including species classification, trait identification, and trait segmentation. These images have been curated through a sophisticated data processing pipeline applied to a cumulative set of images obtained from various museum collections. Fish-Vista provides fine-grained labels of various visual traits present in each image. It also offers pixel-level annotations of 9 different traits for 2427 fish images, facilitating additional trait segmentation and localization tasks. The ultimate goal of Fish-Vista is to provide a clean, carefully curated, high-resolution dataset that can serve as a foundation for accelerating biological discoveries using advances in AI. Finally, we provide a comprehensive analysis of state-of-the-art deep learning techniques on Fish-Vista.
Knowledge Guided Disambiguation for Large-Scale Scene Classification with Multi-Resolution CNNs
Convolutional Neural Networks (CNNs) have made remarkable progress on scene recognition, partially due to these recent large-scale scene datasets, such as the Places and Places2. Scene categories are often defined by multi-level information, including local objects, global layout, and background environment, thus leading to large intra-class variations. In addition, with the increasing number of scene categories, label ambiguity has become another crucial issue in large-scale classification. This paper focuses on large-scale scene recognition and makes two major contributions to tackle these issues. First, we propose a multi-resolution CNN architecture that captures visual content and structure at multiple levels. The multi-resolution CNNs are composed of coarse resolution CNNs and fine resolution CNNs, which are complementary to each other. Second, we design two knowledge guided disambiguation techniques to deal with the problem of label ambiguity. (i) We exploit the knowledge from the confusion matrix computed on validation data to merge ambiguous classes into a super category. (ii) We utilize the knowledge of extra networks to produce a soft label for each image. Then the super categories or soft labels are employed to guide CNN training on the Places2. We conduct extensive experiments on three large-scale image datasets (ImageNet, Places, and Places2), demonstrating the effectiveness of our approach. Furthermore, our method takes part in two major scene recognition challenges, and achieves the second place at the Places2 challenge in ILSVRC 2015, and the first place at the LSUN challenge in CVPR 2016. Finally, we directly test the learned representations on other scene benchmarks, and obtain the new state-of-the-art results on the MIT Indoor67 (86.7\%) and SUN397 (72.0\%). We release the code and models at~https://github.com/wanglimin/MRCNN-Scene-Recognition.
Alleviating Distortion in Image Generation via Multi-Resolution Diffusion Models
This paper presents innovative enhancements to diffusion models by integrating a novel multi-resolution network and time-dependent layer normalization. Diffusion models have gained prominence for their effectiveness in high-fidelity image generation. While conventional approaches rely on convolutional U-Net architectures, recent Transformer-based designs have demonstrated superior performance and scalability. However, Transformer architectures, which tokenize input data (via "patchification"), face a trade-off between visual fidelity and computational complexity due to the quadratic nature of self-attention operations concerning token length. While larger patch sizes enable attention computation efficiency, they struggle to capture fine-grained visual details, leading to image distortions. To address this challenge, we propose augmenting the Diffusion model with the Multi-Resolution network (DiMR), a framework that refines features across multiple resolutions, progressively enhancing detail from low to high resolution. Additionally, we introduce Time-Dependent Layer Normalization (TD-LN), a parameter-efficient approach that incorporates time-dependent parameters into layer normalization to inject time information and achieve superior performance. Our method's efficacy is demonstrated on the class-conditional ImageNet generation benchmark, where DiMR-XL variants outperform prior diffusion models, setting new state-of-the-art FID scores of 1.70 on ImageNet 256 x 256 and 2.89 on ImageNet 512 x 512. Project page: https://qihao067.github.io/projects/DiMR
UMC: A Unified Bandwidth-efficient and Multi-resolution based Collaborative Perception Framework
Multi-agent collaborative perception (MCP) has recently attracted much attention. It includes three key processes: communication for sharing, collaboration for integration, and reconstruction for different downstream tasks. Existing methods pursue designing the collaboration process alone, ignoring their intrinsic interactions and resulting in suboptimal performance. In contrast, we aim to propose a Unified Collaborative perception framework named UMC, optimizing the communication, collaboration, and reconstruction processes with the Multi-resolution technique. The communication introduces a novel trainable multi-resolution and selective-region (MRSR) mechanism, achieving higher quality and lower bandwidth. Then, a graph-based collaboration is proposed, conducting on each resolution to adapt the MRSR. Finally, the reconstruction integrates the multi-resolution collaborative features for downstream tasks. Since the general metric can not reflect the performance enhancement brought by MCP systematically, we introduce a brand-new evaluation metric that evaluates the MCP from different perspectives. To verify our algorithm, we conducted experiments on the V2X-Sim and OPV2V datasets. Our quantitative and qualitative experiments prove that the proposed UMC greatly outperforms the state-of-the-art collaborative perception approaches.
Ensemble everything everywhere: Multi-scale aggregation for adversarial robustness
Adversarial examples pose a significant challenge to the robustness, reliability and alignment of deep neural networks. We propose a novel, easy-to-use approach to achieving high-quality representations that lead to adversarial robustness through the use of multi-resolution input representations and dynamic self-ensembling of intermediate layer predictions. We demonstrate that intermediate layer predictions exhibit inherent robustness to adversarial attacks crafted to fool the full classifier, and propose a robust aggregation mechanism based on Vickrey auction that we call CrossMax to dynamically ensemble them. By combining multi-resolution inputs and robust ensembling, we achieve significant adversarial robustness on CIFAR-10 and CIFAR-100 datasets without any adversarial training or extra data, reaching an adversarial accuracy of approx72% (CIFAR-10) and approx48% (CIFAR-100) on the RobustBench AutoAttack suite (L_infty=8/255) with a finetuned ImageNet-pretrained ResNet152. This represents a result comparable with the top three models on CIFAR-10 and a +5 % gain compared to the best current dedicated approach on CIFAR-100. Adding simple adversarial training on top, we get approx78% on CIFAR-10 and approx51% on CIFAR-100, improving SOTA by 5 % and 9 % respectively and seeing greater gains on the harder dataset. We validate our approach through extensive experiments and provide insights into the interplay between adversarial robustness, and the hierarchical nature of deep representations. We show that simple gradient-based attacks against our model lead to human-interpretable images of the target classes as well as interpretable image changes. As a byproduct, using our multi-resolution prior, we turn pre-trained classifiers and CLIP models into controllable image generators and develop successful transferable attacks on large vision language models.
Regional data-driven weather modeling with a global stretched-grid
A data-driven model (DDM) suitable for regional weather forecasting applications is presented. The model extends the Artificial Intelligence Forecasting System by introducing a stretched-grid architecture that dedicates higher resolution over a regional area of interest and maintains a lower resolution elsewhere on the globe. The model is based on graph neural networks, which naturally affords arbitrary multi-resolution grid configurations. The model is applied to short-range weather prediction for the Nordics, producing forecasts at 2.5 km spatial and 6 h temporal resolution. The model is pre-trained on 43 years of global ERA5 data at 31 km resolution and is further refined using 3.3 years of 2.5 km resolution operational analyses from the MetCoOp Ensemble Prediction System (MEPS). The performance of the model is evaluated using surface observations from measurement stations across Norway and is compared to short-range weather forecasts from MEPS. The DDM outperforms both the control run and the ensemble mean of MEPS for 2 m temperature. The model also produces competitive precipitation and wind speed forecasts, but is shown to underestimate extreme events.
Towards Generating Realistic 3D Semantic Training Data for Autonomous Driving
Semantic scene understanding is crucial for robotics and computer vision applications. In autonomous driving, 3D semantic segmentation plays an important role for enabling safe navigation. Despite significant advances in the field, the complexity of collecting and annotating 3D data is a bottleneck in this developments. To overcome that data annotation limitation, synthetic simulated data has been used to generate annotated data on demand. There is still however a domain gap between real and simulated data. More recently, diffusion models have been in the spotlight, enabling close-to-real data synthesis. Those generative models have been recently applied to the 3D data domain for generating scene-scale data with semantic annotations. Still, those methods either rely on image projection or decoupled models trained with different resolutions in a coarse-to-fine manner. Such intermediary representations impact the generated data quality due to errors added in those transformations. In this work, we propose a novel approach able to generate 3D semantic scene-scale data without relying on any projection or decoupled trained multi-resolution models, achieving more realistic semantic scene data generation compared to previous state-of-the-art methods. Besides improving 3D semantic scene-scale data synthesis, we thoroughly evaluate the use of the synthetic scene samples as labeled data to train a semantic segmentation network. In our experiments, we show that using the synthetic annotated data generated by our method as training data together with the real semantic segmentation labels, leads to an improvement in the semantic segmentation model performance. Our results show the potential of generated scene-scale point clouds to generate more training data to extend existing datasets, reducing the data annotation effort. Our code is available at https://github.com/PRBonn/3DiSS.
AgriField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The application of artificial intelligence (AI) in three-dimensional (3D) agricultural research, particularly for maize, has been limited by the scarcity of large-scale, diverse datasets. While 2D image datasets are abundant, they fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present AgriField3D (https://baskargroup.github.io/AgriField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset comprises over 1,000 high-quality point clouds collected using a Terrestrial Laser Scanner, complemented by procedural models that provide structured, parametric representations of maize plants. These procedural models, generated using Non-Uniform Rational B-Splines (NURBS) and optimized via a two-step process combining Particle Swarm Optimization (PSO) and differentiable programming, enable precise, scalable reconstructions of leaf surfaces and plant architectures. To enhance usability, we performed graph-based segmentation to isolate individual leaves and stalks, ensuring consistent labeling across all samples. We also conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset further includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled versions (100k, 50k, 10k points) optimized for various computational needs. By integrating point cloud data of field grown plants with high-fidelity procedural models and ensuring meticulous manual validation, AgriField3D provides a comprehensive foundation for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
Automated analysis of vast Earth observation data via interactive Vision-Language Models (VLMs) can unlock new opportunities for environmental monitoring, disaster response, and {resource management}. Existing generic VLMs do not perform well on Remote Sensing data, while the recent Geo-spatial VLMs remain restricted to a fixed resolution and few sensor modalities. In this paper, we introduce EarthDial, a conversational assistant specifically designed for Earth Observation (EO) data, transforming complex, multi-sensory Earth observations into interactive, natural language dialogues. EarthDial supports multi-spectral, multi-temporal, and multi-resolution imagery, enabling a wide range of remote sensing tasks, including classification, detection, captioning, question answering, visual reasoning, and visual grounding. To achieve this, we introduce an extensive instruction tuning dataset comprising over 11.11M instruction pairs covering RGB, Synthetic Aperture Radar (SAR), and multispectral modalities such as Near-Infrared (NIR) and infrared. Furthermore, EarthDial handles bi-temporal and multi-temporal sequence analysis for applications like change detection. Our extensive experimental results on 44 downstream datasets demonstrate that EarthDial outperforms existing generic and domain-specific models, achieving better generalization across various EO tasks. Our source codes and pre-trained models are at https://github.com/hiyamdebary/EarthDial.
BeamLearning: an end-to-end Deep Learning approach for the angular localization of sound sources using raw multichannel acoustic pressure data
Sound sources localization using multichannel signal processing has been a subject of active research for decades. In recent years, the use of deep learning in audio signal processing has allowed to drastically improve performances for machine hearing. This has motivated the scientific community to also develop machine learning strategies for source localization applications. In this paper, we present BeamLearning, a multi-resolution deep learning approach that allows to encode relevant information contained in unprocessed time domain acoustic signals captured by microphone arrays. The use of raw data aims at avoiding simplifying hypothesis that most traditional model-based localization methods rely on. Benefits of its use are shown for realtime sound source 2D-localization tasks in reverberating and noisy environments. Since supervised machine learning approaches require large-sized, physically realistic, precisely labelled datasets, we also developed a fast GPU-based computation of room impulse responses using fractional delays for image source models. A thorough analysis of the network representation and extensive performance tests are carried out using the BeamLearning network with synthetic and experimental datasets. Obtained results demonstrate that the BeamLearning approach significantly outperforms the wideband MUSIC and SRP-PHAT methods in terms of localization accuracy and computational efficiency in presence of heavy measurement noise and reverberation.
Text2Earth: Unlocking Text-driven Remote Sensing Image Generation with a Global-Scale Dataset and a Foundation Model
Generative foundation models have advanced large-scale text-driven natural image generation, becoming a prominent research trend across various vertical domains. However, in the remote sensing field, there is still a lack of research on large-scale text-to-image (text2image) generation technology. Existing remote sensing image-text datasets are small in scale and confined to specific geographic areas and scene types. Besides, existing text2image methods have struggled to achieve global-scale, multi-resolution controllable, and unbounded image generation. To address these challenges, this paper presents two key contributions: the Git-10M dataset and the Text2Earth foundation model. Git-10M is a global-scale image-text dataset comprising 10 million image-text pairs, 5 times larger than the previous largest one. The dataset covers a wide range of geographic scenes and contains resolution information, significantly surpassing existing datasets in both size and diversity. Building on Git-10M, we propose Text2Earth, a 1.3 billion parameter generative foundation model based on the diffusion framework to model global-scale remote sensing scenes. Text2Earth integrates a resolution guidance mechanism, enabling users to specify image resolutions. A dynamic condition adaptation strategy is proposed for training and inference to improve image quality. Text2Earth excels in zero-shot text2image generation and demonstrates robust generalization and flexibility across multiple tasks, including unbounded scene construction, image editing, and cross-modal image generation. This robust capability surpasses previous models restricted to the basic fixed size and limited scene types. On the previous benchmark dataset, Text2Earth outperforms previous models with an improvement of +26.23 FID and +20.95% Zero-shot Cls-OA metric.Our project page is https://chen-yang-liu.github.io/Text2Earth
Concentric Spherical GNN for 3D Representation Learning
Learning 3D representations that generalize well to arbitrarily oriented inputs is a challenge of practical importance in applications varying from computer vision to physics and chemistry. We propose a novel multi-resolution convolutional architecture for learning over concentric spherical feature maps, of which the single sphere representation is a special case. Our hierarchical architecture is based on alternatively learning to incorporate both intra-sphere and inter-sphere information. We show the applicability of our method for two different types of 3D inputs, mesh objects, which can be regularly sampled, and point clouds, which are irregularly distributed. We also propose an efficient mapping of point clouds to concentric spherical images, thereby bridging spherical convolutions on grids with general point clouds. We demonstrate the effectiveness of our approach in improving state-of-the-art performance on 3D classification tasks with rotated data.
DGInStyle: Domain-Generalizable Semantic Segmentation with Image Diffusion Models and Stylized Semantic Control
Large, pretrained latent diffusion models (LDMs) have demonstrated an extraordinary ability to generate creative content, specialize to user data through few-shot fine-tuning, and condition their output on other modalities, such as semantic maps. However, are they usable as large-scale data generators, e.g., to improve tasks in the perception stack, like semantic segmentation? We investigate this question in the context of autonomous driving, and answer it with a resounding "yes". We propose an efficient data generation pipeline termed DGInStyle. First, we examine the problem of specializing a pretrained LDM to semantically-controlled generation within a narrow domain. Second, we design a Multi-resolution Latent Fusion technique to overcome the bias of LDMs towards dominant objects. Third, we propose a Style Swap technique to endow the rich generative prior with the learned semantic control. Using DGInStyle, we generate a diverse dataset of street scenes, train a domain-agnostic semantic segmentation model on it, and evaluate the model on multiple popular autonomous driving datasets. Our approach consistently increases the performance of several domain generalization methods, in some cases by +2.5 mIoU compared to the previous state-of-the-art method without our generative augmentation scheme. Source code and dataset are available at https://dginstyle.github.io .
AutoGUI: Scaling GUI Grounding with Automatic Functionality Annotations from LLMs
User interface understanding with vision-language models has received much attention due to its potential for enabling next-generation software automation. However, existing UI datasets either only provide large-scale context-free element annotations or contextualized functional descriptions for elements at a much smaller scale. In this work, we propose the pipeline for automatically annotating UI elements with detailed functionality descriptions at scale. Specifically, we leverage large language models (LLMs) to infer element functionality by comparing the UI content changes before and after simulated interactions with specific UI elements. To improve annotation quality, we propose LLM-aided rejection and verification, eliminating invalid and incorrect annotations without human labor. We construct an -704k dataset using the proposed pipeline, featuring multi-resolution, multi-device screenshots, diverse data domains, and detailed functionality annotations that have never been provided by previous datasets. Human evaluation shows that the AutoGUI pipeline achieves annotation correctness comparable to trained human annotators. Extensive experimental results show that our -704k dataset remarkably enhances VLM's UI grounding capabilities, exhibits significant scaling effects, and outperforms existing web pre-training data types. We envision AutoGUI as a scalable pipeline for generating massive data to build GUI-oriented VLMs. AutoGUI dataset can be viewed at this anonymous URL: https://autogui-project.github.io/.
Scaling Attention to Very Long Sequences in Linear Time with Wavelet-Enhanced Random Spectral Attention (WERSA)
Transformer models are computationally costly on long sequences since regular attention has quadratic O(n^2) time complexity. We introduce Wavelet-Enhanced Random Spectral Attention (WERSA), a novel mechanism of linear O(n) time complexity that is pivotal to enable successful long-sequence processing without the performance trade-off. WERSA merges content-adaptive random spectral features together with multi-resolution Haar wavelets and learnable parameters to selectively attend to informative scales of data while preserving linear efficiency. Large-scale comparisons on single GPU and across various benchmarks (vision, NLP, hierarchical reasoning) and various attention mechanisms (like Multiheaded Attention, Flash-Attention-2, FNet, Linformer, Performer, Waveformer), reveal uniform advantages of WERSA. It achieves best accuracy in all tests. On ArXiv classification, WERSA improves accuracy over vanilla attention by 1.2\% (86.2\% vs 85.0\%) while cutting training time by 81\% (296s vs 1554s) and FLOPS by 73.4\% (26.2G vs 98.4G). Significantly, WERSA excels where vanilla and FlashAttention-2 fail: on ArXiv-128k's extremely lengthy sequences, it achieves best accuracy (79.1\%) and AUC (0.979) among viable methods, operating on data that gives Out-Of-Memory errors to quadratic methods while being twice as fast as Waveformer, its next-best competitor. By significantly reducing computational loads without compromising accuracy, WERSA makes possible more practical, more affordable, long-context models, in particular on low-resource hardware, for more sustainable and more scalable AI development.
TimeFound: A Foundation Model for Time Series Forecasting
We present TimeFound, an encoder-decoder transformer-based time series foundation model for out-of-the-box zero-shot forecasting. To handle time series data from various domains, TimeFound employs a multi-resolution patching strategy to capture complex temporal patterns at multiple scales. We pre-train our model with two sizes (200M and 710M parameters) on a large time-series corpus comprising both real-world and synthetic datasets. Over a collection of unseen datasets across diverse domains and forecasting horizons, our empirical evaluations suggest that TimeFound can achieve superior or competitive zero-shot forecasting performance, compared to state-of-the-art time series foundation models.
Text Detection and Recognition in the Wild: A Review
Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.
Dress Code: High-Resolution Multi-Category Virtual Try-On
Image-based virtual try-on strives to transfer the appearance of a clothing item onto the image of a target person. Prior work focuses mainly on upper-body clothes (e.g. t-shirts, shirts, and tops) and neglects full-body or lower-body items. This shortcoming arises from a main factor: current publicly available datasets for image-based virtual try-on do not account for this variety, thus limiting progress in the field. To address this deficiency, we introduce Dress Code, which contains images of multi-category clothes. Dress Code is more than 3x larger than publicly available datasets for image-based virtual try-on and features high-resolution paired images (1024x768) with front-view, full-body reference models. To generate HD try-on images with high visual quality and rich in details, we propose to learn fine-grained discriminating features. Specifically, we leverage a semantic-aware discriminator that makes predictions at pixel-level instead of image- or patch-level. Extensive experimental evaluation demonstrates that the proposed approach surpasses the baselines and state-of-the-art competitors in terms of visual quality and quantitative results. The Dress Code dataset is publicly available at https://github.com/aimagelab/dress-code.
Pippo: High-Resolution Multi-View Humans from a Single Image
We present Pippo, a generative model capable of producing 1K resolution dense turnaround videos of a person from a single casually clicked photo. Pippo is a multi-view diffusion transformer and does not require any additional inputs - e.g., a fitted parametric model or camera parameters of the input image. We pre-train Pippo on 3B human images without captions, and conduct multi-view mid-training and post-training on studio captured humans. During mid-training, to quickly absorb the studio dataset, we denoise several (up to 48) views at low-resolution, and encode target cameras coarsely using a shallow MLP. During post-training, we denoise fewer views at high-resolution and use pixel-aligned controls (e.g., Spatial anchor and Plucker rays) to enable 3D consistent generations. At inference, we propose an attention biasing technique that allows Pippo to simultaneously generate greater than 5 times as many views as seen during training. Finally, we also introduce an improved metric to evaluate 3D consistency of multi-view generations, and show that Pippo outperforms existing works on multi-view human generation from a single image.
RoundaboutHD: High-Resolution Real-World Urban Environment Benchmark for Multi-Camera Vehicle Tracking
The multi-camera vehicle tracking (MCVT) framework holds significant potential for smart city applications, including anomaly detection, traffic density estimation, and suspect vehicle tracking. However, current publicly available datasets exhibit limitations, such as overly simplistic scenarios, low-resolution footage, and insufficiently diverse conditions, creating a considerable gap between academic research and real-world scenario. To fill this gap, we introduce RoundaboutHD, a comprehensive, high-resolution multi-camera vehicle tracking benchmark dataset specifically designed to represent real-world roundabout scenarios. RoundaboutHD provides a total of 40 minutes of labelled video footage captured by four non-overlapping, high-resolution (4K resolution, 15 fps) cameras. In total, 512 unique vehicle identities are annotated across different camera views, offering rich cross-camera association data. RoundaboutHD offers temporal consistency video footage and enhanced challenges, including increased occlusions and nonlinear movement inside the roundabout. In addition to the full MCVT dataset, several subsets are also available for object detection, single camera tracking, and image-based vehicle re-identification (ReID) tasks. Vehicle model information and camera modelling/ geometry information are also included to support further analysis. We provide baseline results for vehicle detection, single-camera tracking, image-based vehicle re-identification, and multi-camera tracking. The dataset and the evaluation code are publicly available at: https://github.com/siri-rouser/RoundaboutHD.git
Addressing the Depth-of-Field Constraint: A New Paradigm for High Resolution Multi-Focus Image Fusion
Multi-focus image fusion (MFIF) addresses the depth-of-field (DOF) limitations of optical lenses, where only objects within a specific range appear sharp. Although traditional and deep learning methods have advanced the field, challenges persist, including limited training data, domain gaps from synthetic datasets, and difficulties with regions lacking information. We propose VAEEDOF, a novel MFIF method that uses a distilled variational autoencoder for high-fidelity, efficient image reconstruction. Our fusion module processes up to seven images simultaneously, enabling robust fusion across diverse focus points. To address data scarcity, we introduce MattingMFIF, a new syntetic 4K dataset, simulating realistic DOF effects from real photographs. Our method achieves state-of-the-art results, generating seamless artifact-free fused images and bridging the gap between synthetic and real-world scenarios, offering a significant step forward in addressing complex MFIF challenges. The code, and weights are available here:
Preface: A Data-driven Volumetric Prior for Few-shot Ultra High-resolution Face Synthesis
NeRFs have enabled highly realistic synthesis of human faces including complex appearance and reflectance effects of hair and skin. These methods typically require a large number of multi-view input images, making the process hardware intensive and cumbersome, limiting applicability to unconstrained settings. We propose a novel volumetric human face prior that enables the synthesis of ultra high-resolution novel views of subjects that are not part of the prior's training distribution. This prior model consists of an identity-conditioned NeRF, trained on a dataset of low-resolution multi-view images of diverse humans with known camera calibration. A simple sparse landmark-based 3D alignment of the training dataset allows our model to learn a smooth latent space of geometry and appearance despite a limited number of training identities. A high-quality volumetric representation of a novel subject can be obtained by model fitting to 2 or 3 camera views of arbitrary resolution. Importantly, our method requires as few as two views of casually captured images as input at inference time.
DTVNet+: A High-Resolution Scenic Dataset for Dynamic Time-lapse Video Generation
This paper presents a novel end-to-end dynamic time-lapse video generation framework, named DTVNet, to generate diversified time-lapse videos from a single landscape image conditioned on normalized motion vectors. The proposed DTVNet consists of two submodules: Optical Flow Encoder (OFE) and Dynamic Video Generator (DVG). The OFE maps a sequence of optical flow maps to a normalized motion vector that encodes the motion information of the generated video. The DVG contains motion and content streams to learn from the motion vector and the single landscape image. Besides, it contains an encoder to learn shared content features and a decoder to construct video frames with corresponding motion. Specifically, the motion stream introduces multiple adaptive instance normalization (AdaIN) layers to integrate multi-level motion information for controlling the object motion. In the testing stage, videos with the same content but various motion information can be generated by different normalized motion vectors based on only one input image. Also, we propose a high-resolution scenic time-lapse video dataset, named Quick-Sky-Time, to evaluate different approaches, which can be viewed as a new benchmark for high-quality scenic image and video generation tasks. We further conduct experiments on Sky Time-lapse, Beach, and Quick-Sky-Time datasets. The results demonstrate the superiority of our approach over state-of-the-art methods for generating high-quality and various dynamic videos.
OtterHD: A High-Resolution Multi-modality Model
In this paper, we present OtterHD-8B, an innovative multimodal model evolved from Fuyu-8B, specifically engineered to interpret high-resolution visual inputs with granular precision. Unlike conventional models that are constrained by fixed-size vision encoders, OtterHD-8B boasts the ability to handle flexible input dimensions, ensuring its versatility across various inference requirements. Alongside this model, we introduce MagnifierBench, an evaluation framework designed to scrutinize models' ability to discern minute details and spatial relationships of small objects. Our comparative analysis reveals that while current leading models falter on this benchmark, OtterHD-8B, particularly when directly processing high-resolution inputs, outperforms its counterparts by a substantial margin. The findings illuminate the structural variances in visual information processing among different models and the influence that the vision encoders' pre-training resolution disparities have on model effectiveness within such benchmarks. Our study highlights the critical role of flexibility and high-resolution input capabilities in large multimodal models and also exemplifies the potential inherent in the Fuyu architecture's simplicity for handling complex visual data.
SWE-Factory: Your Automated Factory for Issue Resolution Training Data and Evaluation Benchmarks
Constructing large-scale datasets for the GitHub issue resolution task is crucial for both training and evaluating the software engineering capabilities of Large Language Models (LLMs). However, the traditional process for creating such benchmarks is notoriously challenging and labor-intensive, particularly in the stages of setting up evaluation environments, grading test outcomes, and validating task instances. In this paper, we propose SWE-Factory, an automated pipeline designed to address these challenges. To tackle these issues, our pipeline integrates three core automated components. First, we introduce SWE-Builder, a multi-agent system that automates evaluation environment construction, which employs four specialized agents that work in a collaborative, iterative loop and leverages an environment memory pool to enhance efficiency. Second, we introduce a standardized, exit-code-based grading method that eliminates the need for manually writing custom parsers. Finally, we automate the fail2pass validation process using these reliable exit code signals. Experiments on 671 issues across four programming languages show that our pipeline can effectively construct valid task instances; for example, with GPT-4.1-mini, our SWE-Builder constructs 269 valid instances at 0.045 per instance, while with Gemini-2.5-flash, it achieves comparable performance at the lowest cost of 0.024 per instance. We also demonstrate that our exit-code-based grading achieves 100% accuracy compared to manual inspection, and our automated fail2pass validation reaches a precision of 0.92 and a recall of 1.00. We hope our automated pipeline will accelerate the collection of large-scale, high-quality GitHub issue resolution datasets for both training and evaluation. Our code and datasets are released at https://github.com/DeepSoftwareAnalytics/swe-factory.
Consistent Direct Time-of-Flight Video Depth Super-Resolution
Direct time-of-flight (dToF) sensors are promising for next-generation on-device 3D sensing. However, limited by manufacturing capabilities in a compact module, the dToF data has a low spatial resolution (e.g., sim 20times30 for iPhone dToF), and it requires a super-resolution step before being passed to downstream tasks. In this paper, we solve this super-resolution problem by fusing the low-resolution dToF data with the corresponding high-resolution RGB guidance. Unlike the conventional RGB-guided depth enhancement approaches, which perform the fusion in a per-frame manner, we propose the first multi-frame fusion scheme to mitigate the spatial ambiguity resulting from the low-resolution dToF imaging. In addition, dToF sensors provide unique depth histogram information for each local patch, and we incorporate this dToF-specific feature in our network design to further alleviate spatial ambiguity. To evaluate our models on complex dynamic indoor environments and to provide a large-scale dToF sensor dataset, we introduce DyDToF, the first synthetic RGB-dToF video dataset that features dynamic objects and a realistic dToF simulator following the physical imaging process. We believe the methods and dataset are beneficial to a broad community as dToF depth sensing is becoming mainstream on mobile devices. Our code and data are publicly available: https://github.com/facebookresearch/DVSR/
CanadaFireSat: Toward high-resolution wildfire forecasting with multiple modalities
Canada experienced in 2023 one of the most severe wildfire seasons in recent history, causing damage across ecosystems, destroying communities, and emitting large quantities of CO2. This extreme wildfire season is symptomatic of a climate-change-induced increase in the length and severity of the fire season that affects the boreal ecosystem. Therefore, it is critical to empower wildfire management in boreal communities with better mitigation solutions. Wildfire probability maps represent an important tool for understanding the likelihood of wildfire occurrence and the potential severity of future wildfires. The massive increase in the availability of Earth observation data has enabled the development of deep learning-based wildfire forecasting models, aiming at providing precise wildfire probability maps at different spatial and temporal scales. A main limitation of such methods is their reliance on coarse-resolution environmental drivers and satellite products, leading to wildfire occurrence prediction of reduced resolution, typically around sim 0.1{\deg}. This paper presents a benchmark dataset: CanadaFireSat, and baseline methods for high-resolution: 100 m wildfire forecasting across Canada, leveraging multi-modal data from high-resolution multi-spectral satellite images (Sentinel-2 L1C), mid-resolution satellite products (MODIS), and environmental factors (ERA5 reanalysis data). Our experiments consider two major deep learning architectures. We observe that using multi-modal temporal inputs outperforms single-modal temporal inputs across all metrics, achieving a peak performance of 60.3% in F1 score for the 2023 wildfire season, a season never seen during model training. This demonstrates the potential of multi-modal deep learning models for wildfire forecasting at high-resolution and continental scale.
