new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 30

Video-Infinity: Distributed Long Video Generation

Diffusion models have recently achieved remarkable results for video generation. Despite the encouraging performances, the generated videos are typically constrained to a small number of frames, resulting in clips lasting merely a few seconds. The primary challenges in producing longer videos include the substantial memory requirements and the extended processing time required on a single GPU. A straightforward solution would be to split the workload across multiple GPUs, which, however, leads to two issues: (1) ensuring all GPUs communicate effectively to share timing and context information, and (2) modifying existing video diffusion models, which are usually trained on short sequences, to create longer videos without additional training. To tackle these, in this paper we introduce Video-Infinity, a distributed inference pipeline that enables parallel processing across multiple GPUs for long-form video generation. Specifically, we propose two coherent mechanisms: Clip parallelism and Dual-scope attention. Clip parallelism optimizes the gathering and sharing of context information across GPUs which minimizes communication overhead, while Dual-scope attention modulates the temporal self-attention to balance local and global contexts efficiently across the devices. Together, the two mechanisms join forces to distribute the workload and enable the fast generation of long videos. Under an 8 x Nvidia 6000 Ada GPU (48G) setup, our method generates videos up to 2,300 frames in approximately 5 minutes, enabling long video generation at a speed 100 times faster than the prior methods.

  • 4 authors
·
Jun 23, 2024 2

DiTaiListener: Controllable High Fidelity Listener Video Generation with Diffusion

Generating naturalistic and nuanced listener motions for extended interactions remains an open problem. Existing methods often rely on low-dimensional motion codes for facial behavior generation followed by photorealistic rendering, limiting both visual fidelity and expressive richness. To address these challenges, we introduce DiTaiListener, powered by a video diffusion model with multimodal conditions. Our approach first generates short segments of listener responses conditioned on the speaker's speech and facial motions with DiTaiListener-Gen. It then refines the transitional frames via DiTaiListener-Edit for a seamless transition. Specifically, DiTaiListener-Gen adapts a Diffusion Transformer (DiT) for the task of listener head portrait generation by introducing a Causal Temporal Multimodal Adapter (CTM-Adapter) to process speakers' auditory and visual cues. CTM-Adapter integrates speakers' input in a causal manner into the video generation process to ensure temporally coherent listener responses. For long-form video generation, we introduce DiTaiListener-Edit, a transition refinement video-to-video diffusion model. The model fuses video segments into smooth and continuous videos, ensuring temporal consistency in facial expressions and image quality when merging short video segments produced by DiTaiListener-Gen. Quantitatively, DiTaiListener achieves the state-of-the-art performance on benchmark datasets in both photorealism (+73.8% in FID on RealTalk) and motion representation (+6.1% in FD metric on VICO) spaces. User studies confirm the superior performance of DiTaiListener, with the model being the clear preference in terms of feedback, diversity, and smoothness, outperforming competitors by a significant margin.

  • 6 authors
·
Apr 4 3

Automated Movie Generation via Multi-Agent CoT Planning

Existing long-form video generation frameworks lack automated planning, requiring manual input for storylines, scenes, cinematography, and character interactions, resulting in high costs and inefficiencies. To address these challenges, we present MovieAgent, an automated movie generation via multi-agent Chain of Thought (CoT) planning. MovieAgent offers two key advantages: 1) We firstly explore and define the paradigm of automated movie/long-video generation. Given a script and character bank, our MovieAgent can generates multi-scene, multi-shot long-form videos with a coherent narrative, while ensuring character consistency, synchronized subtitles, and stable audio throughout the film. 2) MovieAgent introduces a hierarchical CoT-based reasoning process to automatically structure scenes, camera settings, and cinematography, significantly reducing human effort. By employing multiple LLM agents to simulate the roles of a director, screenwriter, storyboard artist, and location manager, MovieAgent streamlines the production pipeline. Experiments demonstrate that MovieAgent achieves new state-of-the-art results in script faithfulness, character consistency, and narrative coherence. Our hierarchical framework takes a step forward and provides new insights into fully automated movie generation. The code and project website are available at: https://github.com/showlab/MovieAgent and https://weijiawu.github.io/MovieAgent.

  • 3 authors
·
Mar 10 2

TSPO: Temporal Sampling Policy Optimization for Long-form Video Language Understanding

Multimodal Large Language Models (MLLMs) have demonstrated significant progress in vision-language tasks, yet they still face challenges when processing long-duration video inputs. The limitation arises from MLLMs' context limit and training costs, necessitating sparse frame sampling before feeding videos into MLLMs. Existing video MLLMs adopt training-free uniform sampling or keyframe search, which may miss critical events or be constrained by the pre-trained models' event understanding capabilities. Meanwhile, building a training-based method remains challenging due to the unsupervised and non-differentiable nature of sparse frame sampling. To address these problems, we propose Temporal Sampling Policy Optimization (TSPO), advancing MLLMs' long-form video-language understanding via reinforcement learning. Specifically, we first propose a trainable event-aware temporal agent, which captures event-query correlation for performing probabilistic keyframe selection. Then, we propose the TSPO reinforcement learning paradigm, which models keyframe selection and language generation as a joint decision-making process, enabling end-to-end group relative optimization with efficient rule-based rewards. Furthermore, for the TSPO's training, we propose a long video training data construction pipeline with comprehensive temporal data and video Needle-in-a-Haystack data. Finally, we incorporate rule-based answering accuracy and temporal locating reward mechanisms to optimize the temporal sampling policy. Comprehensive experiments show that our TSPO achieves state-of-the-art performance across multiple long video understanding benchmarks, and shows transferable ability across different cutting-edge Video-MLLMs.

  • 9 authors
·
Aug 6

PresentAgent: Multimodal Agent for Presentation Video Generation

We present PresentAgent, a multimodal agent that transforms long-form documents into narrated presentation videos. While existing approaches are limited to generating static slides or text summaries, our method advances beyond these limitations by producing fully synchronized visual and spoken content that closely mimics human-style presentations. To achieve this integration, PresentAgent employs a modular pipeline that systematically segments the input document, plans and renders slide-style visual frames, generates contextual spoken narration with large language models and Text-to-Speech models, and seamlessly composes the final video with precise audio-visual alignment. Given the complexity of evaluating such multimodal outputs, we introduce PresentEval, a unified assessment framework powered by Vision-Language Models that comprehensively scores videos across three critical dimensions: content fidelity, visual clarity, and audience comprehension through prompt-based evaluation. Our experimental validation on a curated dataset of 30 document-presentation pairs demonstrates that PresentAgent approaches human-level quality across all evaluation metrics. These results highlight the significant potential of controllable multimodal agents in transforming static textual materials into dynamic, effective, and accessible presentation formats. Code will be available at https://github.com/AIGeeksGroup/PresentAgent.

  • 7 authors
·
Jul 5 1

SkyReels-V2: Infinite-length Film Generative Model

Recent advances in video generation have been driven by diffusion models and autoregressive frameworks, yet critical challenges persist in harmonizing prompt adherence, visual quality, motion dynamics, and duration: compromises in motion dynamics to enhance temporal visual quality, constrained video duration (5-10 seconds) to prioritize resolution, and inadequate shot-aware generation stemming from general-purpose MLLMs' inability to interpret cinematic grammar, such as shot composition, actor expressions, and camera motions. These intertwined limitations hinder realistic long-form synthesis and professional film-style generation. To address these limitations, we propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework. Firstly, we design a comprehensive structural representation of video that combines the general descriptions by the Multi-modal LLM and the detailed shot language by sub-expert models. Aided with human annotation, we then train a unified Video Captioner, named SkyCaptioner-V1, to efficiently label the video data. Secondly, we establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement: Initial concept-balanced Supervised Fine-Tuning (SFT) improves baseline quality; Motion-specific Reinforcement Learning (RL) training with human-annotated and synthetic distortion data addresses dynamic artifacts; Our diffusion forcing framework with non-decreasing noise schedules enables long-video synthesis in an efficient search space; Final high-quality SFT refines visual fidelity. All the code and models are available at https://github.com/SkyworkAI/SkyReels-V2.

