new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 31

LimiX: Unleashing Structured-Data Modeling Capability for Generalist Intelligence

We argue that progress toward general intelligence requires complementary foundation models grounded in language, the physical world, and structured data. This report presents LimiX, the first installment of our large structured-data models (LDMs). LimiX treats structured data as a joint distribution over variables and missingness, thus capable of addressing a wide range of tabular tasks through query-based conditional prediction via a single model. LimiX is pretrained using masked joint-distribution modeling with an episodic, context-conditional objective, where the model predicts for query subsets conditioned on dataset-specific contexts, supporting rapid, training-free adaptation at inference. We evaluate LimiX across 10 large structured-data benchmarks with broad regimes of sample size, feature dimensionality, class number, categorical-to-numerical feature ratio, missingness, and sample-to-feature ratios. With a single model and a unified interface, LimiX consistently surpasses strong baselines including gradient-boosting trees, deep tabular networks, recent tabular foundation models, and automated ensembles, as shown in Figure 1 and Figure 2. The superiority holds across a wide range of tasks, such as classification, regression, missing value imputation, and data generation, often by substantial margins, while avoiding task-specific architectures or bespoke training per task. All LimiX models are publicly accessible under Apache 2.0.

  • 38 authors
·
Sep 3

MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation

Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).

  • 7 authors
·
Mar 26

Modeling Inter-Dependence Between Time and Mark in Multivariate Temporal Point Processes

Temporal Point Processes (TPP) are probabilistic generative frameworks. They model discrete event sequences localized in continuous time. Generally, real-life events reveal descriptive information, known as marks. Marked TPPs model time and marks of the event together for practical relevance. Conditioned on past events, marked TPPs aim to learn the joint distribution of the time and the mark of the next event. For simplicity, conditionally independent TPP models assume time and marks are independent given event history. They factorize the conditional joint distribution of time and mark into the product of individual conditional distributions. This structural limitation in the design of TPP models hurt the predictive performance on entangled time and mark interactions. In this work, we model the conditional inter-dependence of time and mark to overcome the limitations of conditionally independent models. We construct a multivariate TPP conditioning the time distribution on the current event mark in addition to past events. Besides the conventional intensity-based models for conditional joint distribution, we also draw on flexible intensity-free TPP models from the literature. The proposed TPP models outperform conditionally independent and dependent models in standard prediction tasks. Our experimentation on various datasets with multiple evaluation metrics highlights the merit of the proposed approach.

  • 4 authors
·
Oct 27, 2022

Disjoint Masking with Joint Distillation for Efficient Masked Image Modeling

Masked image modeling (MIM) has shown great promise for self-supervised learning (SSL) yet been criticized for learning inefficiency. We believe the insufficient utilization of training signals should be responsible. To alleviate this issue, we introduce a conceptually simple yet learning-efficient MIM training scheme, termed Disjoint Masking with Joint Distillation (DMJD). For disjoint masking (DM), we sequentially sample multiple masked views per image in a mini-batch with the disjoint regulation to raise the usage of tokens for reconstruction in each image while keeping the masking rate of each view. For joint distillation (JD), we adopt a dual branch architecture to respectively predict invisible (masked) and visible (unmasked) tokens with superior learning targets. Rooting in orthogonal perspectives for training efficiency improvement, DM and JD cooperatively accelerate the training convergence yet not sacrificing the model generalization ability. Concretely, DM can train ViT with half of the effective training epochs (3.7 times less time-consuming) to report competitive performance. With JD, our DMJD clearly improves the linear probing classification accuracy over ConvMAE by 5.8%. On fine-grained downstream tasks like semantic segmentation, object detection, etc., our DMJD also presents superior generalization compared with state-of-the-art SSL methods. The code and model will be made public at https://github.com/mx-mark/DMJD.

  • 6 authors
·
Dec 31, 2022

Masked Diffusion Models are Secretly Time-Agnostic Masked Models and Exploit Inaccurate Categorical Sampling

Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20times speedup. In addition, our investigation raises doubts about whether MDMs can truly beat ARMs. We identify, for the first time, an underlying numerical issue, even with the commonly used 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that the numerical issue lowers the effective temperature both theoretically and empirically, and the resulting decrease in token diversity makes previous evaluations, which assess the generation quality solely through the incomplete generative perplexity metric, somewhat unfair.

  • 6 authors
·
Sep 4, 2024

Enabling Approximate Joint Sampling in Diffusion LMs

In autoregressive language models, each token is sampled by conditioning on all the past tokens; the overall string has thus been sampled from the correct underlying joint distribution represented by the model. In contrast, masked diffusion language models generate text by unmasking tokens out of order and potentially in parallel. Generating an overall string sampled from the correct underlying joint distribution would (again) require exactly one token unmasking in every full-model forward pass. The more tokens unmasked in parallel, the further away the string is from the true joint; this can be seen in the resulting drop in accuracy (but, increase in speed). In this paper we devise a way to {\em approximately} sample multiple tokens from the joint distribution in a single full-model forward pass; we do so by developing a new lightweight single-layer ``sampler" on top of an existing large diffusion LM. One forward pass of the full model can now be followed by multiple forward passes of only this sampler layer, to yield multiple unmasked tokens. Our sampler is trained to mimic exact joint sampling from the (frozen) full model. We show the effectiveness of our approximate joint sampling for both pretrained-only (Dream-7B-Base) and instruction-tuned (Dream-7B-Instruct) models on language modeling and math \& coding tasks. When four tokens are unmasked for each full-model denoising step, our sampling algorithm achieves a MAUVE score of 0.87 (vs marginal baseline of 0.31) with respect to the true joint distribution.

  • 2 authors
·
Sep 25

Plug-and-Play Context Feature Reuse for Efficient Masked Generation

Masked generative models (MGMs) have emerged as a powerful framework for image synthesis, combining parallel decoding with strong bidirectional context modeling. However, generating high-quality samples typically requires many iterative decoding steps, resulting in high inference costs. A straightforward way to speed up generation is by decoding more tokens in each step, thereby reducing the total number of steps. However, when many tokens are decoded simultaneously, the model can only estimate the univariate marginal distributions independently, failing to capture the dependency among them. As a result, reducing the number of steps significantly compromises generation fidelity. In this work, we introduce ReCAP (Reused Context-Aware Prediction), a plug-and-play module that accelerates inference in MGMs by constructing low-cost steps via reusing feature embeddings from previously decoded context tokens. ReCAP interleaves standard full evaluations with lightweight steps that cache and reuse context features, substantially reducing computation while preserving the benefits of fine-grained, iterative generation. We demonstrate its effectiveness on top of three representative MGMs (MaskGIT, MAGE, and MAR), including both discrete and continuous token spaces and covering diverse architectural designs. In particular, on ImageNet256 class-conditional generation, ReCAP achieves up to 2.4x faster inference than the base model with minimal performance drop, and consistently delivers better efficiency-fidelity trade-offs under various generation settings.

  • 4 authors
·
May 25

LMD: Faster Image Reconstruction with Latent Masking Diffusion

As a class of fruitful approaches, diffusion probabilistic models (DPMs) have shown excellent advantages in high-resolution image reconstruction. On the other hand, masked autoencoders (MAEs), as popular self-supervised vision learners, have demonstrated simpler and more effective image reconstruction and transfer capabilities on downstream tasks. However, they all require extremely high training costs, either due to inherent high temporal-dependence (i.e., excessively long diffusion steps) or due to artificially low spatial-dependence (i.e., human-formulated high mask ratio, such as 0.75). To the end, this paper presents LMD, a faster image reconstruction framework with latent masking diffusion. First, we propose to project and reconstruct images in latent space through a pre-trained variational autoencoder, which is theoretically more efficient than in the pixel-based space. Then, we combine the advantages of MAEs and DPMs to design a progressive masking diffusion model, which gradually increases the masking proportion by three different schedulers and reconstructs the latent features from simple to difficult, without sequentially performing denoising diffusion as in DPMs or using fixed high masking ratio as in MAEs, so as to alleviate the high training time-consumption predicament. Our approach allows for learning high-capacity models and accelerate their training (by 3x or more) and barely reduces the original accuracy. Inference speed in downstream tasks also significantly outperforms the previous approaches.

  • 4 authors
·
Dec 13, 2023

Masked Frequency Modeling for Self-Supervised Visual Pre-Training

We present Masked Frequency Modeling (MFM), a unified frequency-domain-based approach for self-supervised pre-training of visual models. Instead of randomly inserting mask tokens to the input embeddings in the spatial domain, in this paper, we shift the perspective to the frequency domain. Specifically, MFM first masks out a portion of frequency components of the input image and then predicts the missing frequencies on the frequency spectrum. Our key insight is that predicting masked components in the frequency domain is more ideal to reveal underlying image patterns rather than predicting masked patches in the spatial domain, due to the heavy spatial redundancy. Our findings suggest that with the right configuration of mask-and-predict strategy, both the structural information within high-frequency components and the low-level statistics among low-frequency counterparts are useful in learning good representations. For the first time, MFM demonstrates that, for both ViT and CNN, a simple non-Siamese framework can learn meaningful representations even using none of the following: (i) extra data, (ii) extra model, (iii) mask token. Experimental results on image classification and semantic segmentation, as well as several robustness benchmarks show the competitive performance and advanced robustness of MFM compared with recent masked image modeling approaches. Furthermore, we also comprehensively investigate the effectiveness of classical image restoration tasks for representation learning from a unified frequency perspective and reveal their intriguing relations with our MFM approach.