Zenseact Open Dataset: A large-scale and diverse multimodal dataset for autonomous driving
Existing datasets for autonomous driving (AD) often lack diversity and long-range capabilities, focusing instead on 360{\deg} perception and temporal reasoning. To address this gap, we introduce Zenseact Open Dataset (ZOD), a large-scale and diverse multimodal dataset collected over two years in various European countries, covering an area 9x that of existing datasets. ZOD boasts the highest range and resolution sensors among comparable datasets, coupled with detailed keyframe annotations for 2D and 3D objects (up to 245m), road instance/semantic segmentation, traffic sign recognition, and road classification. We believe that this unique combination will facilitate breakthroughs in long-range perception and multi-task learning. The dataset is composed of Frames, Sequences, and Drives, designed to encompass both data diversity and support for spatio-temporal learning, sensor fusion, localization, and mapping. Frames consist of 100k curated camera images with two seconds of other supporting sensor data, while the 1473 Sequences and 29 Drives include the entire sensor suite for 20 seconds and a few minutes, respectively. ZOD is the only large-scale AD dataset released under a permissive license, allowing for both research and commercial use. The dataset is accompanied by an extensive development kit. Data and more information are available online (https://zod.zenseact.com).
Alberta Wells Dataset: Pinpointing Oil and Gas Wells from Satellite Imagery
Millions of abandoned oil and gas wells are scattered across the world, leaching methane into the atmosphere and toxic compounds into the groundwater. Many of these locations are unknown, preventing the wells from being plugged and their polluting effects averted. Remote sensing is a relatively unexplored tool for pinpointing abandoned wells at scale. We introduce the first large-scale benchmark dataset for this problem, leveraging medium-resolution multi-spectral satellite imagery from Planet Labs. Our curated dataset comprises over 213,000 wells (abandoned, suspended, and active) from Alberta, a region with especially high well density, sourced from the Alberta Energy Regulator and verified by domain experts. We evaluate baseline algorithms for well detection and segmentation, showing the promise of computer vision approaches but also significant room for improvement.
IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo
We present IterMVS, a new data-driven method for high-resolution multi-view stereo. We propose a novel GRU-based estimator that encodes pixel-wise probability distributions of depth in its hidden state. Ingesting multi-scale matching information, our model refines these distributions over multiple iterations and infers depth and confidence. To extract the depth maps, we combine traditional classification and regression in a novel manner. We verify the efficiency and effectiveness of our method on DTU, Tanks&Temples and ETH3D. While being the most efficient method in both memory and run-time, our model achieves competitive performance on DTU and better generalization ability on Tanks&Temples as well as ETH3D than most state-of-the-art methods. Code is available at https://github.com/FangjinhuaWang/IterMVS.
Reference-based Video Super-Resolution Using Multi-Camera Video Triplets
We propose the first reference-based video super-resolution (RefVSR) approach that utilizes reference videos for high-fidelity results. We focus on RefVSR in a triple-camera setting, where we aim at super-resolving a low-resolution ultra-wide video utilizing wide-angle and telephoto videos. We introduce the first RefVSR network that recurrently aligns and propagates temporal reference features fused with features extracted from low-resolution frames. To facilitate the fusion and propagation of temporal reference features, we propose a propagative temporal fusion module. For learning and evaluation of our network, we present the first RefVSR dataset consisting of triplets of ultra-wide, wide-angle, and telephoto videos concurrently taken from triple cameras of a smartphone. We also propose a two-stage training strategy fully utilizing video triplets in the proposed dataset for real-world 4x video super-resolution. We extensively evaluate our method, and the result shows the state-of-the-art performance in 4x super-resolution.
LingMess: Linguistically Informed Multi Expert Scorers for Coreference Resolution
While coreference resolution typically involves various linguistic challenges, recent models are based on a single pairwise scorer for all types of pairs. We present LingMess, a new coreference model that defines different categories of coreference cases and optimize multiple pairwise scorers, where each scorer learns a specific set of linguistic challenges. Our model substantially improves pairwise scores for most categories and outperforms cluster-level performance on Ontonotes and 5 additional datasets. Our model is available in https://github.com/shon-otmazgin/lingmess-coref
Robust Table Integration in Data Lakes
In this paper, we investigate the challenge of integrating tables from data lakes, focusing on three core tasks: 1) pairwise integrability judgment, which determines whether a tuple pair in a table is integrable, accounting for any occurrences of semantic equivalence or typographical errors; 2) integrable set discovery, which aims to identify all integrable sets in a table based on pairwise integrability judgments established in the first task; 3) multi-tuple conflict resolution, which resolves conflicts among multiple tuples during integration. We train a binary classifier to address the task of pairwise integrability judgment. Given the scarcity of labeled data, we propose a self-supervised adversarial contrastive learning algorithm to perform classification, which incorporates data augmentation methods and adversarial examples to autonomously generate new training data. Upon the output of pairwise integrability judgment, each integrable set is considered as a community, a densely connected sub-graph where nodes and edges correspond to tuples in the table and their pairwise integrability, respectively. We proceed to investigate various community detection algorithms to address the integrable set discovery objective. Moving forward to tackle multi-tuple conflict resolution, we introduce an novel in-context learning methodology. This approach capitalizes on the knowledge embedded within pretrained large language models to effectively resolve conflicts that arise when integrating multiple tuples. Notably, our method minimizes the need for annotated data. Since no suitable test collections are available for our tasks, we develop our own benchmarks using two real-word dataset repositories: Real and Join. We conduct extensive experiments on these benchmarks to validate the robustness and applicability of our methodologies in the context of integrating tables within data lakes.
UnitedHuman: Harnessing Multi-Source Data for High-Resolution Human Generation
Human generation has achieved significant progress. Nonetheless, existing methods still struggle to synthesize specific regions such as faces and hands. We argue that the main reason is rooted in the training data. A holistic human dataset inevitably has insufficient and low-resolution information on local parts. Therefore, we propose to use multi-source datasets with various resolution images to jointly learn a high-resolution human generative model. However, multi-source data inherently a) contains different parts that do not spatially align into a coherent human, and b) comes with different scales. To tackle these challenges, we propose an end-to-end framework, UnitedHuman, that empowers continuous GAN with the ability to effectively utilize multi-source data for high-resolution human generation. Specifically, 1) we design a Multi-Source Spatial Transformer that spatially aligns multi-source images to full-body space with a human parametric model. 2) Next, a continuous GAN is proposed with global-structural guidance and CutMix consistency. Patches from different datasets are then sampled and transformed to supervise the training of this scale-invariant generative model. Extensive experiments demonstrate that our model jointly learned from multi-source data achieves superior quality than those learned from a holistic dataset.
Global Rice Multi-Class Segmentation Dataset (RiceSEG): A Comprehensive and Diverse High-Resolution RGB-Annotated Images for the Development and Benchmarking of Rice Segmentation Algorithms
Developing computer vision-based rice phenotyping techniques is crucial for precision field management and accelerating breeding, thereby continuously advancing rice production. Among phenotyping tasks, distinguishing image components is a key prerequisite for characterizing plant growth and development at the organ scale, enabling deeper insights into eco-physiological processes. However, due to the fine structure of rice organs and complex illumination within the canopy, this task remains highly challenging, underscoring the need for a high-quality training dataset. Such datasets are scarce, both due to a lack of large, representative collections of rice field images and the time-intensive nature of annotation. To address this gap, we established the first comprehensive multi-class rice semantic segmentation dataset, RiceSEG. We gathered nearly 50,000 high-resolution, ground-based images from five major rice-growing countries (China, Japan, India, the Philippines, and Tanzania), encompassing over 6,000 genotypes across all growth stages. From these original images, 3,078 representative samples were selected and annotated with six classes (background, green vegetation, senescent vegetation, panicle, weeds, and duckweed) to form the RiceSEG dataset. Notably, the sub-dataset from China spans all major genotypes and rice-growing environments from the northeast to the south. Both state-of-the-art convolutional neural networks and transformer-based semantic segmentation models were used as baselines. While these models perform reasonably well in segmenting background and green vegetation, they face difficulties during the reproductive stage, when canopy structures are more complex and multiple classes are involved. These findings highlight the importance of our dataset for developing specialized segmentation models for rice and other crops.
ClimSim: An open large-scale dataset for training high-resolution physics emulators in hybrid multi-scale climate simulators
Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state. The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res, https://huggingface.co/datasets/LEAP/ClimSim_low-res, and https://huggingface.co/datasets/LEAP/ClimSim_low-res_aqua-planet) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society.
Multi-human Interactive Talking Dataset
Existing studies on talking video generation have predominantly focused on single-person monologues or isolated facial animations, limiting their applicability to realistic multi-human interactions. To bridge this gap, we introduce MIT, a large-scale dataset specifically designed for multi-human talking video generation. To this end, we develop an automatic pipeline that collects and annotates multi-person conversational videos. The resulting dataset comprises 12 hours of high-resolution footage, each featuring two to four speakers, with fine-grained annotations of body poses and speech interactions. It captures natural conversational dynamics in multi-speaker scenario, offering a rich resource for studying interactive visual behaviors. To demonstrate the potential of MIT, we furthur propose CovOG, a baseline model for this novel task. It integrates a Multi-Human Pose Encoder (MPE) to handle varying numbers of speakers by aggregating individual pose embeddings, and an Interactive Audio Driver (IAD) to modulate head dynamics based on speaker-specific audio features. Together, these components showcase the feasibility and challenges of generating realistic multi-human talking videos, establishing MIT as a valuable benchmark for future research. The code is avalibale at: https://github.com/showlab/Multi-human-Talking-Video-Dataset.
Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs
Memory complexity and data scarcity have so far prohibited learning solution operators of partial differential equations (PDEs) at high resolutions. We address these limitations by introducing a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization, called multi-grid tensorized neural operator (MG-TFNO). MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena, through a decomposition of both the input domain and the operator's parameter space. Our contributions are threefold: i) we enable parallelization over input samples with a novel multi-grid-based domain decomposition, ii) we represent the parameters of the model in a high-order latent subspace of the Fourier domain, through a global tensor factorization, resulting in an extreme reduction in the number of parameters and improved generalization, and iii) we propose architectural improvements to the backbone FNO. Our approach can be used in any operator learning setting. We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression. The tensorization combined with the domain decomposition, yields over 150x reduction in the number of parameters and 7x reduction in the domain size without losses in accuracy, while slightly enabling parallelism.
PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps
We present PrediTree, the first comprehensive open-source dataset designed for training and evaluating tree height prediction models at sub-meter resolution. This dataset combines very high-resolution (0.5m) LiDAR-derived canopy height maps, spatially aligned with multi-temporal and multi-spectral imagery, across diverse forest ecosystems in France, totaling 3,141,568 images. PrediTree addresses a critical gap in forest monitoring capabilities by enabling the training of deep learning methods that can predict tree growth based on multiple past observations. %Initially focused on French forests, PrediTree is designed as an expanding resource with ongoing efforts to incorporate data from other countries. To make use of this PrediTree dataset, we propose an encoder-decoder framework that requires the multi-temporal multi-spectral imagery and the relative time differences in years between the canopy height map timestamp (target) and each image acquisition date for which this framework predicts the canopy height. The conducted experiments demonstrate that a U-Net architecture trained on the PrediTree dataset provides the highest masked mean squared error of 11.78%, outperforming the next-best architecture, ResNet-50, by around 12%, and cutting the error of the same experiments but on fewer bands (red, green, blue only), by around 30%. This dataset is publicly available on URL{HuggingFace}, and both processing and training codebases are available on URL{GitHub}.
Learning Data-Driven Vector-Quantized Degradation Model for Animation Video Super-Resolution
Existing real-world video super-resolution (VSR) methods focus on designing a general degradation pipeline for open-domain videos while ignoring data intrinsic characteristics which strongly limit their performance when applying to some specific domains (e.g. animation videos). In this paper, we thoroughly explore the characteristics of animation videos and leverage the rich priors in real-world animation data for a more practical animation VSR model. In particular, we propose a multi-scale Vector-Quantized Degradation model for animation video Super-Resolution (VQD-SR) to decompose the local details from global structures and transfer the degradation priors in real-world animation videos to a learned vector-quantized codebook for degradation modeling. A rich-content Real Animation Low-quality (RAL) video dataset is collected for extracting the priors. We further propose a data enhancement strategy for high-resolution (HR) training videos based on our observation that existing HR videos are mostly collected from the Web which contains conspicuous compression artifacts. The proposed strategy is valid to lift the upper bound of animation VSR performance, regardless of the specific VSR model. Experimental results demonstrate the superiority of the proposed VQD-SR over state-of-the-art methods, through extensive quantitative and qualitative evaluations of the latest animation video super-resolution benchmark.
Hyperspectral Image Super-Resolution with Spectral Mixup and Heterogeneous Datasets
This work studies Hyperspectral image (HSI) super-resolution (SR). HSI SR is characterized by high-dimensional data and a limited amount of training examples. This exacerbates the undesirable behaviors of neural networks such as memorization and sensitivity to out-of-distribution samples. This work addresses these issues with three contributions. First, we observe that HSI SR and RGB image SR are correlated and develop a novel multi-tasking network to train them jointly so that the auxiliary task RGB image SR can provide additional supervision. Second, we propose a simple, yet effective data augmentation routine, termed Spectral Mixup, to construct effective virtual training samples to enlarge the training set. Finally, we extend the network to a semi-supervised setting so that it can learn from datasets containing only low-resolution HSIs. With these contributions, our method is able to learn from heterogeneous datasets and lift the requirement for having a large amount of HD HSI training samples. Extensive experiments on four standard datasets show that our method outperforms existing methods significantly and underpin the relevance of our contributions. Code has been made available at https://github.com/kli8996/HSISR.
AMEX: Android Multi-annotation Expo Dataset for Mobile GUI Agents
AI agents have drawn increasing attention mostly on their ability to perceive environments, understand tasks, and autonomously achieve goals. To advance research on AI agents in mobile scenarios, we introduce the Android Multi-annotation EXpo (AMEX), a comprehensive, large-scale dataset designed for generalist mobile GUI-control agents. Their capabilities of completing complex tasks by directly interacting with the graphical user interface (GUI) on mobile devices are trained and evaluated with the proposed dataset. AMEX comprises over 104K high-resolution screenshots from 110 popular mobile applications, which are annotated at multiple levels. Unlike existing mobile device-control datasets, e.g., MoTIF, AitW, etc., AMEX includes three levels of annotations: GUI interactive element grounding, GUI screen and element functionality descriptions, and complex natural language instructions, each averaging 13 steps with stepwise GUI-action chains. We develop this dataset from a more instructive and detailed perspective, complementing the general settings of existing datasets. Additionally, we develop a baseline model SPHINX Agent and compare its performance across state-of-the-art agents trained on other datasets. To facilitate further research, we open-source our dataset, models, and relevant evaluation tools. The project is available at https://yuxiangchai.github.io/AMEX/
BlendedMVS: A Large-scale Dataset for Generalized Multi-view Stereo Networks
While deep learning has recently achieved great success on multi-view stereo (MVS), limited training data makes the trained model hard to be generalized to unseen scenarios. Compared with other computer vision tasks, it is rather difficult to collect a large-scale MVS dataset as it requires expensive active scanners and labor-intensive process to obtain ground truth 3D structures. In this paper, we introduce BlendedMVS, a novel large-scale dataset, to provide sufficient training ground truth for learning-based MVS. To create the dataset, we apply a 3D reconstruction pipeline to recover high-quality textured meshes from images of well-selected scenes. Then, we render these mesh models to color images and depth maps. To introduce the ambient lighting information during training, the rendered color images are further blended with the input images to generate the training input. Our dataset contains over 17k high-resolution images covering a variety of scenes, including cities, architectures, sculptures and small objects. Extensive experiments demonstrate that BlendedMVS endows the trained model with significantly better generalization ability compared with other MVS datasets. The dataset and pretrained models are available at https://github.com/YoYo000/BlendedMVS.
InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset
Datasets have gained an enormous amount of popularity in the computer vision community, from training and evaluation of Deep Learning-based methods to benchmarking Simultaneous Localization and Mapping (SLAM). Without a doubt, synthetic imagery bears a vast potential due to scalability in terms of amounts of data obtainable without tedious manual ground truth annotations or measurements. Here, we present a dataset with the aim of providing a higher degree of photo-realism, larger scale, more variability as well as serving a wider range of purposes compared to existing datasets. Our dataset leverages the availability of millions of professional interior designs and millions of production-level furniture and object assets -- all coming with fine geometric details and high-resolution texture. We render high-resolution and high frame-rate video sequences following realistic trajectories while supporting various camera types as well as providing inertial measurements. Together with the release of the dataset, we will make executable program of our interactive simulator software as well as our renderer available at https://interiornetdataset.github.io. To showcase the usability and uniqueness of our dataset, we show benchmarking results of both sparse and dense SLAM algorithms.
High-Resolution Image Inpainting using Multi-Scale Neural Patch Synthesis
Recent advances in deep learning have shown exciting promise in filling large holes in natural images with semantically plausible and context aware details, impacting fundamental image manipulation tasks such as object removal. While these learning-based methods are significantly more effective in capturing high-level features than prior techniques, they can only handle very low-resolution inputs due to memory limitations and difficulty in training. Even for slightly larger images, the inpainted regions would appear blurry and unpleasant boundaries become visible. We propose a multi-scale neural patch synthesis approach based on joint optimization of image content and texture constraints, which not only preserves contextual structures but also produces high-frequency details by matching and adapting patches with the most similar mid-layer feature correlations of a deep classification network. We evaluate our method on the ImageNet and Paris Streetview datasets and achieved state-of-the-art inpainting accuracy. We show our approach produces sharper and more coherent results than prior methods, especially for high-resolution images.
UniMMVSR: A Unified Multi-Modal Framework for Cascaded Video Super-Resolution
Cascaded video super-resolution has emerged as a promising technique for decoupling the computational burden associated with generating high-resolution videos using large foundation models. Existing studies, however, are largely confined to text-to-video tasks and fail to leverage additional generative conditions beyond text, which are crucial for ensuring fidelity in multi-modal video generation. We address this limitation by presenting UniMMVSR, the first unified generative video super-resolution framework to incorporate hybrid-modal conditions, including text, images, and videos. We conduct a comprehensive exploration of condition injection strategies, training schemes, and data mixture techniques within a latent video diffusion model. A key challenge was designing distinct data construction and condition utilization methods to enable the model to precisely utilize all condition types, given their varied correlations with the target video. Our experiments demonstrate that UniMMVSR significantly outperforms existing methods, producing videos with superior detail and a higher degree of conformity to multi-modal conditions. We also validate the feasibility of combining UniMMVSR with a base model to achieve multi-modal guided generation of 4K video, a feat previously unattainable with existing techniques.
Monkey: Image Resolution and Text Label Are Important Things for Large Multi-modal Models
Large Multimodal Models have demonstrated impressive capabilities in understanding general vision-language tasks. However, due to the limitation of supported input resolution (e.g., 448 x 448) as well as the inexhaustive description of the training image-text pair, these models often encounter challenges when dealing with intricate scene understandings and narratives. Here we address the problem by proposing the Monkey. Our contributions are two-fold: 1) without pretraining from the start, our method can be built upon an existing vision encoder (e.g., vit-BigHuge) to effectively improve the input resolution capacity up to 896 x 1344 pixels; 2) we propose a multi-level description generation method, which automatically provides rich information that can guide model to learn contextual association between scenes and objects. Our extensive testing across more than 16 distinct datasets reveals that Monkey achieves consistently competitive performance over the existing LMMs on fundamental tasks, such as Image Captioning, General Visual Question Answering (VQA), and Document-oriented VQA. Models, interactive demo, and the source code are provided at the following https://github.com/Yuliang-Liu/Monkey.
High-Resolution Visual Reasoning via Multi-Turn Grounding-Based Reinforcement Learning
State-of-the-art large multi-modal models (LMMs) face challenges when processing high-resolution images, as these inputs are converted into enormous visual tokens, many of which are irrelevant to the downstream task. In this paper, we propose Multi-turn Grounding-based Policy Optimization (MGPO), an end-to-end reinforcement learning (RL) framework that enables LMMs to iteratively focus on key visual regions by automatically cropping sub-images, based on model-predicted grounding coordinates within a multi-turn conversation framework. Compared to supervised fine-tuning (SFT), which requires costly additional grounding annotations, our approach highlights that LMMs can emerge robust grounding abilities during the RL training process, leveraging only a binary reward function derived from the correctness of the final answer. Additionally, we observe that LMMs struggle to autonomously trigger visual grounding during the rollout process. To address this cold start problem, we design a multi-turn conversational template and restrict policy loss computation to model outputs generated across multiple dialogue rounds, thereby promoting stable optimization. Extensive experiments demonstrate that, when trained on standard visual-question-short answering data without grounding annotations, MGPO effectively elicits stronger grounding capabilities compared to GRPO, leading to 5.4\% improvement on in-distribution MME-Realworld and 5.2\% improvement on the challenging out-of-distribution (OOD) V* Bench. Notably, MGPO post-training on Qwen2.5-VL-7B with 21K samples surpasses OpenAI's o1 and GPT-4o models on the OOD V* Bench. Codes are available at https://github.com/EvolvingLMMs-Lab/MGPO.
Dataset and Baseline System for Multi-lingual Extraction and Normalization of Temporal and Numerical Expressions
Temporal and numerical expression understanding is of great importance in many downstream Natural Language Processing (NLP) and Information Retrieval (IR) tasks. However, much previous work covers only a few sub-types and focuses only on entity extraction, which severely limits the usability of identified mentions. In order for such entities to be useful in downstream scenarios, coverage and granularity of sub-types are important; and, even more so, providing resolution into concrete values that can be manipulated. Furthermore, most previous work addresses only a handful of languages. Here we describe a multi-lingual evaluation dataset - NTX - covering diverse temporal and numerical expressions across 14 languages and covering extraction, normalization, and resolution. Along with the dataset we provide a robust rule-based system as a strong baseline for comparisons against other models to be evaluated in this dataset. Data and code are available at https://aka.ms/NTX.
Adaptive Fusion of Multi-view Remote Sensing data for Optimal Sub-field Crop Yield Prediction
Accurate crop yield prediction is of utmost importance for informed decision-making in agriculture, aiding farmers, and industry stakeholders. However, this task is complex and depends on multiple factors, such as environmental conditions, soil properties, and management practices. Combining heterogeneous data views poses a fusion challenge, like identifying the view-specific contribution to the predictive task. We present a novel multi-view learning approach to predict crop yield for different crops (soybean, wheat, rapeseed) and regions (Argentina, Uruguay, and Germany). Our multi-view input data includes multi-spectral optical images from Sentinel-2 satellites and weather data as dynamic features during the crop growing season, complemented by static features like soil properties and topographic information. To effectively fuse the data, we introduce a Multi-view Gated Fusion (MVGF) model, comprising dedicated view-encoders and a Gated Unit (GU) module. The view-encoders handle the heterogeneity of data sources with varying temporal resolutions by learning a view-specific representation. These representations are adaptively fused via a weighted sum. The fusion weights are computed for each sample by the GU using a concatenation of the view-representations. The MVGF model is trained at sub-field level with 10 m resolution pixels. Our evaluations show that the MVGF outperforms conventional models on the same task, achieving the best results by incorporating all the data sources, unlike the usual fusion results in the literature. For Argentina, the MVGF model achieves an R2 value of 0.68 at sub-field yield prediction, while at field level evaluation (comparing field averages), it reaches around 0.80 across different countries. The GU module learned different weights based on the country and crop-type, aligning with the variable significance of each data source to the prediction task.
CineBrain: A Large-Scale Multi-Modal Brain Dataset During Naturalistic Audiovisual Narrative Processing
In this paper, we introduce CineBrain, the first large-scale dataset featuring simultaneous EEG and fMRI recordings during dynamic audiovisual stimulation. Recognizing the complementary strengths of EEG's high temporal resolution and fMRI's deep-brain spatial coverage, CineBrain provides approximately six hours of narrative-driven content from the popular television series The Big Bang Theory for each of six participants. Building upon this unique dataset, we propose CineSync, an innovative multimodal decoding framework integrates a Multi-Modal Fusion Encoder with a diffusion-based Neural Latent Decoder. Our approach effectively fuses EEG and fMRI signals, significantly improving the reconstruction quality of complex audiovisual stimuli. To facilitate rigorous evaluation, we introduce Cine-Benchmark, a comprehensive evaluation protocol that assesses reconstructions across semantic and perceptual dimensions. Experimental results demonstrate that CineSync achieves state-of-the-art video reconstruction performance and highlight our initial success in combining fMRI and EEG for reconstructing both video and audio stimuli. Project Page: https://jianxgao.github.io/CineBrain.
FLAIR: a Country-Scale Land Cover Semantic Segmentation Dataset From Multi-Source Optical Imagery
We introduce the French Land cover from Aerospace ImageRy (FLAIR), an extensive dataset from the French National Institute of Geographical and Forest Information (IGN) that provides a unique and rich resource for large-scale geospatial analysis. FLAIR contains high-resolution aerial imagery with a ground sample distance of 20 cm and over 20 billion individually labeled pixels for precise land-cover classification. The dataset also integrates temporal and spectral data from optical satellite time series. FLAIR thus combines data with varying spatial, spectral, and temporal resolutions across over 817 km2 of acquisitions representing the full landscape diversity of France. This diversity makes FLAIR a valuable resource for the development and evaluation of novel methods for large-scale land-cover semantic segmentation and raises significant challenges in terms of computer vision, data fusion, and geospatial analysis. We also provide powerful uni- and multi-sensor baseline models that can be employed to assess algorithm's performance and for downstream applications. Through its extent and the quality of its annotation, FLAIR aims to spur improvements in monitoring and understanding key anthropogenic development indicators such as urban growth, deforestation, and soil artificialization. Dataset and codes can be accessed at https://ignf.github.io/FLAIR/
A Large-scale Multi Domain Leukemia Dataset for the White Blood Cells Detection with Morphological Attributes for Explainability
Earlier diagnosis of Leukemia can save thousands of lives annually. The prognosis of leukemia is challenging without the morphological information of White Blood Cells (WBC) and relies on the accessibility of expensive microscopes and the availability of hematologists to analyze Peripheral Blood Samples (PBS). Deep Learning based methods can be employed to assist hematologists. However, these algorithms require a large amount of labeled data, which is not readily available. To overcome this limitation, we have acquired a realistic, generalized, and large dataset. To collect this comprehensive dataset for real-world applications, two microscopes from two different cost spectrums (high-cost HCM and low-cost LCM) are used for dataset capturing at three magnifications (100x, 40x, 10x) through different sensors (high-end camera for HCM, middle-level camera for LCM and mobile-phone camera for both). The high-sensor camera is 47 times more expensive than the middle-level camera and HCM is 17 times more expensive than LCM. In this collection, using HCM at high resolution (100x), experienced hematologists annotated 10.3k WBC types (14) and artifacts, having 55k morphological labels (Cell Size, Nuclear Chromatin, Nuclear Shape, etc.) from 2.4k images of several PBS leukemia patients. Later on, these annotations are transferred to other 2 magnifications of HCM, and 3 magnifications of LCM, and on each camera captured images. Along with the LeukemiaAttri dataset, we provide baselines over multiple object detectors and Unsupervised Domain Adaptation (UDA) strategies, along with morphological information-based attribute prediction. The dataset will be publicly available after publication to facilitate the research in this direction.
A Large-Scale Outdoor Multi-modal Dataset and Benchmark for Novel View Synthesis and Implicit Scene Reconstruction
Neural Radiance Fields (NeRF) has achieved impressive results in single object scene reconstruction and novel view synthesis, which have been demonstrated on many single modality and single object focused indoor scene datasets like DTU, BMVS, and NeRF Synthetic.However, the study of NeRF on large-scale outdoor scene reconstruction is still limited, as there is no unified outdoor scene dataset for large-scale NeRF evaluation due to expensive data acquisition and calibration costs. In this paper, we propose a large-scale outdoor multi-modal dataset, OMMO dataset, containing complex land objects and scenes with calibrated images, point clouds and prompt annotations. Meanwhile, a new benchmark for several outdoor NeRF-based tasks is established, such as novel view synthesis, surface reconstruction, and multi-modal NeRF. To create the dataset, we capture and collect a large number of real fly-view videos and select high-quality and high-resolution clips from them. Then we design a quality review module to refine images, remove low-quality frames and fail-to-calibrate scenes through a learning-based automatic evaluation plus manual review. Finally, a number of volunteers are employed to add the text descriptions for each scene and key-frame to meet the potential multi-modal requirements in the future. Compared with existing NeRF datasets, our dataset contains abundant real-world urban and natural scenes with various scales, camera trajectories, and lighting conditions. Experiments show that our dataset can benchmark most state-of-the-art NeRF methods on different tasks. We will release the dataset and model weights very soon.