  • 25 authors
·
Apr 17

LongCaptioning: Unlocking the Power of Long Video Caption Generation in Large Multimodal Models

Large Multimodal Models (LMMs) have demonstrated exceptional performance in video captioning tasks, particularly for short videos. However, as the length of the video increases, generating long, detailed captions becomes a significant challenge. In this paper, we investigate the limitations of LMMs in generating long captions for long videos. Our analysis reveals that open-source LMMs struggle to consistently produce outputs exceeding 300 words, leading to incomplete or overly concise descriptions of the visual content. This limitation hinders the ability of LMMs to provide comprehensive and detailed captions for long videos, ultimately missing important visual information. Through controlled experiments, we find that the scarcity of paired examples with long-captions during training is the primary factor limiting the model's output length. However, manually annotating long-caption examples for long-form videos is time-consuming and expensive. To overcome the annotation bottleneck, we propose the LongCaption-Agent, a framework that synthesizes long caption data by hierarchical semantic aggregation. % aggregating multi-level descriptions. Using LongCaption-Agent, we curated a new long-caption dataset, LongCaption-10K. We also develop LongCaption-Bench, a benchmark designed to comprehensively evaluate the quality of long captions generated by LMMs. By incorporating LongCaption-10K into training, we enable LMMs to generate captions exceeding 1,000 words for long-form videos, while maintaining high output quality. In LongCaption-Bench, our model achieved State-of-The-Art performance, even surpassing larger proprietary models like GPT4o.

  • 5 authors
·
Feb 21

LVD-2M: A Long-take Video Dataset with Temporally Dense Captions

The efficacy of video generation models heavily depends on the quality of their training datasets. Most previous video generation models are trained on short video clips, while recently there has been increasing interest in training long video generation models directly on longer videos. However, the lack of such high-quality long videos impedes the advancement of long video generation. To promote research in long video generation, we desire a new dataset with four key features essential for training long video generation models: (1) long videos covering at least 10 seconds, (2) long-take videos without cuts, (3) large motion and diverse contents, and (4) temporally dense captions. To achieve this, we introduce a new pipeline for selecting high-quality long-take videos and generating temporally dense captions. Specifically, we define a set of metrics to quantitatively assess video quality including scene cuts, dynamic degrees, and semantic-level quality, enabling us to filter high-quality long-take videos from a large amount of source videos. Subsequently, we develop a hierarchical video captioning pipeline to annotate long videos with temporally-dense captions. With this pipeline, we curate the first long-take video dataset, LVD-2M, comprising 2 million long-take videos, each covering more than 10 seconds and annotated with temporally dense captions. We further validate the effectiveness of LVD-2M by fine-tuning video generation models to generate long videos with dynamic motions. We believe our work will significantly contribute to future research in long video generation.

  • 6 authors
·
Oct 14, 2024 3

FreeLong++: Training-Free Long Video Generation via Multi-band SpectralFusion

Recent advances in video generation models have enabled high-quality short video generation from text prompts. However, extending these models to longer videos remains a significant challenge, primarily due to degraded temporal consistency and visual fidelity. Our preliminary observations show that naively applying short-video generation models to longer sequences leads to noticeable quality degradation. Further analysis identifies a systematic trend where high-frequency components become increasingly distorted as video length grows, an issue we term high-frequency distortion. To address this, we propose FreeLong, a training-free framework designed to balance the frequency distribution of long video features during the denoising process. FreeLong achieves this by blending global low-frequency features, which capture holistic semantics across the full video, with local high-frequency features extracted from short temporal windows to preserve fine details. Building on this, FreeLong++ extends FreeLong dual-branch design into a multi-branch architecture with multiple attention branches, each operating at a distinct temporal scale. By arranging multiple window sizes from global to local, FreeLong++ enables multi-band frequency fusion from low to high frequencies, ensuring both semantic continuity and fine-grained motion dynamics across longer video sequences. Without any additional training, FreeLong++ can be plugged into existing video generation models (e.g. Wan2.1 and LTX-Video) to produce longer videos with substantially improved temporal consistency and visual fidelity. We demonstrate that our approach outperforms previous methods on longer video generation tasks (e.g. 4x and 8x of native length). It also supports coherent multi-prompt video generation with smooth scene transitions and enables controllable video generation using long depth or pose sequences.

  • 2 authors
·
Jun 30 1

LumosFlow: Motion-Guided Long Video Generation

Long video generation has gained increasing attention due to its widespread applications in fields such as entertainment and simulation. Despite advances, synthesizing temporally coherent and visually compelling long sequences remains a formidable challenge. Conventional approaches often synthesize long videos by sequentially generating and concatenating short clips, or generating key frames and then interpolate the intermediate frames in a hierarchical manner. However, both of them still remain significant challenges, leading to issues such as temporal repetition or unnatural transitions. In this paper, we revisit the hierarchical long video generation pipeline and introduce LumosFlow, a framework introduce motion guidance explicitly. Specifically, we first employ the Large Motion Text-to-Video Diffusion Model (LMTV-DM) to generate key frames with larger motion intervals, thereby ensuring content diversity in the generated long videos. Given the complexity of interpolating contextual transitions between key frames, we further decompose the intermediate frame interpolation into motion generation and post-hoc refinement. For each pair of key frames, the Latent Optical Flow Diffusion Model (LOF-DM) synthesizes complex and large-motion optical flows, while MotionControlNet subsequently refines the warped results to enhance quality and guide intermediate frame generation. Compared with traditional video frame interpolation, we achieve 15x interpolation, ensuring reasonable and continuous motion between adjacent frames. Experiments show that our method can generate long videos with consistent motion and appearance. Code and models will be made publicly available upon acceptance. Our project page: https://jiahaochen1.github.io/LumosFlow/

  • 9 authors
·
Jun 3 2

LongLive: Real-time Interactive Long Video Generation

We present LongLive, a frame-level autoregressive (AR) framework for real-time and interactive long video generation. Long video generation presents challenges in both efficiency and quality. Diffusion and Diffusion-Forcing models can produce high-quality videos but suffer from low efficiency due to bidirectional attention. Causal attention AR models support KV caching for faster inference, but often degrade in quality on long videos due to memory challenges during long-video training. In addition, beyond static prompt-based generation, interactive capabilities, such as streaming prompt inputs, are critical for dynamic content creation, enabling users to guide narratives in real time. This interactive requirement significantly increases complexity, especially in ensuring visual consistency and semantic coherence during prompt transitions. To address these challenges, LongLive adopts a causal, frame-level AR design that integrates a KV-recache mechanism that refreshes cached states with new prompts for smooth, adherent switches; streaming long tuning to enable long video training and to align training and inference (train-long-test-long); and short window attention paired with a frame-level attention sink, shorten as frame sink, preserving long-range consistency while enabling faster generation. With these key designs, LongLive fine-tunes a 1.3B-parameter short-clip model to minute-long generation in just 32 GPU-days. At inference, LongLive sustains 20.7 FPS on a single NVIDIA H100, achieves strong performance on VBench in both short and long videos. LongLive supports up to 240-second videos on a single H100 GPU. LongLive further supports INT8-quantized inference with only marginal quality loss.

nvidia NVIDIA
·
Sep 26 2

LongVie: Multimodal-Guided Controllable Ultra-Long Video Generation

Controllable ultra-long video generation is a fundamental yet challenging task. Although existing methods are effective for short clips, they struggle to scale due to issues such as temporal inconsistency and visual degradation. In this paper, we initially investigate and identify three key factors: separate noise initialization, independent control signal normalization, and the limitations of single-modality guidance. To address these issues, we propose LongVie, an end-to-end autoregressive framework for controllable long video generation. LongVie introduces two core designs to ensure temporal consistency: 1) a unified noise initialization strategy that maintains consistent generation across clips, and 2) global control signal normalization that enforces alignment in the control space throughout the entire video. To mitigate visual degradation, LongVie employs 3) a multi-modal control framework that integrates both dense (e.g., depth maps) and sparse (e.g., keypoints) control signals, complemented by 4) a degradation-aware training strategy that adaptively balances modality contributions over time to preserve visual quality. We also introduce LongVGenBench, a comprehensive benchmark consisting of 100 high-resolution videos spanning diverse real-world and synthetic environments, each lasting over one minute. Extensive experiments show that LongVie achieves state-of-the-art performance in long-range controllability, consistency, and quality.