  • 6 authors
·
Jun 15, 2022

Stare at What You See: Masked Image Modeling without Reconstruction

Masked Autoencoders (MAE) have been prevailing paradigms for large-scale vision representation pre-training. By reconstructing masked image patches from a small portion of visible image regions, MAE forces the model to infer semantic correlation within an image. Recently, some approaches apply semantic-rich teacher models to extract image features as the reconstruction target, leading to better performance. However, unlike the low-level features such as pixel values, we argue the features extracted by powerful teacher models already encode rich semantic correlation across regions in an intact image.This raises one question: is reconstruction necessary in Masked Image Modeling (MIM) with a teacher model? In this paper, we propose an efficient MIM paradigm named MaskAlign. MaskAlign simply learns the consistency of visible patch features extracted by the student model and intact image features extracted by the teacher model. To further advance the performance and tackle the problem of input inconsistency between the student and teacher model, we propose a Dynamic Alignment (DA) module to apply learnable alignment. Our experimental results demonstrate that masked modeling does not lose effectiveness even without reconstruction on masked regions. Combined with Dynamic Alignment, MaskAlign can achieve state-of-the-art performance with much higher efficiency. Code and models will be available at https://github.com/OpenPerceptionX/maskalign.

  • 7 authors
·
Nov 16, 2022

Bootstrap Masked Visual Modeling via Hard Patches Mining

Masked visual modeling has attracted much attention due to its promising potential in learning generalizable representations. Typical approaches urge models to predict specific contents of masked tokens, which can be intuitively considered as teaching a student (the model) to solve given problems (predicting masked contents). Under such settings, the performance is highly correlated with mask strategies (the difficulty of provided problems). We argue that it is equally important for the model to stand in the shoes of a teacher to produce challenging problems by itself. Intuitively, patches with high values of reconstruction loss can be regarded as hard samples, and masking those hard patches naturally becomes a demanding reconstruction task. To empower the model as a teacher, we propose Hard Patches Mining (HPM), predicting patch-wise losses and subsequently determining where to mask. Technically, we introduce an auxiliary loss predictor, which is trained with a relative objective to prevent overfitting to exact loss values. Also, to gradually guide the training procedure, we propose an easy-to-hard mask strategy. Empirically, HPM brings significant improvements under both image and video benchmarks. Interestingly, solely incorporating the extra loss prediction objective leads to better representations, verifying the efficacy of determining where is hard to reconstruct. The code is available at https://github.com/Haochen-Wang409/HPM.

  • 7 authors
·
Dec 21, 2023

DMT-JEPA: Discriminative Masked Targets for Joint-Embedding Predictive Architecture

The joint-embedding predictive architecture (JEPA) recently has shown impressive results in extracting visual representations from unlabeled imagery under a masking strategy. However, we reveal its disadvantages, notably its insufficient understanding of local semantics. This deficiency originates from masked modeling in the embedding space, resulting in a reduction of discriminative power and can even lead to the neglect of critical local semantics. To bridge this gap, we introduce DMT-JEPA, a novel masked modeling objective rooted in JEPA, specifically designed to generate discriminative latent targets from neighboring information. Our key idea is simple: we consider a set of semantically similar neighboring patches as a target of a masked patch. To be specific, the proposed DMT-JEPA (a) computes feature similarities between each masked patch and its corresponding neighboring patches to select patches having semantically meaningful relations, and (b) employs lightweight cross-attention heads to aggregate features of neighboring patches as the masked targets. Consequently, DMT-JEPA demonstrates strong discriminative power, offering benefits across a diverse spectrum of downstream tasks. Through extensive experiments, we demonstrate our effectiveness across various visual benchmarks, including ImageNet-1K image classification, ADE20K semantic segmentation, and COCO object detection tasks. Code is available at: https://github.com/DMTJEPA/DMTJEPA.

  • 2 authors
·
May 28, 2024

DiffPose: Multi-hypothesis Human Pose Estimation using Diffusion models

Traditionally, monocular 3D human pose estimation employs a machine learning model to predict the most likely 3D pose for a given input image. However, a single image can be highly ambiguous and induces multiple plausible solutions for the 2D-3D lifting step which results in overly confident 3D pose predictors. To this end, we propose DiffPose, a conditional diffusion model, that predicts multiple hypotheses for a given input image. In comparison to similar approaches, our diffusion model is straightforward and avoids intensive hyperparameter tuning, complex network structures, mode collapse, and unstable training. Moreover, we tackle a problem of the common two-step approach that first estimates a distribution of 2D joint locations via joint-wise heatmaps and consecutively approximates them based on first- or second-moment statistics. Since such a simplification of the heatmaps removes valid information about possibly correct, though labeled unlikely, joint locations, we propose to represent the heatmaps as a set of 2D joint candidate samples. To extract information about the original distribution from these samples we introduce our embedding transformer that conditions the diffusion model. Experimentally, we show that DiffPose slightly improves upon the state of the art for multi-hypothesis pose estimation for simple poses and outperforms it by a large margin for highly ambiguous poses.

  • 2 authors
·
Nov 29, 2022

A likelihood approach to nonparametric estimation of a singular distribution using deep generative models

We investigate statistical properties of a likelihood approach to nonparametric estimation of a singular distribution using deep generative models. More specifically, a deep generative model is used to model high-dimensional data that are assumed to concentrate around some low-dimensional structure. Estimating the distribution supported on this low-dimensional structure, such as a low-dimensional manifold, is challenging due to its singularity with respect to the Lebesgue measure in the ambient space. In the considered model, a usual likelihood approach can fail to estimate the target distribution consistently due to the singularity. We prove that a novel and effective solution exists by perturbing the data with an instance noise, which leads to consistent estimation of the underlying distribution with desirable convergence rates. We also characterize the class of distributions that can be efficiently estimated via deep generative models. This class is sufficiently general to contain various structured distributions such as product distributions, classically smooth distributions and distributions supported on a low-dimensional manifold. Our analysis provides some insights on how deep generative models can avoid the curse of dimensionality for nonparametric distribution estimation. We conduct a thorough simulation study and real data analysis to empirically demonstrate that the proposed data perturbation technique improves the estimation performance significantly.

  • 4 authors
·
May 9, 2021

Monocular Per-Object Distance Estimation with Masked Object Modeling

Per-object distance estimation is critical in surveillance and autonomous driving, where safety is crucial. While existing methods rely on geometric or deep supervised features, only a few attempts have been made to leverage self-supervised learning. In this respect, our paper draws inspiration from Masked Image Modeling (MiM) and extends it to multi-object tasks. While MiM focuses on extracting global image-level representations, it struggles with individual objects within the image. This is detrimental for distance estimation, as objects far away correspond to negligible portions of the image. Conversely, our strategy, termed Masked Object Modeling (MoM), enables a novel application of masking techniques. In a few words, we devise an auxiliary objective that reconstructs the portions of the image pertaining to the objects detected in the scene. The training phase is performed in a single unified stage, simultaneously optimizing the masking objective and the downstream loss (i.e., distance estimation). We evaluate the effectiveness of MoM on a novel reference architecture (DistFormer) on the standard KITTI, NuScenes, and MOTSynth datasets. Our evaluation reveals that our framework surpasses the SoTA and highlights its robust regularization properties. The MoM strategy enhances both zero-shot and few-shot capabilities, from synthetic to real domain. Finally, it furthers the robustness of the model in the presence of occluded or poorly detected objects. Code is available at https://github.com/apanariello4/DistFormer

  • 6 authors
·
Jan 6, 2024

ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders

Masked AutoEncoders (MAE) have emerged as a robust self-supervised framework, offering remarkable performance across a wide range of downstream tasks. To increase the difficulty of the pretext task and learn richer visual representations, existing works have focused on replacing standard random masking with more sophisticated strategies, such as adversarial-guided and teacher-guided masking. However, these strategies depend on the input data thus commonly increasing the model complexity and requiring additional calculations to generate the mask patterns. This raises the question: Can we enhance MAE performance beyond random masking without relying on input data or incurring additional computational costs? In this work, we introduce a simple yet effective data-independent method, termed ColorMAE, which generates different binary mask patterns by filtering random noise. Drawing inspiration from color noise in image processing, we explore four types of filters to yield mask patterns with different spatial and semantic priors. ColorMAE requires no additional learnable parameters or computational overhead in the network, yet it significantly enhances the learned representations. We provide a comprehensive empirical evaluation, demonstrating our strategy's superiority in downstream tasks compared to random masking. Notably, we report an improvement of 2.72 in mIoU in semantic segmentation tasks relative to baseline MAE implementations.