TFM Dataset: A Novel Multi-task Dataset and Integrated Pipeline for Automated Tear Film Break-Up Segmentation
Tear film break-up (TFBU) analysis is critical for diagnosing dry eye syndrome, but automated TFBU segmentation remains challenging due to the lack of annotated datasets and integrated solutions. This paper introduces the Tear Film Multi-task (TFM) Dataset, the first comprehensive dataset for multi-task tear film analysis, comprising 15 high-resolution videos (totaling 6,247 frames) annotated with three vision tasks: frame-level classification ('clear', 'closed', 'broken', 'blur'), Placido Ring detection, and pixel-wise TFBU area segmentation. Leveraging this dataset, we first propose TF-Net, a novel and efficient baseline segmentation model. TF-Net incorporates a MobileOne-mini backbone with re-parameterization techniques and an enhanced feature pyramid network to achieve a favorable balance between accuracy and computational efficiency for real-time clinical applications. We further establish benchmark performance on the TFM segmentation subset by comparing TF-Net against several state-of-the-art medical image segmentation models. Furthermore, we design TF-Collab, a novel integrated real-time pipeline that synergistically leverages models trained on all three tasks of the TFM dataset. By sequentially orchestrating frame classification for BUT determination, pupil region localization for input standardization, and TFBU segmentation, TF-Collab fully automates the analysis. Experimental results demonstrate the effectiveness of the proposed TF-Net and TF-Collab, providing a foundation for future research in ocular surface diagnostics. Our code and the TFM datasets are available at https://github.com/glory-wan/TF-Net
MultiSensor-Home: A Wide-area Multi-modal Multi-view Dataset for Action Recognition and Transformer-based Sensor Fusion
Multi-modal multi-view action recognition is a rapidly growing field in computer vision, offering significant potential for applications in surveillance. However, current datasets often fail to address real-world challenges such as wide-area distributed settings, asynchronous data streams, and the lack of frame-level annotations. Furthermore, existing methods face difficulties in effectively modeling inter-view relationships and enhancing spatial feature learning. In this paper, we introduce the MultiSensor-Home dataset, a novel benchmark designed for comprehensive action recognition in home environments, and also propose the Multi-modal Multi-view Transformer-based Sensor Fusion (MultiTSF) method. The proposed MultiSensor-Home dataset features untrimmed videos captured by distributed sensors, providing high-resolution RGB and audio data along with detailed multi-view frame-level action labels. The proposed MultiTSF method leverages a Transformer-based fusion mechanism to dynamically model inter-view relationships. Furthermore, the proposed method integrates a human detection module to enhance spatial feature learning, guiding the model to prioritize frames with human activity to enhance action the recognition accuracy. Experiments on the proposed MultiSensor-Home and the existing MM-Office datasets demonstrate the superiority of MultiTSF over the state-of-the-art methods. Quantitative and qualitative results highlight the effectiveness of the proposed method in advancing real-world multi-modal multi-view action recognition. The source code is available at https://github.com/thanhhff/MultiTSF.
$\mathtt{M^3VIR}$: A Large-Scale Multi-Modality Multi-View Synthesized Benchmark Dataset for Image Restoration and Content Creation
The gaming and entertainment industry is rapidly evolving, driven by immersive experiences and the integration of generative AI (GAI) technologies. Training such models effectively requires large-scale datasets that capture the diversity and context of gaming environments. However, existing datasets are often limited to specific domains or rely on artificial degradations, which do not accurately capture the unique characteristics of gaming content. Moreover, benchmarks for controllable video generation remain absent. To address these limitations, we introduce M^3VIR, a large-scale, multi-modal, multi-view dataset specifically designed to overcome the shortcomings of current resources. Unlike existing datasets, M^3VIR provides diverse, high-fidelity gaming content rendered with Unreal Engine 5, offering authentic ground-truth LR-HR paired and multi-view frames across 80 scenes in 8 categories. It includes M^3VIR_MR for super-resolution (SR), novel view synthesis (NVS), and combined NVS+SR tasks, and M^3VIR_{MS}, the first multi-style, object-level ground-truth set enabling research on controlled video generation. Additionally, we benchmark several state-of-the-art SR and NVS methods to establish performance baselines. While no existing approaches directly handle controlled video generation, M^3VIR provides a benchmark for advancing this area. By releasing the dataset, we aim to facilitate research in AI-powered restoration, compression, and controllable content generation for next-generation cloud gaming and entertainment.
LENVIZ: A High-Resolution Low-Exposure Night Vision Benchmark Dataset
Low-light image enhancement is crucial for a myriad of applications, from night vision and surveillance, to autonomous driving. However, due to the inherent limitations that come in hand with capturing images in low-illumination environments, the task of enhancing such scenes still presents a formidable challenge. To advance research in this field, we introduce our Low Exposure Night Vision (LENVIZ) Dataset, a comprehensive multi-exposure benchmark dataset for low-light image enhancement comprising of over 230K frames showcasing 24K real-world indoor and outdoor, with-and without human, scenes. Captured using 3 different camera sensors, LENVIZ offers a wide range of lighting conditions, noise levels, and scene complexities, making it the largest publicly available up-to 4K resolution benchmark in the field. LENVIZ includes high quality human-generated ground truth, for which each multi-exposure low-light scene has been meticulously curated and edited by expert photographers to ensure optimal image quality. Furthermore, we also conduct a comprehensive analysis of current state-of-the-art low-light image enhancement techniques on our dataset and highlight potential areas of improvement.
DurLAR: A High-fidelity 128-channel LiDAR Dataset with Panoramic Ambient and Reflectivity Imagery for Multi-modal Autonomous Driving Applications
We present DurLAR, a high-fidelity 128-channel 3D LiDAR dataset with panoramic ambient (near infrared) and reflectivity imagery, as well as a sample benchmark task using depth estimation for autonomous driving applications. Our driving platform is equipped with a high resolution 128 channel LiDAR, a 2MPix stereo camera, a lux meter and a GNSS/INS system. Ambient and reflectivity images are made available along with the LiDAR point clouds to facilitate multi-modal use of concurrent ambient and reflectivity scene information. Leveraging DurLAR, with a resolution exceeding that of prior benchmarks, we consider the task of monocular depth estimation and use this increased availability of higher resolution, yet sparse ground truth scene depth information to propose a novel joint supervised/self-supervised loss formulation. We compare performance over both our new DurLAR dataset, the established KITTI benchmark and the Cityscapes dataset. Our evaluation shows our joint use supervised and self-supervised loss terms, enabled via the superior ground truth resolution and availability within DurLAR improves the quantitative and qualitative performance of leading contemporary monocular depth estimation approaches (RMSE=3.639, Sq Rel=0.936).
RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis
We present a large-scale synthetic dataset for novel view synthesis consisting of ~300k images rendered from nearly 2000 complex scenes using high-quality ray tracing at high resolution (1600 x 1600 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis, thus providing a large unified benchmark for both training and evaluation. Using 4 distinct sources of high-quality 3D meshes, the scenes of our dataset exhibit challenging variations in camera views, lighting, shape, materials, and textures. Because our dataset is too large for existing methods to process, we propose Sparse Voxel Light Field (SVLF), an efficient voxel-based light field approach for novel view synthesis that achieves comparable performance to NeRF on synthetic data, while being an order of magnitude faster to train and two orders of magnitude faster to render. SVLF achieves this speed by relying on a sparse voxel octree, careful voxel sampling (requiring only a handful of queries per ray), and reduced network structure; as well as ground truth depth maps at training time. Our dataset is generated by NViSII, a Python-based ray tracing renderer, which is designed to be simple for non-experts to use and share, flexible and powerful through its use of scripting, and able to create high-quality and physically-based rendered images. Experiments with a subset of our dataset allow us to compare standard methods like NeRF and mip-NeRF for single-scene modeling, and pixelNeRF for category-level modeling, pointing toward the need for future improvements in this area.
mPLUG-DocOwl2: High-resolution Compressing for OCR-free Multi-page Document Understanding
Multimodel Large Language Models(MLLMs) have achieved promising OCR-free Document Understanding performance by increasing the supported resolution of document images. However, this comes at the cost of generating thousands of visual tokens for a single document image, leading to excessive GPU memory and slower inference times, particularly in multi-page document comprehension. In this work, to address these challenges, we propose a High-resolution DocCompressor module to compress each high-resolution document image into 324 tokens, guided by low-resolution global visual features. With this compression module, to strengthen multi-page document comprehension ability and balance both token efficiency and question-answering performance, we develop the DocOwl2 under a three-stage training framework: Single-image Pretraining, Multi-image Continue-pretraining, and Multi-task Finetuning. DocOwl2 sets a new state-of-the-art across multi-page document understanding benchmarks and reduces first token latency by more than 50%, demonstrating advanced capabilities in multi-page questioning answering, explanation with evidence pages, and cross-page structure understanding. Additionally, compared to single-image MLLMs trained on similar data, our DocOwl2 achieves comparable single-page understanding performance with less than 20% of the visual tokens. Our codes, models, and data are publicly available at https://github.com/X-PLUG/mPLUG-DocOwl/tree/main/DocOwl2.
Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations
Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect downstream volumetric image analysis that typically requires isotropic 3D scans. Combining different views of multi-contrast scans into high-resolution isotropic 3D scans is challenging due to the lack of a large training cohort, which calls for a subject-specific framework. This work proposes a novel solution to this problem leveraging Implicit Neural Representations (INR). Our proposed INR jointly learns two different contrasts of complementary views in a continuous spatial function and benefits from exchanging anatomical information between them. Trained within minutes on a single commodity GPU, our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets. Using Mutual Information (MI) as a metric, we find that our model converges to an optimum MI amongst sequences, achieving anatomically faithful reconstruction. Code is available at: https://github.com/jqmcginnis/multi_contrast_inr/
DWIE: an entity-centric dataset for multi-task document-level information extraction
This paper presents DWIE, the 'Deutsche Welle corpus for Information Extraction', a newly created multi-task dataset that combines four main Information Extraction (IE) annotation subtasks: (i) Named Entity Recognition (NER), (ii) Coreference Resolution, (iii) Relation Extraction (RE), and (iv) Entity Linking. DWIE is conceived as an entity-centric dataset that describes interactions and properties of conceptual entities on the level of the complete document. This contrasts with currently dominant mention-driven approaches that start from the detection and classification of named entity mentions in individual sentences. Further, DWIE presented two main challenges when building and evaluating IE models for it. First, the use of traditional mention-level evaluation metrics for NER and RE tasks on entity-centric DWIE dataset can result in measurements dominated by predictions on more frequently mentioned entities. We tackle this issue by proposing a new entity-driven metric that takes into account the number of mentions that compose each of the predicted and ground truth entities. Second, the document-level multi-task annotations require the models to transfer information between entity mentions located in different parts of the document, as well as between different tasks, in a joint learning setting. To realize this, we propose to use graph-based neural message passing techniques between document-level mention spans. Our experiments show an improvement of up to 5.5 F1 percentage points when incorporating neural graph propagation into our joint model. This demonstrates DWIE's potential to stimulate further research in graph neural networks for representation learning in multi-task IE. We make DWIE publicly available at https://github.com/klimzaporojets/DWIE.
CLEVR-Dialog: A Diagnostic Dataset for Multi-Round Reasoning in Visual Dialog
Visual Dialog is a multimodal task of answering a sequence of questions grounded in an image, using the conversation history as context. It entails challenges in vision, language, reasoning, and grounding. However, studying these subtasks in isolation on large, real datasets is infeasible as it requires prohibitively-expensive complete annotation of the 'state' of all images and dialogs. We develop CLEVR-Dialog, a large diagnostic dataset for studying multi-round reasoning in visual dialog. Specifically, we construct a dialog grammar that is grounded in the scene graphs of the images from the CLEVR dataset. This combination results in a dataset where all aspects of the visual dialog are fully annotated. In total, CLEVR-Dialog contains 5 instances of 10-round dialogs for about 85k CLEVR images, totaling to 4.25M question-answer pairs. We use CLEVR-Dialog to benchmark performance of standard visual dialog models; in particular, on visual coreference resolution (as a function of the coreference distance). This is the first analysis of its kind for visual dialog models that was not possible without this dataset. We hope the findings from CLEVR-Dialog will help inform the development of future models for visual dialog. Our dataset and code are publicly available.
PadChest: A large chest x-ray image dataset with multi-label annotated reports
We present a labeled large-scale, high resolution chest x-ray dataset for the automated exploration of medical images along with their associated reports. This dataset includes more than 160,000 images obtained from 67,000 patients that were interpreted and reported by radiologists at Hospital San Juan Hospital (Spain) from 2009 to 2017, covering six different position views and additional information on image acquisition and patient demography. The reports were labeled with 174 different radiographic findings, 19 differential diagnoses and 104 anatomic locations organized as a hierarchical taxonomy and mapped onto standard Unified Medical Language System (UMLS) terminology. Of these reports, 27% were manually annotated by trained physicians and the remaining set was labeled using a supervised method based on a recurrent neural network with attention mechanisms. The labels generated were then validated in an independent test set achieving a 0.93 Micro-F1 score. To the best of our knowledge, this is one of the largest public chest x-ray database suitable for training supervised models concerning radiographs, and the first to contain radiographic reports in Spanish. The PadChest dataset can be downloaded from http://bimcv.cipf.es/bimcv-projects/padchest/.
Real-IAD: A Real-World Multi-View Dataset for Benchmarking Versatile Industrial Anomaly Detection
Industrial anomaly detection (IAD) has garnered significant attention and experienced rapid development. However, the recent development of IAD approach has encountered certain difficulties due to dataset limitations. On the one hand, most of the state-of-the-art methods have achieved saturation (over 99% in AUROC) on mainstream datasets such as MVTec, and the differences of methods cannot be well distinguished, leading to a significant gap between public datasets and actual application scenarios. On the other hand, the research on various new practical anomaly detection settings is limited by the scale of the dataset, posing a risk of overfitting in evaluation results. Therefore, we propose a large-scale, Real-world, and multi-view Industrial Anomaly Detection dataset, named Real-IAD, which contains 150K high-resolution images of 30 different objects, an order of magnitude larger than existing datasets. It has a larger range of defect area and ratio proportions, making it more challenging than previous datasets. To make the dataset closer to real application scenarios, we adopted a multi-view shooting method and proposed sample-level evaluation metrics. In addition, beyond the general unsupervised anomaly detection setting, we propose a new setting for Fully Unsupervised Industrial Anomaly Detection (FUIAD) based on the observation that the yield rate in industrial production is usually greater than 60%, which has more practical application value. Finally, we report the results of popular IAD methods on the Real-IAD dataset, providing a highly challenging benchmark to promote the development of the IAD field.
RS-RAG: Bridging Remote Sensing Imagery and Comprehensive Knowledge with a Multi-Modal Dataset and Retrieval-Augmented Generation Model
Recent progress in VLMs has demonstrated impressive capabilities across a variety of tasks in the natural image domain. Motivated by these advancements, the remote sensing community has begun to adopt VLMs for remote sensing vision-language tasks, including scene understanding, image captioning, and visual question answering. However, existing remote sensing VLMs typically rely on closed-set scene understanding and focus on generic scene descriptions, yet lack the ability to incorporate external knowledge. This limitation hinders their capacity for semantic reasoning over complex or context-dependent queries that involve domain-specific or world knowledge. To address these challenges, we first introduced a multimodal Remote Sensing World Knowledge (RSWK) dataset, which comprises high-resolution satellite imagery and detailed textual descriptions for 14,141 well-known landmarks from 175 countries, integrating both remote sensing domain knowledge and broader world knowledge. Building upon this dataset, we proposed a novel Remote Sensing Retrieval-Augmented Generation (RS-RAG) framework, which consists of two key components. The Multi-Modal Knowledge Vector Database Construction module encodes remote sensing imagery and associated textual knowledge into a unified vector space. The Knowledge Retrieval and Response Generation module retrieves and re-ranks relevant knowledge based on image and/or text queries, and incorporates the retrieved content into a knowledge-augmented prompt to guide the VLM in producing contextually grounded responses. We validated the effectiveness of our approach on three representative vision-language tasks, including image captioning, image classification, and visual question answering, where RS-RAG significantly outperformed state-of-the-art baselines.
KGym: A Platform and Dataset to Benchmark Large Language Models on Linux Kernel Crash Resolution
Large Language Models (LLMs) are consistently improving at increasingly realistic software engineering (SE) tasks. In real-world software stacks, significant SE effort is spent developing foundational system software like the Linux kernel. Unlike application-level software, a systems codebase like Linux is multilingual (low-level C/Assembly/Bash/Rust); gigantic (>20 million lines); critical (impacting billions of devices worldwide), and highly concurrent (involving complex multi-threading). To evaluate if ML models are useful while developing such large-scale systems-level software, we introduce kGym (a platform) and kBench (a dataset). The kGym platform provides a SE environment for large-scale experiments on the Linux kernel, including compiling and running kernels in parallel across several virtual machines, detecting operations and crashes, inspecting logs, and querying and patching the code base. We use kGym to facilitate evaluation on kBench, a crash resolution benchmark drawn from real-world Linux kernel bugs. An example bug in kBench contains crashing stack traces, a bug-reproducer file, a developer-written fix, and other associated data. To understand current performance, we conduct baseline experiments by prompting LLMs to resolve Linux kernel crashes. Our initial evaluations reveal that the best performing LLM achieves 0.72% and 5.38% in the unassisted and assisted (i.e., buggy files disclosed to the model) settings, respectively. These results highlight the need for further research to enhance model performance in SE tasks. Improving performance on kBench requires models to master new learning skills, including understanding the cause of crashes and repairing faults, writing memory-safe and hardware-aware code, and understanding concurrency. As a result, this work opens up multiple avenues of research at the intersection of machine learning and systems software.
Detailed 3D Human Body Reconstruction from Multi-view Images Combining Voxel Super-Resolution and Learned Implicit Representation
The task of reconstructing detailed 3D human body models from images is interesting but challenging in computer vision due to the high freedom of human bodies. In order to tackle the problem, we propose a coarse-to-fine method to reconstruct a detailed 3D human body from multi-view images combining voxel super-resolution based on learning the implicit representation. Firstly, the coarse 3D models are estimated by learning an implicit representation based on multi-scale features which are extracted by multi-stage hourglass networks from the multi-view images. Then, taking the low resolution voxel grids which are generated by the coarse 3D models as input, the voxel super-resolution based on an implicit representation is learned through a multi-stage 3D convolutional neural network. Finally, the refined detailed 3D human body models can be produced by the voxel super-resolution which can preserve the details and reduce the false reconstruction of the coarse 3D models. Benefiting from the implicit representation, the training process in our method is memory efficient and the detailed 3D human body produced by our method from multi-view images is the continuous decision boundary with high-resolution geometry. In addition, the coarse-to-fine method based on voxel super-resolution can remove false reconstructions and preserve the appearance details in the final reconstruction, simultaneously. In the experiments, our method quantitatively and qualitatively achieves the competitive 3D human body reconstructions from images with various poses and shapes on both the real and synthetic datasets.
Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
Mammography, an X-ray-based imaging technique, remains central to the early detection of breast cancer. Recent advances in artificial intelligence have enabled increasingly sophisticated computer-aided diagnostic methods, evolving from patch-based classifiers to whole-image approaches and then to multi-view architectures that jointly analyze complementary projections. Despite this progress, several critical questions remain unanswered. In this study, we systematically investigate these issues by addressing five key research questions: (1) the role of patch classifiers in performance, (2) the transferability of natural-image-trained backbones, (3) the advantages of learn-to-resize over conventional downscaling, (4) the contribution of multi-view integration, and (5) the robustness of findings across varying image quality. Beyond benchmarking, our experiments demonstrate clear performance gains over prior work. For the CBIS-DDSM dataset, we improved single-view AUC from 0.8153 to 0.8343, and multiple-view AUC from 0.8483 to 0.8658. Using a new comparative method, we also observed a 0.0217 AUC increase when extending from single to multiple-view analysis. On the complete VinDr-Mammo dataset, the multiple-view approach further improved results, achieving a 0.0492 AUC increase over single view and reaching 0.8511 AUC overall. These results establish new state-of-the-art benchmarks, providing clear evidence of the advantages of multi-view architectures for mammogram interpretation. Beyond performance, our analysis offers principled insights into model design and transfer learning strategies, contributing to the development of more accurate and reliable breast cancer screening tools. The inference code and trained models are publicly available at https://github.com/dpetrini/multiple-view.
EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis
Surficial geologic mapping is essential for understanding Earth surface processes, addressing modern challenges such as climate change and national security, and supporting common applications in engineering and resource management. However, traditional mapping methods are labor-intensive, limiting spatial coverage and introducing potential biases. To address these limitations, we introduce EarthScape, a novel, AI-ready multimodal dataset specifically designed for surficial geologic mapping and Earth surface analysis. EarthScape integrates high-resolution aerial RGB and near-infrared (NIR) imagery, digital elevation models (DEM), multi-scale DEM-derived terrain features, and hydrologic and infrastructure vector data. The dataset provides detailed annotations for seven distinct surficial geologic classes encompassing various geological processes. We present a comprehensive data processing pipeline using open-sourced raw data and establish baseline benchmarks using different spatial modalities to demonstrate the utility of EarthScape. As a living dataset with a vision for expansion, EarthScape bridges the gap between computer vision and Earth sciences, offering a valuable resource for advancing research in multimodal learning, geospatial analysis, and geological mapping. Our code is available at https://github.com/masseygeo/earthscape.
Replay: Multi-modal Multi-view Acted Videos for Casual Holography
We introduce Replay, a collection of multi-view, multi-modal videos of humans interacting socially. Each scene is filmed in high production quality, from different viewpoints with several static cameras, as well as wearable action cameras, and recorded with a large array of microphones at different positions in the room. Overall, the dataset contains over 4000 minutes of footage and over 7 million timestamped high-resolution frames annotated with camera poses and partially with foreground masks. The Replay dataset has many potential applications, such as novel-view synthesis, 3D reconstruction, novel-view acoustic synthesis, human body and face analysis, and training generative models. We provide a benchmark for training and evaluating novel-view synthesis, with two scenarios of different difficulty. Finally, we evaluate several baseline state-of-the-art methods on the new benchmark.
Query Resolution for Conversational Search with Limited Supervision
In this work we focus on multi-turn passage retrieval as a crucial component of conversational search. One of the key challenges in multi-turn passage retrieval comes from the fact that the current turn query is often underspecified due to zero anaphora, topic change, or topic return. Context from the conversational history can be used to arrive at a better expression of the current turn query, defined as the task of query resolution. In this paper, we model the query resolution task as a binary term classification problem: for each term appearing in the previous turns of the conversation decide whether to add it to the current turn query or not. We propose QuReTeC (Query Resolution by Term Classification), a neural query resolution model based on bidirectional transformers. We propose a distant supervision method to automatically generate training data by using query-passage relevance labels. Such labels are often readily available in a collection either as human annotations or inferred from user interactions. We show that QuReTeC outperforms state-of-the-art models, and furthermore, that our distant supervision method can be used to substantially reduce the amount of human-curated data required to train QuReTeC. We incorporate QuReTeC in a multi-turn, multi-stage passage retrieval architecture and demonstrate its effectiveness on the TREC CAsT dataset.
War and Peace (WarAgent): Large Language Model-based Multi-Agent Simulation of World Wars
Can we avoid wars at the crossroads of history? This question has been pursued by individuals, scholars, policymakers, and organizations throughout human history. In this research, we attempt to answer the question based on the recent advances of Artificial Intelligence (AI) and Large Language Models (LLMs). We propose WarAgent, an LLM-powered multi-agent AI system, to simulate the participating countries, their decisions, and the consequences, in historical international conflicts, including the World War I (WWI), the World War II (WWII), and the Warring States Period (WSP) in Ancient China. By evaluating the simulation effectiveness, we examine the advancements and limitations of cutting-edge AI systems' abilities in studying complex collective human behaviors such as international conflicts under diverse settings. In these simulations, the emergent interactions among agents also offer a novel perspective for examining the triggers and conditions that lead to war. Our findings offer data-driven and AI-augmented insights that can redefine how we approach conflict resolution and peacekeeping strategies. The implications stretch beyond historical analysis, offering a blueprint for using AI to understand human history and possibly prevent future international conflicts. Code and data are available at https://github.com/agiresearch/WarAgent.
FLAIR #2: textural and temporal information for semantic segmentation from multi-source optical imagery
The FLAIR #2 dataset hereby presented includes two very distinct types of data, which are exploited for a semantic segmentation task aimed at mapping land cover. The data fusion workflow proposes the exploitation of the fine spatial and textural information of very high spatial resolution (VHR) mono-temporal aerial imagery and the temporal and spectral richness of high spatial resolution (HR) time series of Copernicus Sentinel-2 satellite images. The French National Institute of Geographical and Forest Information (IGN), in response to the growing availability of high-quality Earth Observation (EO) data, is actively exploring innovative strategies to integrate these data with heterogeneous characteristics. IGN is therefore offering this dataset to promote innovation and improve our knowledge of our territories.
Mini-Gemini: Mining the Potential of Multi-modality Vision Language Models
In this work, we introduce Mini-Gemini, a simple and effective framework enhancing multi-modality Vision Language Models (VLMs). Despite the advancements in VLMs facilitating basic visual dialog and reasoning, a performance gap persists compared to advanced models like GPT-4 and Gemini. We try to narrow the gap by mining the potential of VLMs for better performance and any-to-any workflow from three aspects, i.e., high-resolution visual tokens, high-quality data, and VLM-guided generation. To enhance visual tokens, we propose to utilize an additional visual encoder for high-resolution refinement without increasing the visual token count. We further construct a high-quality dataset that promotes precise image comprehension and reasoning-based generation, expanding the operational scope of current VLMs. In general, Mini-Gemini further mines the potential of VLMs and empowers current frameworks with image understanding, reasoning, and generation simultaneously. Mini-Gemini supports a series of dense and MoE Large Language Models (LLMs) from 2B to 34B. It is demonstrated to achieve leading performance in several zero-shot benchmarks and even surpasses the developed private models. Code and models are available at https://github.com/dvlab-research/MiniGemini.
NeRSemble: Multi-view Radiance Field Reconstruction of Human Heads
We focus on reconstructing high-fidelity radiance fields of human heads, capturing their animations over time, and synthesizing re-renderings from novel viewpoints at arbitrary time steps. To this end, we propose a new multi-view capture setup composed of 16 calibrated machine vision cameras that record time-synchronized images at 7.1 MP resolution and 73 frames per second. With our setup, we collect a new dataset of over 4700 high-resolution, high-framerate sequences of more than 220 human heads, from which we introduce a new human head reconstruction benchmark. The recorded sequences cover a wide range of facial dynamics, including head motions, natural expressions, emotions, and spoken language. In order to reconstruct high-fidelity human heads, we propose Dynamic Neural Radiance Fields using Hash Ensembles (NeRSemble). We represent scene dynamics by combining a deformation field and an ensemble of 3D multi-resolution hash encodings. The deformation field allows for precise modeling of simple scene movements, while the ensemble of hash encodings helps to represent complex dynamics. As a result, we obtain radiance field representations of human heads that capture motion over time and facilitate re-rendering of arbitrary novel viewpoints. In a series of experiments, we explore the design choices of our method and demonstrate that our approach outperforms state-of-the-art dynamic radiance field approaches by a significant margin.
MM3DGS SLAM: Multi-modal 3D Gaussian Splatting for SLAM Using Vision, Depth, and Inertial Measurements
Simultaneous localization and mapping is essential for position tracking and scene understanding. 3D Gaussian-based map representations enable photorealistic reconstruction and real-time rendering of scenes using multiple posed cameras. We show for the first time that using 3D Gaussians for map representation with unposed camera images and inertial measurements can enable accurate SLAM. Our method, MM3DGS, addresses the limitations of prior neural radiance field-based representations by enabling faster rendering, scale awareness, and improved trajectory tracking. Our framework enables keyframe-based mapping and tracking utilizing loss functions that incorporate relative pose transformations from pre-integrated inertial measurements, depth estimates, and measures of photometric rendering quality. We also release a multi-modal dataset, UT-MM, collected from a mobile robot equipped with a camera and an inertial measurement unit. Experimental evaluation on several scenes from the dataset shows that MM3DGS achieves 3x improvement in tracking and 5% improvement in photometric rendering quality compared to the current 3DGS SLAM state-of-the-art, while allowing real-time rendering of a high-resolution dense 3D map. Project Webpage: https://vita-group.github.io/MM3DGS-SLAM
Multi-Coil MRI Reconstruction Challenge -- Assessing Brain MRI Reconstruction Models and their Generalizability to Varying Coil Configurations
Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The Multi-Coil Magnetic Resonance Image (MC-MRI) Reconstruction Challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: 1) to compare different MRI reconstruction models on this dataset and 2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design, and summarize the results of a set of baseline and state of the art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction.
FLAIR-HUB: Large-scale Multimodal Dataset for Land Cover and Crop Mapping
The growing availability of high-quality Earth Observation (EO) data enables accurate global land cover and crop type monitoring. However, the volume and heterogeneity of these datasets pose major processing and annotation challenges. To address this, the French National Institute of Geographical and Forest Information (IGN) is actively exploring innovative strategies to exploit diverse EO data, which require large annotated datasets. IGN introduces FLAIR-HUB, the largest multi-sensor land cover dataset with very-high-resolution (20 cm) annotations, covering 2528 km2 of France. It combines six aligned modalities: aerial imagery, Sentinel-1/2 time series, SPOT imagery, topographic data, and historical aerial images. Extensive benchmarks evaluate multimodal fusion and deep learning models (CNNs, transformers) for land cover or crop mapping and also explore multi-task learning. Results underscore the complexity of multimodal fusion and fine-grained classification, with best land cover performance (78.2% accuracy, 65.8% mIoU) achieved using nearly all modalities. FLAIR-HUB supports supervised and multimodal pretraining, with data and code available at https://ignf.github.io/FLAIR/flairhub.