  • 8 authors
·
Aug 5 3

FreeLong: Training-Free Long Video Generation with SpectralBlend Temporal Attention

Video diffusion models have made substantial progress in various video generation applications. However, training models for long video generation tasks require significant computational and data resources, posing a challenge to developing long video diffusion models. This paper investigates a straightforward and training-free approach to extend an existing short video diffusion model (e.g. pre-trained on 16-frame videos) for consistent long video generation (e.g. 128 frames). Our preliminary observation has found that directly applying the short video diffusion model to generate long videos can lead to severe video quality degradation. Further investigation reveals that this degradation is primarily due to the distortion of high-frequency components in long videos, characterized by a decrease in spatial high-frequency components and an increase in temporal high-frequency components. Motivated by this, we propose a novel solution named FreeLong to balance the frequency distribution of long video features during the denoising process. FreeLong blends the low-frequency components of global video features, which encapsulate the entire video sequence, with the high-frequency components of local video features that focus on shorter subsequences of frames. This approach maintains global consistency while incorporating diverse and high-quality spatiotemporal details from local videos, enhancing both the consistency and fidelity of long video generation. We evaluated FreeLong on multiple base video diffusion models and observed significant improvements. Additionally, our method supports coherent multi-prompt generation, ensuring both visual coherence and seamless transitions between scenes.

  • 4 authors
·
Jul 29, 2024 2

ARTcdotV: Auto-Regressive Text-to-Video Generation with Diffusion Models

We present ARTcdotV, an efficient framework for auto-regressive video generation with diffusion models. Unlike existing methods that generate entire videos in one-shot, ARTcdotV generates a single frame at a time, conditioned on the previous ones. The framework offers three distinct advantages. First, it only learns simple continual motions between adjacent frames, therefore avoiding modeling complex long-range motions that require huge training data. Second, it preserves the high-fidelity generation ability of the pre-trained image diffusion models by making only minimal network modifications. Third, it can generate arbitrarily long videos conditioned on a variety of prompts such as text, image or their combinations, making it highly versatile and flexible. To combat the common drifting issue in AR models, we propose masked diffusion model which implicitly learns which information can be drawn from reference images rather than network predictions, in order to reduce the risk of generating inconsistent appearances that cause drifting. Moreover, we further enhance generation coherence by conditioning it on the initial frame, which typically contains minimal noise. This is particularly useful for long video generation. When trained for only two weeks on four GPUs, ARTcdotV already can generate videos with natural motions, rich details and a high level of aesthetic quality. Besides, it enables various appealing applications, e.g., composing a long video from multiple text prompts.

  • 13 authors
·
Nov 30, 2023

Self-Forcing++: Towards Minute-Scale High-Quality Video Generation

Diffusion models have revolutionized image and video generation, achieving unprecedented visual quality. However, their reliance on transformer architectures incurs prohibitively high computational costs, particularly when extending generation to long videos. Recent work has explored autoregressive formulations for long video generation, typically by distilling from short-horizon bidirectional teachers. Nevertheless, given that teacher models cannot synthesize long videos, the extrapolation of student models beyond their training horizon often leads to pronounced quality degradation, arising from the compounding of errors within the continuous latent space. In this paper, we propose a simple yet effective approach to mitigate quality degradation in long-horizon video generation without requiring supervision from long-video teachers or retraining on long video datasets. Our approach centers on exploiting the rich knowledge of teacher models to provide guidance for the student model through sampled segments drawn from self-generated long videos. Our method maintains temporal consistency while scaling video length by up to 20x beyond teacher's capability, avoiding common issues such as over-exposure and error-accumulation without recomputing overlapping frames like previous methods. When scaling up the computation, our method shows the capability of generating videos up to 4 minutes and 15 seconds, equivalent to 99.9% of the maximum span supported by our base model's position embedding and more than 50x longer than that of our baseline model. Experiments on standard benchmarks and our proposed improved benchmark demonstrate that our approach substantially outperforms baseline methods in both fidelity and consistency. Our long-horizon videos demo can be found at https://self-forcing-plus-plus.github.io/

NarrLV: Towards a Comprehensive Narrative-Centric Evaluation for Long Video Generation Models

With the rapid development of foundation video generation technologies, long video generation models have exhibited promising research potential thanks to expanded content creation space. Recent studies reveal that the goal of long video generation tasks is not only to extend video duration but also to accurately express richer narrative content within longer videos. However, due to the lack of evaluation benchmarks specifically designed for long video generation models, the current assessment of these models primarily relies on benchmarks with simple narrative prompts (e.g., VBench). To the best of our knowledge, our proposed NarrLV is the first benchmark to comprehensively evaluate the Narrative expression capabilities of Long Video generation models. Inspired by film narrative theory, (i) we first introduce the basic narrative unit maintaining continuous visual presentation in videos as Temporal Narrative Atom (TNA), and use its count to quantitatively measure narrative richness. Guided by three key film narrative elements influencing TNA changes, we construct an automatic prompt generation pipeline capable of producing evaluation prompts with a flexibly expandable number of TNAs. (ii) Then, based on the three progressive levels of narrative content expression, we design an effective evaluation metric using the MLLM-based question generation and answering framework. (iii) Finally, we conduct extensive evaluations on existing long video generation models and the foundation generation models. Experimental results demonstrate that our metric aligns closely with human judgments. The derived evaluation outcomes reveal the detailed capability boundaries of current video generation models in narrative content expression.

  • 9 authors
·
Jul 15

Selective Structured State-Spaces for Long-Form Video Understanding

Effective modeling of complex spatiotemporal dependencies in long-form videos remains an open problem. The recently proposed Structured State-Space Sequence (S4) model with its linear complexity offers a promising direction in this space. However, we demonstrate that treating all image-tokens equally as done by S4 model can adversely affect its efficiency and accuracy. To address this limitation, we present a novel Selective S4 (i.e., S5) model that employs a lightweight mask generator to adaptively select informative image tokens resulting in more efficient and accurate modeling of long-term spatiotemporal dependencies in videos. Unlike previous mask-based token reduction methods used in transformers, our S5 model avoids the dense self-attention calculation by making use of the guidance of the momentum-updated S4 model. This enables our model to efficiently discard less informative tokens and adapt to various long-form video understanding tasks more effectively. However, as is the case for most token reduction methods, the informative image tokens could be dropped incorrectly. To improve the robustness and the temporal horizon of our model, we propose a novel long-short masked contrastive learning (LSMCL) approach that enables our model to predict longer temporal context using shorter input videos. We present extensive comparative results using three challenging long-form video understanding datasets (LVU, COIN and Breakfast), demonstrating that our approach consistently outperforms the previous state-of-the-art S4 model by up to 9.6% accuracy while reducing its memory footprint by 23%.

  • 7 authors
·
Mar 25, 2023

SEINE: Short-to-Long Video Diffusion Model for Generative Transition and Prediction

Recently video generation has achieved substantial progress with realistic results. Nevertheless, existing AI-generated videos are usually very short clips ("shot-level") depicting a single scene. To deliver a coherent long video ("story-level"), it is desirable to have creative transition and prediction effects across different clips. This paper presents a short-to-long video diffusion model, SEINE, that focuses on generative transition and prediction. The goal is to generate high-quality long videos with smooth and creative transitions between scenes and varying lengths of shot-level videos. Specifically, we propose a random-mask video diffusion model to automatically generate transitions based on textual descriptions. By providing the images of different scenes as inputs, combined with text-based control, our model generates transition videos that ensure coherence and visual quality. Furthermore, the model can be readily extended to various tasks such as image-to-video animation and autoregressive video prediction. To conduct a comprehensive evaluation of this new generative task, we propose three assessing criteria for smooth and creative transition: temporal consistency, semantic similarity, and video-text semantic alignment. Extensive experiments validate the effectiveness of our approach over existing methods for generative transition and prediction, enabling the creation of story-level long videos. Project page: https://vchitect.github.io/SEINE-project/ .