  • 3 authors
·
Jul 17, 2024 2

Unified Auto-Encoding with Masked Diffusion

At the core of both successful generative and self-supervised representation learning models there is a reconstruction objective that incorporates some form of image corruption. Diffusion models implement this approach through a scheduled Gaussian corruption process, while masked auto-encoder models do so by masking patches of the image. Despite their different approaches, the underlying similarity in their methodologies suggests a promising avenue for an auto-encoder capable of both de-noising tasks. We propose a unified self-supervised objective, dubbed Unified Masked Diffusion (UMD), that combines patch-based and noise-based corruption techniques within a single auto-encoding framework. Specifically, UMD modifies the diffusion transformer (DiT) training process by introducing an additional noise-free, high masking representation step in the diffusion noising schedule, and utilizes a mixed masked and noised image for subsequent timesteps. By integrating features useful for diffusion modeling and for predicting masked patch tokens, UMD achieves strong performance in downstream generative and representation learning tasks, including linear probing and class-conditional generation. This is achieved without the need for heavy data augmentations, multiple views, or additional encoders. Furthermore, UMD improves over the computational efficiency of prior diffusion based methods in total training time. We release our code at https://github.com/philippe-eecs/small-vision.

  • 4 authors
·
Jun 25, 2024

HMAR: Efficient Hierarchical Masked Auto-Regressive Image Generation

Visual Auto-Regressive modeling (VAR) has shown promise in bridging the speed and quality gap between autoregressive image models and diffusion models. VAR reformulates autoregressive modeling by decomposing an image into successive resolution scales. During inference, an image is generated by predicting all the tokens in the next (higher-resolution) scale, conditioned on all tokens in all previous (lower-resolution) scales. However, this formulation suffers from reduced image quality due to the parallel generation of all tokens in a resolution scale; has sequence lengths scaling superlinearly in image resolution; and requires retraining to change the sampling schedule. We introduce Hierarchical Masked Auto-Regressive modeling (HMAR), a new image generation algorithm that alleviates these issues using next-scale prediction and masked prediction to generate high-quality images with fast sampling. HMAR reformulates next-scale prediction as a Markovian process, wherein the prediction of each resolution scale is conditioned only on tokens in its immediate predecessor instead of the tokens in all predecessor resolutions. When predicting a resolution scale, HMAR uses a controllable multi-step masked generation procedure to generate a subset of the tokens in each step. On ImageNet 256x256 and 512x512 benchmarks, HMAR models match or outperform parameter-matched VAR, diffusion, and autoregressive baselines. We develop efficient IO-aware block-sparse attention kernels that allow HMAR to achieve faster training and inference times over VAR by over 2.5x and 1.75x respectively, as well as over 3x lower inference memory footprint. Finally, HMAR yields additional flexibility over VAR; its sampling schedule can be changed without further training, and it can be applied to image editing tasks in a zero-shot manner.

  • 9 authors
·
Jun 4

Probabilistic Hyper-Graphs using Multiple Randomly Masked Autoencoders for Semi-supervised Multi-modal Multi-task Learning

The computer vision domain has greatly benefited from an abundance of data across many modalities to improve on various visual tasks. Recently, there has been a lot of focus on self-supervised pre-training methods through Masked Autoencoders (MAE) he2022masked,bachmann2022multimae, usually used as a first step before optimizing for a downstream task, such as classification or regression. This is very useful as it doesn't require any manually labeled data. In this work, we introduce Probabilistic Hyper-Graphs using Masked Autoencoders (PHG-MAE): a novel model that unifies the classical work on neural graphs leordeanu2021semi with the modern approach of masked autoencoders under a common theoretical framework. Through random masking of entire modalities, not just patches, the model samples from the distribution of hyper-edges on each forward pass. Additionally, the model adapts the standard MAE algorithm by combining pre-training and fine-tuning into a single training loop. Moreover, our approach enables the creation of inference-time ensembles which, through aggregation, boost the final prediction performance and consistency. Lastly, we show that we can apply knowledge distillation on top of the ensembles with little loss in performance, even with models that have fewer than 1M parameters. While our work mostly focuses on outdoor UAV scenes that contain multiple world interpretations and modalities, the same steps can be followed in other similar domains, such as autonomous driving or indoor robotics. In order to streamline the process of integrating external pre-trained experts for computer vision multi-modal multi-task learning (MTL) scenarios, we developed a data-pipeline software. Using this tool, we have created and released a fully-automated extension of the Dronescapes dataset. All the technical details, code and reproduction steps are publicly released.

  • 2 authors
·
Oct 11

Designing BERT for Convolutional Networks: Sparse and Hierarchical Masked Modeling

We identify and overcome two key obstacles in extending the success of BERT-style pre-training, or the masked image modeling, to convolutional networks (convnets): (i) convolution operation cannot handle irregular, random-masked input images; (ii) the single-scale nature of BERT pre-training is inconsistent with convnet's hierarchical structure. For (i), we treat unmasked pixels as sparse voxels of 3D point clouds and use sparse convolution to encode. This is the first use of sparse convolution for 2D masked modeling. For (ii), we develop a hierarchical decoder to reconstruct images from multi-scale encoded features. Our method called Sparse masKed modeling (SparK) is general: it can be used directly on any convolutional model without backbone modifications. We validate it on both classical (ResNet) and modern (ConvNeXt) models: on three downstream tasks, it surpasses both state-of-the-art contrastive learning and transformer-based masked modeling by similarly large margins (around +1.0%). Improvements on object detection and instance segmentation are more substantial (up to +3.5%), verifying the strong transferability of features learned. We also find its favorable scaling behavior by observing more gains on larger models. All this evidence reveals a promising future of generative pre-training on convnets. Codes and models are released at https://github.com/keyu-tian/SparK.

  • 6 authors
·
Jan 9, 2023

Masked Feature Modeling Enhances Adaptive Segmentation

Unsupervised domain adaptation (UDA) for semantic segmentation aims to transfer models from a labeled source domain to an unlabeled target domain. While auxiliary self-supervised tasks-particularly contrastive learning-have improved feature discriminability, masked modeling approaches remain underexplored in this setting, largely due to architectural incompatibility and misaligned optimization objectives. We propose Masked Feature Modeling (MFM), a novel auxiliary task that performs feature masking and reconstruction directly in the feature space. Unlike existing masked modeling methods that reconstruct low-level inputs or perceptual features (e.g., HOG or visual tokens), MFM aligns its learning target with the main segmentation task, ensuring compatibility with standard architectures like DeepLab and DAFormer without modifying the inference pipeline. To facilitate effective reconstruction, we introduce a lightweight auxiliary module, Rebuilder, which is trained jointly but discarded during inference, adding zero computational overhead at test time. Crucially, MFM leverages the segmentation decoder to classify the reconstructed features, tightly coupling the auxiliary objective with the pixel-wise prediction task to avoid interference with the primary task. Extensive experiments across various architectures and UDA benchmarks demonstrate that MFM consistently enhances segmentation performance, offering a simple, efficient, and generalizable strategy for unsupervised domain-adaptive semantic segmentation.

  • 6 authors
·
Sep 17

Rethinking JEPA: Compute-Efficient Video SSL with Frozen Teachers

Video Joint Embedding Predictive Architectures (V-JEPA) learn generalizable off-the-shelf video representation by predicting masked regions in latent space with an exponential moving average (EMA)-updated teacher. While EMA prevents representation collapse, it complicates scalable model selection and couples teacher and student architectures. We revisit masked-latent prediction and show that a frozen teacher suffices. Concretely, we (i) train a target encoder with a simple pixel-reconstruction objective under V-JEPA masking, then (ii) freeze it and train a student to predict the teacher's latents on masked regions. This leads to a two-stage, unregularized scheme that we refer to as SALT (Static-teacher Asymmetric Latent Training). SALT decouples optimization into pixel reconstruction (teacher) and masked latent prediction (student), increasing transparency, efficiency, and scalability while preserving the ability of representation to generalize under frozen evaluation. Empirically, our student models outperform recently proposed V-JEPA 2 encoders under frozen backbone evaluation across diverse benchmarks. They are also more compute-optimal: at matched pretraining FLOPs, our method achieves higher probing accuracy, and its scaling curves dominate V-JEPA's accuracy-FLOPs Pareto frontier. Finally, we find that student quality is remarkably robust to teacher quality: high-performing students emerge even with small, sub-optimal teachers. This points to a compute budget allocation that should overwhelmingly favor the student. These results position SALT as a simple, scalable, and compute-efficient alternative to EMA-based self-distillation for video representation learning.

apple Apple
·
Sep 29 2

Generative Marginalization Models

We introduce marginalization models (MaMs), a new family of generative models for high-dimensional discrete data. They offer scalable and flexible generative modeling with tractable likelihoods by explicitly modeling all induced marginal distributions. Marginalization models enable fast evaluation of arbitrary marginal probabilities with a single forward pass of the neural network, which overcomes a major limitation of methods with exact marginal inference, such as autoregressive models (ARMs). We propose scalable methods for learning the marginals, grounded in the concept of "marginalization self-consistency". Unlike previous methods, MaMs support scalable training of any-order generative models for high-dimensional problems under the setting of energy-based training, where the goal is to match the learned distribution to a given desired probability (specified by an unnormalized (log) probability function such as energy function or reward function). We demonstrate the effectiveness of the proposed model on a variety of discrete data distributions, including binary images, language, physical systems, and molecules, for maximum likelihood and energy-based training settings. MaMs achieve orders of magnitude speedup in evaluating the marginal probabilities on both settings. For energy-based training tasks, MaMs enable any-order generative modeling of high-dimensional problems beyond the capability of previous methods. Code is at https://github.com/PrincetonLIPS/MaM.