A Comparative Assessment of Multi-view fusion learning for Crop Classification
With a rapidly increasing amount and diversity of remote sensing (RS) data sources, there is a strong need for multi-view learning modeling. This is a complex task when considering the differences in resolution, magnitude, and noise of RS data. The typical approach for merging multiple RS sources has been input-level fusion, but other - more advanced - fusion strategies may outperform this traditional approach. This work assesses different fusion strategies for crop classification in the CropHarvest dataset. The fusion methods proposed in this work outperform models based on individual views and previous fusion methods. We do not find one single fusion method that consistently outperforms all other approaches. Instead, we present a comparison of multi-view fusion methods for three different datasets and show that, depending on the test region, different methods obtain the best performance. Despite this, we suggest a preliminary criterion for the selection of fusion methods.
BiPaR: A Bilingual Parallel Dataset for Multilingual and Cross-lingual Reading Comprehension on Novels
This paper presents BiPaR, a bilingual parallel novel-style machine reading comprehension (MRC) dataset, developed to support multilingual and cross-lingual reading comprehension. The biggest difference between BiPaR and existing reading comprehension datasets is that each triple (Passage, Question, Answer) in BiPaR is written parallelly in two languages. We collect 3,667 bilingual parallel paragraphs from Chinese and English novels, from which we construct 14,668 parallel question-answer pairs via crowdsourced workers following a strict quality control procedure. We analyze BiPaR in depth and find that BiPaR offers good diversification in prefixes of questions, answer types and relationships between questions and passages. We also observe that answering questions of novels requires reading comprehension skills of coreference resolution, multi-sentence reasoning, and understanding of implicit causality, etc. With BiPaR, we build monolingual, multilingual, and cross-lingual MRC baseline models. Even for the relatively simple monolingual MRC on this dataset, experiments show that a strong BERT baseline is over 30 points behind human in terms of both EM and F1 score, indicating that BiPaR provides a challenging testbed for monolingual, multilingual and cross-lingual MRC on novels. The dataset is available at https://multinlp.github.io/BiPaR/.
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
This technical report presents Prithvi-EO-2.0, a new geospatial foundation model that offers significant improvements over its predecessor, Prithvi-EO-1.0. Trained on 4.2M global time series samples from NASA's Harmonized Landsat and Sentinel-2 data archive at 30m resolution, the new 300M and 600M parameter models incorporate temporal and location embeddings for enhanced performance across various geospatial tasks. Through extensive benchmarking with GEO-Bench, the 600M version outperforms the previous Prithvi-EO model by 8\% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m). The results demonstrate the versatility of the model in both classical earth observation and high-resolution applications. Early involvement of end-users and subject matter experts (SMEs) are among the key factors that contributed to the project's success. In particular, SME involvement allowed for constant feedback on model and dataset design, as well as successful customization for diverse SME-led applications in disaster response, land use and crop mapping, and ecosystem dynamics monitoring. Prithvi-EO-2.0 is available on Hugging Face and IBM terratorch, with additional resources on GitHub. The project exemplifies the Trusted Open Science approach embraced by all involved organizations.
Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
Machine Learning Parameterization of the Multi-scale Kain-Fritsch (MSKF) Convection Scheme
Warm-sector heavy rainfall often occurs along the coast of South China, and it is usually localized and long-lasting, making it challenging to predict. High-resolution numerical weather prediction (NWP) models are increasingly used to better resolve topographic features and forecast such high-impact weather events. However, when the grid spacing becomes comparable to the length scales of convection, known as the gray zone, the turbulent eddies in the atmospheric boundary layer are only partially resolved and parameterized to some extent. Whether using a convection parameterization (CP) scheme in the gray zone remains controversial. Scale-aware CP schemes are developed to enhance the representation of convective transport within the gray zone. The multi-scale Kain-Fritsch (MSKF) scheme includes modifications that allow for its effective implementation at a grid resolution as high as 2 km. In recent years, there has been an increasing application of machine learning (ML) models to various domains of atmospheric sciences, including the replacement of physical parameterizations with ML models. This work proposes a multi-output bidirectional long short-term memory (Bi-LSTM) model as a replace the scale-aware MSKF CP scheme. The Weather Research and Forecast (WRF) model is used to generate training and testing data over South China at a horizontal resolution of 5 km. Furthermore, the WRF model is coupled with the ML based CP scheme and compared with WRF simulations with original MSKF scheme. The results demonstrate that the Bi-LSTM model can achieve high accuracy, indicating the potential use of ML models to substitute the MSKF scheme in the gray zone.
Lumina-Video: Efficient and Flexible Video Generation with Multi-scale Next-DiT
Recent advancements have established Diffusion Transformers (DiTs) as a dominant framework in generative modeling. Building on this success, Lumina-Next achieves exceptional performance in the generation of photorealistic images with Next-DiT. However, its potential for video generation remains largely untapped, with significant challenges in modeling the spatiotemporal complexity inherent to video data. To address this, we introduce Lumina-Video, a framework that leverages the strengths of Next-DiT while introducing tailored solutions for video synthesis. Lumina-Video incorporates a Multi-scale Next-DiT architecture, which jointly learns multiple patchifications to enhance both efficiency and flexibility. By incorporating the motion score as an explicit condition, Lumina-Video also enables direct control of generated videos' dynamic degree. Combined with a progressive training scheme with increasingly higher resolution and FPS, and a multi-source training scheme with mixed natural and synthetic data, Lumina-Video achieves remarkable aesthetic quality and motion smoothness at high training and inference efficiency. We additionally propose Lumina-V2A, a video-to-audio model based on Next-DiT, to create synchronized sounds for generated videos. Codes are released at https://www.github.com/Alpha-VLLM/Lumina-Video.
Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve Aerial Visual Perception?
Despite the commercial abundance of UAVs, aerial data acquisition remains challenging, and the existing Asia and North America-centric open-source UAV datasets are small-scale or low-resolution and lack diversity in scene contextuality. Additionally, the color content of the scenes, solar-zenith angle, and population density of different geographies influence the data diversity. These two factors conjointly render suboptimal aerial-visual perception of the deep neural network (DNN) models trained primarily on the ground-view data, including the open-world foundational models. To pave the way for a transformative era of aerial detection, we present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives -- ground camera and drone-mounted camera. MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes. This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets across all modalities and tasks. Through our extensive benchmarking on MAVREC, we recognize that augmenting object detectors with ground-view images from the corresponding geographical location is a superior pre-training strategy for aerial detection. Building on this strategy, we benchmark MAVREC with a curriculum-based semi-supervised object detection approach that leverages labeled (ground and aerial) and unlabeled (only aerial) images to enhance the aerial detection. We publicly release the MAVREC dataset: https://mavrec.github.io.
S3OD: Towards Generalizable Salient Object Detection with Synthetic Data
Salient object detection exemplifies data-bounded tasks where expensive pixel-precise annotations force separate model training for related subtasks like DIS and HR-SOD. We present a method that dramatically improves generalization through large-scale synthetic data generation and ambiguity-aware architecture. We introduce S3OD, a dataset of over 139,000 high-resolution images created through our multi-modal diffusion pipeline that extracts labels from diffusion and DINO-v3 features. The iterative generation framework prioritizes challenging categories based on model performance. We propose a streamlined multi-mask decoder that naturally handles the inherent ambiguity in salient object detection by predicting multiple valid interpretations. Models trained solely on synthetic data achieve 20-50% error reduction in cross-dataset generalization, while fine-tuned versions reach state-of-the-art performance across DIS and HR-SOD benchmarks.
Augmenting Perceptual Super-Resolution via Image Quality Predictors
Super-resolution (SR), a classical inverse problem in computer vision, is inherently ill-posed, inducing a distribution of plausible solutions for every input. However, the desired result is not simply the expectation of this distribution, which is the blurry image obtained by minimizing pixelwise error, but rather the sample with the highest image quality. A variety of techniques, from perceptual metrics to adversarial losses, are employed to this end. In this work, we explore an alternative: utilizing powerful non-reference image quality assessment (NR-IQA) models in the SR context. We begin with a comprehensive analysis of NR-IQA metrics on human-derived SR data, identifying both the accuracy (human alignment) and complementarity of different metrics. Then, we explore two methods of applying NR-IQA models to SR learning: (i) altering data sampling, by building on an existing multi-ground-truth SR framework, and (ii) directly optimizing a differentiable quality score. Our results demonstrate a more human-centric perception-distortion tradeoff, focusing less on non-perceptual pixel-wise distortion, instead improving the balance between perceptual fidelity and human-tuned NR-IQA measures.
InfiMed-Foundation: Pioneering Advanced Multimodal Medical Models with Compute-Efficient Pre-Training and Multi-Stage Fine-Tuning
Multimodal large language models (MLLMs) have shown remarkable potential in various domains, yet their application in the medical field is hindered by several challenges. General-purpose MLLMs often lack the specialized knowledge required for medical tasks, leading to uncertain or hallucinatory responses. Knowledge distillation from advanced models struggles to capture domain-specific expertise in radiology and pharmacology. Additionally, the computational cost of continual pretraining with large-scale medical data poses significant efficiency challenges. To address these issues, we propose InfiMed-Foundation-1.7B and InfiMed-Foundation-4B, two medical-specific MLLMs designed to deliver state-of-the-art performance in medical applications. We combined high-quality general-purpose and medical multimodal data and proposed a novel five-dimensional quality assessment framework to curate high-quality multimodal medical datasets. We employ low-to-high image resolution and multimodal sequence packing to enhance training efficiency, enabling the integration of extensive medical data. Furthermore, a three-stage supervised fine-tuning process ensures effective knowledge extraction for complex medical tasks. Evaluated on the MedEvalKit framework, InfiMed-Foundation-1.7B outperforms Qwen2.5VL-3B, while InfiMed-Foundation-4B surpasses HuatuoGPT-V-7B and MedGemma-27B-IT, demonstrating superior performance in medical visual question answering and diagnostic tasks. By addressing key challenges in data quality, training efficiency, and domain-specific knowledge extraction, our work paves the way for more reliable and effective AI-driven solutions in healthcare. InfiMed-Foundation-4B model is available at https://huggingface.co/InfiX-ai/InfiMed-Foundation-4B{InfiMed-Foundation-4B}.
MV-Adapter: Multi-view Consistent Image Generation Made Easy
Existing multi-view image generation methods often make invasive modifications to pre-trained text-to-image (T2I) models and require full fine-tuning, leading to (1) high computational costs, especially with large base models and high-resolution images, and (2) degradation in image quality due to optimization difficulties and scarce high-quality 3D data. In this paper, we propose the first adapter-based solution for multi-view image generation, and introduce MV-Adapter, a versatile plug-and-play adapter that enhances T2I models and their derivatives without altering the original network structure or feature space. By updating fewer parameters, MV-Adapter enables efficient training and preserves the prior knowledge embedded in pre-trained models, mitigating overfitting risks. To efficiently model the 3D geometric knowledge within the adapter, we introduce innovative designs that include duplicated self-attention layers and parallel attention architecture, enabling the adapter to inherit the powerful priors of the pre-trained models to model the novel 3D knowledge. Moreover, we present a unified condition encoder that seamlessly integrates camera parameters and geometric information, facilitating applications such as text- and image-based 3D generation and texturing. MV-Adapter achieves multi-view generation at 768 resolution on Stable Diffusion XL (SDXL), and demonstrates adaptability and versatility. It can also be extended to arbitrary view generation, enabling broader applications. We demonstrate that MV-Adapter sets a new quality standard for multi-view image generation, and opens up new possibilities due to its efficiency, adaptability and versatility.
Generic 3D Diffusion Adapter Using Controlled Multi-View Editing
Open-domain 3D object synthesis has been lagging behind image synthesis due to limited data and higher computational complexity. To bridge this gap, recent works have investigated multi-view diffusion but often fall short in either 3D consistency, visual quality, or efficiency. This paper proposes MVEdit, which functions as a 3D counterpart of SDEdit, employing ancestral sampling to jointly denoise multi-view images and output high-quality textured meshes. Built on off-the-shelf 2D diffusion models, MVEdit achieves 3D consistency through a training-free 3D Adapter, which lifts the 2D views of the last timestep into a coherent 3D representation, then conditions the 2D views of the next timestep using rendered views, without uncompromising visual quality. With an inference time of only 2-5 minutes, this framework achieves better trade-off between quality and speed than score distillation. MVEdit is highly versatile and extendable, with a wide range of applications including text/image-to-3D generation, 3D-to-3D editing, and high-quality texture synthesis. In particular, evaluations demonstrate state-of-the-art performance in both image-to-3D and text-guided texture generation tasks. Additionally, we introduce a method for fine-tuning 2D latent diffusion models on small 3D datasets with limited resources, enabling fast low-resolution text-to-3D initialization.
NU-GAN: High resolution neural upsampling with GAN
In this paper, we propose NU-GAN, a new method for resampling audio from lower to higher sampling rates (upsampling). Audio upsampling is an important problem since productionizing generative speech technology requires operating at high sampling rates. Such applications use audio at a resolution of 44.1 kHz or 48 kHz, whereas current speech synthesis methods are equipped to handle a maximum of 24 kHz resolution. NU-GAN takes a leap towards solving audio upsampling as a separate component in the text-to-speech (TTS) pipeline by leveraging techniques for audio generation using GANs. ABX preference tests indicate that our NU-GAN resampler is capable of resampling 22 kHz to 44.1 kHz audio that is distinguishable from original audio only 7.4% higher than random chance for single speaker dataset, and 10.8% higher than chance for multi-speaker dataset.
AnimeSR: Learning Real-World Super-Resolution Models for Animation Videos
This paper studies the problem of real-world video super-resolution (VSR) for animation videos, and reveals three key improvements for practical animation VSR. First, recent real-world super-resolution approaches typically rely on degradation simulation using basic operators without any learning capability, such as blur, noise, and compression. In this work, we propose to learn such basic operators from real low-quality animation videos, and incorporate the learned ones into the degradation generation pipeline. Such neural-network-based basic operators could help to better capture the distribution of real degradations. Second, a large-scale high-quality animation video dataset, AVC, is built to facilitate comprehensive training and evaluations for animation VSR. Third, we further investigate an efficient multi-scale network structure. It takes advantage of the efficiency of unidirectional recurrent networks and the effectiveness of sliding-window-based methods. Thanks to the above delicate designs, our method, AnimeSR, is capable of restoring real-world low-quality animation videos effectively and efficiently, achieving superior performance to previous state-of-the-art methods. Codes and models are available at https://github.com/TencentARC/AnimeSR.
UAV-VL-R1: Generalizing Vision-Language Models via Supervised Fine-Tuning and Multi-Stage GRPO for UAV Visual Reasoning
Recent advances in vision-language models (VLMs) have demonstrated strong generalization in natural image tasks. However, their performance often degrades on unmanned aerial vehicle (UAV)-based aerial imagery, which features high resolution, complex spatial semantics, and strict real-time constraints. These challenges limit the applicability of general-purpose VLMs to structured aerial reasoning tasks. To address these challenges, we propose UAV-VL-R1, a lightweight VLM explicitly designed for aerial visual reasoning. It is trained using a hybrid method that combines supervised fine-tuning (SFT) and multi-stage reinforcement learning (RL). We leverage the group relative policy optimization (GRPO) algorithm to promote structured and interpretable reasoning through rule-guided rewards and intra-group policy alignment. To support model training and evaluation, we introduce a high-resolution visual question answering dataset named HRVQA-VL, which consists of 50,019 annotated samples covering eight UAV-relevant reasoning tasks, including object counting, transportation recognition, and spatial scene inference. Experimental results show that UAV-VL-R1 achieves a 48.17% higher zero-shot accuracy than the Qwen2-VL-2B-Instruct baseline and even outperforms its 72B-scale variant, which is 36x larger, on multiple tasks. Ablation studies reveal that while SFT improves semantic alignment, it may reduce reasoning diversity in mathematical tasks. GRPO-based RL compensates for this limitation by enhancing logical flexibility and the robustness of inference. Additionally, UAV-VL-R1 requires only 3.9GB of memory under FP16 inference and can be quantized to 2.5GB with INT8, supporting real-time deployment on resource-constrained UAV platforms.
LEOPARD : A Vision Language Model For Text-Rich Multi-Image Tasks
Text-rich images, where text serves as the central visual element guiding the overall understanding, are prevalent in real-world applications, such as presentation slides, scanned documents, and webpage snapshots. Tasks involving multiple text-rich images are especially challenging, as they require not only understanding the content of individual images but reasoning about inter-relationships and logical flows across multiple visual inputs. Despite the importance of these scenarios, current multimodal large language models (MLLMs) struggle to handle such tasks due to two key challenges: (1) the scarcity of high-quality instruction tuning datasets for text-rich multi-image scenarios, and (2) the difficulty in balancing image resolution with visual feature sequence length. To address these challenges, we propose \OurMethod, a MLLM designed specifically for handling vision-language tasks involving multiple text-rich images. First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios. Second, we developed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length based on the original aspect ratios and resolutions of the input images. Experiments across a wide range of benchmarks demonstrate our model's superior capabilities in text-rich, multi-image evaluations and competitive performance in general domain evaluations.
JL1-CD: A New Benchmark for Remote Sensing Change Detection and a Robust Multi-Teacher Knowledge Distillation Framework
Deep learning has achieved significant success in the field of remote sensing image change detection (CD), yet two major challenges remain: the scarcity of sub-meter, all-inclusive open-source CD datasets, and the difficulty of achieving consistent and satisfactory detection results across images with varying change areas. To address these issues, we introduce the JL1-CD dataset, which contains 5,000 pairs of 512 x 512 pixel images with a resolution of 0.5 to 0.75 meters. Additionally, we propose a multi-teacher knowledge distillation (MTKD) framework for CD. Experimental results on the JL1-CD and SYSU-CD datasets demonstrate that the MTKD framework significantly improves the performance of CD models with various network architectures and parameter sizes, achieving new state-of-the-art results. The code is available at https://github.com/circleLZY/MTKD-CD.
RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
Effective Whole-body Pose Estimation with Two-stages Distillation
Whole-body pose estimation localizes the human body, hand, face, and foot keypoints in an image. This task is challenging due to multi-scale body parts, fine-grained localization for low-resolution regions, and data scarcity. Meanwhile, applying a highly efficient and accurate pose estimator to widely human-centric understanding and generation tasks is urgent. In this work, we present a two-stage pose Distillation for Whole-body Pose estimators, named DWPose, to improve their effectiveness and efficiency. The first-stage distillation designs a weight-decay strategy while utilizing a teacher's intermediate feature and final logits with both visible and invisible keypoints to supervise the student from scratch. The second stage distills the student model itself to further improve performance. Different from the previous self-knowledge distillation, this stage finetunes the student's head with only 20% training time as a plug-and-play training strategy. For data limitations, we explore the UBody dataset that contains diverse facial expressions and hand gestures for real-life applications. Comprehensive experiments show the superiority of our proposed simple yet effective methods. We achieve new state-of-the-art performance on COCO-WholeBody, significantly boosting the whole-body AP of RTMPose-l from 64.8% to 66.5%, even surpassing RTMPose-x teacher with 65.3% AP. We release a series of models with different sizes, from tiny to large, for satisfying various downstream tasks. Our codes and models are available at https://github.com/IDEA-Research/DWPose.
Large-vocabulary forensic pathological analyses via prototypical cross-modal contrastive learning
Forensic pathology is critical in determining the cause and manner of death through post-mortem examinations, both macroscopic and microscopic. The field, however, grapples with issues such as outcome variability, laborious processes, and a scarcity of trained professionals. This paper presents SongCi, an innovative visual-language model (VLM) designed specifically for forensic pathology. SongCi utilizes advanced prototypical cross-modal self-supervised contrastive learning to enhance the accuracy, efficiency, and generalizability of forensic analyses. It was pre-trained and evaluated on a comprehensive multi-center dataset, which includes over 16 million high-resolution image patches, 2,228 vision-language pairs of post-mortem whole slide images (WSIs), and corresponding gross key findings, along with 471 distinct diagnostic outcomes. Our findings indicate that SongCi surpasses existing multi-modal AI models in many forensic pathology tasks, performs comparably to experienced forensic pathologists and significantly better than less experienced ones, and provides detailed multi-modal explainability, offering critical assistance in forensic investigations. To the best of our knowledge, SongCi is the first VLM specifically developed for forensic pathological analysis and the first large-vocabulary computational pathology (CPath) model that directly processes gigapixel WSIs in forensic science.
DNA-Rendering: A Diverse Neural Actor Repository for High-Fidelity Human-centric Rendering
Realistic human-centric rendering plays a key role in both computer vision and computer graphics. Rapid progress has been made in the algorithm aspect over the years, yet existing human-centric rendering datasets and benchmarks are rather impoverished in terms of diversity, which are crucial for rendering effect. Researchers are usually constrained to explore and evaluate a small set of rendering problems on current datasets, while real-world applications require methods to be robust across different scenarios. In this work, we present DNA-Rendering, a large-scale, high-fidelity repository of human performance data for neural actor rendering. DNA-Rendering presents several alluring attributes. First, our dataset contains over 1500 human subjects, 5000 motion sequences, and 67.5M frames' data volume. Second, we provide rich assets for each subject -- 2D/3D human body keypoints, foreground masks, SMPLX models, cloth/accessory materials, multi-view images, and videos. These assets boost the current method's accuracy on downstream rendering tasks. Third, we construct a professional multi-view system to capture data, which contains 60 synchronous cameras with max 4096 x 3000 resolution, 15 fps speed, and stern camera calibration steps, ensuring high-quality resources for task training and evaluation. Along with the dataset, we provide a large-scale and quantitative benchmark in full-scale, with multiple tasks to evaluate the existing progress of novel view synthesis, novel pose animation synthesis, and novel identity rendering methods. In this manuscript, we describe our DNA-Rendering effort as a revealing of new observations, challenges, and future directions to human-centric rendering. The dataset, code, and benchmarks will be publicly available at https://dna-rendering.github.io/
Digitizing Touch with an Artificial Multimodal Fingertip
Touch is a crucial sensing modality that provides rich information about object properties and interactions with the physical environment. Humans and robots both benefit from using touch to perceive and interact with the surrounding environment (Johansson and Flanagan, 2009; Li et al., 2020; Calandra et al., 2017). However, no existing systems provide rich, multi-modal digital touch-sensing capabilities through a hemispherical compliant embodiment. Here, we describe several conceptual and technological innovations to improve the digitization of touch. These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities. Significantly, this fingertip contains high-resolution sensors (~8.3 million taxels) that respond to omnidirectional touch, capture multi-modal signals, and use on-device artificial intelligence to process the data in real time. Evaluations show that the artificial fingertip can resolve spatial features as small as 7 um, sense normal and shear forces with a resolution of 1.01 mN and 1.27 mN, respectively, perceive vibrations up to 10 kHz, sense heat, and even sense odor. Furthermore, it embeds an on-device AI neural network accelerator that acts as a peripheral nervous system on a robot and mimics the reflex arc found in humans. These results demonstrate the possibility of digitizing touch with superhuman performance. The implications are profound, and we anticipate potential applications in robotics (industrial, medical, agricultural, and consumer-level), virtual reality and telepresence, prosthetics, and e-commerce. Toward digitizing touch at scale, we open-source a modular platform to facilitate future research on the nature of touch.
Unsupervised Learning of Visual Features by Contrasting Cluster Assignments
Unsupervised image representations have significantly reduced the gap with supervised pretraining, notably with the recent achievements of contrastive learning methods. These contrastive methods typically work online and rely on a large number of explicit pairwise feature comparisons, which is computationally challenging. In this paper, we propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons. Specifically, our method simultaneously clusters the data while enforcing consistency between cluster assignments produced for different augmentations (or views) of the same image, instead of comparing features directly as in contrastive learning. Simply put, we use a swapped prediction mechanism where we predict the cluster assignment of a view from the representation of another view. Our method can be trained with large and small batches and can scale to unlimited amounts of data. Compared to previous contrastive methods, our method is more memory efficient since it does not require a large memory bank or a special momentum network. In addition, we also propose a new data augmentation strategy, multi-crop, that uses a mix of views with different resolutions in place of two full-resolution views, without increasing the memory or compute requirements much. We validate our findings by achieving 75.3% top-1 accuracy on ImageNet with ResNet-50, as well as surpassing supervised pretraining on all the considered transfer tasks.
DATID-3D: Diversity-Preserved Domain Adaptation Using Text-to-Image Diffusion for 3D Generative Model
Recent 3D generative models have achieved remarkable performance in synthesizing high resolution photorealistic images with view consistency and detailed 3D shapes, but training them for diverse domains is challenging since it requires massive training images and their camera distribution information. Text-guided domain adaptation methods have shown impressive performance on converting the 2D generative model on one domain into the models on other domains with different styles by leveraging the CLIP (Contrastive Language-Image Pre-training), rather than collecting massive datasets for those domains. However, one drawback of them is that the sample diversity in the original generative model is not well-preserved in the domain-adapted generative models due to the deterministic nature of the CLIP text encoder. Text-guided domain adaptation will be even more challenging for 3D generative models not only because of catastrophic diversity loss, but also because of inferior text-image correspondence and poor image quality. Here we propose DATID-3D, a domain adaptation method tailored for 3D generative models using text-to-image diffusion models that can synthesize diverse images per text prompt without collecting additional images and camera information for the target domain. Unlike 3D extensions of prior text-guided domain adaptation methods, our novel pipeline was able to fine-tune the state-of-the-art 3D generator of the source domain to synthesize high resolution, multi-view consistent images in text-guided targeted domains without additional data, outperforming the existing text-guided domain adaptation methods in diversity and text-image correspondence. Furthermore, we propose and demonstrate diverse 3D image manipulations such as one-shot instance-selected adaptation and single-view manipulated 3D reconstruction to fully enjoy diversity in text.
IML-ViT: Benchmarking Image Manipulation Localization by Vision Transformer
Advanced image tampering techniques are increasingly challenging the trustworthiness of multimedia, leading to the development of Image Manipulation Localization (IML). But what makes a good IML model? The answer lies in the way to capture artifacts. Exploiting artifacts requires the model to extract non-semantic discrepancies between manipulated and authentic regions, necessitating explicit comparisons between the two areas. With the self-attention mechanism, naturally, the Transformer should be a better candidate to capture artifacts. However, due to limited datasets, there is currently no pure ViT-based approach for IML to serve as a benchmark, and CNNs dominate the entire task. Nevertheless, CNNs suffer from weak long-range and non-semantic modeling. To bridge this gap, based on the fact that artifacts are sensitive to image resolution, amplified under multi-scale features, and massive at the manipulation border, we formulate the answer to the former question as building a ViT with high-resolution capacity, multi-scale feature extraction capability, and manipulation edge supervision that could converge with a small amount of data. We term this simple but effective ViT paradigm IML-ViT, which has significant potential to become a new benchmark for IML. Extensive experiments on five benchmark datasets verified our model outperforms the state-of-the-art manipulation localization methods.Code and models are available at https://github.com/SunnyHaze/IML-ViT.
ImagePairs: Realistic Super Resolution Dataset via Beam Splitter Camera Rig
Super Resolution is the problem of recovering a high-resolution image from a single or multiple low-resolution images of the same scene. It is an ill-posed problem since high frequency visual details of the scene are completely lost in low-resolution images. To overcome this, many machine learning approaches have been proposed aiming at training a model to recover the lost details in the new scenes. Such approaches include the recent successful effort in utilizing deep learning techniques to solve super resolution problem. As proven, data itself plays a significant role in the machine learning process especially deep learning approaches which are data hungry. Therefore, to solve the problem, the process of gathering data and its formation could be equally as vital as the machine learning technique used. Herein, we are proposing a new data acquisition technique for gathering real image data set which could be used as an input for super resolution, noise cancellation and quality enhancement techniques. We use a beam-splitter to capture the same scene by a low resolution camera and a high resolution camera. Since we also release the raw images, this large-scale dataset could be used for other tasks such as ISP generation. Unlike current small-scale dataset used for these tasks, our proposed dataset includes 11,421 pairs of low-resolution high-resolution images of diverse scenes. To our knowledge this is the most complete dataset for super resolution, ISP and image quality enhancement. The benchmarking result shows how the new dataset can be successfully used to significantly improve the quality of real-world image super resolution.
MultiConIR: Towards multi-condition Information Retrieval
In this paper, we introduce MultiConIR, the first benchmark designed to evaluate retrieval models in multi-condition scenarios. Unlike existing datasets that primarily focus on single-condition queries from search engines, MultiConIR captures real-world complexity by incorporating five diverse domains: books, movies, people, medical cases, and legal documents. We propose three tasks to systematically assess retrieval and reranking models on multi-condition robustness, monotonic relevance ranking, and query format sensitivity. Our findings reveal that existing retrieval and reranking models struggle with multi-condition retrieval, with rerankers suffering severe performance degradation as query complexity increases. We further investigate the performance gap between retrieval and reranking models, exploring potential reasons for these discrepancies, and analysis the impact of different pooling strategies on condition placement sensitivity. Finally, we highlight the strengths of GritLM and Nv-Embed, which demonstrate enhanced adaptability to multi-condition queries, offering insights for future retrieval models. The code and datasets are available at https://github.com/EIT-NLP/MultiConIR.