  • 10 authors
·
Oct 31, 2023 1

StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text

Text-to-video diffusion models enable the generation of high-quality videos that follow text instructions, making it easy to create diverse and individual content. However, existing approaches mostly focus on high-quality short video generation (typically 16 or 24 frames), ending up with hard-cuts when naively extended to the case of long video synthesis. To overcome these limitations, we introduce StreamingT2V, an autoregressive approach for long video generation of 80, 240, 600, 1200 or more frames with smooth transitions. The key components are:(i) a short-term memory block called conditional attention module (CAM), which conditions the current generation on the features extracted from the previous chunk via an attentional mechanism, leading to consistent chunk transitions, (ii) a long-term memory block called appearance preservation module, which extracts high-level scene and object features from the first video chunk to prevent the model from forgetting the initial scene, and (iii) a randomized blending approach that enables to apply a video enhancer autoregressively for infinitely long videos without inconsistencies between chunks. Experiments show that StreamingT2V generates high motion amount. In contrast, all competing image-to-video methods are prone to video stagnation when applied naively in an autoregressive manner. Thus, we propose with StreamingT2V a high-quality seamless text-to-long video generator that outperforms competitors with consistency and motion. Our code will be available at: https://github.com/Picsart-AI-Research/StreamingT2V

  • 8 authors
·
Mar 21, 2024 2

FreeNoise: Tuning-Free Longer Video Diffusion Via Noise Rescheduling

With the availability of large-scale video datasets and the advances of diffusion models, text-driven video generation has achieved substantial progress. However, existing video generation models are typically trained on a limited number of frames, resulting in the inability to generate high-fidelity long videos during inference. Furthermore, these models only support single-text conditions, whereas real-life scenarios often require multi-text conditions as the video content changes over time. To tackle these challenges, this study explores the potential of extending the text-driven capability to generate longer videos conditioned on multiple texts. 1) We first analyze the impact of initial noise in video diffusion models. Then building upon the observation of noise, we propose FreeNoise, a tuning-free and time-efficient paradigm to enhance the generative capabilities of pretrained video diffusion models while preserving content consistency. Specifically, instead of initializing noises for all frames, we reschedule a sequence of noises for long-range correlation and perform temporal attention over them by window-based function. 2) Additionally, we design a novel motion injection method to support the generation of videos conditioned on multiple text prompts. Extensive experiments validate the superiority of our paradigm in extending the generative capabilities of video diffusion models. It is noteworthy that compared with the previous best-performing method which brought about 255% extra time cost, our method incurs only negligible time cost of approximately 17%. Generated video samples are available at our website: http://haonanqiu.com/projects/FreeNoise.html.

  • 7 authors
·
Oct 23, 2023

ViD-GPT: Introducing GPT-style Autoregressive Generation in Video Diffusion Models

With the advance of diffusion models, today's video generation has achieved impressive quality. But generating temporal consistent long videos is still challenging. A majority of video diffusion models (VDMs) generate long videos in an autoregressive manner, i.e., generating subsequent clips conditioned on last frames of previous clip. However, existing approaches all involve bidirectional computations, which restricts the receptive context of each autoregression step, and results in the model lacking long-term dependencies. Inspired from the huge success of large language models (LLMs) and following GPT (generative pre-trained transformer), we bring causal (i.e., unidirectional) generation into VDMs, and use past frames as prompt to generate future frames. For Causal Generation, we introduce causal temporal attention into VDM, which forces each generated frame to depend on its previous frames. For Frame as Prompt, we inject the conditional frames by concatenating them with noisy frames (frames to be generated) along the temporal axis. Consequently, we present Video Diffusion GPT (ViD-GPT). Based on the two key designs, in each autoregression step, it is able to acquire long-term context from prompting frames concatenated by all previously generated frames. Additionally, we bring the kv-cache mechanism to VDMs, which eliminates the redundant computation from overlapped frames, significantly boosting the inference speed. Extensive experiments demonstrate that our ViD-GPT achieves state-of-the-art performance both quantitatively and qualitatively on long video generation. Code will be available at https://github.com/Dawn-LX/Causal-VideoGen.

  • 5 authors
·
Jun 16, 2024

TokensGen: Harnessing Condensed Tokens for Long Video Generation

Generating consistent long videos is a complex challenge: while diffusion-based generative models generate visually impressive short clips, extending them to longer durations often leads to memory bottlenecks and long-term inconsistency. In this paper, we propose TokensGen, a novel two-stage framework that leverages condensed tokens to address these issues. Our method decomposes long video generation into three core tasks: (1) inner-clip semantic control, (2) long-term consistency control, and (3) inter-clip smooth transition. First, we train To2V (Token-to-Video), a short video diffusion model guided by text and video tokens, with a Video Tokenizer that condenses short clips into semantically rich tokens. Second, we introduce T2To (Text-to-Token), a video token diffusion transformer that generates all tokens at once, ensuring global consistency across clips. Finally, during inference, an adaptive FIFO-Diffusion strategy seamlessly connects adjacent clips, reducing boundary artifacts and enhancing smooth transitions. Experimental results demonstrate that our approach significantly enhances long-term temporal and content coherence without incurring prohibitive computational overhead. By leveraging condensed tokens and pre-trained short video models, our method provides a scalable, modular solution for long video generation, opening new possibilities for storytelling, cinematic production, and immersive simulations. Please see our project page at https://vicky0522.github.io/tokensgen-webpage/ .

  • 8 authors
·
Jul 21 1

Gen-L-Video: Multi-Text to Long Video Generation via Temporal Co-Denoising

Leveraging large-scale image-text datasets and advancements in diffusion models, text-driven generative models have made remarkable strides in the field of image generation and editing. This study explores the potential of extending the text-driven ability to the generation and editing of multi-text conditioned long videos. Current methodologies for video generation and editing, while innovative, are often confined to extremely short videos (typically less than 24 frames) and are limited to a single text condition. These constraints significantly limit their applications given that real-world videos usually consist of multiple segments, each bearing different semantic information. To address this challenge, we introduce a novel paradigm dubbed as Gen-L-Video, capable of extending off-the-shelf short video diffusion models for generating and editing videos comprising hundreds of frames with diverse semantic segments without introducing additional training, all while preserving content consistency. We have implemented three mainstream text-driven video generation and editing methodologies and extended them to accommodate longer videos imbued with a variety of semantic segments with our proposed paradigm. Our experimental outcomes reveal that our approach significantly broadens the generative and editing capabilities of video diffusion models, offering new possibilities for future research and applications. The code is available at https://github.com/G-U-N/Gen-L-Video.

  • 6 authors
·
May 29, 2023

LAVIE: High-Quality Video Generation with Cascaded Latent Diffusion Models

This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I) model as a basis. It is a highly desirable yet challenging task to simultaneously a) accomplish the synthesis of visually realistic and temporally coherent videos while b) preserving the strong creative generation nature of the pre-trained T2I model. To this end, we propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models, comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are two-fold: 1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding, adequately captures the temporal correlations inherent in video data. 2) Additionally, we validate that the process of joint image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of LaVie, we contribute a comprehensive and diverse video dataset named Vimeo25M, consisting of 25 million text-video pairs that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models in various long video generation and personalized video synthesis applications.