  • 3 authors
·
Oct 19, 2023

Comprehensive Attribution: Inherently Explainable Vision Model with Feature Detector

As deep vision models' popularity rapidly increases, there is a growing emphasis on explanations for model predictions. The inherently explainable attribution method aims to enhance the understanding of model behavior by identifying the important regions in images that significantly contribute to predictions. It is achieved by cooperatively training a selector (generating an attribution map to identify important features) and a predictor (making predictions using the identified features). Despite many advancements, existing methods suffer from the incompleteness problem, where discriminative features are masked out, and the interlocking problem, where the non-optimized selector initially selects noise, causing the predictor to fit on this noise and perpetuate the cycle. To address these problems, we introduce a new objective that discourages the presence of discriminative features in the masked-out regions thus enhancing the comprehensiveness of feature selection. A pre-trained detector is introduced to detect discriminative features in the masked-out region. If the selector selects noise instead of discriminative features, the detector can observe and break the interlocking situation by penalizing the selector. Extensive experiments show that our model makes accurate predictions with higher accuracy than the regular black-box model, and produces attribution maps with high feature coverage, localization ability, fidelity and robustness. Our code will be available at https://github.com/Zood123/COMET{https://github.com/Zood123/COMET}.

  • 3 authors
·
Jul 27, 2024

MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models

Large Language Models (LLMs) are distinguished by their massive parameter counts, which typically result in significant redundancy. This work introduces MaskLLM, a learnable pruning method that establishes Semi-structured (or ``N:M'') Sparsity in LLMs, aimed at reducing computational overhead during inference. Instead of developing a new importance criterion, MaskLLM explicitly models N:M patterns as a learnable distribution through Gumbel Softmax sampling. This approach facilitates end-to-end training on large-scale datasets and offers two notable advantages: 1) High-quality Masks - our method effectively scales to large datasets and learns accurate masks; 2) Transferability - the probabilistic modeling of mask distribution enables the transfer learning of sparsity across domains or tasks. We assessed MaskLLM using 2:4 sparsity on various LLMs, including LLaMA-2, Nemotron-4, and GPT-3, with sizes ranging from 843M to 15B parameters, and our empirical results show substantial improvements over state-of-the-art methods. For instance, leading approaches achieve a perplexity (PPL) of 10 or greater on Wikitext compared to the dense model's 5.12 PPL, but MaskLLM achieves a significantly lower 6.72 PPL solely by learning the masks with frozen weights. Furthermore, MaskLLM's learnable nature allows customized masks for lossless application of 2:4 sparsity to downstream tasks or domains. Code is available at https://github.com/NVlabs/MaskLLM.

  • 8 authors
·
Sep 25, 2024 3

Rethinking Multi-view Representation Learning via Distilled Disentangling

Multi-view representation learning aims to derive robust representations that are both view-consistent and view-specific from diverse data sources. This paper presents an in-depth analysis of existing approaches in this domain, highlighting a commonly overlooked aspect: the redundancy between view-consistent and view-specific representations. To this end, we propose an innovative framework for multi-view representation learning, which incorporates a technique we term 'distilled disentangling'. Our method introduces the concept of masked cross-view prediction, enabling the extraction of compact, high-quality view-consistent representations from various sources without incurring extra computational overhead. Additionally, we develop a distilled disentangling module that efficiently filters out consistency-related information from multi-view representations, resulting in purer view-specific representations. This approach significantly reduces redundancy between view-consistent and view-specific representations, enhancing the overall efficiency of the learning process. Our empirical evaluations reveal that higher mask ratios substantially improve the quality of view-consistent representations. Moreover, we find that reducing the dimensionality of view-consistent representations relative to that of view-specific representations further refines the quality of the combined representations. Our code is accessible at: https://github.com/Guanzhou-Ke/MRDD.

  • 4 authors
·
Mar 16, 2024

Harmonizing Visual Representations for Unified Multimodal Understanding and Generation

Unifying visual understanding and generation within a single multimodal framework remains a significant challenge, as the two inherently heterogeneous tasks require representations at different levels of granularity. Current approaches that utilize vector quantization (VQ) or variational autoencoders (VAE) for unified visual representation prioritize intrinsic imagery features over semantics, compromising understanding performance. In this work, we take inspiration from masked image modelling (MIM) that learns rich semantics via a mask-and-reconstruct pre-training and its successful extension to masked autoregressive (MAR) image generation. A preliminary study on the MAR encoder's representation reveals exceptional linear probing accuracy and precise feature response to visual concepts, which indicates MAR's potential for visual understanding tasks beyond its original generation role. Based on these insights, we present Harmon, a unified autoregressive framework that harmonizes understanding and generation tasks with a shared MAR encoder. Through a three-stage training procedure that progressively optimizes understanding and generation capabilities, Harmon achieves state-of-the-art image generation results on the GenEval, MJHQ30K and WISE benchmarks while matching the performance of methods with dedicated semantic encoders (e.g., Janus) on image understanding benchmarks. Our code and models will be available at https://github.com/wusize/Harmon.

  • 9 authors
·
Mar 27

A Simple Approach to Unifying Diffusion-based Conditional Generation

Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.

  • 7 authors
·
Oct 15, 2024

Text-driven Human Motion Generation with Motion Masked Diffusion Model

Text-driven human motion generation is a multimodal task that synthesizes human motion sequences conditioned on natural language. It requires the model to satisfy textual descriptions under varying conditional inputs, while generating plausible and realistic human actions with high diversity. Existing diffusion model-based approaches have outstanding performance in the diversity and multimodality of generation. However, compared to autoregressive methods that train motion encoders before inference, diffusion methods lack in fitting the distribution of human motion features which leads to an unsatisfactory FID score. One insight is that the diffusion model lack the ability to learn the motion relations among spatio-temporal semantics through contextual reasoning. To solve this issue, in this paper, we proposed Motion Masked Diffusion Model (MMDM), a novel human motion masked mechanism for diffusion model to explicitly enhance its ability to learn the spatio-temporal relationships from contextual joints among motion sequences. Besides, considering the complexity of human motion data with dynamic temporal characteristics and spatial structure, we designed two mask modeling strategies: time frames mask and body parts mask. During training, MMDM masks certain tokens in the motion embedding space. Then, the diffusion decoder is designed to learn the whole motion sequence from masked embedding in each sampling step, this allows the model to recover a complete sequence from incomplete representations. Experiments on HumanML3D and KIT-ML dataset demonstrate that our mask strategy is effective by balancing motion quality and text-motion consistency.

  • 1 authors
·
Sep 29, 2024

UniF^2ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models

Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on coarse facial attribute understanding, with limited capacity to handle fine-grained facial attributes and without addressing generation capabilities. To overcome these limitations, we propose UniF^2ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train UniF^2ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, UniF^2ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on UniF^2ace-130K demonstrate that UniF^2ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.