Make Your ViT-based Multi-view 3D Detectors Faster via Token Compression
Slow inference speed is one of the most crucial concerns for deploying multi-view 3D detectors to tasks with high real-time requirements like autonomous driving. Although many sparse query-based methods have already attempted to improve the efficiency of 3D detectors, they neglect to consider the backbone, especially when using Vision Transformers (ViT) for better performance. To tackle this problem, we explore the efficient ViT backbones for multi-view 3D detection via token compression and propose a simple yet effective method called TokenCompression3D (ToC3D). By leveraging history object queries as foreground priors of high quality, modeling 3D motion information in them, and interacting them with image tokens through the attention mechanism, ToC3D can effectively determine the magnitude of information densities of image tokens and segment the salient foreground tokens. With the introduced dynamic router design, ToC3D can weigh more computing resources to important foreground tokens while compressing the information loss, leading to a more efficient ViT-based multi-view 3D detector. Extensive results on the large-scale nuScenes dataset show that our method can nearly maintain the performance of recent SOTA with up to 30% inference speedup, and the improvements are consistent after scaling up the ViT and input resolution. The code will be made at https://github.com/DYZhang09/ToC3D.
EnergyPatchTST: Multi-scale Time Series Transformers with Uncertainty Estimation for Energy Forecasting
Accurate and reliable energy time series prediction is of great significance for power generation planning and allocation. At present, deep learning time series prediction has become the mainstream method. However, the multi-scale time dynamics and the irregularity of real data lead to the limitations of the existing methods. Therefore, we propose EnergyPatchTST, which is an extension of the Patch Time Series Transformer specially designed for energy forecasting. The main innovations of our method are as follows: (1) multi-scale feature extraction mechanism to capture patterns with different time resolutions; (2) probability prediction framework to estimate uncertainty through Monte Carlo elimination; (3) integration path of future known variables (such as temperature and wind conditions); And (4) Pre-training and Fine-tuning examples to enhance the performance of limited energy data sets. A series of experiments on common energy data sets show that EnergyPatchTST is superior to other commonly used methods, the prediction error is reduced by 7-12%, and reliable uncertainty estimation is provided, which provides an important reference for time series prediction in the energy field.
3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement
Despite advances in neural rendering, due to the scarcity of high-quality 3D datasets and the inherent limitations of multi-view diffusion models, view synthesis and 3D model generation are restricted to low resolutions with suboptimal multi-view consistency. In this study, we present a novel 3D enhancement pipeline, dubbed 3DEnhancer, which employs a multi-view latent diffusion model to enhance coarse 3D inputs while preserving multi-view consistency. Our method includes a pose-aware encoder and a diffusion-based denoiser to refine low-quality multi-view images, along with data augmentation and a multi-view attention module with epipolar aggregation to maintain consistent, high-quality 3D outputs across views. Unlike existing video-based approaches, our model supports seamless multi-view enhancement with improved coherence across diverse viewing angles. Extensive evaluations show that 3DEnhancer significantly outperforms existing methods, boosting both multi-view enhancement and per-instance 3D optimization tasks.
See More Details: Efficient Image Super-Resolution by Experts Mining
Reconstructing high-resolution (HR) images from low-resolution (LR) inputs poses a significant challenge in image super-resolution (SR). While recent approaches have demonstrated the efficacy of intricate operations customized for various objectives, the straightforward stacking of these disparate operations can result in a substantial computational burden, hampering their practical utility. In response, we introduce SeemoRe, an efficient SR model employing expert mining. Our approach strategically incorporates experts at different levels, adopting a collaborative methodology. At the macro scale, our experts address rank-wise and spatial-wise informative features, providing a holistic understanding. Subsequently, the model delves into the subtleties of rank choice by leveraging a mixture of low-rank experts. By tapping into experts specialized in distinct key factors crucial for accurate SR, our model excels in uncovering intricate intra-feature details. This collaborative approach is reminiscent of the concept of "see more", allowing our model to achieve an optimal performance with minimal computational costs in efficient settings. The source will be publicly made available at https://github.com/eduardzamfir/seemoredetails
PanGu-Draw: Advancing Resource-Efficient Text-to-Image Synthesis with Time-Decoupled Training and Reusable Coop-Diffusion
Current large-scale diffusion models represent a giant leap forward in conditional image synthesis, capable of interpreting diverse cues like text, human poses, and edges. However, their reliance on substantial computational resources and extensive data collection remains a bottleneck. On the other hand, the integration of existing diffusion models, each specialized for different controls and operating in unique latent spaces, poses a challenge due to incompatible image resolutions and latent space embedding structures, hindering their joint use. Addressing these constraints, we present "PanGu-Draw", a novel latent diffusion model designed for resource-efficient text-to-image synthesis that adeptly accommodates multiple control signals. We first propose a resource-efficient Time-Decoupling Training Strategy, which splits the monolithic text-to-image model into structure and texture generators. Each generator is trained using a regimen that maximizes data utilization and computational efficiency, cutting data preparation by 48% and reducing training resources by 51%. Secondly, we introduce "Coop-Diffusion", an algorithm that enables the cooperative use of various pre-trained diffusion models with different latent spaces and predefined resolutions within a unified denoising process. This allows for multi-control image synthesis at arbitrary resolutions without the necessity for additional data or retraining. Empirical validations of Pangu-Draw show its exceptional prowess in text-to-image and multi-control image generation, suggesting a promising direction for future model training efficiencies and generation versatility. The largest 5B T2I PanGu-Draw model is released on the Ascend platform. Project page: https://pangu-draw.github.io
DFYP: A Dynamic Fusion Framework with Spectral Channel Attention and Adaptive Operator learning for Crop Yield Prediction
Accurate remote sensing-based crop yield prediction remains a fundamental challenging task due to complex spatial patterns, heterogeneous spectral characteristics, and dynamic agricultural conditions. Existing methods often suffer from limited spatial modeling capacity, weak generalization across crop types and years. To address these challenges, we propose DFYP, a novel Dynamic Fusion framework for crop Yield Prediction, which combines spectral channel attention, edge-adaptive spatial modeling and a learnable fusion mechanism to improve robustness across diverse agricultural scenarios. Specifically, DFYP introduces three key components: (1) a Resolution-aware Channel Attention (RCA) module that enhances spectral representation by adaptively reweighting input channels based on resolution-specific characteristics; (2) an Adaptive Operator Learning Network (AOL-Net) that dynamically selects operators for convolutional kernels to improve edge-sensitive spatial feature extraction under varying crop and temporal conditions; and (3) a dual-branch architecture with a learnable fusion mechanism, which jointly models local spatial details and global contextual information to support cross-resolution and cross-crop generalization. Extensive experiments on multi-year datasets MODIS and multi-crop dataset Sentinel-2 demonstrate that DFYP consistently outperforms current state-of-the-art baselines in RMSE, MAE, and R2 across different spatial resolutions, crop types, and time periods, showcasing its effectiveness and robustness for real-world agricultural monitoring.
Beyond LLaVA-HD: Diving into High-Resolution Large Multimodal Models
Seeing clearly with high resolution is a foundation of Large Multimodal Models (LMMs), which has been proven to be vital for visual perception and reasoning. Existing works usually employ a straightforward resolution upscaling method, where the image consists of global and local branches, with the latter being the sliced image patches but resized to the same resolution as the former. This means that higher resolution requires more local patches, resulting in exorbitant computational expenses, and meanwhile, the dominance of local image tokens may diminish the global context. In this paper, we dive into the problems and propose a new framework as well as an elaborate optimization strategy. Specifically, we extract contextual information from the global view using a mixture of adapters, based on the observation that different adapters excel at different tasks. With regard to local patches, learnable query embeddings are introduced to reduce image tokens, the most important tokens accounting for the user question will be further selected by a similarity-based selector. Our empirical results demonstrate a `less is more' pattern, where utilizing fewer but more informative local image tokens leads to improved performance. Besides, a significant challenge lies in the training strategy, as simultaneous end-to-end training of the global mining block and local compression block does not yield optimal results. We thus advocate for an alternating training way, ensuring balanced learning between global and local aspects. Finally, we also introduce a challenging dataset with high requirements for image detail, enhancing the training of the local compression layer. The proposed method, termed LMM with Sophisticated Tasks, Local image compression, and Mixture of global Experts (SliME), achieves leading performance across various benchmarks with only 2 million training data.
GFM: Building Geospatial Foundation Models via Continual Pretraining
Geospatial technologies are becoming increasingly essential in our world for a wide range of applications, including agriculture, urban planning, and disaster response. To help improve the applicability and performance of deep learning models on these geospatial tasks, various works have begun investigating foundation models for this domain. Researchers have explored two prominent approaches for introducing such models in geospatial applications, but both have drawbacks in terms of limited performance benefit or prohibitive training cost. Therefore, in this work, we propose a novel paradigm for building highly effective geospatial foundation models with minimal resource cost and carbon impact. We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile. Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm, which leverages the strong representations of ImageNet while simultaneously providing the freedom to learn valuable in-domain features. Our approach outperforms previous state-of-the-art geospatial pretraining methods in an extensive evaluation on seven downstream datasets covering various tasks such as change detection, classification, multi-label classification, semantic segmentation, and super-resolution.
World knowledge-enhanced Reasoning Using Instruction-guided Interactor in Autonomous Driving
The Multi-modal Large Language Models (MLLMs) with extensive world knowledge have revitalized autonomous driving, particularly in reasoning tasks within perceivable regions. However, when faced with perception-limited areas (dynamic or static occlusion regions), MLLMs struggle to effectively integrate perception ability with world knowledge for reasoning. These perception-limited regions can conceal crucial safety information, especially for vulnerable road users. In this paper, we propose a framework, which aims to improve autonomous driving performance under perceptionlimited conditions by enhancing the integration of perception capabilities and world knowledge. Specifically, we propose a plug-and-play instruction-guided interaction module that bridges modality gaps and significantly reduces the input sequence length, allowing it to adapt effectively to multi-view video inputs. Furthermore, to better integrate world knowledge with driving-related tasks, we have collected and refined a large-scale multi-modal dataset that includes 2 million natural language QA pairs, 1.7 million grounding task data. To evaluate the model's utilization of world knowledge, we introduce an object-level risk assessment dataset comprising 200K QA pairs, where the questions necessitate multi-step reasoning leveraging world knowledge for resolution. Extensive experiments validate the effectiveness of our proposed method.
Flying with Photons: Rendering Novel Views of Propagating Light
We present an imaging and neural rendering technique that seeks to synthesize videos of light propagating through a scene from novel, moving camera viewpoints. Our approach relies on a new ultrafast imaging setup to capture a first-of-its kind, multi-viewpoint video dataset with picosecond-level temporal resolution. Combined with this dataset, we introduce an efficient neural volume rendering framework based on the transient field. This field is defined as a mapping from a 3D point and 2D direction to a high-dimensional, discrete-time signal that represents time-varying radiance at ultrafast timescales. Rendering with transient fields naturally accounts for effects due to the finite speed of light, including viewpoint-dependent appearance changes caused by light propagation delays to the camera. We render a range of complex effects, including scattering, specular reflection, refraction, and diffraction. Additionally, we demonstrate removing viewpoint-dependent propagation delays using a time warping procedure, rendering of relativistic effects, and video synthesis of direct and global components of light transport.
SpectralGPT: Spectral Foundation Model
The foundation model has recently garnered significant attention due to its potential to revolutionize the field of visual representation learning in a self-supervised manner. While most foundation models are tailored to effectively process RGB images for various visual tasks, there is a noticeable gap in research focused on spectral data, which offers valuable information for scene understanding, especially in remote sensing (RS) applications. To fill this gap, we created for the first time a universal RS foundation model, named SpectralGPT, which is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT). Compared to existing foundation models, SpectralGPT 1) accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data; 2) leverages 3D token generation for spatial-spectral coupling; 3) captures spectrally sequential patterns via multi-target reconstruction; 4) trains on one million spectral RS images, yielding models with over 600 million parameters. Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience across four downstream tasks: single/multi-label scene classification, semantic segmentation, and change detection.
Manager: Aggregating Insights from Unimodal Experts in Two-Tower VLMs and MLLMs
Two-Tower Vision--Language Models (VLMs) have demonstrated strong performance across various downstream VL tasks. While BridgeTower further enhances performance by building bridges between encoders, it (i) suffers from ineffective layer-by-layer utilization of unimodal representations, (ii) restricts the flexible exploitation of different levels of unimodal semantic knowledge, and (iii) is limited to the evaluation on traditional low-resolution datasets only with the Two-Tower VLM architecture. In this work, we propose Manager, a lightweight, efficient and effective plugin that adaptively aggregates insights from different levels of pre-trained unimodal experts to facilitate more comprehensive VL alignment and fusion. First, under the Two-Tower VLM architecture, we introduce ManagerTower, a novel VLM that introduces the manager in each cross-modal layer. Whether with or without VL pre-training, ManagerTower outperforms previous strong baselines and achieves superior performance on 4 downstream VL tasks. Moreover, we extend our exploration to the latest Multimodal Large Language Model (MLLM) architecture. We demonstrate that LLaVA-OV-Manager significantly boosts the zero-shot performance of LLaVA-OV across different categories of capabilities, images, and resolutions on 20 downstream datasets, whether the multi-grid algorithm is enabled or not. In-depth analysis reveals that both our manager and the multi-grid algorithm can be viewed as a plugin that improves the visual representation by capturing more diverse visual details from two orthogonal perspectives (depth and width). Their synergy can mitigate the semantic ambiguity caused by the multi-grid algorithm and further improve performance. Code and models are available at https://github.com/LooperXX/ManagerTower.
The Tenth NTIRE 2025 Efficient Super-Resolution Challenge Report
This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the DIV2K_LSDIR_valid dataset and 26.99 dB on the DIV2K_LSDIR_test dataset. A robust participation saw 244 registered entrants, with 43 teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.
Unified Multi-Modal Interleaved Document Representation for Information Retrieval
Information Retrieval (IR) methods aim to identify relevant documents in response to a given query, which have gained remarkable attention due to their successful application in various natural language tasks. However, existing approaches typically consider only the textual information within the documents, which overlooks the fact that documents can contain multiple modalities, including texts, images, and tables. Further, they often segment each long document into multiple discrete passages for embedding, preventing them from capturing the overall document context and interactions between paragraphs. We argue that these two limitations lead to suboptimal document representations for retrieval. In this work, to address them, we aim to produce more comprehensive and nuanced document representations by holistically embedding documents interleaved with different modalities. Specifically, we achieve this by leveraging the capability of recent vision-language models that enable the processing and integration of text, images, and tables into a unified format and representation. Moreover, to mitigate the information loss from segmenting documents into passages, instead of representing and retrieving passages individually, we further merge the representations of segmented passages into one single document representation, while we additionally introduce a reranking strategy to decouple and identify the relevant passage within the document if necessary. Then, through extensive experiments on diverse information retrieval scenarios considering both the textual and multimodal queries, we show that our approach substantially outperforms relevant baselines, thanks to the consideration of the multimodal information interleaved within the documents in a unified way.
MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
MEGA-Bench: Scaling Multimodal Evaluation to over 500 Real-World Tasks
We present MEGA-Bench, an evaluation suite that scales multimodal evaluation to over 500 real-world tasks, to address the highly heterogeneous daily use cases of end users. Our objective is to optimize for a set of high-quality data samples that cover a highly diverse and rich set of multimodal tasks, while enabling cost-effective and accurate model evaluation. In particular, we collected 505 realistic tasks encompassing over 8,000 samples from 16 expert annotators to extensively cover the multimodal task space. Instead of unifying these problems into standard multi-choice questions (like MMMU, MMBench, and MMT-Bench), we embrace a wide range of output formats like numbers, phrases, code, \LaTeX, coordinates, JSON, free-form, etc. To accommodate these formats, we developed over 40 metrics to evaluate these tasks. Unlike existing benchmarks, MEGA-Bench offers a fine-grained capability report across multiple dimensions (e.g., application, input type, output format, skill), allowing users to interact with and visualize model capabilities in depth. We evaluate a wide variety of frontier vision-language models on MEGA-Bench to understand their capabilities across these dimensions.
Generative Powers of Ten
We present a method that uses a text-to-image model to generate consistent content across multiple image scales, enabling extreme semantic zooms into a scene, e.g., ranging from a wide-angle landscape view of a forest to a macro shot of an insect sitting on one of the tree branches. We achieve this through a joint multi-scale diffusion sampling approach that encourages consistency across different scales while preserving the integrity of each individual sampling process. Since each generated scale is guided by a different text prompt, our method enables deeper levels of zoom than traditional super-resolution methods that may struggle to create new contextual structure at vastly different scales. We compare our method qualitatively with alternative techniques in image super-resolution and outpainting, and show that our method is most effective at generating consistent multi-scale content.
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired high-quality target images. In Track 1: Image Processing artifacts, the aim is to super-resolve images with synthetically generated image processing artifacts. This allows for quantitative benchmarking of the approaches \wrt a ground-truth image. In Track 2: Smartphone Images, real low-quality smart phone images have to be super-resolved. In both tracks, the ultimate goal is to achieve the best perceptual quality, evaluated using a human study. This is the second challenge on the subject, following AIM 2019, targeting to advance the state-of-the-art in super-resolution. To measure the performance we use the benchmark protocol from AIM 2019. In total 22 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem.
Composed Image Retrieval for Remote Sensing
This work introduces composed image retrieval to remote sensing. It allows to query a large image archive by image examples alternated by a textual description, enriching the descriptive power over unimodal queries, either visual or textual. Various attributes can be modified by the textual part, such as shape, color, or context. A novel method fusing image-to-image and text-to-image similarity is introduced. We demonstrate that a vision-language model possesses sufficient descriptive power and no further learning step or training data are necessary. We present a new evaluation benchmark focused on color, context, density, existence, quantity, and shape modifications. Our work not only sets the state-of-the-art for this task, but also serves as a foundational step in addressing a gap in the field of remote sensing image retrieval. Code at: https://github.com/billpsomas/rscir
The Multimodal Universe: Enabling Large-Scale Machine Learning with 100TB of Astronomical Scientific Data
We present the MULTIMODAL UNIVERSE, a large-scale multimodal dataset of scientific astronomical data, compiled specifically to facilitate machine learning research. Overall, the MULTIMODAL UNIVERSE contains hundreds of millions of astronomical observations, constituting 100\,TB of multi-channel and hyper-spectral images, spectra, multivariate time series, as well as a wide variety of associated scientific measurements and "metadata". In addition, we include a range of benchmark tasks representative of standard practices for machine learning methods in astrophysics. This massive dataset will enable the development of large multi-modal models specifically targeted towards scientific applications. All codes used to compile the MULTIMODAL UNIVERSE and a description of how to access the data is available at https://github.com/MultimodalUniverse/MultimodalUniverse
Ocean-OCR: Towards General OCR Application via a Vision-Language Model
Multimodal large language models (MLLMs) have shown impressive capabilities across various domains, excelling in processing and understanding information from multiple modalities. Despite the rapid progress made previously, insufficient OCR ability hinders MLLMs from excelling in text-related tasks. In this paper, we present Ocean-OCR, a 3B MLLM with state-of-the-art performance on various OCR scenarios and comparable understanding ability on general tasks. We employ Native Resolution ViT to enable variable resolution input and utilize a substantial collection of high-quality OCR datasets to enhance the model performance. We demonstrate the superiority of Ocean-OCR through comprehensive experiments on open-source OCR benchmarks and across various OCR scenarios. These scenarios encompass document understanding, scene text recognition, and handwritten recognition, highlighting the robust OCR capabilities of Ocean-OCR. Note that Ocean-OCR is the first MLLM to outperform professional OCR models such as TextIn and PaddleOCR.
A Public Image Database for Benchmark of Plant Seedling Classification Algorithms
A database of images of approximately 960 unique plants belonging to 12 species at several growth stages is made publicly available. It comprises annotated RGB images with a physical resolution of roughly 10 pixels per mm. To standardise the evaluation of classification results obtained with the database, a benchmark based on f_{1} scores is proposed. The dataset is available at https://vision.eng.au.dk/plant-seedlings-dataset
From LAION-5B to LAION-EO: Filtering Billions of Images Using Anchor Datasets for Satellite Image Extraction
Large datasets, such as LAION-5B, contain a diverse distribution of images shared online. However, extraction of domain-specific subsets of large image corpora is challenging. The extraction approach based on an anchor dataset, combined with further filtering, is proposed here and demonstrated for the domain of satellite imagery. This results in the release of LAION-EO, a dataset sourced from the web containing pairs of text and satellite images in high (pixel-wise) resolution. The paper outlines the acquisition procedure as well as some of the features of the dataset.
HRScene: How Far Are VLMs from Effective High-Resolution Image Understanding?
High-resolution image (HRI) understanding aims to process images with a large number of pixels, such as pathological images and agricultural aerial images, both of which can exceed 1 million pixels. Vision Large Language Models (VLMs) can allegedly handle HRIs, however, there is a lack of a comprehensive benchmark for VLMs to evaluate HRI understanding. To address this gap, we introduce HRScene, a novel unified benchmark for HRI understanding with rich scenes. HRScene incorporates 25 real-world datasets and 2 synthetic diagnostic datasets with resolutions ranging from 1,024 times 1,024 to 35,503 times 26,627. HRScene is collected and re-annotated by 10 graduate-level annotators, covering 25 scenarios, ranging from microscopic to radiology images, street views, long-range pictures, and telescope images. It includes HRIs of real-world objects, scanned documents, and composite multi-image. The two diagnostic evaluation datasets are synthesized by combining the target image with the gold answer and distracting images in different orders, assessing how well models utilize regions in HRI. We conduct extensive experiments involving 28 VLMs, including Gemini 2.0 Flash and GPT-4o. Experiments on HRScene show that current VLMs achieve an average accuracy of around 50% on real-world tasks, revealing significant gaps in HRI understanding. Results on synthetic datasets reveal that VLMs struggle to effectively utilize HRI regions, showing significant Regional Divergence and lost-in-middle, shedding light on future research.
Any Information Is Just Worth One Single Screenshot: Unifying Search With Visualized Information Retrieval
With the popularity of multimodal techniques, it receives growing interests to acquire useful information in visual forms. In this work, we formally define an emerging IR paradigm called Visualized Information Retrieval, or Vis-IR, where multimodal information, such as texts, images, tables and charts, is jointly represented by a unified visual format called Screenshots, for various retrieval applications. We further make three key contributions for Vis-IR. First, we create VIRA (Vis-IR Aggregation), a large-scale dataset comprising a vast collection of screenshots from diverse sources, carefully curated into captioned and question-answer formats. Second, we develop UniSE (Universal Screenshot Embeddings), a family of retrieval models that enable screenshots to query or be queried across arbitrary data modalities. Finally, we construct MVRB (Massive Visualized IR Benchmark), a comprehensive benchmark covering a variety of task forms and application scenarios. Through extensive evaluations on MVRB, we highlight the deficiency from existing multimodal retrievers and the substantial improvements made by UniSE. Our work will be shared with the community, laying a solid foundation for this emerging field.
DocPruner: A Storage-Efficient Framework for Multi-Vector Visual Document Retrieval via Adaptive Patch-Level Embedding Pruning
Visual Document Retrieval (VDR), the task of retrieving visually-rich document pages using queries that combine visual and textual cues, is crucial for numerous real-world applications. Recent state-of-the-art methods leverage Large Vision-Language Models (LVLMs) in a multi-vector paradigm, representing each document as patch-level embeddings to capture fine-grained details. While highly effective, this approach introduces a critical challenge: prohibitive storage overhead, as storing hundreds of vectors per page makes large-scale deployment costly and impractical. To address this, we introduce DocPruner, the first framework to employ adaptive patch-level embedding pruning for VDR to effectively reduce the storage overhead. DocPruner leverages the intra-document patch attention distribution to dynamically identify and discard redundant embeddings for each document. This adaptive mechanism enables a significant 50-60% reduction in storage for leading multi-vector VDR models with negligible degradation in document retrieval performance. Extensive experiments across more than ten representative datasets validate that DocPruner offers a robust, flexible, and effective solution for building storage-efficient, large-scale VDR systems.
MRMR: A Realistic and Expert-Level Multidisciplinary Benchmark for Reasoning-Intensive Multimodal Retrieval
We introduce MRMR, the first expert-level multidisciplinary multimodal retrieval benchmark requiring intensive reasoning. MRMR contains 1,502 queries spanning 23 domains, with positive documents carefully verified by human experts. Compared to prior benchmarks, MRMR introduces three key advancements. First, it challenges retrieval systems across diverse areas of expertise, enabling fine-grained model comparison across domains. Second, queries are reasoning-intensive, with images requiring deeper interpretation such as diagnosing microscopic slides. We further introduce Contradiction Retrieval, a novel task requiring models to identify conflicting concepts. Finally, queries and documents are constructed as image-text interleaved sequences. Unlike earlier benchmarks restricted to single images or unimodal documents, MRMR offers a realistic setting with multi-image queries and mixed-modality corpus documents. We conduct an extensive evaluation of 4 categories of multimodal retrieval systems and 14 frontier models on MRMR. The text embedding model Qwen3-Embedding with LLM-generated image captions achieves the highest performance, highlighting substantial room for improving multimodal retrieval models. Although latest multimodal models such as Ops-MM-Embedding perform competitively on expert-domain queries, they fall short on reasoning-intensive tasks. We believe that MRMR paves the way for advancing multimodal retrieval in more realistic and challenging scenarios.
Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval
Cross-modal retrieval is gaining increasing efficacy and interest from the research community, thanks to large-scale training, novel architectural and learning designs, and its application in LLMs and multimodal LLMs. In this paper, we move a step forward and design an approach that allows for multimodal queries, composed of both an image and a text, and can search within collections of multimodal documents, where images and text are interleaved. Our model, ReT, employs multi-level representations extracted from different layers of both visual and textual backbones, both at the query and document side. To allow for multi-level and cross-modal understanding and feature extraction, ReT employs a novel Transformer-based recurrent cell that integrates both textual and visual features at different layers, and leverages sigmoidal gates inspired by the classical design of LSTMs. Extensive experiments on M2KR and M-BEIR benchmarks show that ReT achieves state-of-the-art performance across diverse settings. Our source code and trained models are publicly available at https://github.com/aimagelab/ReT.
Fast and accurate object detection in high resolution 4K and 8K video using GPUs
Machine learning has celebrated a lot of achievements on computer vision tasks such as object detection, but the traditionally used models work with relatively low resolution images. The resolution of recording devices is gradually increasing and there is a rising need for new methods of processing high resolution data. We propose an attention pipeline method which uses two staged evaluation of each image or video frame under rough and refined resolution to limit the total number of necessary evaluations. For both stages, we make use of the fast object detection model YOLO v2. We have implemented our model in code, which distributes the work across GPUs. We maintain high accuracy while reaching the average performance of 3-6 fps on 4K video and 2 fps on 8K video.
FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
Multimodal Neural Databases
The rise in loosely-structured data available through text, images, and other modalities has called for new ways of querying them. Multimedia Information Retrieval has filled this gap and has witnessed exciting progress in recent years. Tasks such as search and retrieval of extensive multimedia archives have undergone massive performance improvements, driven to a large extent by recent developments in multimodal deep learning. However, methods in this field remain limited in the kinds of queries they support and, in particular, their inability to answer database-like queries. For this reason, inspired by recent work on neural databases, we propose a new framework, which we name Multimodal Neural Databases (MMNDBs). MMNDBs can answer complex database-like queries that involve reasoning over different input modalities, such as text and images, at scale. In this paper, we present the first architecture able to fulfill this set of requirements and test it with several baselines, showing the limitations of currently available models. The results show the potential of these new techniques to process unstructured data coming from different modalities, paving the way for future research in the area. Code to replicate the experiments will be released at https://github.com/GiovanniTRA/MultimodalNeuralDatabases
MINT-1T: Scaling Open-Source Multimodal Data by 10x: A Multimodal Dataset with One Trillion Tokens
Multimodal interleaved datasets featuring free-form interleaved sequences of images and text are crucial for training frontier large multimodal models (LMMs). Despite the rapid progression of open-source LMMs, there remains a pronounced scarcity of large-scale, diverse open-source multimodal interleaved datasets. In response, we introduce MINT-1T, the most extensive and diverse open-source Multimodal INTerleaved dataset to date. MINT-1T comprises one trillion text tokens and three billion images, a 10x scale-up from existing open-source datasets. Additionally, we include previously untapped sources such as PDFs and ArXiv papers. As scaling multimodal interleaved datasets requires substantial engineering effort, sharing the data curation process and releasing the dataset greatly benefits the community. Our experiments show that LMMs trained on MINT-1T rival the performance of models trained on the previous leading dataset, OBELICS. Our data and code will be released at https://github.com/mlfoundations/MINT-1T.
BIMCV-R: A Landmark Dataset for 3D CT Text-Image Retrieval
The burgeoning integration of 3D medical imaging into healthcare has led to a substantial increase in the workload of medical professionals. To assist clinicians in their diagnostic processes and alleviate their workload, the development of a robust system for retrieving similar case studies presents a viable solution. While the concept holds great promise, the field of 3D medical text-image retrieval is currently limited by the absence of robust evaluation benchmarks and curated datasets. To remedy this, our study presents a groundbreaking dataset, BIMCV-R (This dataset will be released upon acceptance.), which includes an extensive collection of 8,069 3D CT volumes, encompassing over 2 million slices, paired with their respective radiological reports. Expanding upon the foundational work of our dataset, we craft a retrieval strategy, MedFinder. This approach employs a dual-stream network architecture, harnessing the potential of large language models to advance the field of medical image retrieval beyond existing text-image retrieval solutions. It marks our preliminary step towards developing a system capable of facilitating text-to-image, image-to-text, and keyword-based retrieval tasks.
