new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 20

Mask-to-Height: A YOLOv11-Based Architecture for Joint Building Instance Segmentation and Height Classification from Satellite Imagery

Accurate building instance segmentation and height classification are critical for urban planning, 3D city modeling, and infrastructure monitoring. This paper presents a detailed analysis of YOLOv11, the recent advancement in the YOLO series of deep learning models, focusing on its application to joint building extraction and discrete height classification from satellite imagery. YOLOv11 builds on the strengths of earlier YOLO models by introducing a more efficient architecture that better combines features at different scales, improves object localization accuracy, and enhances performance in complex urban scenes. Using the DFC2023 Track 2 dataset -- which includes over 125,000 annotated buildings across 12 cities -- we evaluate YOLOv11's performance using metrics such as precision, recall, F1 score, and mean average precision (mAP). Our findings demonstrate that YOLOv11 achieves strong instance segmentation performance with 60.4\% mAP@50 and 38.3\% mAP@50--95 while maintaining robust classification accuracy across five predefined height tiers. The model excels in handling occlusions, complex building shapes, and class imbalance, particularly for rare high-rise structures. Comparative analysis confirms that YOLOv11 outperforms earlier multitask frameworks in both detection accuracy and inference speed, making it well-suited for real-time, large-scale urban mapping. This research highlights YOLOv11's potential to advance semantic urban reconstruction through streamlined categorical height modeling, offering actionable insights for future developments in remote sensing and geospatial intelligence.

  • 4 authors
·
Oct 31 1

DeepFood: Deep Learning-Based Food Image Recognition for Computer-Aided Dietary Assessment

Worldwide, in 2014, more than 1.9 billion adults, 18 years and older, were overweight. Of these, over 600 million were obese. Accurately documenting dietary caloric intake is crucial to manage weight loss, but also presents challenges because most of the current methods for dietary assessment must rely on memory to recall foods eaten. The ultimate goal of our research is to develop computer-aided technical solutions to enhance and improve the accuracy of current measurements of dietary intake. Our proposed system in this paper aims to improve the accuracy of dietary assessment by analyzing the food images captured by mobile devices (e.g., smartphone). The key technique innovation in this paper is the deep learning-based food image recognition algorithms. Substantial research has demonstrated that digital imaging accurately estimates dietary intake in many environments and it has many advantages over other methods. However, how to derive the food information (e.g., food type and portion size) from food image effectively and efficiently remains a challenging and open research problem. We propose a new Convolutional Neural Network (CNN)-based food image recognition algorithm to address this problem. We applied our proposed approach to two real-world food image data sets (UEC-256 and Food-101) and achieved impressive results. To the best of our knowledge, these results outperformed all other reported work using these two data sets. Our experiments have demonstrated that the proposed approach is a promising solution for addressing the food image recognition problem. Our future work includes further improving the performance of the algorithms and integrating our system into a real-world mobile and cloud computing-based system to enhance the accuracy of current measurements of dietary intake.

  • 6 authors
·
Jun 17, 2016

Food Pairing Unveiled: Exploring Recipe Creation Dynamics through Recommender Systems

In the early 2000s, renowned chef Heston Blumenthal formulated his "food pairing" hypothesis, positing that if foods share many flavor compounds, then they tend to taste good when eaten together. In 2011, Ahn et al. conducted a study using a dataset of recipes, ingredients, and flavor compounds, finding that, in Western cuisine, ingredients in recipes often share more flavor compounds than expected by chance, indicating a natural tendency towards food pairing. Building upon Ahn's research, our work applies state-of-the-art collaborative filtering techniques to the dataset, providing a tool that can recommend new foods to add in recipes, retrieve missing ingredients and advise against certain combinations. We create our recommender in two ways, by taking into account ingredients appearances in recipes or shared flavor compounds between foods. While our analysis confirms the existence of food pairing, the recipe-based recommender performs significantly better than the flavor-based one, leading to the conclusion that food pairing is just one of the principles to take into account when creating recipes. Furthermore, and more interestingly, we find that food pairing in data is mostly due to trivial couplings of very similar ingredients, leading to a reconsideration of its current role in recipes, from being an already existing feature to a key to open up new scenarios in gastronomy. Our flavor-based recommender can thus leverage this novel concept and provide a new tool to lead culinary innovation.

  • 3 authors
·
Jun 21, 2024