  • 8 authors
·
Mar 11 3

Not All Parameters Matter: Masking Diffusion Models for Enhancing Generation Ability

The diffusion models, in early stages focus on constructing basic image structures, while the refined details, including local features and textures, are generated in later stages. Thus the same network layers are forced to learn both structural and textural information simultaneously, significantly differing from the traditional deep learning architectures (e.g., ResNet or GANs) which captures or generates the image semantic information at different layers. This difference inspires us to explore the time-wise diffusion models. We initially investigate the key contributions of the U-Net parameters to the denoising process and identify that properly zeroing out certain parameters (including large parameters) contributes to denoising, substantially improving the generation quality on the fly. Capitalizing on this discovery, we propose a simple yet effective method-termed ``MaskUNet''- that enhances generation quality with negligible parameter numbers. Our method fully leverages timestep- and sample-dependent effective U-Net parameters. To optimize MaskUNet, we offer two fine-tuning strategies: a training-based approach and a training-free approach, including tailored networks and optimization functions. In zero-shot inference on the COCO dataset, MaskUNet achieves the best FID score and further demonstrates its effectiveness in downstream task evaluations. Project page: https://gudaochangsheng.github.io/MaskUnet-Page/

  • 8 authors
·
May 5

Diffusion with Forward Models: Solving Stochastic Inverse Problems Without Direct Supervision

Denoising diffusion models are a powerful type of generative models used to capture complex distributions of real-world signals. However, their applicability is limited to scenarios where training samples are readily available, which is not always the case in real-world applications. For example, in inverse graphics, the goal is to generate samples from a distribution of 3D scenes that align with a given image, but ground-truth 3D scenes are unavailable and only 2D images are accessible. To address this limitation, we propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed. Instead, these signals are measured indirectly through a known differentiable forward model, which produces partial observations of the unknown signal. Our approach involves integrating the forward model directly into the denoising process. This integration effectively connects the generative modeling of observations with the generative modeling of the underlying signals, allowing for end-to-end training of a conditional generative model over signals. During inference, our approach enables sampling from the distribution of underlying signals that are consistent with a given partial observation. We demonstrate the effectiveness of our method on three challenging computer vision tasks. For instance, in the context of inverse graphics, our model enables direct sampling from the distribution of 3D scenes that align with a single 2D input image.

  • 8 authors
·
Jun 20, 2023 1

Robust Neural Rendering in the Wild with Asymmetric Dual 3D Gaussian Splatting

3D reconstruction from in-the-wild images remains a challenging task due to inconsistent lighting conditions and transient distractors. Existing methods typically rely on heuristic strategies to handle the low-quality training data, which often struggle to produce stable and consistent reconstructions, frequently resulting in visual artifacts. In this work, we propose Asymmetric Dual 3DGS, a novel framework that leverages the stochastic nature of these artifacts: they tend to vary across different training runs due to minor randomness. Specifically, our method trains two 3D Gaussian Splatting (3DGS) models in parallel, enforcing a consistency constraint that encourages convergence on reliable scene geometry while suppressing inconsistent artifacts. To prevent the two models from collapsing into similar failure modes due to confirmation bias, we introduce a divergent masking strategy that applies two complementary masks: a multi-cue adaptive mask and a self-supervised soft mask, which leads to an asymmetric training process of the two models, reducing shared error modes. In addition, to improve the efficiency of model training, we introduce a lightweight variant called Dynamic EMA Proxy, which replaces one of the two models with a dynamically updated Exponential Moving Average (EMA) proxy, and employs an alternating masking strategy to preserve divergence. Extensive experiments on challenging real-world datasets demonstrate that our method consistently outperforms existing approaches while achieving high efficiency. Codes and trained models will be released.

  • 5 authors
·
Jun 3 2

Hybrid Distillation: Connecting Masked Autoencoders with Contrastive Learners

Representation learning has been evolving from traditional supervised training to Contrastive Learning (CL) and Masked Image Modeling (MIM). Previous works have demonstrated their pros and cons in specific scenarios, i.e., CL and supervised pre-training excel at capturing longer-range global patterns and enabling better feature discrimination, while MIM can introduce more local and diverse attention across all transformer layers. In this paper, we explore how to obtain a model that combines their strengths. We start by examining previous feature distillation and mask feature reconstruction methods and identify their limitations. We find that their increasing diversity mainly derives from the asymmetric designs, but these designs may in turn compromise the discrimination ability. In order to better obtain both discrimination and diversity, we propose a simple but effective Hybrid Distillation strategy, which utilizes both the supervised/CL teacher and the MIM teacher to jointly guide the student model. Hybrid Distill imitates the token relations of the MIM teacher to alleviate attention collapse, as well as distills the feature maps of the supervised/CL teacher to enable discrimination. Furthermore, a progressive redundant token masking strategy is also utilized to reduce the distilling costs and avoid falling into local optima. Experiment results prove that Hybrid Distill can achieve superior performance on different benchmarks.

  • 8 authors
·
Jun 27, 2023

How JEPA Avoids Noisy Features: The Implicit Bias of Deep Linear Self Distillation Networks

Two competing paradigms exist for self-supervised learning of data representations. Joint Embedding Predictive Architecture (JEPA) is a class of architectures in which semantically similar inputs are encoded into representations that are predictive of each other. A recent successful approach that falls under the JEPA framework is self-distillation, where an online encoder is trained to predict the output of the target encoder, sometimes using a lightweight predictor network. This is contrasted with the Masked AutoEncoder (MAE) paradigm, where an encoder and decoder are trained to reconstruct missing parts of the input in the data space rather, than its latent representation. A common motivation for using the JEPA approach over MAE is that the JEPA objective prioritizes abstract features over fine-grained pixel information (which can be unpredictable and uninformative). In this work, we seek to understand the mechanism behind this empirical observation by analyzing the training dynamics of deep linear models. We uncover a surprising mechanism: in a simplified linear setting where both approaches learn similar representations, JEPAs are biased to learn high-influence features, i.e., features characterized by having high regression coefficients. Our results point to a distinct implicit bias of predicting in latent space that may shed light on its success in practice.

  • 7 authors
·
Jul 3, 2024

Towards Improved Input Masking for Convolutional Neural Networks

The ability to remove features from the input of machine learning models is very important to understand and interpret model predictions. However, this is non-trivial for vision models since masking out parts of the input image typically causes large distribution shifts. This is because the baseline color used for masking (typically grey or black) is out of distribution. Furthermore, the shape of the mask itself can contain unwanted signals which can be used by the model for its predictions. Recently, there has been some progress in mitigating this issue (called missingness bias) in image masking for vision transformers. In this work, we propose a new masking method for CNNs we call layer masking in which the missingness bias caused by masking is reduced to a large extent. Intuitively, layer masking applies a mask to intermediate activation maps so that the model only processes the unmasked input. We show that our method (i) is able to eliminate or minimize the influence of the mask shape or color on the output of the model, and (ii) is much better than replacing the masked region by black or grey for input perturbation based interpretability techniques like LIME. Thus, layer masking is much less affected by missingness bias than other masking strategies. We also demonstrate how the shape of the mask may leak information about the class, thus affecting estimates of model reliance on class-relevant features derived from input masking. Furthermore, we discuss the role of data augmentation techniques for tackling this problem, and argue that they are not sufficient for preventing model reliance on mask shape. The code for this project is publicly available at https://github.com/SriramB-98/layer_masking

  • 2 authors
·
Nov 26, 2022

MCVD: Masked Conditional Video Diffusion for Prediction, Generation, and Interpolation

Video prediction is a challenging task. The quality of video frames from current state-of-the-art (SOTA) generative models tends to be poor and generalization beyond the training data is difficult. Furthermore, existing prediction frameworks are typically not capable of simultaneously handling other video-related tasks such as unconditional generation or interpolation. In this work, we devise a general-purpose framework called Masked Conditional Video Diffusion (MCVD) for all of these video synthesis tasks using a probabilistic conditional score-based denoising diffusion model, conditioned on past and/or future frames. We train the model in a manner where we randomly and independently mask all the past frames or all the future frames. This novel but straightforward setup allows us to train a single model that is capable of executing a broad range of video tasks, specifically: future/past prediction -- when only future/past frames are masked; unconditional generation -- when both past and future frames are masked; and interpolation -- when neither past nor future frames are masked. Our experiments show that this approach can generate high-quality frames for diverse types of videos. Our MCVD models are built from simple non-recurrent 2D-convolutional architectures, conditioning on blocks of frames and generating blocks of frames. We generate videos of arbitrary lengths autoregressively in a block-wise manner. Our approach yields SOTA results across standard video prediction and interpolation benchmarks, with computation times for training models measured in 1-12 days using le 4 GPUs. Project page: https://mask-cond-video-diffusion.github.io ; Code : https://github.com/voletiv/mcvd-pytorch

  • 3 authors
·
May 19, 2022

Harnessing Massive Satellite Imagery with Efficient Masked Image Modeling

Masked Image Modeling (MIM) has become an essential method for building foundational visual models in remote sensing (RS). However, the limitations in size and diversity of existing RS datasets restrict the ability of MIM methods to learn generalizable representations. Additionally, conventional MIM techniques, which require reconstructing all tokens, introduce unnecessary computational overhead. To address these issues, we present a new pre-training pipeline for RS models, featuring the creation of a large-scale RS dataset and an efficient MIM approach. We curated a high-quality dataset named OpticalRS-13M by collecting publicly available RS datasets and processing them through exclusion, slicing, and deduplication. OpticalRS-13M comprises 13 million optical images covering various RS tasks, such as object detection and pixel segmentation. To enhance efficiency, we propose SelectiveMAE, a pre-training method that dynamically encodes and reconstructs semantically rich patch tokens, thereby reducing the inefficiencies of traditional MIM models caused by redundant background pixels in RS images. Extensive experiments show that OpticalRS-13M significantly improves classification, detection, and segmentation performance, while SelectiveMAE increases training efficiency over 2times times. This highlights the effectiveness and scalability of our pipeline in developing RS foundational models. The dataset, source code, and trained models will be released at https://github.com/MiliLab/SelectiveMAE.