OmniCorpus: A Unified Multimodal Corpus of 10 Billion-Level Images Interleaved with Text
Image-text interleaved data, consisting of multiple images and texts arranged in a natural document format, aligns with the presentation paradigm of internet data and closely resembles human reading habits. Recent studies have shown that such data aids multimodal in-context learning and maintains the capabilities of large language models during multimodal fine-tuning. However, the limited scale and diversity of current image-text interleaved data restrict the development of multimodal large language models. In this paper, we introduce OmniCorpus, a 10 billion-scale image-text interleaved dataset. Using an efficient data engine, we filter and extract large-scale high-quality documents, which contain 8.6 billion images and 1,696 billion text tokens. Compared to counterparts (e.g., MMC4, OBELICS), our dataset 1) has 15 times larger scales while maintaining good data quality; 2) features more diverse sources, including both English and non-English websites as well as video-centric websites; 3) is more flexible, easily degradable from an image-text interleaved format to pure text corpus and image-text pairs. Through comprehensive analysis and experiments, we validate the quality, usability, and effectiveness of the proposed dataset. We hope this could provide a solid data foundation for future multimodal model research. Code and data are released at https://github.com/OpenGVLab/OmniCorpus.
XLRS-Bench: Could Your Multimodal LLMs Understand Extremely Large Ultra-High-Resolution Remote Sensing Imagery?
The astonishing breakthrough of multimodal large language models (MLLMs) has necessitated new benchmarks to quantitatively assess their capabilities, reveal their limitations, and indicate future research directions. However, this is challenging in the context of remote sensing (RS), since the imagery features ultra-high resolution that incorporates extremely complex semantic relationships. Existing benchmarks usually adopt notably smaller image sizes than real-world RS scenarios, suffer from limited annotation quality, and consider insufficient dimensions of evaluation. To address these issues, we present XLRS-Bench: a comprehensive benchmark for evaluating the perception and reasoning capabilities of MLLMs in ultra-high-resolution RS scenarios. XLRS-Bench boasts the largest average image size (8500times8500) observed thus far, with all evaluation samples meticulously annotated manually, assisted by a novel semi-automatic captioner on ultra-high-resolution RS images. On top of the XLRS-Bench, 16 sub-tasks are defined to evaluate MLLMs' 10 kinds of perceptual capabilities and 6 kinds of reasoning capabilities, with a primary emphasis on advanced cognitive processes that facilitate real-world decision-making and the capture of spatiotemporal changes. The results of both general and RS-focused MLLMs on XLRS-Bench indicate that further efforts are needed for real-world RS applications. We have open-sourced XLRS-Bench to support further research in developing more powerful MLLMs for remote sensing.
MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.
AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning
In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.
CoMM: A Coherent Interleaved Image-Text Dataset for Multimodal Understanding and Generation
Interleaved image-text generation has emerged as a crucial multimodal task, aiming at creating sequences of interleaved visual and textual content given a query. Despite notable advancements in recent multimodal large language models (MLLMs), generating integrated image-text sequences that exhibit narrative coherence and entity and style consistency remains challenging due to poor training data quality. To address this gap, we introduce CoMM, a high-quality Coherent interleaved image-text MultiModal dataset designed to enhance the coherence, consistency, and alignment of generated multimodal content. Initially, CoMM harnesses raw data from diverse sources, focusing on instructional content and visual storytelling, establishing a foundation for coherent and consistent content. To further refine the data quality, we devise a multi-perspective filter strategy that leverages advanced pre-trained models to ensure the development of sentences, consistency of inserted images, and semantic alignment between them. Various quality evaluation metrics are designed to prove the high quality of the filtered dataset. Meanwhile, extensive few-shot experiments on various downstream tasks demonstrate CoMM's effectiveness in significantly enhancing the in-context learning capabilities of MLLMs. Moreover, we propose four new tasks to evaluate MLLMs' interleaved generation abilities, supported by a comprehensive evaluation framework. We believe CoMM opens a new avenue for advanced MLLMs with superior multimodal in-context learning and understanding ability.
PRISM: Fine-Grained Paper-to-Paper Retrieval with Multi-Aspect-Aware Query Optimization
Scientific paper retrieval, particularly framed as document-to-document retrieval, aims to identify relevant papers in response to a long-form query paper, rather than a short query string. Previous approaches to this task have focused on abstracts, embedding them into dense vectors as surrogates for full documents and calculating similarity across them, although abstracts provide only sparse and high-level summaries. To address this, we propose PRISM, a novel document-to-document retrieval method that introduces multiple, fine-grained representations for both the query and candidate papers. In particular, each query paper is decomposed into multiple aspect-specific views and individually embedded, which are then matched against candidate papers similarity segmented to consider their multifaceted dimensions. Moreover, we present SciFullBench, a novel benchmark in which the complete and segmented context of full papers for both queries and candidates is available. Then, experimental results show that PRISM improves performance by an average of 4.3% over existing retrieval baselines.
GlyphDraw2: Automatic Generation of Complex Glyph Posters with Diffusion Models and Large Language Models
Posters play a crucial role in marketing and advertising, contributing significantly to industrial design by enhancing visual communication and brand visibility. With recent advances in controllable text-to-image diffusion models, more concise research is now focusing on rendering text within synthetic images. Despite improvements in text rendering accuracy, the field of end-to-end poster generation remains underexplored. This complex task involves striking a balance between text rendering accuracy and automated layout to produce high-resolution images with variable aspect ratios. To tackle this challenge, we propose an end-to-end text rendering framework employing a triple cross-attention mechanism rooted in align learning, designed to create precise poster text within detailed contextual backgrounds. Additionally, we introduce a high-resolution dataset that exceeds 1024 pixels in image resolution. Our approach leverages the SDXL architecture. Extensive experiments validate the ability of our method to generate poster images featuring intricate and contextually rich backgrounds. Codes will be available at https://github.com/OPPO-Mente-Lab/GlyphDraw2.
SPIQA: A Dataset for Multimodal Question Answering on Scientific Papers
Seeking answers to questions within long scientific research articles is a crucial area of study that aids readers in quickly addressing their inquiries. However, existing question-answering (QA) datasets based on scientific papers are limited in scale and focus solely on textual content. To address this limitation, we introduce SPIQA (Scientific Paper Image Question Answering), the first large-scale QA dataset specifically designed to interpret complex figures and tables within the context of scientific research articles across various domains of computer science. Leveraging the breadth of expertise and ability of multimodal large language models (MLLMs) to understand figures, we employ automatic and manual curation to create the dataset. We craft an information-seeking task involving multiple images that cover a wide variety of plots, charts, tables, schematic diagrams, and result visualizations. SPIQA comprises 270K questions divided into training, validation, and three different evaluation splits. Through extensive experiments with 12 prominent foundational models, we evaluate the ability of current multimodal systems to comprehend the nuanced aspects of research articles. Additionally, we propose a Chain-of-Thought (CoT) evaluation strategy with in-context retrieval that allows fine-grained, step-by-step assessment and improves model performance. We further explore the upper bounds of performance enhancement with additional textual information, highlighting its promising potential for future research and the dataset's impact on revolutionizing how we interact with scientific literature.
Towards Text-Image Interleaved Retrieval
Current multimodal information retrieval studies mainly focus on single-image inputs, which limits real-world applications involving multiple images and text-image interleaved content. In this work, we introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences, and the model is required to understand the semantics from the interleaved context for effective retrieval. We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries. To explore the task, we adapt several off-the-shelf retrievers and build a dense baseline by interleaved multimodal large language model (MLLM). We then propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity, to address the challenge of excessive visual tokens in MLLM-based TIIR models. Experiments demonstrate that simple adaption of existing models does not consistently yield effective results. Our MME achieves significant improvements over the baseline by substantially fewer visual tokens. We provide extensive analysis and will release the dataset and code to facilitate future research.
MegaPairs: Massive Data Synthesis For Universal Multimodal Retrieval
Despite the rapidly growing demand for multimodal retrieval, progress in this field remains severely constrained by a lack of training data. In this paper, we introduce MegaPairs, a novel data synthesis method that leverages vision language models (VLMs) and open-domain images, together with a massive synthetic dataset generated from this method. Our empirical analysis shows that MegaPairs generates high-quality data, enabling the multimodal retriever to significantly outperform the baseline model trained on 70times more data from existing datasets. Moreover, since MegaPairs solely relies on general image corpora and open-source VLMs, it can be easily scaled up, enabling continuous improvements in retrieval performance. In this stage, we produced more than 26 million training instances and trained several models of varying sizes using this data. These new models achieve state-of-the-art zero-shot performance across 4 popular composed image retrieval (CIR) benchmarks and the highest overall performance on the 36 datasets provided by MMEB. They also demonstrate notable performance improvements with additional downstream fine-tuning. Our produced dataset, well-trained models, and data synthesis pipeline will be made publicly available to facilitate the future development of this field.
SciMMIR: Benchmarking Scientific Multi-modal Information Retrieval
Multi-modal information retrieval (MMIR) is a rapidly evolving field, where significant progress, particularly in image-text pairing, has been made through advanced representation learning and cross-modality alignment research. However, current benchmarks for evaluating MMIR performance in image-text pairing within the scientific domain show a notable gap, where chart and table images described in scholarly language usually do not play a significant role. To bridge this gap, we develop a specialised scientific MMIR (SciMMIR) benchmark by leveraging open-access paper collections to extract data relevant to the scientific domain. This benchmark comprises 530K meticulously curated image-text pairs, extracted from figures and tables with detailed captions in scientific documents. We further annotate the image-text pairs with two-level subset-subcategory hierarchy annotations to facilitate a more comprehensive evaluation of the baselines. We conducted zero-shot and fine-tuning evaluations on prominent multi-modal image-captioning and visual language models, such as CLIP and BLIP. Our analysis offers critical insights for MMIR in the scientific domain, including the impact of pre-training and fine-tuning settings and the influence of the visual and textual encoders. All our data and checkpoints are publicly available at https://github.com/Wusiwei0410/SciMMIR.
FooDI-ML: a large multi-language dataset of food, drinks and groceries images and descriptions
In this paper we introduce the FooDI-ML dataset. This dataset contains over 1.5M unique images and over 9.5M store names, product names descriptions, and collection sections gathered from the Glovo application. The data made available corresponds to food, drinks and groceries products from 37 countries in Europe, the Middle East, Africa and Latin America. The dataset comprehends 33 languages, including 870K samples of languages of countries from Eastern Europe and Western Asia such as Ukrainian and Kazakh, which have been so far underrepresented in publicly available visio-linguistic datasets. The dataset also includes widely spoken languages such as Spanish and English. To assist further research, we include benchmarks over two tasks: text-image retrieval and conditional image generation.
Building and better understanding vision-language models: insights and future directions
The field of vision-language models (VLMs), which take images and texts as inputs and output texts, is rapidly evolving and has yet to reach consensus on several key aspects of the development pipeline, including data, architecture, and training methods. This paper can be seen as a tutorial for building a VLM. We begin by providing a comprehensive overview of the current state-of-the-art approaches, highlighting the strengths and weaknesses of each, addressing the major challenges in the field, and suggesting promising research directions for underexplored areas. We then walk through the practical steps to build Idefics3-8B, a powerful VLM that significantly outperforms its predecessor Idefics2-8B, while being trained efficiently, exclusively on open datasets, and using a straightforward pipeline. These steps include the creation of Docmatix, a dataset for improving document understanding capabilities, which is 240 times larger than previously available datasets. We release the model along with the datasets created for its training.
MultiSubs: A Large-scale Multimodal and Multilingual Dataset
This paper introduces a large-scale multimodal and multilingual dataset that aims to facilitate research on grounding words to images in their contextual usage in language. The dataset consists of images selected to unambiguously illustrate concepts expressed in sentences from movie subtitles. The dataset is a valuable resource as (i) the images are aligned to text fragments rather than whole sentences; (ii) multiple images are possible for a text fragment and a sentence; (iii) the sentences are free-form and real-world like; (iv) the parallel texts are multilingual. We set up a fill-in-the-blank game for humans to evaluate the quality of the automatic image selection process of our dataset. We show the utility of the dataset on two automatic tasks: (i) fill-in-the-blank; (ii) lexical translation. Results of the human evaluation and automatic models demonstrate that images can be a useful complement to the textual context. The dataset will benefit research on visual grounding of words especially in the context of free-form sentences, and can be obtained from https://doi.org/10.5281/zenodo.5034604 under a Creative Commons licence.
State-of-the-Art Transformer Models for Image Super-Resolution: Techniques, Challenges, and Applications
Image Super-Resolution (SR) aims to recover a high-resolution image from its low-resolution counterpart, which has been affected by a specific degradation process. This is achieved by enhancing detail and visual quality. Recent advancements in transformer-based methods have remolded image super-resolution by enabling high-quality reconstructions surpassing previous deep-learning approaches like CNN and GAN-based. This effectively addresses the limitations of previous methods, such as limited receptive fields, poor global context capture, and challenges in high-frequency detail recovery. Additionally, the paper reviews recent trends and advancements in transformer-based SR models, exploring various innovative techniques and architectures that combine transformers with traditional networks to balance global and local contexts. These neoteric methods are critically analyzed, revealing promising yet unexplored gaps and potential directions for future research. Several visualizations of models and techniques are included to foster a holistic understanding of recent trends. This work seeks to offer a structured roadmap for researchers at the forefront of deep learning, specifically exploring the impact of transformers on super-resolution techniques.
One Copy Is All You Need: Resource-Efficient Streaming of Medical Imaging Data at Scale
Large-scale medical imaging datasets have accelerated development of artificial intelligence tools for clinical decision support. However, the large size of these datasets is a bottleneck for users with limited storage and bandwidth. Many users may not even require such large datasets as AI models are often trained on lower resolution images. If users could directly download at their desired resolution, storage and bandwidth requirements would significantly decrease. However, it is impossible to anticipate every users' requirements and impractical to store the data at multiple resolutions. What if we could store images at a single resolution but send them at different ones? We propose MIST, an open-source framework to operationalize progressive resolution for streaming medical images at multiple resolutions from a single high-resolution copy. We demonstrate that MIST can dramatically reduce imaging infrastructure inefficiencies for hosting and streaming medical images by >90%, while maintaining diagnostic quality for deep learning applications.
Document Haystack: A Long Context Multimodal Image/Document Understanding Vision LLM Benchmark
The proliferation of multimodal Large Language Models has significantly advanced the ability to analyze and understand complex data inputs from different modalities. However, the processing of long documents remains under-explored, largely due to a lack of suitable benchmarks. To address this, we introduce Document Haystack, a comprehensive benchmark designed to evaluate the performance of Vision Language Models (VLMs) on long, visually complex documents. Document Haystack features documents ranging from 5 to 200 pages and strategically inserts pure text or multimodal text+image "needles" at various depths within the documents to challenge VLMs' retrieval capabilities. Comprising 400 document variants and a total of 8,250 questions, it is supported by an objective, automated evaluation framework. We detail the construction and characteristics of the Document Haystack dataset, present results from prominent VLMs and discuss potential research avenues in this area.
Hierarchical Patch Compression for ColPali: Efficient Multi-Vector Document Retrieval with Dynamic Pruning and Quantization
Multi-vector document retrieval systems, such as ColPali, excel in fine-grained matching for complex queries but incur significant storage and computational costs due to their reliance on high-dimensional patch embeddings and late-interaction scoring. To address these challenges, we propose HPC-ColPali, a Hierarchical Patch Compression framework that enhances the efficiency of ColPali while preserving its retrieval accuracy. Our approach integrates three innovative techniques: (1) K-Means quantization, which compresses patch embeddings into 1-byte centroid indices, achieving up to 32times storage reduction; (2) attention-guided dynamic pruning, utilizing Vision-Language Model attention weights to retain only the top-p% most salient patches, reducing late-interaction computation by up to 60\% with less than 2\% nDCG@10 loss; and (3) optional binary encoding of centroid indices into b-bit strings (b=lceillog_2 Krceil), enabling rapid Hamming distance-based similarity search for resource-constrained environments. Evaluated on the ViDoRe and SEC-Filings datasets, HPC-ColPali achieves 30--50\% lower query latency under HNSW indexing while maintaining high retrieval precision. When integrated into a Retrieval-Augmented Generation pipeline for legal summarization, it reduces hallucination rates by 30\% and halves end-to-end latency. These advancements establish HPC-ColPali as a scalable and efficient solution for multi-vector document retrieval across diverse applications. Code is available at https://github.com/DngBack/HPC-ColPali.
Learning Enriched Features for Real Image Restoration and Enhancement
With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography, medical imaging, and remote sensing. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for a variety of image processing tasks, including image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet.
BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation
This paper presents BOUQuET, a multicentric and multi-register/domain dataset and benchmark, and its broader collaborative extension initiative. This dataset is handcrafted in non-English languages first, each of these source languages being represented among the 23 languages commonly used by half of the world's population and therefore having the potential to serve as pivot languages that will enable more accurate translations. The dataset is specially designed to avoid contamination and be multicentric, so as to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation (MT) datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for the open initiative and call for translation participation that we are launching to extend it to a multi-way parallel corpus to any written language.
DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models
Scientific documents record research findings and valuable human knowledge, comprising a vast corpus of high-quality data. Leveraging multi-modality data extracted from these documents and assessing large models' abilities to handle scientific document-oriented tasks is therefore meaningful. Despite promising advancements, large models still perform poorly on multi-page scientific document extraction and understanding tasks, and their capacity to process within-document data formats such as charts and equations remains under-explored. To address these issues, we present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community, using our custom auto-labeling pipeline. DocGenome features four key characteristics: 1) Completeness: It is the first dataset to structure data from all modalities including 13 layout attributes along with their LaTeX source codes. 2) Logicality: It provides 6 logical relationships between different entities within each scientific document. 3) Diversity: It covers various document-oriented tasks, including document classification, visual grounding, document layout detection, document transformation, open-ended single-page QA and multi-page QA. 4) Correctness: It undergoes rigorous quality control checks conducted by a specialized team. We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
Multi-View Document Representation Learning for Open-Domain Dense Retrieval
Dense retrieval has achieved impressive advances in first-stage retrieval from a large-scale document collection, which is built on bi-encoder architecture to produce single vector representation of query and document. However, a document can usually answer multiple potential queries from different views. So the single vector representation of a document is hard to match with multi-view queries, and faces a semantic mismatch problem. This paper proposes a multi-view document representation learning framework, aiming to produce multi-view embeddings to represent documents and enforce them to align with different queries. First, we propose a simple yet effective method of generating multiple embeddings through viewers. Second, to prevent multi-view embeddings from collapsing to the same one, we further propose a global-local loss with annealed temperature to encourage the multiple viewers to better align with different potential queries. Experiments show our method outperforms recent works and achieves state-of-the-art results.
Global and Dense Embeddings of Earth: Major TOM Floating in the Latent Space
With the ever-increasing volumes of the Earth observation data present in the archives of large programmes such as Copernicus, there is a growing need for efficient vector representations of the underlying raw data. The approach of extracting feature representations from pretrained deep neural networks is a powerful approach that can provide semantic abstractions of the input data. However, the way this is done for imagery archives containing geospatial data has not yet been defined. In this work, an extension is proposed to an existing community project, Major TOM, focused on the provision and standardization of open and free AI-ready datasets for Earth observation. Furthermore, four global and dense embedding datasets are released openly and for free along with the publication of this manuscript, resulting in the most comprehensive global open dataset of geospatial visual embeddings in terms of covered Earth's surface.
M2DS: Multilingual Dataset for Multi-document Summarisation
In the rapidly evolving digital era, there is an increasing demand for concise information as individuals seek to distil key insights from various sources. Recent attention from researchers on Multi-document Summarisation (MDS) has resulted in diverse datasets covering customer reviews, academic papers, medical and legal documents, and news articles. However, the English-centric nature of these datasets has created a conspicuous void for multilingual datasets in today's globalised digital landscape, where linguistic diversity is celebrated. Media platforms such as British Broadcasting Corporation (BBC) have disseminated news in 20+ languages for decades. With only 380 million people speaking English natively as their first language, accounting for less than 5% of the global population, the vast majority primarily relies on other languages. These facts underscore the need for inclusivity in MDS research, utilising resources from diverse languages. Recognising this gap, we present the Multilingual Dataset for Multi-document Summarisation (M2DS), which, to the best of our knowledge, is the first dataset of its kind. It includes document-summary pairs in five languages from BBC articles published during the 2010-2023 period. This paper introduces M2DS, emphasising its unique multilingual aspect, and includes baseline scores from state-of-the-art MDS models evaluated on our dataset.
Billion-scale Similarity Search Using a Hybrid Indexing Approach with Advanced Filtering
This paper presents a novel approach for similarity search with complex filtering capabilities on billion-scale datasets, optimized for CPU inference. Our method extends the classical IVF-Flat index structure to integrate multi-dimensional filters. The proposed algorithm combines dense embeddings with discrete filtering attributes, enabling fast retrieval in high-dimensional spaces. Designed specifically for CPU-based systems, our disk-based approach offers a cost-effective solution for large-scale similarity search. We demonstrate the effectiveness of our method through a case study, showcasing its potential for various practical uses.
MSPE: Multi-Scale Patch Embedding Prompts Vision Transformers to Any Resolution
Although Vision Transformers (ViTs) have recently advanced computer vision tasks significantly, an important real-world problem was overlooked: adapting to variable input resolutions. Typically, images are resized to a fixed resolution, such as 224x224, for efficiency during training and inference. However, uniform input size conflicts with real-world scenarios where images naturally vary in resolution. Modifying the preset resolution of a model may severely degrade the performance. In this work, we propose to enhance the model adaptability to resolution variation by optimizing the patch embedding. The proposed method, called Multi-Scale Patch Embedding (MSPE), substitutes the standard patch embedding with multiple variable-sized patch kernels and selects the best parameters for different resolutions, eliminating the need to resize the original image. Our method does not require high-cost training or modifications to other parts, making it easy to apply to most ViT models. Experiments in image classification, segmentation, and detection tasks demonstrate the effectiveness of MSPE, yielding superior performance on low-resolution inputs and performing comparably on high-resolution inputs with existing methods.
The ArtBench Dataset: Benchmarking Generative Models with Artworks
We introduce ArtBench-10, the first class-balanced, high-quality, cleanly annotated, and standardized dataset for benchmarking artwork generation. It comprises 60,000 images of artwork from 10 distinctive artistic styles, with 5,000 training images and 1,000 testing images per style. ArtBench-10 has several advantages over previous artwork datasets. Firstly, it is class-balanced while most previous artwork datasets suffer from the long tail class distributions. Secondly, the images are of high quality with clean annotations. Thirdly, ArtBench-10 is created with standardized data collection, annotation, filtering, and preprocessing procedures. We provide three versions of the dataset with different resolutions (32times32, 256times256, and original image size), formatted in a way that is easy to be incorporated by popular machine learning frameworks. We also conduct extensive benchmarking experiments using representative image synthesis models with ArtBench-10 and present in-depth analysis. The dataset is available at https://github.com/liaopeiyuan/artbench under a Fair Use license.
Functional Map of the World
We present a new dataset, Functional Map of the World (fMoW), which aims to inspire the development of machine learning models capable of predicting the functional purpose of buildings and land use from temporal sequences of satellite images and a rich set of metadata features. The metadata provided with each image enables reasoning about location, time, sun angles, physical sizes, and other features when making predictions about objects in the image. Our dataset consists of over 1 million images from over 200 countries. For each image, we provide at least one bounding box annotation containing one of 63 categories, including a "false detection" category. We present an analysis of the dataset along with baseline approaches that reason about metadata and temporal views. Our data, code, and pretrained models have been made publicly available.
Scaling Beyond Context: A Survey of Multimodal Retrieval-Augmented Generation for Document Understanding
Document understanding is critical for applications from financial analysis to scientific discovery. Current approaches, whether OCR-based pipelines feeding Large Language Models (LLMs) or native Multimodal LLMs (MLLMs), face key limitations: the former loses structural detail, while the latter struggles with context modeling. Retrieval-Augmented Generation (RAG) helps ground models in external data, but documents' multimodal nature, i.e., combining text, tables, charts, and layout, demands a more advanced paradigm: Multimodal RAG. This approach enables holistic retrieval and reasoning across all modalities, unlocking comprehensive document intelligence. Recognizing its importance, this paper presents a systematic survey of Multimodal RAG for document understanding. We propose a taxonomy based on domain, retrieval modality, and granularity, and review advances involving graph structures and agentic frameworks. We also summarize key datasets, benchmarks, and applications, and highlight open challenges in efficiency, fine-grained representation, and robustness, providing a roadmap for future progress in document AI.
MUVERA: Multi-Vector Retrieval via Fixed Dimensional Encodings
Neural embedding models have become a fundamental component of modern information retrieval (IR) pipelines. These models produce a single embedding x in R^d per data-point, allowing for fast retrieval via highly optimized maximum inner product search (MIPS) algorithms. Recently, beginning with the landmark ColBERT paper, multi-vector models, which produce a set of embedding per data point, have achieved markedly superior performance for IR tasks. Unfortunately, using these models for IR is computationally expensive due to the increased complexity of multi-vector retrieval and scoring. In this paper, we introduce MUVERA (MUlti-VEctor Retrieval Algorithm), a retrieval mechanism which reduces multi-vector similarity search to single-vector similarity search. This enables the usage of off-the-shelf MIPS solvers for multi-vector retrieval. MUVERA asymmetrically generates Fixed Dimensional Encodings (FDEs) of queries and documents, which are vectors whose inner product approximates multi-vector similarity. We prove that FDEs give high-quality epsilon-approximations, thus providing the first single-vector proxy for multi-vector similarity with theoretical guarantees. Empirically, we find that FDEs achieve the same recall as prior state-of-the-art heuristics while retrieving 2-5times fewer candidates. Compared to prior state of the art implementations, MUVERA achieves consistently good end-to-end recall and latency across a diverse set of the BEIR retrieval datasets, achieving an average of 10% improved recall with 90% lower latency.
MS MARCO Web Search: a Large-scale Information-rich Web Dataset with Millions of Real Click Labels
Recent breakthroughs in large models have highlighted the critical significance of data scale, labels and modals. In this paper, we introduce MS MARCO Web Search, the first large-scale information-rich web dataset, featuring millions of real clicked query-document labels. This dataset closely mimics real-world web document and query distribution, provides rich information for various kinds of downstream tasks and encourages research in various areas, such as generic end-to-end neural indexer models, generic embedding models, and next generation information access system with large language models. MS MARCO Web Search offers a retrieval benchmark with three web retrieval challenge tasks that demand innovations in both machine learning and information retrieval system research domains. As the first dataset that meets large, real and rich data requirements, MS MARCO Web Search paves the way for future advancements in AI and system research. MS MARCO Web Search dataset is available at: https://github.com/microsoft/MS-MARCO-Web-Search.
GeoLLaVA-8K: Scaling Remote-Sensing Multimodal Large Language Models to 8K Resolution
Ultra-high-resolution (UHR) remote sensing (RS) imagery offers valuable data for Earth observation but pose challenges for existing multimodal foundation models due to two key bottlenecks: (1) limited availability of UHR training data, and (2) token explosion caused by the large image size. To address data scarcity, we introduce SuperRS-VQA (avg. 8,376times8,376) and HighRS-VQA (avg. 2,000times1,912), the highest-resolution vision-language datasets in RS to date, covering 22 real-world dialogue tasks. To mitigate token explosion, our pilot studies reveal significant redundancy in RS images: crucial information is concentrated in a small subset of object-centric tokens, while pruning background tokens (e.g., ocean or forest) can even improve performance. Motivated by these findings, we propose two strategies: Background Token Pruning and Anchored Token Selection, to reduce the memory footprint while preserving key semantics.Integrating these techniques, we introduce GeoLLaVA-8K, the first RS-focused multimodal large language model capable of handling inputs up to 8Ktimes8K resolution, built on the LLaVA framework. Trained on SuperRS-VQA and HighRS-VQA, GeoLLaVA-8K sets a new state-of-the-art on the XLRS-Bench.
Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines
We present a systematic investigation of Multi-modal Retrieval Augmented Multi-modal Generation (M^2RAG), a novel task that enables foundation models to process multi-modal web content and generate multi-modal responses, which exhibits better information density and readability. Despite its potential impact, M^2RAG remains understudied, lacking comprehensive analysis and high-quality data resources. To address this gap, we establish a comprehensive benchmark through a rigorous data curation pipeline, and employ text-modal metrics and multi-modal metrics based on foundation models for evaluation. We further propose several strategies for foundation models to process M^2RAG effectively and construct a training set by filtering high-quality samples using designed metrics. Our extensive experiments demonstrate the reliability of our proposed metrics, a landscape of model performance within our designed strategies, and show that our fine-tuned 7B-8B models outperform the state-of-the-art GPT-4o model. Additionally, we perform fine-grained analyses across diverse domains and validate the effectiveness of our designs in data curation pipeline. All resources, including codes, datasets, and model weights, will be publicly released.
AdaptVision: Dynamic Input Scaling in MLLMs for Versatile Scene Understanding
Over the past few years, the advancement of Multimodal Large Language Models (MLLMs) has captured the wide interest of researchers, leading to numerous innovations to enhance MLLMs' comprehension. In this paper, we present AdaptVision, a multimodal large language model specifically designed to dynamically process input images at varying resolutions. We hypothesize that the requisite number of visual tokens for the model is contingent upon both the resolution and content of the input image. Generally, natural images with a lower information density can be effectively interpreted by the model using fewer visual tokens at reduced resolutions. In contrast, images containing textual content, such as documents with rich text, necessitate a higher number of visual tokens for accurate text interpretation due to their higher information density. Building on this insight, we devise a dynamic image partitioning module that adjusts the number of visual tokens according to the size and aspect ratio of images. This method mitigates distortion effects that arise from resizing images to a uniform resolution and dynamically optimizing the visual tokens input to the LLMs. Our model is capable of processing images with resolutions up to 1008times 1008. Extensive experiments across various datasets demonstrate that our method achieves impressive performance in handling vision-language tasks in both natural and text-related scenes. The source code and dataset are now publicly available at https://github.com/harrytea/AdaptVision.