  • 20 authors
·
Sep 26, 2023 3

LinGen: Towards High-Resolution Minute-Length Text-to-Video Generation with Linear Computational Complexity

Text-to-video generation enhances content creation but is highly computationally intensive: The computational cost of Diffusion Transformers (DiTs) scales quadratically in the number of pixels. This makes minute-length video generation extremely expensive, limiting most existing models to generating videos of only 10-20 seconds length. We propose a Linear-complexity text-to-video Generation (LinGen) framework whose cost scales linearly in the number of pixels. For the first time, LinGen enables high-resolution minute-length video generation on a single GPU without compromising quality. It replaces the computationally-dominant and quadratic-complexity block, self-attention, with a linear-complexity block called MATE, which consists of an MA-branch and a TE-branch. The MA-branch targets short-to-long-range correlations, combining a bidirectional Mamba2 block with our token rearrangement method, Rotary Major Scan, and our review tokens developed for long video generation. The TE-branch is a novel TEmporal Swin Attention block that focuses on temporal correlations between adjacent tokens and medium-range tokens. The MATE block addresses the adjacency preservation issue of Mamba and improves the consistency of generated videos significantly. Experimental results show that LinGen outperforms DiT (with a 75.6% win rate) in video quality with up to 15times (11.5times) FLOPs (latency) reduction. Furthermore, both automatic metrics and human evaluation demonstrate our LinGen-4B yields comparable video quality to state-of-the-art models (with a 50.5%, 52.1%, 49.1% win rate with respect to Gen-3, LumaLabs, and Kling, respectively). This paves the way to hour-length movie generation and real-time interactive video generation. We provide 68s video generation results and more examples in our project website: https://lineargen.github.io/.

  • 13 authors
·
Dec 12, 2024 4

MUG-V 10B: High-efficiency Training Pipeline for Large Video Generation Models

In recent years, large-scale generative models for visual content (e.g., images, videos, and 3D objects/scenes) have made remarkable progress. However, training large-scale video generation models remains particularly challenging and resource-intensive due to cross-modal text-video alignment, the long sequences involved, and the complex spatiotemporal dependencies. To address these challenges, we present a training framework that optimizes four pillars: (i) data processing, (ii) model architecture, (iii) training strategy, and (iv) infrastructure for large-scale video generation models. These optimizations delivered significant efficiency gains and performance improvements across all stages of data preprocessing, video compression, parameter scaling, curriculum-based pretraining, and alignment-focused post-training. Our resulting model, MUG-V 10B, matches recent state-of-the-art video generators overall and, on e-commerce-oriented video generation tasks, surpasses leading open-source baselines in human evaluations. More importantly, we open-source the complete stack, including model weights, Megatron-Core-based large-scale training code, and inference pipelines for video generation and enhancement. To our knowledge, this is the first public release of large-scale video generation training code that exploits Megatron-Core to achieve high training efficiency and near-linear multi-node scaling, details are available in https://github.com/Shopee-MUG/MUG-V{our webpage}.

Phenaki: Variable Length Video Generation From Open Domain Textual Description

We present Phenaki, a model capable of realistic video synthesis, given a sequence of textual prompts. Generating videos from text is particularly challenging due to the computational cost, limited quantities of high quality text-video data and variable length of videos. To address these issues, we introduce a new model for learning video representation which compresses the video to a small representation of discrete tokens. This tokenizer uses causal attention in time, which allows it to work with variable-length videos. To generate video tokens from text we are using a bidirectional masked transformer conditioned on pre-computed text tokens. The generated video tokens are subsequently de-tokenized to create the actual video. To address data issues, we demonstrate how joint training on a large corpus of image-text pairs as well as a smaller number of video-text examples can result in generalization beyond what is available in the video datasets. Compared to the previous video generation methods, Phenaki can generate arbitrary long videos conditioned on a sequence of prompts (i.e. time variable text or a story) in open domain. To the best of our knowledge, this is the first time a paper studies generating videos from time variable prompts. In addition, compared to the per-frame baselines, the proposed video encoder-decoder computes fewer tokens per video but results in better spatio-temporal consistency.

  • 9 authors
·
Oct 5, 2022

SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis

Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.

  • 4 authors
·
Nov 25, 2024 2

Controllable Longer Image Animation with Diffusion Models

Generating realistic animated videos from static images is an important area of research in computer vision. Methods based on physical simulation and motion prediction have achieved notable advances, but they are often limited to specific object textures and motion trajectories, failing to exhibit highly complex environments and physical dynamics. In this paper, we introduce an open-domain controllable image animation method using motion priors with video diffusion models. Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos and learning moving trajectories and strengths. Current pretrained video generation models are typically limited to producing very short videos, typically less than 30 frames. In contrast, we propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks, facilitating the creation of videos over 100 frames in length while maintaining consistency in content scenery and motion coordination. Specifically, we decompose the denoise process into two distinct phases: the shaping of scene contours and the refining of motion details. Then we reschedule the noise to control the generated frame sequences maintaining long-distance noise correlation. We conducted extensive experiments with 10 baselines, encompassing both commercial tools and academic methodologies, which demonstrate the superiority of our method. Our project page: https://wangqiang9.github.io/Controllable.github.io/

  • 5 authors
·
May 27, 2024

VideoDirectorGPT: Consistent Multi-scene Video Generation via LLM-Guided Planning

Although recent text-to-video (T2V) generation methods have seen significant advancements, most of these works focus on producing short video clips of a single event with a single background (i.e., single-scene videos). Meanwhile, recent large language models (LLMs) have demonstrated their capability in generating layouts and programs to control downstream visual modules such as image generation models. This raises an important question: can we leverage the knowledge embedded in these LLMs for temporally consistent long video generation? In this paper, we propose VideoDirectorGPT, a novel framework for consistent multi-scene video generation that uses the knowledge of LLMs for video content planning and grounded video generation. Specifically, given a single text prompt, we first ask our video planner LLM (GPT-4) to expand it into a 'video plan', which involves generating the scene descriptions, the entities with their respective layouts, the background for each scene, and consistency groupings of the entities and backgrounds. Next, guided by this output from the video planner, our video generator, Layout2Vid, has explicit control over spatial layouts and can maintain temporal consistency of entities/backgrounds across scenes, while only trained with image-level annotations. Our experiments demonstrate that VideoDirectorGPT framework substantially improves layout and movement control in both single- and multi-scene video generation and can generate multi-scene videos with visual consistency across scenes, while achieving competitive performance with SOTAs in open-domain single-scene T2V generation. We also demonstrate that our framework can dynamically control the strength for layout guidance and can also generate videos with user-provided images. We hope our framework can inspire future work on better integrating the planning ability of LLMs into consistent long video generation.

  • 4 authors
·
Sep 26, 2023 5

VideoFactory: Swap Attention in Spatiotemporal Diffusions for Text-to-Video Generation

We present VideoFactory, an innovative framework for generating high-quality open-domain videos. VideoFactory excels in producing high-definition (1376x768), widescreen (16:9) videos without watermarks, creating an engaging user experience. Generating videos guided by text instructions poses significant challenges, such as modeling the complex relationship between space and time, and the lack of large-scale text-video paired data. Previous approaches extend pretrained text-to-image generation models by adding temporal 1D convolution/attention modules for video generation. However, these approaches overlook the importance of jointly modeling space and time, inevitably leading to temporal distortions and misalignment between texts and videos. In this paper, we propose a novel approach that strengthens the interaction between spatial and temporal perceptions. In particular, we utilize a swapped cross-attention mechanism in 3D windows that alternates the "query" role between spatial and temporal blocks, enabling mutual reinforcement for each other. To fully unlock model capabilities for high-quality video generation, we curate a large-scale video dataset called HD-VG-130M. This dataset comprises 130 million text-video pairs from the open-domain, ensuring high-definition, widescreen and watermark-free characters. Objective metrics and user studies demonstrate the superiority of our approach in terms of per-frame quality, temporal correlation, and text-video alignment, with clear margins.

  • 7 authors
·
May 18, 2023

AMD-Hummingbird: Towards an Efficient Text-to-Video Model

Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.

  • 6 authors
·
Mar 24 2

VideoCrafter2: Overcoming Data Limitations for High-Quality Video Diffusion Models

Text-to-video generation aims to produce a video based on a given prompt. Recently, several commercial video models have been able to generate plausible videos with minimal noise, excellent details, and high aesthetic scores. However, these models rely on large-scale, well-filtered, high-quality videos that are not accessible to the community. Many existing research works, which train models using the low-quality WebVid-10M dataset, struggle to generate high-quality videos because the models are optimized to fit WebVid-10M. In this work, we explore the training scheme of video models extended from Stable Diffusion and investigate the feasibility of leveraging low-quality videos and synthesized high-quality images to obtain a high-quality video model. We first analyze the connection between the spatial and temporal modules of video models and the distribution shift to low-quality videos. We observe that full training of all modules results in a stronger coupling between spatial and temporal modules than only training temporal modules. Based on this stronger coupling, we shift the distribution to higher quality without motion degradation by finetuning spatial modules with high-quality images, resulting in a generic high-quality video model. Evaluations are conducted to demonstrate the superiority of the proposed method, particularly in picture quality, motion, and concept composition.