  • 8 authors
·
Jun 17, 2024

Emerging Property of Masked Token for Effective Pre-training

Driven by the success of Masked Language Modeling (MLM), the realm of self-supervised learning for computer vision has been invigorated by the central role of Masked Image Modeling (MIM) in driving recent breakthroughs. Notwithstanding the achievements of MIM across various downstream tasks, its overall efficiency is occasionally hampered by the lengthy duration of the pre-training phase. This paper presents a perspective that the optimization of masked tokens as a means of addressing the prevailing issue. Initially, we delve into an exploration of the inherent properties that a masked token ought to possess. Within the properties, we principally dedicated to articulating and emphasizing the `data singularity' attribute inherent in masked tokens. Through a comprehensive analysis of the heterogeneity between masked tokens and visible tokens within pre-trained models, we propose a novel approach termed masked token optimization (MTO), specifically designed to improve model efficiency through weight recalibration and the enhancement of the key property of masked tokens. The proposed method serves as an adaptable solution that seamlessly integrates into any MIM approach that leverages masked tokens. As a result, MTO achieves a considerable improvement in pre-training efficiency, resulting in an approximately 50% reduction in pre-training epochs required to attain converged performance of the recent approaches.

  • 6 authors
·
Apr 12, 2024

Insertion Language Models: Sequence Generation with Arbitrary-Position Insertions

Autoregressive models (ARMs), which predict subsequent tokens one-by-one ``from left to right,'' have achieved significant success across a wide range of sequence generation tasks. However, they struggle to accurately represent sequences that require satisfying sophisticated constraints or whose sequential dependencies are better addressed by out-of-order generation. Masked Diffusion Models (MDMs) address some of these limitations, but the process of unmasking multiple tokens simultaneously in MDMs can introduce incoherences, and MDMs cannot handle arbitrary infilling constraints when the number of tokens to be filled in is not known in advance. In this work, we introduce Insertion Language Models (ILMs), which learn to insert tokens at arbitrary positions in a sequence -- that is, they select jointly both the position and the vocabulary element to be inserted. By inserting tokens one at a time, ILMs can represent strong dependencies between tokens, and their ability to generate sequences in arbitrary order allows them to accurately model sequences where token dependencies do not follow a left-to-right sequential structure. To train ILMs, we propose a tailored network parameterization and use a simple denoising objective. Our empirical evaluation demonstrates that ILMs outperform both ARMs and MDMs on common planning tasks. Furthermore, we show that ILMs outperform MDMs and perform on par with ARMs in an unconditional text generation task while offering greater flexibility than MDMs in arbitrary-length text infilling.

  • 6 authors
·
May 8

Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering

Recent empirical studies have demonstrated that diffusion models can effectively learn the image distribution and generate new samples. Remarkably, these models can achieve this even with a small number of training samples despite a large image dimension, circumventing the curse of dimensionality. In this work, we provide theoretical insights into this phenomenon by leveraging key empirical observations: (i) the low intrinsic dimensionality of image data, (ii) a union of manifold structure of image data, and (iii) the low-rank property of the denoising autoencoder in trained diffusion models. These observations motivate us to assume the underlying data distribution of image data as a mixture of low-rank Gaussians and to parameterize the denoising autoencoder as a low-rank model according to the score function of the assumed distribution. With these setups, we rigorously show that optimizing the training loss of diffusion models is equivalent to solving the canonical subspace clustering problem over the training samples. Based on this equivalence, we further show that the minimal number of samples required to learn the underlying distribution scales linearly with the intrinsic dimensions under the above data and model assumptions. This insight sheds light on why diffusion models can break the curse of dimensionality and exhibit the phase transition in learning distributions. Moreover, we empirically establish a correspondence between the subspaces and the semantic representations of image data, facilitating image editing. We validate these results with corroborated experimental results on both simulated distributions and image datasets.

  • 6 authors
·
Sep 4, 2024

One Transformer Fits All Distributions in Multi-Modal Diffusion at Scale

This paper proposes a unified diffusion framework (dubbed UniDiffuser) to fit all distributions relevant to a set of multi-modal data in one model. Our key insight is -- learning diffusion models for marginal, conditional, and joint distributions can be unified as predicting the noise in the perturbed data, where the perturbation levels (i.e. timesteps) can be different for different modalities. Inspired by the unified view, UniDiffuser learns all distributions simultaneously with a minimal modification to the original diffusion model -- perturbs data in all modalities instead of a single modality, inputs individual timesteps in different modalities, and predicts the noise of all modalities instead of a single modality. UniDiffuser is parameterized by a transformer for diffusion models to handle input types of different modalities. Implemented on large-scale paired image-text data, UniDiffuser is able to perform image, text, text-to-image, image-to-text, and image-text pair generation by setting proper timesteps without additional overhead. In particular, UniDiffuser is able to produce perceptually realistic samples in all tasks and its quantitative results (e.g., the FID and CLIP score) are not only superior to existing general-purpose models but also comparable to the bespoken models (e.g., Stable Diffusion and DALL-E 2) in representative tasks (e.g., text-to-image generation).

  • 10 authors
·
Mar 11, 2023

Fire Together Wire Together: A Dynamic Pruning Approach with Self-Supervised Mask Prediction

Dynamic model pruning is a recent direction that allows for the inference of a different sub-network for each input sample during deployment. However, current dynamic methods rely on learning a continuous channel gating through regularization by inducing sparsity loss. This formulation introduces complexity in balancing different losses (e.g task loss, regularization loss). In addition, regularization based methods lack transparent tradeoff hyperparameter selection to realize a computational budget. Our contribution is two-fold: 1) decoupled task and pruning losses. 2) Simple hyperparameter selection that enables FLOPs reduction estimation before training. Inspired by the Hebbian theory in Neuroscience: "neurons that fire together wire together", we propose to predict a mask to process k filters in a layer based on the activation of its previous layer. We pose the problem as a self-supervised binary classification problem. Each mask predictor module is trained to predict if the log-likelihood for each filter in the current layer belongs to the top-k activated filters. The value k is dynamically estimated for each input based on a novel criterion using the mass of heatmaps. We show experiments on several neural architectures, such as VGG, ResNet and MobileNet on CIFAR and ImageNet datasets. On CIFAR, we reach similar accuracy to SOTA methods with 15% and 24% higher FLOPs reduction. Similarly in ImageNet, we achieve lower drop in accuracy with up to 13% improvement in FLOPs reduction.

  • 4 authors
·
Oct 15, 2021

DiffusionRet: Generative Text-Video Retrieval with Diffusion Model

Existing text-video retrieval solutions are, in essence, discriminant models focused on maximizing the conditional likelihood, i.e., p(candidates|query). While straightforward, this de facto paradigm overlooks the underlying data distribution p(query), which makes it challenging to identify out-of-distribution data. To address this limitation, we creatively tackle this task from a generative viewpoint and model the correlation between the text and the video as their joint probability p(candidates,query). This is accomplished through a diffusion-based text-video retrieval framework (DiffusionRet), which models the retrieval task as a process of gradually generating joint distribution from noise. During training, DiffusionRet is optimized from both the generation and discrimination perspectives, with the generator being optimized by generation loss and the feature extractor trained with contrastive loss. In this way, DiffusionRet cleverly leverages the strengths of both generative and discriminative methods. Extensive experiments on five commonly used text-video retrieval benchmarks, including MSRVTT, LSMDC, MSVD, ActivityNet Captions, and DiDeMo, with superior performances, justify the efficacy of our method. More encouragingly, without any modification, DiffusionRet even performs well in out-domain retrieval settings. We believe this work brings fundamental insights into the related fields. Code is available at https://github.com/jpthu17/DiffusionRet.

  • 8 authors
·
Mar 17, 2023

Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models

Diffusion models have achieved great success in image generation tasks through iterative noise estimation. However, the heavy denoising process and complex neural networks hinder their low-latency applications in real-world scenarios. Quantization can effectively reduce model complexity, and post-training quantization (PTQ), which does not require fine-tuning, is highly promising in accelerating the denoising process. Unfortunately, we find that due to the highly dynamic distribution of activations in different denoising steps, existing PTQ methods for diffusion models suffer from distribution mismatch issues at both calibration sample level and reconstruction output level, which makes the performance far from satisfactory, especially in low-bit cases. In this paper, we propose Enhanced Distribution Alignment for Post-Training Quantization of Diffusion Models (EDA-DM) to address the above issues. Specifically, at the calibration sample level, we select calibration samples based on the density and diversity in the latent space, thus facilitating the alignment of their distribution with the overall samples; and at the reconstruction output level, we propose Fine-grained Block Reconstruction, which can align the outputs of the quantized model and the full-precision model at different network granularity. Extensive experiments demonstrate that EDA-DM outperforms the existing post-training quantization frameworks in both unconditional and conditional generation scenarios. At low-bit precision, the quantized models with our method even outperform the full-precision models on most datasets.