Evaluating Interpolation and Extrapolation Performance of Neural Retrieval Models
A retrieval model should not only interpolate the training data but also extrapolate well to the queries that are different from the training data. While neural retrieval models have demonstrated impressive performance on ad-hoc search benchmarks, we still know little about how they perform in terms of interpolation and extrapolation. In this paper, we demonstrate the importance of separately evaluating the two capabilities of neural retrieval models. Firstly, we examine existing ad-hoc search benchmarks from the two perspectives. We investigate the distribution of training and test data and find a considerable overlap in query entities, query intent, and relevance labels. This finding implies that the evaluation on these test sets is biased toward interpolation and cannot accurately reflect the extrapolation capacity. Secondly, we propose a novel evaluation protocol to separately evaluate the interpolation and extrapolation performance on existing benchmark datasets. It resamples the training and test data based on query similarity and utilizes the resampled dataset for training and evaluation. Finally, we leverage the proposed evaluation protocol to comprehensively revisit a number of widely-adopted neural retrieval models. Results show models perform differently when moving from interpolation to extrapolation. For example, representation-based retrieval models perform almost as well as interaction-based retrieval models in terms of interpolation but not extrapolation. Therefore, it is necessary to separately evaluate both interpolation and extrapolation performance and the proposed resampling method serves as a simple yet effective evaluation tool for future IR studies.
InfiMM-HD: A Leap Forward in High-Resolution Multimodal Understanding
Multimodal Large Language Models (MLLMs) have experienced significant advancements recently. Nevertheless, challenges persist in the accurate recognition and comprehension of intricate details within high-resolution images. Despite being indispensable for the development of robust MLLMs, this area remains underinvestigated. To tackle this challenge, our work introduces InfiMM-HD, a novel architecture specifically designed for processing images of different resolutions with low computational overhead. This innovation facilitates the enlargement of MLLMs to higher-resolution capabilities. InfiMM-HD incorporates a cross-attention module and visual windows to reduce computation costs. By integrating this architectural design with a four-stage training pipeline, our model attains improved visual perception efficiently and cost-effectively. Empirical study underscores the robustness and effectiveness of InfiMM-HD, opening new avenues for exploration in related areas. Codes and models can be found at https://huggingface.co/Infi-MM/infimm-hd
ParaNames 1.0: Creating an Entity Name Corpus for 400+ Languages using Wikidata
We introduce ParaNames, a massively multilingual parallel name resource consisting of 140 million names spanning over 400 languages. Names are provided for 16.8 million entities, and each entity is mapped from a complex type hierarchy to a standard type (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate the usefulness of ParaNames on two tasks. First, we perform canonical name translation between English and 17 other languages. Second, we use it as a gazetteer for multilingual named entity recognition, obtaining performance improvements on all 10 languages evaluated.
DINOv2: Learning Robust Visual Features without Supervision
The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy et al., 2020) with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the benchmarks at image and pixel levels.
Mr. TyDi: A Multi-lingual Benchmark for Dense Retrieval
We present Mr. TyDi, a multi-lingual benchmark dataset for mono-lingual retrieval in eleven typologically diverse languages, designed to evaluate ranking with learned dense representations. The goal of this resource is to spur research in dense retrieval techniques in non-English languages, motivated by recent observations that existing techniques for representation learning perform poorly when applied to out-of-distribution data. As a starting point, we provide zero-shot baselines for this new dataset based on a multi-lingual adaptation of DPR that we call "mDPR". Experiments show that although the effectiveness of mDPR is much lower than BM25, dense representations nevertheless appear to provide valuable relevance signals, improving BM25 results in sparse-dense hybrids. In addition to analyses of our results, we also discuss future challenges and present a research agenda in multi-lingual dense retrieval. Mr. TyDi can be downloaded at https://github.com/castorini/mr.tydi.
Ship in Sight: Diffusion Models for Ship-Image Super Resolution
In recent years, remarkable advancements have been achieved in the field of image generation, primarily driven by the escalating demand for high-quality outcomes across various image generation subtasks, such as inpainting, denoising, and super resolution. A major effort is devoted to exploring the application of super-resolution techniques to enhance the quality of low-resolution images. In this context, our method explores in depth the problem of ship image super resolution, which is crucial for coastal and port surveillance. We investigate the opportunity given by the growing interest in text-to-image diffusion models, taking advantage of the prior knowledge that such foundation models have already learned. In particular, we present a diffusion-model-based architecture that leverages text conditioning during training while being class-aware, to best preserve the crucial details of the ships during the generation of the super-resoluted image. Since the specificity of this task and the scarcity availability of off-the-shelf data, we also introduce a large labeled ship dataset scraped from online ship images, mostly from ShipSpotting\url{www.shipspotting.com} website. Our method achieves more robust results than other deep learning models previously employed for super resolution, as proven by the multiple experiments performed. Moreover, we investigate how this model can benefit downstream tasks, such as classification and object detection, thus emphasizing practical implementation in a real-world scenario. Experimental results show flexibility, reliability, and impressive performance of the proposed framework over state-of-the-art methods for different tasks. The code is available at: https://github.com/LuigiSigillo/ShipinSight .
LoRA-Contextualizing Adaptation of Large Multimodal Models for Long Document Understanding
Large multimodal models (LMMs) have recently shown great progress in text-rich image understanding, yet they still struggle with complex, multi-page, visually-rich documents. Traditional methods using document parsers for retrieval-augmented generation suffer from performance and efficiency limitations, while directly presenting all pages to LMMs leads to inefficiencies, especially with lengthy documents. In this work, we present a novel framework named LoRA-Contextualizing Adaptation of Large multimodal models (LoCAL), which broadens the capabilities of any LMM to support long-document understanding. We demonstrate that LMMs can effectively serve as multimodal retrievers, fetching relevant pages to answer user questions based on these pages. LoCAL is implemented with two specific LMM adapters: one for evidence page retrieval and another for question answering. Empirical results show state-of-the-art performance on public benchmarks, demonstrating the effectiveness of LoCAL.
Unsupervised Matching of Data and Text
Entity resolution is a widely studied problem with several proposals to match records across relations. Matching textual content is a widespread task in many applications, such as question answering and search. While recent methods achieve promising results for these two tasks, there is no clear solution for the more general problem of matching textual content and structured data. We introduce a framework that supports this new task in an unsupervised setting for any pair of corpora, being relational tables or text documents. Our method builds a fine-grained graph over the content of the corpora and derives word embeddings to represent the objects to match in a low dimensional space. The learned representation enables effective and efficient matching at different granularity, from relational tuples to text sentences and paragraphs. Our flexible framework can exploit pre-trained resources, but it does not depends on their existence and achieves better quality performance in matching content when the vocabulary is domain specific. We also introduce optimizations in the graph creation process with an "expand and compress" approach that first identifies new valid relationships across elements, to improve matching, and then prunes nodes and edges, to reduce the graph size. Experiments on real use cases and public datasets show that our framework produces embeddings that outperform word embeddings and fine-tuned language models both in results' quality and in execution times.
ParaNames: A Massively Multilingual Entity Name Corpus
We introduce ParaNames, a multilingual parallel name resource consisting of 118 million names spanning across 400 languages. Names are provided for 13.6 million entities which are mapped to standardized entity types (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to-date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate an application of ParaNames by training a multilingual model for canonical name translation to and from English. Our resource is released under a Creative Commons license (CC BY 4.0) at https://github.com/bltlab/paranames.
MS-DPPs: Multi-Source Determinantal Point Processes for Contextual Diversity Refinement of Composite Attributes in Text to Image Retrieval
Result diversification (RD) is a crucial technique in Text-to-Image Retrieval for enhancing the efficiency of a practical application. Conventional methods focus solely on increasing the diversity metric of image appearances. However, the diversity metric and its desired value vary depending on the application, which limits the applications of RD. This paper proposes a novel task called CDR-CA (Contextual Diversity Refinement of Composite Attributes). CDR-CA aims to refine the diversities of multiple attributes, according to the application's context. To address this task, we propose Multi-Source DPPs, a simple yet strong baseline that extends the Determinantal Point Process (DPP) to multi-sources. We model MS-DPP as a single DPP model with a unified similarity matrix based on a manifold representation. We also introduce Tangent Normalization to reflect contexts. Extensive experiments demonstrate the effectiveness of the proposed method. Our code is publicly available at https://github.com/NEC-N-SOGI/msdpp.
MetaEmbed: Scaling Multimodal Retrieval at Test-Time with Flexible Late Interaction
Universal multimodal embedding models have achieved great success in capturing semantic relevance between queries and candidates. However, current methods either condense queries and candidates into a single vector, potentially limiting the expressiveness for fine-grained information, or produce too many vectors that are prohibitively expensive for multi-vector retrieval. In this work, we introduce MetaEmbed, a new framework for multimodal retrieval that rethinks how multimodal embeddings are constructed and interacted with at scale. During training, a fixed number of learnable Meta Tokens are appended to the input sequence. At test-time, their last-layer contextualized representations serve as compact yet expressive multi-vector embeddings. Through the proposed Matryoshka Multi-Vector Retrieval training, MetaEmbed learns to organize information by granularity across multiple vectors. As a result, we enable test-time scaling in multimodal retrieval, where users can balance retrieval quality against efficiency demands by selecting the number of tokens used for indexing and retrieval interactions. Extensive evaluations on the Massive Multimodal Embedding Benchmark (MMEB) and the Visual Document Retrieval Benchmark (ViDoRe) confirm that MetaEmbed achieves state-of-the-art retrieval performance while scaling robustly to models with 32B parameters.
Llama Nemoretriever Colembed: Top-Performing Text-Image Retrieval Model
Motivated by the growing demand for retrieval systems that operate across modalities, we introduce llama-nemoretriever-colembed, a unified text-image retrieval model that delivers state-of-the-art performance across multiple benchmarks. We release two model variants, 1B and 3B. The 3B model achieves state of the art performance, scoring NDCG@5 91.0 on ViDoRe V1 and 63.5 on ViDoRe V2, placing first on both leaderboards as of June 27, 2025. Our approach leverages the NVIDIA Eagle2 Vision-Language model (VLM), modifies its architecture by replacing causal attention with bidirectional attention, and integrates a ColBERT-style late interaction mechanism to enable fine-grained multimodal retrieval in a shared embedding space. While this mechanism delivers superior retrieval accuracy, it introduces trade-offs in storage and efficiency. We provide a comprehensive analysis of these trade-offs. Additionally, we adopt a two-stage training strategy to enhance the model's retrieval capabilities.
CartoMark: a benchmark dataset for map pattern recognition and 1 map content retrieval with machine intelligence
Maps are fundamental medium to visualize and represent the real word in a simple and 16 philosophical way. The emergence of the 3rd wave information has made a proportion of maps are available to be generated ubiquitously, which would significantly enrich the dimensions and perspectives to understand the characteristics of the real world. However, a majority of map dataset have never been discovered, acquired and effectively used, and the map data used in many applications might not be completely fitted for the authentic demands of these applications. This challenge is emerged due to the lack of numerous well-labelled benchmark datasets for implementing the deep learning approaches into identifying complicated map content. Thus, we develop a large-scale benchmark dataset that includes well-labelled dataset for map text annotation recognition, map scene classification, map super-resolution reconstruction, and map style transferring. Furthermore, these well-labelled datasets would facilitate the state-of-the-art machine intelligence technologies to conduct map feature detection, map pattern recognition and map content retrieval. We hope our efforts would be useful for AI-enhanced cartographical applications.
Constructing Datasets for Multi-hop Reading Comprehension Across Documents
Most Reading Comprehension methods limit themselves to queries which can be answered using a single sentence, paragraph, or document. Enabling models to combine disjoint pieces of textual evidence would extend the scope of machine comprehension methods, but currently there exist no resources to train and test this capability. We propose a novel task to encourage the development of models for text understanding across multiple documents and to investigate the limits of existing methods. In our task, a model learns to seek and combine evidence - effectively performing multi-hop (alias multi-step) inference. We devise a methodology to produce datasets for this task, given a collection of query-answer pairs and thematically linked documents. Two datasets from different domains are induced, and we identify potential pitfalls and devise circumvention strategies. We evaluate two previously proposed competitive models and find that one can integrate information across documents. However, both models struggle to select relevant information, as providing documents guaranteed to be relevant greatly improves their performance. While the models outperform several strong baselines, their best accuracy reaches 42.9% compared to human performance at 74.0% - leaving ample room for improvement.
MedTrinity-25M: A Large-scale Multimodal Dataset with Multigranular Annotations for Medicine
This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities, with multigranular annotations for more than 65 diseases. These enriched annotations encompass both global textual information, such as disease/lesion type, modality, region-specific descriptions, and inter-regional relationships, as well as detailed local annotations for regions of interest (ROIs), including bounding boxes, segmentation masks. Unlike existing approach which is limited by the availability of image-text pairs, we have developed the first automated pipeline that scales up multimodal data by generating multigranular visual and texual annotations (in the form of image-ROI-description triplets) without the need for any paired text descriptions. Specifically, data from over 90 different sources have been collected, preprocessed, and grounded using domain-specific expert models to identify ROIs related to abnormal regions. We then build a comprehensive knowledge base and prompt multimodal large language models to perform retrieval-augmented generation with the identified ROIs as guidance, resulting in multigranular texual descriptions. Compared to existing datasets, MedTrinity-25M provides the most enriched annotations, supporting a comprehensive range of multimodal tasks such as captioning and report generation, as well as vision-centric tasks like classification and segmentation. Pretraining on MedTrinity-25M, our model achieves state-of-the-art performance on VQA-RAD and PathVQA, surpassing both multimodal large language models and other representative SoTA approaches. This dataset can also be utilized to support large-scale pre-training of multimodal medical AI models, contributing to the development of future foundation models in the medical domain.
Enhanced Deep Residual Networks for Single Image Super-Resolution
Recent research on super-resolution has progressed with the development of deep convolutional neural networks (DCNN). In particular, residual learning techniques exhibit improved performance. In this paper, we develop an enhanced deep super-resolution network (EDSR) with performance exceeding those of current state-of-the-art SR methods. The significant performance improvement of our model is due to optimization by removing unnecessary modules in conventional residual networks. The performance is further improved by expanding the model size while we stabilize the training procedure. We also propose a new multi-scale deep super-resolution system (MDSR) and training method, which can reconstruct high-resolution images of different upscaling factors in a single model. The proposed methods show superior performance over the state-of-the-art methods on benchmark datasets and prove its excellence by winning the NTIRE2017 Super-Resolution Challenge.
OpenSatMap: A Fine-grained High-resolution Satellite Dataset for Large-scale Map Construction
In this paper, we propose OpenSatMap, a fine-grained, high-resolution satellite dataset for large-scale map construction. Map construction is one of the foundations of the transportation industry, such as navigation and autonomous driving. Extracting road structures from satellite images is an efficient way to construct large-scale maps. However, existing satellite datasets provide only coarse semantic-level labels with a relatively low resolution (up to level 19), impeding the advancement of this field. In contrast, the proposed OpenSatMap (1) has fine-grained instance-level annotations; (2) consists of high-resolution images (level 20); (3) is currently the largest one of its kind; (4) collects data with high diversity. Moreover, OpenSatMap covers and aligns with the popular nuScenes dataset and Argoverse 2 dataset to potentially advance autonomous driving technologies. By publishing and maintaining the dataset, we provide a high-quality benchmark for satellite-based map construction and downstream tasks like autonomous driving.
MuLMS: A Multi-Layer Annotated Text Corpus for Information Extraction in the Materials Science Domain
Keeping track of all relevant recent publications and experimental results for a research area is a challenging task. Prior work has demonstrated the efficacy of information extraction models in various scientific areas. Recently, several datasets have been released for the yet understudied materials science domain. However, these datasets focus on sub-problems such as parsing synthesis procedures or on sub-domains, e.g., solid oxide fuel cells. In this resource paper, we present MuLMS, a new dataset of 50 open-access articles, spanning seven sub-domains of materials science. The corpus has been annotated by domain experts with several layers ranging from named entities over relations to frame structures. We present competitive neural models for all tasks and demonstrate that multi-task training with existing related resources leads to benefits.
Does Table Source Matter? Benchmarking and Improving Multimodal Scientific Table Understanding and Reasoning
Recent large language models (LLMs) have advanced table understanding capabilities but rely on converting tables into text sequences. While multimodal large language models (MLLMs) enable direct visual processing, they face limitations in handling scientific tables due to fixed input image resolutions and insufficient numerical reasoning capabilities. We present a comprehensive framework for multimodal scientific table understanding and reasoning with dynamic input image resolutions. Our framework consists of three key components: (1) MMSci-Pre, a domain-specific table structure learning dataset of 52K scientific table structure recognition samples, (2) MMSci-Ins, an instruction tuning dataset with 12K samples across three table-based tasks, and (3) MMSci-Eval, a benchmark with 3,114 testing samples specifically designed to evaluate numerical reasoning capabilities. Extensive experiments demonstrate that our domain-specific approach with 52K scientific table images achieves superior performance compared to 150K general-domain tables, highlighting the importance of data quality over quantity. Our proposed table-based MLLMs with dynamic input resolutions show significant improvements in both general table understanding and numerical reasoning capabilities, with strong generalisation to held-out datasets. Our code and data are publicly available at https://github.com/Bernard-Yang/MMSci_Table.
Video Compression for Spatiotemporal Earth System Data
Large-scale Earth system datasets, from high-resolution remote sensing imagery to spatiotemporal climate model outputs, exhibit characteristics analogous to those of standard videos. Their inherent spatial, temporal, and spectral redundancies can thus be readily exploited by established video compression techniques. Here, we present xarrayvideo, a Python library for compressing multichannel spatiotemporal datasets by encoding them as videos. Our approach achieves compression ratios of up to 250x while maintaining high fidelity by leveraging standard, well-optimized video codecs through ffmpeg. We demonstrate the library's effectiveness on four real-world multichannel spatiotemporal datasets: DynamicEarthNet (very high resolution Planet images), DeepExtremeCubes (high resolution Sentinel-2 images), ERA5 (weather reanalysis data), and the SimpleS2 dataset (high resolution multichannel Sentinel-2 images), achieving Peak Signal-to-Noise Ratios (PSNRs) of 55.86, 40.60, 46.58, and 43.23 dB at 0.1 bits per pixel per band (bpppb) and 65.91, 54.28, 62.90, and 55.04 dB at 1 bpppb. We are redistributing two of these datasets, DeepExtremeCubes (2.3 Tb) and DynamicEarthNet (525 Gb), in the machine-learning-ready and cloud-ready TACO format through HuggingFace at significantly reduced sizes (270 Gb and 8.5 Gb, respectively) without compromising quality (PSNR 55.77-56.65 and 60.15). No performance loss is observed when the compressed versions of these datasets are used in their respective deep learning-based downstream tasks (next step reflectance prediction and landcover segmentation). In conclusion, xarrayvideo presents an efficient solution for handling the rapidly growing size of Earth observation datasets, making advanced compression techniques accessible and practical to the Earth science community. The library is available for use at https://github.com/IPL-UV/xarrayvideo
A Novel Dataset for Flood Detection Robust to Seasonal Changes in Satellite Imagery
This study introduces a novel dataset for segmenting flooded areas in satellite images. After reviewing 77 existing benchmarks utilizing satellite imagery, we identified a shortage of suitable datasets for this specific task. To fill this gap, we collected satellite imagery of the 2019 Midwestern USA floods from Planet Explorer by Planet Labs (Image opyright 2024 Planet Labs PBC). The dataset consists of 10 satellite images per location, each containing both flooded and non-flooded areas. We selected ten locations from each of the five states: Iowa, Kansas, Montana, Nebraska, and South Dakota. The dataset ensures uniform resolution and resizing during data processing. For evaluating semantic segmentation performance, we tested state-of-the-art models in computer vision and remote sensing on our dataset. Additionally, we conducted an ablation study varying window sizes to capture temporal characteristics. Overall, the models demonstrated modest results, suggesting a requirement for future multimodal and temporal learning strategies. The dataset will be publicly available on <https://github.com/youngsunjang/SDSU_MidWest_Flood_2019>.
ImageRAG: Enhancing Ultra High Resolution Remote Sensing Imagery Analysis with ImageRAG
Ultra High Resolution (UHR) remote sensing imagery (RSI) (e.g. 100,000 times 100,000 pixels or more) poses a significant challenge for current Remote Sensing Multimodal Large Language Models (RSMLLMs). If choose to resize the UHR image to standard input image size, the extensive spatial and contextual information that UHR images contain will be neglected. Otherwise, the original size of these images often exceeds the token limits of standard RSMLLMs, making it difficult to process the entire image and capture long-range dependencies to answer the query based on the abundant visual context. In this paper, we introduce ImageRAG for RS, a training-free framework to address the complexities of analyzing UHR remote sensing imagery. By transforming UHR remote sensing image analysis task to image's long context selection task, we design an innovative image contextual retrieval mechanism based on the Retrieval-Augmented Generation (RAG) technique, denoted as ImageRAG. ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts that pertain to a given query. Fast path and slow path are proposed in this framework to handle this task efficiently and effectively. ImageRAG allows RSMLLMs to manage extensive context and spatial information from UHR RSI, ensuring the analysis is both accurate and efficient. Codebase will be released in https://github.com/om-ai-lab/ImageRAG
Building astroBERT, a language model for Astronomy & Astrophysics
The existing search tools for exploring the NASA Astrophysics Data System (ADS) can be quite rich and empowering (e.g., similar and trending operators), but researchers are not yet allowed to fully leverage semantic search. For example, a query for "results from the Planck mission" should be able to distinguish between all the various meanings of Planck (person, mission, constant, institutions and more) without further clarification from the user. At ADS, we are applying modern machine learning and natural language processing techniques to our dataset of recent astronomy publications to train astroBERT, a deeply contextual language model based on research at Google. Using astroBERT, we aim to enrich the ADS dataset and improve its discoverability, and in particular we are developing our own named entity recognition tool. We present here our preliminary results and lessons learned.
MS MARCO: A Human Generated MAchine Reading COmprehension Dataset
We introduce a large scale MAchine Reading COmprehension dataset, which we name MS MARCO. The dataset comprises of 1,010,916 anonymized questions---sampled from Bing's search query logs---each with a human generated answer and 182,669 completely human rewritten generated answers. In addition, the dataset contains 8,841,823 passages---extracted from 3,563,535 web documents retrieved by Bing---that provide the information necessary for curating the natural language answers. A question in the MS MARCO dataset may have multiple answers or no answers at all. Using this dataset, we propose three different tasks with varying levels of difficulty: (i) predict if a question is answerable given a set of context passages, and extract and synthesize the answer as a human would (ii) generate a well-formed answer (if possible) based on the context passages that can be understood with the question and passage context, and finally (iii) rank a set of retrieved passages given a question. The size of the dataset and the fact that the questions are derived from real user search queries distinguishes MS MARCO from other well-known publicly available datasets for machine reading comprehension and question-answering. We believe that the scale and the real-world nature of this dataset makes it attractive for benchmarking machine reading comprehension and question-answering models.
SkySenseGPT: A Fine-Grained Instruction Tuning Dataset and Model for Remote Sensing Vision-Language Understanding
Remote Sensing Large Multi-Modal Models (RSLMMs) are developing rapidly and showcase significant capabilities in remote sensing imagery (RSI) comprehension. However, due to the limitations of existing datasets, RSLMMs have shortcomings in understanding the rich semantic relations among objects in complex remote sensing scenes. To unlock RSLMMs' complex comprehension ability, we propose a large-scale instruction tuning dataset FIT-RS, containing 1,800,851 instruction samples. FIT-RS covers common interpretation tasks and innovatively introduces several complex comprehension tasks of escalating difficulty, ranging from relation reasoning to image-level scene graph generation. Based on FIT-RS, we build the FIT-RSFG benchmark. Furthermore, we establish a new benchmark to evaluate the fine-grained relation comprehension capabilities of LMMs, named FIT-RSRC. Based on combined instruction data, we propose SkySenseGPT, which achieves outstanding performance on both public datasets and FIT-RSFG, surpassing existing RSLMMs. We hope the FIT-RS dataset can enhance the relation comprehension capability of RSLMMs and provide a large-scale fine-grained data source for the remote sensing community. The dataset will be available at https://github.com/Luo-Z13/SkySenseGPT
DeepPatent2: A Large-Scale Benchmarking Corpus for Technical Drawing Understanding
Recent advances in computer vision (CV) and natural language processing have been driven by exploiting big data on practical applications. However, these research fields are still limited by the sheer volume, versatility, and diversity of the available datasets. CV tasks, such as image captioning, which has primarily been carried out on natural images, still struggle to produce accurate and meaningful captions on sketched images often included in scientific and technical documents. The advancement of other tasks such as 3D reconstruction from 2D images requires larger datasets with multiple viewpoints. We introduce DeepPatent2, a large-scale dataset, providing more than 2.7 million technical drawings with 132,890 object names and 22,394 viewpoints extracted from 14 years of US design patent documents. We demonstrate the usefulness of DeepPatent2 with conceptual captioning. We further provide the potential usefulness of our dataset to facilitate other research areas such as 3D image reconstruction and image retrieval.
QuantNAS for super resolution: searching for efficient quantization-friendly architectures against quantization noise
There is a constant need for high-performing and computationally efficient neural network models for image super-resolution: computationally efficient models can be used via low-capacity devices and reduce carbon footprints. One way to obtain such models is to compress models, e.g. quantization. Another way is a neural architecture search that automatically discovers new, more efficient solutions. We propose a novel quantization-aware procedure, the QuantNAS that combines pros of these two approaches. To make QuantNAS work, the procedure looks for quantization-friendly super-resolution models. The approach utilizes entropy regularization, quantization noise, and Adaptive Deviation for Quantization (ADQ) module to enhance the search procedure. The entropy regularization technique prioritizes a single operation within each block of the search space. Adding quantization noise to parameters and activations approximates model degradation after quantization, resulting in a more quantization-friendly architectures. ADQ helps to alleviate problems caused by Batch Norm blocks in super-resolution models. Our experimental results show that the proposed approximations are better for search procedure than direct model quantization. QuantNAS discovers architectures with better PSNR/BitOps trade-off than uniform or mixed precision quantization of fixed architectures. We showcase the effectiveness of our method through its application to two search spaces inspired by the state-of-the-art SR models and RFDN. Thus, anyone can design a proper search space based on an existing architecture and apply our method to obtain better quality and efficiency. The proposed procedure is 30\% faster than direct weight quantization and is more stable.
UniIR: Training and Benchmarking Universal Multimodal Information Retrievers
Existing information retrieval (IR) models often assume a homogeneous format, limiting their applicability to diverse user needs, such as searching for images with text descriptions, searching for a news article with a headline image, or finding a similar photo with a query image. To approach such different information-seeking demands, we introduce UniIR, a unified instruction-guided multimodal retriever capable of handling eight distinct retrieval tasks across modalities. UniIR, a single retrieval system jointly trained on ten diverse multimodal-IR datasets, interprets user instructions to execute various retrieval tasks, demonstrating robust performance across existing datasets and zero-shot generalization to new tasks. Our experiments highlight that multi-task training and instruction tuning are keys to UniIR's generalization ability. Additionally, we construct the M-BEIR, a multimodal retrieval benchmark with comprehensive results, to standardize the evaluation of universal multimodal information retrieval.
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.
Rethinking Benchmarks for Cross-modal Image-text Retrieval
Image-text retrieval, as a fundamental and important branch of information retrieval, has attracted extensive research attentions. The main challenge of this task is cross-modal semantic understanding and matching. Some recent works focus more on fine-grained cross-modal semantic matching. With the prevalence of large scale multimodal pretraining models, several state-of-the-art models (e.g. X-VLM) have achieved near-perfect performance on widely-used image-text retrieval benchmarks, i.e. MSCOCO-Test-5K and Flickr30K-Test-1K. In this paper, we review the two common benchmarks and observe that they are insufficient to assess the true capability of models on fine-grained cross-modal semantic matching. The reason is that a large amount of images and texts in the benchmarks are coarse-grained. Based on the observation, we renovate the coarse-grained images and texts in the old benchmarks and establish the improved benchmarks called MSCOCO-FG and Flickr30K-FG. Specifically, on the image side, we enlarge the original image pool by adopting more similar images. On the text side, we propose a novel semi-automatic renovation approach to refine coarse-grained sentences into finer-grained ones with little human effort. Furthermore, we evaluate representative image-text retrieval models on our new benchmarks to demonstrate the effectiveness of our method. We also analyze the capability of models on fine-grained semantic comprehension through extensive experiments. The results show that even the state-of-the-art models have much room for improvement in fine-grained semantic understanding, especially in distinguishing attributes of close objects in images. Our code and improved benchmark datasets are publicly available at: https://github.com/cwj1412/MSCOCO-Flikcr30K_FG, which we hope will inspire further in-depth research on cross-modal retrieval.
PaperRegister: Boosting Flexible-grained Paper Search via Hierarchical Register Indexing
Paper search is an important activity for researchers, typically involving using a query with description of a topic to find relevant papers. As research deepens, paper search requirements may become more flexible, sometimes involving specific details such as module configuration rather than being limited to coarse-grained topics. However, previous paper search systems are unable to meet these flexible-grained requirements, as these systems mainly collect paper abstracts to construct index of corpus, which lack detailed information to support retrieval by finer-grained queries. In this work, we propose PaperRegister, consisted of offline hierarchical indexing and online adaptive retrieval, transforming traditional abstract-based index into hierarchical index tree for paper search, thereby supporting queries at flexible granularity. Experiments on paper search tasks across a range of granularity demonstrate that PaperRegister achieves the state-of-the-art performance, and particularly excels in fine-grained scenarios, highlighting the good potential as an effective solution for flexible-grained paper search in real-world applications. Code for this work is in https://github.com/Li-Z-Q/PaperRegister.