  • 7 authors
·
Jan 17, 2024 2

ControlVideo: Training-free Controllable Text-to-Video Generation

Text-driven diffusion models have unlocked unprecedented abilities in image generation, whereas their video counterpart still lags behind due to the excessive training cost of temporal modeling. Besides the training burden, the generated videos also suffer from appearance inconsistency and structural flickers, especially in long video synthesis. To address these challenges, we design a training-free framework called ControlVideo to enable natural and efficient text-to-video generation. ControlVideo, adapted from ControlNet, leverages coarsely structural consistency from input motion sequences, and introduces three modules to improve video generation. Firstly, to ensure appearance coherence between frames, ControlVideo adds fully cross-frame interaction in self-attention modules. Secondly, to mitigate the flicker effect, it introduces an interleaved-frame smoother that employs frame interpolation on alternated frames. Finally, to produce long videos efficiently, it utilizes a hierarchical sampler that separately synthesizes each short clip with holistic coherency. Empowered with these modules, ControlVideo outperforms the state-of-the-arts on extensive motion-prompt pairs quantitatively and qualitatively. Notably, thanks to the efficient designs, it generates both short and long videos within several minutes using one NVIDIA 2080Ti. Code is available at https://github.com/YBYBZhang/ControlVideo.

  • 6 authors
·
May 22, 2023 3

VideoGen: A Reference-Guided Latent Diffusion Approach for High Definition Text-to-Video Generation

In this paper, we present VideoGen, a text-to-video generation approach, which can generate a high-definition video with high frame fidelity and strong temporal consistency using reference-guided latent diffusion. We leverage an off-the-shelf text-to-image generation model, e.g., Stable Diffusion, to generate an image with high content quality from the text prompt, as a reference image to guide video generation. Then, we introduce an efficient cascaded latent diffusion module conditioned on both the reference image and the text prompt, for generating latent video representations, followed by a flow-based temporal upsampling step to improve the temporal resolution. Finally, we map latent video representations into a high-definition video through an enhanced video decoder. During training, we use the first frame of a ground-truth video as the reference image for training the cascaded latent diffusion module. The main characterises of our approach include: the reference image generated by the text-to-image model improves the visual fidelity; using it as the condition makes the diffusion model focus more on learning the video dynamics; and the video decoder is trained over unlabeled video data, thus benefiting from high-quality easily-available videos. VideoGen sets a new state-of-the-art in text-to-video generation in terms of both qualitative and quantitative evaluation.

  • 10 authors
·
Sep 1, 2023 7

StyleInV: A Temporal Style Modulated Inversion Network for Unconditional Video Generation

Unconditional video generation is a challenging task that involves synthesizing high-quality videos that are both coherent and of extended duration. To address this challenge, researchers have used pretrained StyleGAN image generators for high-quality frame synthesis and focused on motion generator design. The motion generator is trained in an autoregressive manner using heavy 3D convolutional discriminators to ensure motion coherence during video generation. In this paper, we introduce a novel motion generator design that uses a learning-based inversion network for GAN. The encoder in our method captures rich and smooth priors from encoding images to latents, and given the latent of an initially generated frame as guidance, our method can generate smooth future latent by modulating the inversion encoder temporally. Our method enjoys the advantage of sparse training and naturally constrains the generation space of our motion generator with the inversion network guided by the initial frame, eliminating the need for heavy discriminators. Moreover, our method supports style transfer with simple fine-tuning when the encoder is paired with a pretrained StyleGAN generator. Extensive experiments conducted on various benchmarks demonstrate the superiority of our method in generating long and high-resolution videos with decent single-frame quality and temporal consistency.

  • 3 authors
·
Aug 31, 2023

Stable Video Infinity: Infinite-Length Video Generation with Error Recycling

We propose Stable Video Infinity (SVI) that is able to generate infinite-length videos with high temporal consistency, plausible scene transitions, and controllable streaming storylines. While existing long-video methods attempt to mitigate accumulated errors via handcrafted anti-drifting (e.g., modified noise scheduler, frame anchoring), they remain limited to single-prompt extrapolation, producing homogeneous scenes with repetitive motions. We identify that the fundamental challenge extends beyond error accumulation to a critical discrepancy between the training assumption (seeing clean data) and the test-time autoregressive reality (conditioning on self-generated, error-prone outputs). To bridge this hypothesis gap, SVI incorporates Error-Recycling Fine-Tuning, a new type of efficient training that recycles the Diffusion Transformer (DiT)'s self-generated errors into supervisory prompts, thereby encouraging DiT to actively identify and correct its own errors. This is achieved by injecting, collecting, and banking errors through closed-loop recycling, autoregressively learning from error-injected feedback. Specifically, we (i) inject historical errors made by DiT to intervene on clean inputs, simulating error-accumulated trajectories in flow matching; (ii) efficiently approximate predictions with one-step bidirectional integration and calculate errors with residuals; (iii) dynamically bank errors into replay memory across discretized timesteps, which are resampled for new input. SVI is able to scale videos from seconds to infinite durations with no additional inference cost, while remaining compatible with diverse conditions (e.g., audio, skeleton, and text streams). We evaluate SVI on three benchmarks, including consistent, creative, and conditional settings, thoroughly verifying its versatility and state-of-the-art role.

epfl-vita EPFL VITA Lab
·
Oct 10 2

ARLON: Boosting Diffusion Transformers with Autoregressive Models for Long Video Generation

Text-to-video models have recently undergone rapid and substantial advancements. Nevertheless, due to limitations in data and computational resources, achieving efficient generation of long videos with rich motion dynamics remains a significant challenge. To generate high-quality, dynamic, and temporally consistent long videos, this paper presents ARLON, a novel framework that boosts diffusion Transformers with autoregressive models for long video generation, by integrating the coarse spatial and long-range temporal information provided by the AR model to guide the DiT model. Specifically, ARLON incorporates several key innovations: 1) A latent Vector Quantized Variational Autoencoder (VQ-VAE) compresses the input latent space of the DiT model into compact visual tokens, bridging the AR and DiT models and balancing the learning complexity and information density; 2) An adaptive norm-based semantic injection module integrates the coarse discrete visual units from the AR model into the DiT model, ensuring effective guidance during video generation; 3) To enhance the tolerance capability of noise introduced from the AR inference, the DiT model is trained with coarser visual latent tokens incorporated with an uncertainty sampling module. Experimental results demonstrate that ARLON significantly outperforms the baseline OpenSora-V1.2 on eight out of eleven metrics selected from VBench, with notable improvements in dynamic degree and aesthetic quality, while delivering competitive results on the remaining three and simultaneously accelerating the generation process. In addition, ARLON achieves state-of-the-art performance in long video generation. Detailed analyses of the improvements in inference efficiency are presented, alongside a practical application that demonstrates the generation of long videos using progressive text prompts. See demos of ARLON at http://aka.ms/arlon.

  • 10 authors
·
Oct 27, 2024

LLMs Meet Long Video: Advancing Long Video Comprehension with An Interactive Visual Adapter in LLMs

Long video understanding is a significant and ongoing challenge in the intersection of multimedia and artificial intelligence. Employing large language models (LLMs) for comprehending video becomes an emerging and promising method. However, this approach incurs high computational costs due to the extensive array of video tokens, experiences reduced visual clarity as a consequence of token aggregation, and confronts challenges arising from irrelevant visual tokens while answering video-related questions. To alleviate these issues, we present an Interactive Visual Adapter (IVA) within LLMs, designed to enhance interaction with fine-grained visual elements. Specifically, we first transform long videos into temporal video tokens via leveraging a visual encoder alongside a pretrained causal transformer, then feed them into LLMs with the video instructions. Subsequently, we integrated IVA, which contains a lightweight temporal frame selector and a spatial feature interactor, within the internal blocks of LLMs to capture instruction-aware and fine-grained visual signals. Consequently, the proposed video-LLM facilitates a comprehensive understanding of long video content through appropriate long video modeling and precise visual interactions. We conducted extensive experiments on nine video understanding benchmarks and experimental results show that our interactive visual adapter significantly improves the performance of video LLMs on long video QA tasks. Ablation studies further verify the effectiveness of IVA in long and short video understandings.