  • 4 authors
·
Jan 9, 2024

Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis

Diffusion models, such as Stable Diffusion, have made significant strides in visual generation, yet their paradigm remains fundamentally different from autoregressive language models, complicating the development of unified language-vision models. Recent efforts like LlamaGen have attempted autoregressive image generation using discrete VQVAE tokens, but the large number of tokens involved renders this approach inefficient and slow. In this work, we present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL. By incorporating a comprehensive suite of architectural innovations, advanced positional encoding strategies, and optimized sampling conditions, Meissonic substantially improves MIM's performance and efficiency. Additionally, we leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution. Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images. Extensive experiments validate Meissonic's capabilities, demonstrating its potential as a new standard in text-to-image synthesis. We release a model checkpoint capable of producing 1024 times 1024 resolution images.

  • 9 authors
·
Oct 10, 2024 2

Diffusion Models Beat GANs on Image Classification

While many unsupervised learning models focus on one family of tasks, either generative or discriminative, we explore the possibility of a unified representation learner: a model which uses a single pre-training stage to address both families of tasks simultaneously. We identify diffusion models as a prime candidate. Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc. Such models involve training a U-Net to iteratively predict and remove noise, and the resulting model can synthesize high fidelity, diverse, novel images. The U-Net architecture, as a convolution-based architecture, generates a diverse set of feature representations in the form of intermediate feature maps. We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification. We explore optimal methods for extracting and using these embeddings for classification tasks, demonstrating promising results on the ImageNet classification task. We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods such as BigBiGAN for classification tasks. We investigate diffusion models in the transfer learning regime, examining their performance on several fine-grained visual classification datasets. We compare these embeddings to those generated by competing architectures and pre-trainings for classification tasks.

  • 8 authors
·
Jul 17, 2023 1

Learning 3D Representations from 2D Pre-trained Models via Image-to-Point Masked Autoencoders

Pre-training by numerous image data has become de-facto for robust 2D representations. In contrast, due to the expensive data acquisition and annotation, a paucity of large-scale 3D datasets severely hinders the learning for high-quality 3D features. In this paper, we propose an alternative to obtain superior 3D representations from 2D pre-trained models via Image-to-Point Masked Autoencoders, named as I2P-MAE. By self-supervised pre-training, we leverage the well learned 2D knowledge to guide 3D masked autoencoding, which reconstructs the masked point tokens with an encoder-decoder architecture. Specifically, we first utilize off-the-shelf 2D models to extract the multi-view visual features of the input point cloud, and then conduct two types of image-to-point learning schemes on top. For one, we introduce a 2D-guided masking strategy that maintains semantically important point tokens to be visible for the encoder. Compared to random masking, the network can better concentrate on significant 3D structures and recover the masked tokens from key spatial cues. For another, we enforce these visible tokens to reconstruct the corresponding multi-view 2D features after the decoder. This enables the network to effectively inherit high-level 2D semantics learned from rich image data for discriminative 3D modeling. Aided by our image-to-point pre-training, the frozen I2P-MAE, without any fine-tuning, achieves 93.4% accuracy for linear SVM on ModelNet40, competitive to the fully trained results of existing methods. By further fine-tuning on on ScanObjectNN's hardest split, I2P-MAE attains the state-of-the-art 90.11% accuracy, +3.68% to the second-best, demonstrating superior transferable capacity. Code will be available at https://github.com/ZrrSkywalker/I2P-MAE.

  • 5 authors
·
Dec 13, 2022

Learning with Unmasked Tokens Drives Stronger Vision Learners

Masked image modeling (MIM) has become a leading self-supervised learning strategy. MIMs such as Masked Autoencoder (MAE) learn strong representations by randomly masking input tokens for the encoder to process, with the decoder reconstructing the masked tokens to the input. However, MIM pre-trained encoders often exhibit a limited attention span, attributed to MIM's sole focus on regressing masked tokens only, which may impede the encoder's broader context learning. To tackle the limitation, we improve MIM by explicitly incorporating unmasked tokens into the training process. Specifically, our method enables the encoder to learn from broader context supervision, allowing unmasked tokens to experience broader contexts while the decoder reconstructs masked tokens. Thus, the encoded unmasked tokens are equipped with extensive contextual information, empowering masked tokens to leverage the enhanced unmasked tokens for MIM. As a result, our simple remedy trains more discriminative representations revealed by achieving 84.2% top-1 accuracy with ViT-B on ImageNet-1K with 0.6%p gain. We attribute the success to the enhanced pre-training method, as evidenced by the singular value spectrum and attention analyses. Finally, our models achieve significant performance gains at the downstream semantic segmentation and fine-grained visual classification tasks; and on diverse robust evaluation metrics. Code is available at https://github.com/naver-ai/lut

naver-ai NAVER AI Lab
·
Oct 20, 2023

Unified Multivariate Gaussian Mixture for Efficient Neural Image Compression

Modeling latent variables with priors and hyperpriors is an essential problem in variational image compression. Formally, trade-off between rate and distortion is handled well if priors and hyperpriors precisely describe latent variables. Current practices only adopt univariate priors and process each variable individually. However, we find inter-correlations and intra-correlations exist when observing latent variables in a vectorized perspective. These findings reveal visual redundancies to improve rate-distortion performance and parallel processing ability to speed up compression. This encourages us to propose a novel vectorized prior. Specifically, a multivariate Gaussian mixture is proposed with means and covariances to be estimated. Then, a novel probabilistic vector quantization is utilized to effectively approximate means, and remaining covariances are further induced to a unified mixture and solved by cascaded estimation without context models involved. Furthermore, codebooks involved in quantization are extended to multi-codebooks for complexity reduction, which formulates an efficient compression procedure. Extensive experiments on benchmark datasets against state-of-the-art indicate our model has better rate-distortion performance and an impressive 3.18times compression speed up, giving us the ability to perform real-time, high-quality variational image compression in practice. Our source code is publicly available at https://github.com/xiaosu-zhu/McQuic.

  • 5 authors
·
Mar 21, 2022

MOVIS: Enhancing Multi-Object Novel View Synthesis for Indoor Scenes

Repurposing pre-trained diffusion models has been proven to be effective for NVS. However, these methods are mostly limited to a single object; directly applying such methods to compositional multi-object scenarios yields inferior results, especially incorrect object placement and inconsistent shape and appearance under novel views. How to enhance and systematically evaluate the cross-view consistency of such models remains under-explored. To address this issue, we propose MOVIS to enhance the structural awareness of the view-conditioned diffusion model for multi-object NVS in terms of model inputs, auxiliary tasks, and training strategy. First, we inject structure-aware features, including depth and object mask, into the denoising U-Net to enhance the model's comprehension of object instances and their spatial relationships. Second, we introduce an auxiliary task requiring the model to simultaneously predict novel view object masks, further improving the model's capability in differentiating and placing objects. Finally, we conduct an in-depth analysis of the diffusion sampling process and carefully devise a structure-guided timestep sampling scheduler during training, which balances the learning of global object placement and fine-grained detail recovery. To systematically evaluate the plausibility of synthesized images, we propose to assess cross-view consistency and novel view object placement alongside existing image-level NVS metrics. Extensive experiments on challenging synthetic and realistic datasets demonstrate that our method exhibits strong generalization capabilities and produces consistent novel view synthesis, highlighting its potential to guide future 3D-aware multi-object NVS tasks.

  • 8 authors
·
Dec 16, 2024 2

SIGMA: Sinkhorn-Guided Masked Video Modeling

Video-based pretraining offers immense potential for learning strong visual representations on an unprecedented scale. Recently, masked video modeling methods have shown promising scalability, yet fall short in capturing higher-level semantics due to reconstructing predefined low-level targets such as pixels. To tackle this, we present Sinkhorn-guided Masked Video Modelling (SIGMA), a novel video pretraining method that jointly learns the video model in addition to a target feature space using a projection network. However, this simple modification means that the regular L2 reconstruction loss will lead to trivial solutions as both networks are jointly optimized. As a solution, we distribute features of space-time tubes evenly across a limited number of learnable clusters. By posing this as an optimal transport problem, we enforce high entropy in the generated features across the batch, infusing semantic and temporal meaning into the feature space. The resulting cluster assignments are used as targets for a symmetric prediction task where the video model predicts cluster assignment of the projection network and vice versa. Experimental results on ten datasets across three benchmarks validate the effectiveness of SIGMA in learning more performant, temporally-aware, and robust video representations improving upon state-of-the-art methods. Our project website with code is available at: https://quva-lab.github.io/SIGMA.