Captions Are Worth a Thousand Words: Enhancing Product Retrieval with Pretrained Image-to-Text Models
This paper explores the usage of multimodal image-to-text models to enhance text-based item retrieval. We propose utilizing pre-trained image captioning and tagging models, such as instructBLIP and CLIP, to generate text-based product descriptions which are combined with existing text descriptions. Our work is particularly impactful for smaller eCommerce businesses who are unable to maintain the high-quality text descriptions necessary to effectively perform item retrieval for search and recommendation use cases. We evaluate the searchability of ground-truth text, image-generated text, and combinations of both texts on several subsets of Amazon's publicly available ESCI dataset. The results demonstrate the dual capability of our proposed models to enhance the retrieval of existing text and generate highly-searchable standalone descriptions.
PIN: A Knowledge-Intensive Dataset for Paired and Interleaved Multimodal Documents
Recent advancements in Large Multimodal Models (LMMs) have leveraged extensive multimodal datasets to enhance capabilities in complex knowledge-driven tasks. However, persistent challenges in perceptual and reasoning errors limit their efficacy, particularly in interpreting intricate visual data and deducing multimodal relationships. Addressing these issues, we introduce a novel dataset format, PIN (Paired and INterleaved multimodal documents), designed to significantly improve both the depth and breadth of multimodal training. The PIN format is built on three foundational principles: knowledge intensity, scalability, and support for diverse training modalities. This innovative format combines markdown files and comprehensive images to enrich training data with a dense knowledge structure and versatile training strategies. We present PIN-14M, an open-source dataset comprising 14 million samples derived from a diverse range of Chinese and English sources, tailored to include complex web and scientific content. This dataset is constructed meticulously to ensure data quality and ethical integrity, aiming to facilitate advanced training strategies and improve model robustness against common multimodal training pitfalls. Our initial results, forming the basis of this technical report, suggest significant potential for the PIN format in refining LMM performance, with plans for future expansions and detailed evaluations of its impact on model capabilities.
DeepMMSearch-R1: Empowering Multimodal LLMs in Multimodal Web Search
Multimodal Large Language Models (MLLMs) in real-world applications require access to external knowledge sources and must remain responsive to the dynamic and ever-changing real-world information in order to address information-seeking and knowledge-intensive user queries. Existing approaches, such as retrieval augmented generation (RAG) methods, search agents, and search equipped MLLMs, often suffer from rigid pipelines, excessive search calls, and poorly constructed search queries, which result in inefficiencies and suboptimal outcomes. To address these limitations, we present DeepMMSearch-R1, the first multimodal LLM capable of performing on-demand, multi-turn web searches and dynamically crafting queries for both image and text search tools. Specifically, DeepMMSearch-R1 can initiate web searches based on relevant crops of the input image making the image search more effective, and can iteratively adapt text search queries based on retrieved information, thereby enabling self-reflection and self-correction. Our approach relies on a two-stage training pipeline: a cold start supervised finetuning phase followed by an online reinforcement learning optimization. For training, we introduce DeepMMSearchVQA, a novel multimodal VQA dataset created through an automated pipeline intermixed with real-world information from web search tools. This dataset contains diverse, multi-hop queries that integrate textual and visual information, teaching the model when to search, what to search for, which search tool to use and how to reason over the retrieved information. We conduct extensive experiments across a range of knowledge-intensive benchmarks to demonstrate the superiority of our approach. Finally, we analyze the results and provide insights that are valuable for advancing multimodal web-search.
Consistency-Aware Padding for Incomplete Multi-Modal Alignment Clustering Based on Self-Repellent Greedy Anchor Search
Multimodal representation is faithful and highly effective in describing real-world data samples' characteristics by describing their complementary information. However, the collected data often exhibits incomplete and misaligned characteristics due to factors such as inconsistent sensor frequencies and device malfunctions. Existing research has not effectively addressed the issue of filling missing data in scenarios where multiview data are both imbalanced and misaligned. Instead, it relies on class-level alignment of the available data. Thus, it results in some data samples not being well-matched, thereby affecting the quality of data fusion. In this paper, we propose the Consistency-Aware Padding for Incomplete Multimodal Alignment Clustering Based on Self-Repellent Greedy Anchor Search(CAPIMAC) to tackle the problem of filling imbalanced and misaligned data in multimodal datasets. Specifically, we propose a self-repellent greedy anchor search module(SRGASM), which employs a self-repellent random walk combined with a greedy algorithm to identify anchor points for re-representing incomplete and misaligned multimodal data. Subsequently, based on noise-contrastive learning, we design a consistency-aware padding module (CAPM) to effectively interpolate and align imbalanced and misaligned data, thereby improving the quality of multimodal data fusion. Experimental results demonstrate the superiority of our method over benchmark datasets. The code will be publicly released at https://github.com/Autism-mm/CAPIMAC.git.
μgat: Improving Single-Page Document Parsing by Providing Multi-Page Context
Regesta are catalogs of summaries of other documents and, in some cases, are the only source of information about the content of such full-length documents. For this reason, they are of great interest to scholars in many social and humanities fields. In this work, we focus on Regesta Pontificum Romanum, a large collection of papal registers. Regesta are visually rich documents, where the layout is as important as the text content to convey the contained information through the structure, and are inherently multi-page documents. Among Digital Humanities techniques that can help scholars efficiently exploit regesta and other documental sources in the form of scanned documents, Document Parsing has emerged as a task to process document images and convert them into machine-readable structured representations, usually markup language. However, current models focus on scientific and business documents, and most of them consider only single-paged documents. To overcome this limitation, in this work, we propose {\mu}gat, an extension of the recently proposed Document parsing Nougat architecture, which can handle elements spanning over the single page limits. Specifically, we adapt Nougat to process a larger, multi-page context, consisting of the previous and the following page, while parsing the current page. Experimental results, both qualitative and quantitative, demonstrate the effectiveness of our proposed approach also in the case of the challenging Regesta Pontificum Romanorum.
MMSci: A Multimodal Multi-Discipline Dataset for PhD-Level Scientific Comprehension
The rapid advancement of Large Language Models (LLMs) and Large Multimodal Models (LMMs) has heightened the demand for AI-based scientific assistants capable of understanding scientific articles and figures. Despite progress, there remains a significant gap in evaluating models' comprehension of professional, graduate-level, and even PhD-level scientific content. Current datasets and benchmarks primarily focus on relatively simple scientific tasks and figures, lacking comprehensive assessments across diverse advanced scientific disciplines. To bridge this gap, we collected a multimodal, multidisciplinary dataset from open-access scientific articles published in Nature Communications journals. This dataset spans 72 scientific disciplines, ensuring both diversity and quality. We created benchmarks with various tasks and settings to comprehensively evaluate LMMs' capabilities in understanding scientific figures and content. Our evaluation revealed that these tasks are highly challenging: many open-source models struggled significantly, and even GPT-4V and GPT-4o faced difficulties. We also explored using our dataset as training resources by constructing visual instruction-following data, enabling the 7B LLaVA model to achieve performance comparable to GPT-4V/o on our benchmark. Additionally, we investigated the use of our interleaved article texts and figure images for pre-training LMMs, resulting in improvements on the material generation task. The source dataset, including articles, figures, constructed benchmarks, and visual instruction-following data, is open-sourced.
Common Practices and Taxonomy in Deep Multi-view Fusion for Remote Sensing Applications
The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having different types and amounts of noise due to sensor calibration or deterioration. A great variety of deep learning models have been applied to fuse the information from these multiple views, known as deep multi-view or multi-modal fusion learning. However, the approaches in the literature vary greatly since different terminology is used to refer to similar concepts or different illustrations are given to similar techniques. This article gathers works on multi-view fusion for Earth observation by focusing on the common practices and approaches used in the literature. We summarize and structure insights from several different publications concentrating on unifying points and ideas. In this manuscript, we provide a harmonized terminology while at the same time mentioning the various alternative terms that are used in literature. The topics covered by the works reviewed focus on supervised learning with the use of neural network models. We hope this review, with a long list of recent references, can support future research and lead to a unified advance in the area.
OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents
Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELICS, we train vision and language models of 9 and 80 billion parameters named IDEFICS, and obtain competitive performance on different multimodal benchmarks. We release our dataset, models and code.
A Survey on Data Selection for Language Models
A major factor in the recent success of large language models is the use of enormous and ever-growing text datasets for unsupervised pre-training. However, naively training a model on all available data may not be optimal (or feasible), as the quality of available text data can vary. Filtering out data can also decrease the carbon footprint and financial costs of training models by reducing the amount of training required. Data selection methods aim to determine which candidate data points to include in the training dataset and how to appropriately sample from the selected data points. The promise of improved data selection methods has caused the volume of research in the area to rapidly expand. However, because deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive, few organizations have the resources for extensive data selection research. Consequently, knowledge of effective data selection practices has become concentrated within a few organizations, many of which do not openly share their findings and methodologies. To narrow this gap in knowledge, we present a comprehensive review of existing literature on data selection methods and related research areas, providing a taxonomy of existing approaches. By describing the current landscape of research, this work aims to accelerate progress in data selection by establishing an entry point for new and established researchers. Additionally, throughout this review we draw attention to noticeable holes in the literature and conclude the paper by proposing promising avenues for future research.
RedCaps: web-curated image-text data created by the people, for the people
Large datasets of paired images and text have become increasingly popular for learning generic representations for vision and vision-and-language tasks. Such datasets have been built by querying search engines or collecting HTML alt-text -- since web data is noisy, they require complex filtering pipelines to maintain quality. We explore alternate data sources to collect high quality data with minimal filtering. We introduce RedCaps -- a large-scale dataset of 12M image-text pairs collected from Reddit. Images and captions from Reddit depict and describe a wide variety of objects and scenes. We collect data from a manually curated set of subreddits, which give coarse image labels and allow us to steer the dataset composition without labeling individual instances. We show that captioning models trained on RedCaps produce rich and varied captions preferred by humans, and learn visual representations that transfer to many downstream tasks.
SPair-71k: A Large-scale Benchmark for Semantic Correspondence
Establishing visual correspondences under large intra-class variations, which is often referred to as semantic correspondence or semantic matching, remains a challenging problem in computer vision. Despite its significance, however, most of the datasets for semantic correspondence are limited to a small amount of image pairs with similar viewpoints and scales. In this paper, we present a new large-scale benchmark dataset of semantically paired images, SPair-71k, which contains 70,958 image pairs with diverse variations in viewpoint and scale. Compared to previous datasets, it is significantly larger in number and contains more accurate and richer annotations. We believe this dataset will provide a reliable testbed to study the problem of semantic correspondence and will help to advance research in this area. We provide the results of recent methods on our new dataset as baselines for further research. Our benchmark is available online at http://cvlab.postech.ac.kr/research/SPair-71k/.
Multimodal C4: An Open, Billion-scale Corpus of Images Interleaved With Text
In-context vision and language models like Flamingo support arbitrarily interleaved sequences of images and text as input. This format not only enables few-shot learning via interleaving independent supervised (image, text) examples, but also, more complex prompts involving interaction between images, e.g., "What do image A and image B have in common?" To support this interface, pretraining occurs over web corpora that similarly contain interleaved images+text. To date, however, large-scale data of this form have not been publicly available. We release Multimodal C4 (mmc4), an augmentation of the popular text-only c4 corpus with images interleaved. We use a linear assignment algorithm to place images into longer bodies of text using CLIP features, a process that we show outperforms alternatives. mmc4 spans everyday topics like cooking, travel, technology, etc. A manual inspection of a random sample of documents shows that a vast majority (90%) of images are topically relevant, and that linear assignment frequently selects individual sentences specifically well-aligned with each image (78%). After filtering NSFW images, ads, etc., the corpus contains 103M documents containing 585M images interleaved with 43B English tokens.
Similarity search in the blink of an eye with compressed indices
Nowadays, data is represented by vectors. Retrieving those vectors, among millions and billions, that are similar to a given query is a ubiquitous problem, known as similarity search, of relevance for a wide range of applications. Graph-based indices are currently the best performing techniques for billion-scale similarity search. However, their random-access memory pattern presents challenges to realize their full potential. In this work, we present new techniques and systems for creating faster and smaller graph-based indices. To this end, we introduce a novel vector compression method, Locally-adaptive Vector Quantization (LVQ), that uses per-vector scaling and scalar quantization to improve search performance with fast similarity computations and a reduced effective bandwidth, while decreasing memory footprint and barely impacting accuracy. LVQ, when combined with a new high-performance computing system for graph-based similarity search, establishes the new state of the art in terms of performance and memory footprint. For billions of vectors, LVQ outcompetes the second-best alternatives: (1) in the low-memory regime, by up to 20.7x in throughput with up to a 3x memory footprint reduction, and (2) in the high-throughput regime by 5.8x with 1.4x less memory.
High-Quality Entity Segmentation
Dense image segmentation tasks e.g., semantic, panoptic) are useful for image editing, but existing methods can hardly generalize well in an in-the-wild setting where there are unrestricted image domains, classes, and image resolution and quality variations. Motivated by these observations, we construct a new entity segmentation dataset, with a strong focus on high-quality dense segmentation in the wild. The dataset contains images spanning diverse image domains and entities, along with plentiful high-resolution images and high-quality mask annotations for training and testing. Given the high-quality and -resolution nature of the dataset, we propose CropFormer which is designed to tackle the intractability of instance-level segmentation on high-resolution images. It improves mask prediction by fusing high-res image crops that provide more fine-grained image details and the full image. CropFormer is the first query-based Transformer architecture that can effectively fuse mask predictions from multiple image views, by learning queries that effectively associate the same entities across the full image and its crop. With CropFormer, we achieve a significant AP gain of 1.9 on the challenging entity segmentation task. Furthermore, CropFormer consistently improves the accuracy of traditional segmentation tasks and datasets. The dataset and code will be released at http://luqi.info/entityv2.github.io/.
Relevance Filtering for Embedding-based Retrieval
In embedding-based retrieval, Approximate Nearest Neighbor (ANN) search enables efficient retrieval of similar items from large-scale datasets. While maximizing recall of relevant items is usually the goal of retrieval systems, a low precision may lead to a poor search experience. Unlike lexical retrieval, which inherently limits the size of the retrieved set through keyword matching, dense retrieval via ANN search has no natural cutoff. Moreover, the cosine similarity scores of embedding vectors are often optimized via contrastive or ranking losses, which make them difficult to interpret. Consequently, relying on top-K or cosine-similarity cutoff is often insufficient to filter out irrelevant results effectively. This issue is prominent in product search, where the number of relevant products is often small. This paper introduces a novel relevance filtering component (called "Cosine Adapter") for embedding-based retrieval to address this challenge. Our approach maps raw cosine similarity scores to interpretable scores using a query-dependent mapping function. We then apply a global threshold on the mapped scores to filter out irrelevant results. We are able to significantly increase the precision of the retrieved set, at the expense of a small loss of recall. The effectiveness of our approach is demonstrated through experiments on both public MS MARCO dataset and internal Walmart product search data. Furthermore, online A/B testing on the Walmart site validates the practical value of our approach in real-world e-commerce settings.
Panda-70M: Captioning 70M Videos with Multiple Cross-Modality Teachers
The quality of the data and annotation upper-bounds the quality of a downstream model. While there exist large text corpora and image-text pairs, high-quality video-text data is much harder to collect. First of all, manual labeling is more time-consuming, as it requires an annotator to watch an entire video. Second, videos have a temporal dimension, consisting of several scenes stacked together, and showing multiple actions. Accordingly, to establish a video dataset with high-quality captions, we propose an automatic approach leveraging multimodal inputs, such as textual video description, subtitles, and individual video frames. Specifically, we curate 3.8M high-resolution videos from the publicly available HD-VILA-100M dataset. We then split them into semantically consistent video clips, and apply multiple cross-modality teacher models to obtain captions for each video. Next, we finetune a retrieval model on a small subset where the best caption of each video is manually selected and then employ the model in the whole dataset to select the best caption as the annotation. In this way, we get 70M videos paired with high-quality text captions. We dub the dataset as Panda-70M. We show the value of the proposed dataset on three downstream tasks: video captioning, video and text retrieval, and text-driven video generation. The models trained on the proposed data score substantially better on the majority of metrics across all the tasks.
Toward Advancing License Plate Super-Resolution in Real-World Scenarios: A Dataset and Benchmark
Recent advancements in super-resolution for License Plate Recognition (LPR) have sought to address challenges posed by low-resolution (LR) and degraded images in surveillance, traffic monitoring, and forensic applications. However, existing studies have relied on private datasets and simplistic degradation models. To address this gap, we introduce UFPR-SR-Plates, a novel dataset containing 10,000 tracks with 100,000 paired low and high-resolution license plate images captured under real-world conditions. We establish a benchmark using multiple sequential LR and high-resolution (HR) images per vehicle -- five of each -- and two state-of-the-art models for super-resolution of license plates. We also investigate three fusion strategies to evaluate how combining predictions from a leading Optical Character Recognition (OCR) model for multiple super-resolved license plates enhances overall performance. Our findings demonstrate that super-resolution significantly boosts LPR performance, with further improvements observed when applying majority vote-based fusion techniques. Specifically, the Layout-Aware and Character-Driven Network (LCDNet) model combined with the Majority Vote by Character Position (MVCP) strategy led to the highest recognition rates, increasing from 1.7% with low-resolution images to 31.1% with super-resolution, and up to 44.7% when combining OCR outputs from five super-resolved images. These findings underscore the critical role of super-resolution and temporal information in enhancing LPR accuracy under real-world, adverse conditions. The proposed dataset is publicly available to support further research and can be accessed at: https://valfride.github.io/nascimento2024toward/
U-DIADS-Bib: a full and few-shot pixel-precise dataset for document layout analysis of ancient manuscripts
Document Layout Analysis, which is the task of identifying different semantic regions inside of a document page, is a subject of great interest for both computer scientists and humanities scholars as it represents a fundamental step towards further analysis tasks for the former and a powerful tool to improve and facilitate the study of the documents for the latter. However, many of the works currently present in the literature, especially when it comes to the available datasets, fail to meet the needs of both worlds and, in particular, tend to lean towards the needs and common practices of the computer science side, leading to resources that are not representative of the humanities real needs. For this reason, the present paper introduces U-DIADS-Bib, a novel, pixel-precise, non-overlapping and noiseless document layout analysis dataset developed in close collaboration between specialists in the fields of computer vision and humanities. Furthermore, we propose a novel, computer-aided, segmentation pipeline in order to alleviate the burden represented by the time-consuming process of manual annotation, necessary for the generation of the ground truth segmentation maps. Finally, we present a standardized few-shot version of the dataset (U-DIADS-BibFS), with the aim of encouraging the development of models and solutions able to address this task with as few samples as possible, which would allow for more effective use in a real-world scenario, where collecting a large number of segmentations is not always feasible.
Text-to-Remote-Sensing-Image Retrieval beyond RGB Sources
Retrieving relevant imagery from vast satellite archives is crucial for applications like disaster response and long-term climate monitoring. However, most text-to-image retrieval systems are limited to RGB data, failing to exploit the unique physical information captured by other sensors, such as the all-weather structural sensitivity of Synthetic Aperture Radar (SAR) or the spectral signatures in optical multispectral data. To bridge this gap, we introduce CrisisLandMark, a new large-scale corpus of over 647,000 Sentinel-1 SAR and Sentinel-2 multispectral images paired with structured textual annotations for land cover, land use, and crisis events harmonized from authoritative land cover systems (CORINE and Dynamic World) and crisis-specific sources. We then present CLOSP (Contrastive Language Optical SAR Pretraining), a novel framework that uses text as a bridge to align unpaired optical and SAR images into a unified embedding space. Our experiments show that CLOSP achieves a new state-of-the-art, improving retrieval nDGC by 54% over existing models. Additionally, we find that the unified training strategy overcomes the inherent difficulty of interpreting SAR imagery by transferring rich semantic knowledge from the optical domain with indirect interaction. Furthermore, GeoCLOSP, which integrates geographic coordinates into our framework, creates a powerful trade-off between generality and specificity: while the CLOSP excels at general semantic tasks, the GeoCLOSP becomes a specialized expert for retrieving location-dependent crisis events and rare geographic features. This work highlights that the integration of diverse sensor data and geographic context is essential for unlocking the full potential of remote sensing archives.
How to Evaluate Entity Resolution Systems: An Entity-Centric Framework with Application to Inventor Name Disambiguation
Entity resolution (record linkage, microclustering) systems are notoriously difficult to evaluate. Looking for a needle in a haystack, traditional evaluation methods use sophisticated, application-specific sampling schemes to find matching pairs of records among an immense number of non-matches. We propose an alternative that facilitates the creation of representative, reusable benchmark data sets without necessitating complex sampling schemes. These benchmark data sets can then be used for model training and a variety of evaluation tasks. Specifically, we propose an entity-centric data labeling methodology that integrates with a unified framework for monitoring summary statistics, estimating key performance metrics such as cluster and pairwise precision and recall, and analyzing root causes for errors. We validate the framework in an application to inventor name disambiguation and through simulation studies. Software: https://github.com/OlivierBinette/er-evaluation/
SkyScript: A Large and Semantically Diverse Vision-Language Dataset for Remote Sensing
Remote sensing imagery, despite its broad applications in helping achieve Sustainable Development Goals and tackle climate change, has not yet benefited from the recent advancements of versatile, task-agnostic vision language models (VLMs). A key reason is that the large-scale, semantically diverse image-text dataset required for developing VLMs is still absent for remote sensing images. Unlike natural images, remote sensing images and their associated text descriptions cannot be efficiently collected from the public Internet at scale. In this work, we bridge this gap by using geo-coordinates to automatically connect open, unlabeled remote sensing images with rich semantics covered in OpenStreetMap, and thus construct SkyScript, a comprehensive vision-language dataset for remote sensing images, comprising 2.6 million image-text pairs covering 29K distinct semantic tags. With continual pre-training on this dataset, we obtain a VLM that surpasses baseline models with a 6.2% average accuracy gain in zero-shot scene classification across seven benchmark datasets. It also demonstrates the ability of zero-shot transfer for fine-grained object attribute classification and cross-modal retrieval. We hope this dataset can support the advancement of VLMs for various multi-modal tasks in remote sensing, such as open-vocabulary classification, retrieval, captioning, and text-to-image synthesis.
M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization?
We investigate a critical yet under-explored question in Large Vision-Language Models (LVLMs): Do LVLMs genuinely comprehend interleaved image-text in the document? Existing document understanding benchmarks often assess LVLMs using question-answer formats, which are information-sparse and difficult to guarantee the coverage of long-range dependencies. To address this issue, we introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench), which comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences. M-DocSum-Bench is a reference-based generation task and necessitates the generation of interleaved image-text summaries using provided reference images, thereby simultaneously evaluating capabilities in understanding, reasoning, localization, and summarization within complex multimodal document scenarios. To facilitate this benchmark, we develop an automated framework to construct summaries and propose a fine-grained evaluation method called M-DocEval. Moreover, we further develop a robust summarization baseline, i.e., M-DocSum-7B, by progressive two-stage training with diverse instruction and preference data. The extensive results on our M-DocSum-Bench reveal that the leading LVLMs struggle to maintain coherence and accurately integrate information within long and interleaved contexts, often exhibiting confusion between similar images and a lack of robustness. Notably, M-DocSum-7B achieves state-of-the-art performance compared to larger and closed-source models (including GPT-4o, Gemini Pro, Claude-3.5-Sonnet and Qwen2.5-VL-72B, etc.), demonstrating the potential of LVLMs for improved interleaved image-text understanding. The code, data, and models are available at https://github.com/stepfun-ai/M-DocSum-Bench.
Trust the Model: Compact VLMs as In-Context Judges for Image-Text Data Quality
Vision-language models (VLMs) extend the conventional large language models by integrating visual data, enabling richer multimodal reasoning and significantly broadens the practical applications of AI. However, including visual inputs also brings new challenges in maintaining data quality. Empirical evidence consistently shows that carefully curated and representative training examples often yield superior results compared to simply increasing the quantity of data. Inspired by this observation, we introduce a streamlined data filtration framework that employs a compact VLM, fine-tuned on a high-quality image-caption annotated dataset. This model effectively evaluates and filters potential training samples based on caption and image quality and alignment. Unlike previous approaches, which typically add auxiliary filtration modules on top of existing full-scale VLMs, our method exclusively utilizes the inherent evaluative capability of a purpose-built small VLM. This strategy eliminates the need for extra modules and reduces training overhead. Our lightweight model efficiently filters out inaccurate, noisy web data, improving image-text alignment and caption linguistic fluency. Experimental results show that datasets underwent high-precision filtration using our compact VLM perform on par with, or even surpass, larger and noisier datasets gathered through high-volume web crawling. Thus, our method provides a lightweight yet robust solution for building high-quality vision-language training corpora. \\ Availability and implementation: Our compact VLM filtration model, training data, utility scripts, and Supplementary data (Appendices) are freely available at https://github.com/daulettoibazar/Compact_VLM_Filter.
Making a MIRACL: Multilingual Information Retrieval Across a Continuum of Languages
MIRACL (Multilingual Information Retrieval Across a Continuum of Languages) is a multilingual dataset we have built for the WSDM 2023 Cup challenge that focuses on ad hoc retrieval across 18 different languages, which collectively encompass over three billion native speakers around the world. These languages have diverse typologies, originate from many different language families, and are associated with varying amounts of available resources -- including what researchers typically characterize as high-resource as well as low-resource languages. Our dataset is designed to support the creation and evaluation of models for monolingual retrieval, where the queries and the corpora are in the same language. In total, we have gathered over 700k high-quality relevance judgments for around 77k queries over Wikipedia in these 18 languages, where all assessments have been performed by native speakers hired by our team. Our goal is to spur research that will improve retrieval across a continuum of languages, thus enhancing information access capabilities for diverse populations around the world, particularly those that have been traditionally underserved. This overview paper describes the dataset and baselines that we share with the community. The MIRACL website is live at http://miracl.ai/.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
MessIRve: A Large-Scale Spanish Information Retrieval Dataset
Information retrieval (IR) is the task of finding relevant documents in response to a user query. Although Spanish is the second most spoken native language, current IR benchmarks lack Spanish data, hindering the development of information access tools for Spanish speakers. We introduce MessIRve, a large-scale Spanish IR dataset with around 730 thousand queries from Google's autocomplete API and relevant documents sourced from Wikipedia. MessIRve's queries reflect diverse Spanish-speaking regions, unlike other datasets that are translated from English or do not consider dialectal variations. The large size of the dataset allows it to cover a wide variety of topics, unlike smaller datasets. We provide a comprehensive description of the dataset, comparisons with existing datasets, and baseline evaluations of prominent IR models. Our contributions aim to advance Spanish IR research and improve information access for Spanish speakers.
mRobust04: A Multilingual Version of the TREC Robust 2004 Benchmark
Robust 2004 is an information retrieval benchmark whose large number of judgments per query make it a reliable evaluation dataset. In this paper, we present mRobust04, a multilingual version of Robust04 that was translated to 8 languages using Google Translate. We also provide results of three different multilingual retrievers on this dataset. The dataset is available at https://huggingface.co/datasets/unicamp-dl/mrobust
Approximate Nearest Neighbor Search with Window Filters
We define and investigate the problem of c-approximate window search: approximate nearest neighbor search where each point in the dataset has a numeric label, and the goal is to find nearest neighbors to queries within arbitrary label ranges. Many semantic search problems, such as image and document search with timestamp filters, or product search with cost filters, are natural examples of this problem. We propose and theoretically analyze a modular tree-based framework for transforming an index that solves the traditional c-approximate nearest neighbor problem into a data structure that solves window search. On standard nearest neighbor benchmark datasets equipped with random label values, adversarially constructed embeddings, and image search embeddings with real timestamps, we obtain up to a 75times speedup over existing solutions at the same level of recall.
ChatEarthNet: A Global-Scale Image-Text Dataset Empowering Vision-Language Geo-Foundation Models
An in-depth comprehension of global land cover is essential in Earth observation, forming the foundation for a multitude of applications. Although remote sensing technology has advanced rapidly, leading to a proliferation of satellite imagery, the inherent complexity of these images often makes them difficult for non-expert users to understand. Natural language, as a carrier of human knowledge, can be a bridge between common users and complicated satellite imagery. In this context, we introduce a global-scale, high-quality image-text dataset for remote sensing, providing natural language descriptions for Sentinel-2 data to facilitate the understanding of satellite imagery for common users. Specifically, we utilize Sentinel-2 data for its global coverage as the foundational image source, employing semantic segmentation labels from the European Space Agency's (ESA) WorldCover project to enrich the descriptions of land covers. By conducting in-depth semantic analysis, we formulate detailed prompts to elicit rich descriptions from ChatGPT. To enhance the dataset's quality, we introduce the manual verification process. This step involves manual inspection and correction to refine the dataset, thus significantly improving its accuracy and quality. Finally, we offer the community ChatEarthNet, a large-scale image-text dataset characterized by global coverage, high quality, wide-ranging diversity, and detailed descriptions. ChatEarthNet consists of 163,488 image-text pairs with captions generated by ChatGPT-3.5 and an additional 10,000 image-text pairs with captions generated by ChatGPT-4V(ision). This dataset has significant potential for training vision-language geo-foundation models and evaluating large vision-language models for remote sensing. The dataset will be made publicly available.
ReCoRD: Bridging the Gap between Human and Machine Commonsense Reading Comprehension
We present a large-scale dataset, ReCoRD, for machine reading comprehension requiring commonsense reasoning. Experiments on this dataset demonstrate that the performance of state-of-the-art MRC systems fall far behind human performance. ReCoRD represents a challenge for future research to bridge the gap between human and machine commonsense reading comprehension. ReCoRD is available at http://nlp.jhu.edu/record.
Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources
In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor.
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows, extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