  • 4 authors
·
Feb 21, 2024 1

VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis

Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.

  • 5 authors
·
Mar 20, 2024 3

MTVG : Multi-text Video Generation with Text-to-Video Models

Recently, video generation has attracted massive attention and yielded noticeable outcomes. Concerning the characteristics of video, multi-text conditioning incorporating sequential events is necessary for next-step video generation. In this work, we propose a novel multi-text video generation~(MTVG) by directly utilizing a pre-trained diffusion-based text-to-video~(T2V) generation model without additional fine-tuning. To generate consecutive video segments, visual consistency generated by distinct prompts is necessary with diverse variations, such as motion and content-related transitions. Our proposed MTVG includes Dynamic Noise and Last Frame Aware Inversion which reinitialize the noise latent to preserve visual coherence between videos of different prompts and prevent repetitive motion or contents. Furthermore, we present Structure Guiding Sampling to maintain the global appearance across the frames in a single video clip, where we leverage iterative latent updates across the preceding frame. Additionally, our Prompt Generator allows for arbitrary format of text conditions consisting of diverse events. As a result, our extensive experiments, including diverse transitions of descriptions, demonstrate that our proposed methods show superior generated outputs in terms of semantically coherent and temporally seamless video.Video examples are available in our project page: https://kuai-lab.github.io/mtvg-page.

  • 8 authors
·
Dec 7, 2023

Tuning-Free Multi-Event Long Video Generation via Synchronized Coupled Sampling

While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.

  • 5 authors
·
Mar 11 2

Long-Context Autoregressive Video Modeling with Next-Frame Prediction

Long-context autoregressive modeling has significantly advanced language generation, but video generation still struggles to fully utilize extended temporal contexts. To investigate long-context video modeling, we introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling. Just as language models learn causal dependencies between tokens (i.e., Token AR), FAR models temporal causal dependencies between continuous frames, achieving better convergence than Token AR and video diffusion transformers. Building on FAR, we observe that long-context vision modeling faces challenges due to visual redundancy. Existing RoPE lacks effective temporal decay for remote context and fails to extrapolate well to long video sequences. Additionally, training on long videos is computationally expensive, as vision tokens grow much faster than language tokens. To tackle these issues, we propose balancing locality and long-range dependency. We introduce FlexRoPE, an test-time technique that adds flexible temporal decay to RoPE, enabling extrapolation to 16x longer vision contexts. Furthermore, we propose long short-term context modeling, where a high-resolution short-term context window ensures fine-grained temporal consistency, while an unlimited long-term context window encodes long-range information using fewer tokens. With this approach, we can train on long video sequences with a manageable token context length. We demonstrate that FAR achieves state-of-the-art performance in both short- and long-video generation, providing a simple yet effective baseline for video autoregressive modeling.

  • 3 authors
·
Mar 24 2

ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning

Recently, advancements in video synthesis have attracted significant attention. Video synthesis models such as AnimateDiff and Stable Video Diffusion have demonstrated the practical applicability of diffusion models in creating dynamic visual content. The emergence of SORA has further spotlighted the potential of video generation technologies. Nonetheless, the extension of video lengths has been constrained by the limitations in computational resources. Most existing video synthesis models can only generate short video clips. In this paper, we propose a novel post-tuning methodology for video synthesis models, called ExVideo. This approach is designed to enhance the capability of current video synthesis models, allowing them to produce content over extended temporal durations while incurring lower training expenditures. In particular, we design extension strategies across common temporal model architectures respectively, including 3D convolution, temporal attention, and positional embedding. To evaluate the efficacy of our proposed post-tuning approach, we conduct extension training on the Stable Video Diffusion model. Our approach augments the model's capacity to generate up to 5times its original number of frames, requiring only 1.5k GPU hours of training on a dataset comprising 40k videos. Importantly, the substantial increase in video length doesn't compromise the model's innate generalization capabilities, and the model showcases its advantages in generating videos of diverse styles and resolutions. We will release the source code and the enhanced model publicly.

  • 5 authors
·
Jun 20, 2024 3

Interpolating Video-LLMs: Toward Longer-sequence LMMs in a Training-free Manner

Advancements in Large Language Models (LLMs) inspire various strategies for integrating video modalities. A key approach is Video-LLMs, which incorporate an optimizable interface linking sophisticated video encoders to LLMs. However, due to computation and data limitations, these Video-LLMs are typically pre-trained to process only short videos, limiting their broader application for understanding longer video content. Additionally, fine-tuning Video-LLMs to handle longer videos is cost-prohibitive. Consequently, it becomes essential to explore the interpolation of Video-LLMs under a completely training-free setting. In this paper, we first identify the primary challenges in interpolating Video-LLMs: (1) the video encoder and modality alignment projector are fixed, preventing the integration of additional frames into Video-LLMs, and (2) the LLM backbone is limited in its content length capabilities, which complicates the processing of an increased number of video tokens. To address these challenges, we propose a specific INTerPolation method for Video-LLMs (INTP-Video-LLMs). We introduce an alternative video token rearrangement technique that circumvents limitations imposed by the fixed video encoder and alignment projector. Furthermore, we introduce a training-free LLM context window extension method to enable Video-LLMs to understand a correspondingly increased number of visual tokens.

  • 10 authors
·
Sep 19, 2024

Visual Context Window Extension: A New Perspective for Long Video Understanding

Large Multimodal Models (LMMs) have demonstrated impressive performance in short video understanding tasks but face great challenges when applied to long video understanding. In contrast, Large Language Models (LLMs) exhibit outstanding capabilities in modeling long texts. Existing work attempts to address this issue by introducing long video-text pairs during training. However, these approaches require substantial computational and data resources. In this paper, we tackle the challenge of long video understanding from the perspective of context windows, aiming to apply LMMs to long video tasks without retraining on long video datasets. We first conduct an in-depth analysis of why pretrained LMMs struggle to understand lengthy video content, identifying that discrepancies between visual and language modalities lead to different context windows for visual and language tokens, making it difficult to directly extend the visual tokens to match the language context window. Based on this, we propose to adapt LMMs for long video understanding tasks by extending the visual context window, eliminating the need for retraining on large scalelong video datasets. To further mitigate the significant memory consumption caused by long sequences, we introduce a progressive pooling inference strategy that selectively adjusts the spatial resolution of frame embeddings, reducing the number of visual tokens while retaining important spatial information. Across multiple long video understanding benchmarks, our method consistently improves the performance as the number of video frames increases. On the MLVU benchmark, our method outperforms GPT-4o, even though our model size is only 7B. Additionally, in the 256-frame setting, our method reduces memory usage by approximately 45% compared to the baseline, without introducing any performance loss.

  • 2 authors
·
Sep 30, 2024 2

Factorized-Dreamer: Training A High-Quality Video Generator with Limited and Low-Quality Data

Text-to-video (T2V) generation has gained significant attention due to its wide applications to video generation, editing, enhancement and translation, \etc. However, high-quality (HQ) video synthesis is extremely challenging because of the diverse and complex motions existed in real world. Most existing works struggle to address this problem by collecting large-scale HQ videos, which are inaccessible to the community. In this work, we show that publicly available limited and low-quality (LQ) data are sufficient to train a HQ video generator without recaptioning or finetuning. We factorize the whole T2V generation process into two steps: generating an image conditioned on a highly descriptive caption, and synthesizing the video conditioned on the generated image and a concise caption of motion details. Specifically, we present Factorized-Dreamer, a factorized spatiotemporal framework with several critical designs for T2V generation, including an adapter to combine text and image embeddings, a pixel-aware cross attention module to capture pixel-level image information, a T5 text encoder to better understand motion description, and a PredictNet to supervise optical flows. We further present a noise schedule, which plays a key role in ensuring the quality and stability of video generation. Our model lowers the requirements in detailed captions and HQ videos, and can be directly trained on limited LQ datasets with noisy and brief captions such as WebVid-10M, largely alleviating the cost to collect large-scale HQ video-text pairs. Extensive experiments in a variety of T2V and image-to-video generation tasks demonstrate the effectiveness of our proposed Factorized-Dreamer. Our source codes are available at https://github.com/yangxy/Factorized-Dreamer/.