  • 6 authors
·
Jul 22, 2024 2

Hierarchical Visual Categories Modeling: A Joint Representation Learning and Density Estimation Framework for Out-of-Distribution Detection

Detecting out-of-distribution inputs for visual recognition models has become critical in safe deep learning. This paper proposes a novel hierarchical visual category modeling scheme to separate out-of-distribution data from in-distribution data through joint representation learning and statistical modeling. We learn a mixture of Gaussian models for each in-distribution category. There are many Gaussian mixture models to model different visual categories. With these Gaussian models, we design an in-distribution score function by aggregating multiple Mahalanobis-based metrics. We don't use any auxiliary outlier data as training samples, which may hurt the generalization ability of out-of-distribution detection algorithms. We split the ImageNet-1k dataset into ten folds randomly. We use one fold as the in-distribution dataset and the others as out-of-distribution datasets to evaluate the proposed method. We also conduct experiments on seven popular benchmarks, including CIFAR, iNaturalist, SUN, Places, Textures, ImageNet-O, and OpenImage-O. Extensive experiments indicate that the proposed method outperforms state-of-the-art algorithms clearly. Meanwhile, we find that our visual representation has a competitive performance when compared with features learned by classical methods. These results demonstrate that the proposed method hasn't weakened the discriminative ability of visual recognition models and keeps high efficiency in detecting out-of-distribution samples.

  • 7 authors
·
Aug 28, 2024

Joint Modeling of Feature, Correspondence, and a Compressed Memory for Video Object Segmentation

Current prevailing Video Object Segmentation (VOS) methods usually perform dense matching between the current and reference frames after extracting their features. One on hand, the decoupled modeling restricts the targets information propagation only at high-level feature space. On the other hand, the pixel-wise matching leads to a lack of holistic understanding of the targets. To overcome these issues, we propose a unified VOS framework, coined as JointFormer, for joint modeling the three elements of feature, correspondence, and a compressed memory. The core design is the Joint Block, utilizing the flexibility of attention to simultaneously extract feature and propagate the targets information to the current tokens and the compressed memory token. This scheme allows to perform extensive information propagation and discriminative feature learning. To incorporate the long-term temporal targets information, we also devise a customized online updating mechanism for the compressed memory token, which can prompt the information flow along the temporal dimension and thus improve the global modeling capability. Under the design, our method achieves a new state-of-art performance on DAVIS 2017 val/test-dev (89.7% and 87.6%) and YouTube-VOS 2018/2019 val (87.0% and 87.0%) benchmarks, outperforming existing works by a large margin.

Hierarchical Masked Autoregressive Models with Low-Resolution Token Pivots

Autoregressive models have emerged as a powerful generative paradigm for visual generation. The current de-facto standard of next token prediction commonly operates over a single-scale sequence of dense image tokens, and is incapable of utilizing global context especially for early tokens prediction. In this paper, we introduce a new autoregressive design to model a hierarchy from a few low-resolution image tokens to the typical dense image tokens, and delve into a thorough hierarchical dependency across multi-scale image tokens. Technically, we present a Hierarchical Masked Autoregressive models (Hi-MAR) that pivot on low-resolution image tokens to trigger hierarchical autoregressive modeling in a multi-phase manner. Hi-MAR learns to predict a few image tokens in low resolution, functioning as intermediary pivots to reflect global structure, in the first phase. Such pivots act as the additional guidance to strengthen the next autoregressive modeling phase by shaping global structural awareness of typical dense image tokens. A new Diffusion Transformer head is further devised to amplify the global context among all tokens for mask token prediction. Extensive evaluations on both class-conditional and text-to-image generation tasks demonstrate that Hi-MAR outperforms typical AR baselines, while requiring fewer computational costs. Code is available at https://github.com/HiDream-ai/himar.

  • 7 authors
·
May 26

Stabilize the Latent Space for Image Autoregressive Modeling: A Unified Perspective

Latent-based image generative models, such as Latent Diffusion Models (LDMs) and Mask Image Models (MIMs), have achieved notable success in image generation tasks. These models typically leverage reconstructive autoencoders like VQGAN or VAE to encode pixels into a more compact latent space and learn the data distribution in the latent space instead of directly from pixels. However, this practice raises a pertinent question: Is it truly the optimal choice? In response, we begin with an intriguing observation: despite sharing the same latent space, autoregressive models significantly lag behind LDMs and MIMs in image generation. This finding contrasts sharply with the field of NLP, where the autoregressive model GPT has established a commanding presence. To address this discrepancy, we introduce a unified perspective on the relationship between latent space and generative models, emphasizing the stability of latent space in image generative modeling. Furthermore, we propose a simple but effective discrete image tokenizer to stabilize the latent space for image generative modeling. Experimental results show that image autoregressive modeling with our tokenizer (DiGIT) benefits both image understanding and image generation with the next token prediction principle, which is inherently straightforward for GPT models but challenging for other generative models. Remarkably, for the first time, a GPT-style autoregressive model for images outperforms LDMs, which also exhibits substantial improvement akin to GPT when scaling up model size. Our findings underscore the potential of an optimized latent space and the integration of discrete tokenization in advancing the capabilities of image generative models. The code is available at https://github.com/DAMO-NLP-SG/DiGIT.

  • 6 authors
·
Oct 16, 2024 2

CroCo: Self-Supervised Pre-training for 3D Vision Tasks by Cross-View Completion

Masked Image Modeling (MIM) has recently been established as a potent pre-training paradigm. A pretext task is constructed by masking patches in an input image, and this masked content is then predicted by a neural network using visible patches as sole input. This pre-training leads to state-of-the-art performance when finetuned for high-level semantic tasks, e.g. image classification and object detection. In this paper we instead seek to learn representations that transfer well to a wide variety of 3D vision and lower-level geometric downstream tasks, such as depth prediction or optical flow estimation. Inspired by MIM, we propose an unsupervised representation learning task trained from pairs of images showing the same scene from different viewpoints. More precisely, we propose the pretext task of cross-view completion where the first input image is partially masked, and this masked content has to be reconstructed from the visible content and the second image. In single-view MIM, the masked content often cannot be inferred precisely from the visible portion only, so the model learns to act as a prior influenced by high-level semantics. In contrast, this ambiguity can be resolved with cross-view completion from the second unmasked image, on the condition that the model is able to understand the spatial relationship between the two images. Our experiments show that our pretext task leads to significantly improved performance for monocular 3D vision downstream tasks such as depth estimation. In addition, our model can be directly applied to binocular downstream tasks like optical flow or relative camera pose estimation, for which we obtain competitive results without bells and whistles, i.e., using a generic architecture without any task-specific design.

  • 10 authors
·
Oct 19, 2022 1

Context Autoencoder for Self-Supervised Representation Learning

We present a novel masked image modeling (MIM) approach, context autoencoder (CAE), for self-supervised representation pretraining. We pretrain an encoder by making predictions in the encoded representation space. The pretraining tasks include two tasks: masked representation prediction - predict the representations for the masked patches, and masked patch reconstruction - reconstruct the masked patches. The network is an encoder-regressor-decoder architecture: the encoder takes the visible patches as input; the regressor predicts the representations of the masked patches, which are expected to be aligned with the representations computed from the encoder, using the representations of visible patches and the positions of visible and masked patches; the decoder reconstructs the masked patches from the predicted encoded representations. The CAE design encourages the separation of learning the encoder (representation) from completing the pertaining tasks: masked representation prediction and masked patch reconstruction tasks, and making predictions in the encoded representation space empirically shows the benefit to representation learning. We demonstrate the effectiveness of our CAE through superior transfer performance in downstream tasks: semantic segmentation, object detection and instance segmentation, and classification. The code will be available at https://github.com/Atten4Vis/CAE.

  • 10 authors
·
Feb 7, 2022

Vector Quantized Diffusion Model for Text-to-Image Synthesis

We present the vector quantized diffusion (VQ-Diffusion) model for text-to-image generation. This method is based on a vector quantized variational autoencoder (VQ-VAE) whose latent space is modeled by a conditional variant of the recently developed Denoising Diffusion Probabilistic Model (DDPM). We find that this latent-space method is well-suited for text-to-image generation tasks because it not only eliminates the unidirectional bias with existing methods but also allows us to incorporate a mask-and-replace diffusion strategy to avoid the accumulation of errors, which is a serious problem with existing methods. Our experiments show that the VQ-Diffusion produces significantly better text-to-image generation results when compared with conventional autoregressive (AR) models with similar numbers of parameters. Compared with previous GAN-based text-to-image methods, our VQ-Diffusion can handle more complex scenes and improve the synthesized image quality by a large margin. Finally, we show that the image generation computation in our method can be made highly efficient by reparameterization. With traditional AR methods, the text-to-image generation time increases linearly with the output image resolution and hence is quite time consuming even for normal size images. The VQ-Diffusion allows us to achieve a better trade-off between quality and speed. Our experiments indicate that the VQ-Diffusion model with the reparameterization is fifteen times faster than traditional AR methods while achieving a better image quality.

  • 8 authors
·
Nov 29, 2021 1