  • 6 authors
·
Aug 19, 2024 3

Multimodal Long Video Modeling Based on Temporal Dynamic Context

Recent advances in Large Language Models (LLMs) have led to significant breakthroughs in video understanding. However, existing models still struggle with long video processing due to the context length constraint of LLMs and the vast amount of information within the video. Although some recent methods are designed for long video understanding, they often lose crucial information during token compression and struggle with additional modality like audio. In this work, we propose a dynamic long video encoding method utilizing the temporal relationship between frames, named Temporal Dynamic Context (TDC). Firstly, we segment the video into semantically consistent scenes based on inter-frame similarities, then encode each frame into tokens using visual-audio encoders. Secondly, we propose a novel temporal context compressor to reduce the number of tokens within each segment. Specifically, we employ a query-based Transformer to aggregate video, audio, and instruction text tokens into a limited set of temporal context tokens. Finally, we feed the static frame tokens and the temporal context tokens into the LLM for video understanding. Furthermore, to handle extremely long videos, we propose a training-free chain-of-thought strategy that progressively extracts answers from multiple video segments. These intermediate answers serve as part of the reasoning process and contribute to the final answer. We conduct extensive experiments on general video understanding and audio-video understanding benchmarks, where our method demonstrates strong performance. The code and models are available at https://github.com/Hoar012/TDC-Video.

  • 4 authors
·
Apr 14 2

Video-RAG: Visually-aligned Retrieval-Augmented Long Video Comprehension

Existing large video-language models (LVLMs) struggle to comprehend long videos correctly due to limited context. To address this problem, fine-tuning long-context LVLMs and employing GPT-based agents have emerged as promising solutions. However, fine-tuning LVLMs would require extensive high-quality data and substantial GPU resources, while GPT-based agents would rely on proprietary models (e.g., GPT-4o). In this paper, we propose Video Retrieval-Augmented Generation (Video-RAG), a training-free and cost-effective pipeline that employs visually-aligned auxiliary texts to help facilitate cross-modality alignment while providing additional information beyond the visual content. Specifically, we leverage open-source external tools to extract visually-aligned information from pure video data (e.g., audio, optical character, and object detection), and incorporate the extracted information into an existing LVLM as auxiliary texts, alongside video frames and queries, in a plug-and-play manner. Our Video-RAG offers several key advantages: (i) lightweight with low computing overhead due to single-turn retrieval; (ii) easy implementation and compatibility with any LVLM; and (iii) significant, consistent performance gains across long video understanding benchmarks, including Video-MME, MLVU, and LongVideoBench. Notably, our model demonstrates superior performance over proprietary models like Gemini-1.5-Pro and GPT-4o when utilized with a 72B model.

  • 10 authors
·
Nov 20, 2024

Dimension-Reduction Attack! Video Generative Models are Experts on Controllable Image Synthesis

Video generative models can be regarded as world simulators due to their ability to capture dynamic, continuous changes inherent in real-world environments. These models integrate high-dimensional information across visual, temporal, spatial, and causal dimensions, enabling predictions of subjects in various status. A natural and valuable research direction is to explore whether a fully trained video generative model in high-dimensional space can effectively support lower-dimensional tasks such as controllable image generation. In this work, we propose a paradigm for video-to-image knowledge compression and task adaptation, termed Dimension-Reduction Attack (DRA-Ctrl), which utilizes the strengths of video models, including long-range context modeling and flatten full-attention, to perform various generation tasks. Specially, to address the challenging gap between continuous video frames and discrete image generation, we introduce a mixup-based transition strategy that ensures smooth adaptation. Moreover, we redesign the attention structure with a tailored masking mechanism to better align text prompts with image-level control. Experiments across diverse image generation tasks, such as subject-driven and spatially conditioned generation, show that repurposed video models outperform those trained directly on images. These results highlight the untapped potential of large-scale video generators for broader visual applications. DRA-Ctrl provides new insights into reusing resource-intensive video models and lays foundation for future unified generative models across visual modalities. The project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.

  • 7 authors
·
May 29

CoNo: Consistency Noise Injection for Tuning-free Long Video Diffusion

Tuning-free long video diffusion has been proposed to generate extended-duration videos with enriched content by reusing the knowledge from pre-trained short video diffusion model without retraining. However, most works overlook the fine-grained long-term video consistency modeling, resulting in limited scene consistency (i.e., unreasonable object or background transitions), especially with multiple text inputs. To mitigate this, we propose the Consistency Noise Injection, dubbed CoNo, which introduces the "look-back" mechanism to enhance the fine-grained scene transition between different video clips, and designs the long-term consistency regularization to eliminate the content shifts when extending video contents through noise prediction. In particular, the "look-back" mechanism breaks the noise scheduling process into three essential parts, where one internal noise prediction part is injected into two video-extending parts, intending to achieve a fine-grained transition between two video clips. The long-term consistency regularization focuses on explicitly minimizing the pixel-wise distance between the predicted noises of the extended video clip and the original one, thereby preventing abrupt scene transitions. Extensive experiments have shown the effectiveness of the above strategies by performing long-video generation under both single- and multi-text prompt conditions. The project has been available in https://wxrui182.github.io/CoNo.github.io/.

  • 3 authors
·
Jun 7, 2024

JPEG-LM: LLMs as Image Generators with Canonical Codec Representations

Recent work in image and video generation has been adopting the autoregressive LLM architecture due to its generality and potentially easy integration into multi-modal systems. The crux of applying autoregressive training in language generation to visual generation is discretization -- representing continuous data like images and videos as discrete tokens. Common methods of discretizing images and videos include modeling raw pixel values, which are prohibitively lengthy, or vector quantization, which requires convoluted pre-hoc training. In this work, we propose to directly model images and videos as compressed files saved on computers via canonical codecs (e.g., JPEG, AVC/H.264). Using the default Llama architecture without any vision-specific modifications, we pretrain JPEG-LM from scratch to generate images (and AVC-LM to generate videos as a proof of concept), by directly outputting compressed file bytes in JPEG and AVC formats. Evaluation of image generation shows that this simple and straightforward approach is more effective than pixel-based modeling and sophisticated vector quantization baselines (on which our method yields a 31% reduction in FID). Our analysis shows that JPEG-LM has an especial advantage over vector quantization models in generating long-tail visual elements. Overall, we show that using canonical codec representations can help lower the barriers between language generation and visual generation, facilitating future research on multi-modal language/image/video LLMs.

  • 4 authors
·
Aug 15, 2024 4

HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models

Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.

  • 10 authors
·
Mar 14

LV-MAE: Learning Long Video Representations through Masked-Embedding Autoencoders

In this work, we introduce long-video masked-embedding autoencoders (LV-MAE), a self-supervised learning framework for long video representation. Our approach treats short- and long-span dependencies as two separate tasks. Such decoupling allows for a more intuitive video processing where short-span spatiotemporal primitives are first encoded and are then used to capture long-range dependencies across consecutive video segments. To achieve this, we leverage advanced off-the-shelf multimodal encoders to extract representations from short segments within the long video, followed by pre-training a masked-embedding autoencoder capturing high-level interactions across segments. LV-MAE is highly efficient to train and enables the processing of much longer videos by alleviating the constraint on the number of input frames. Furthermore, unlike existing methods that typically pre-train on short-video datasets, our approach offers self-supervised pre-training using long video samples (e.g., 20+ minutes video clips) at scale. Using LV-MAE representations, we achieve state-of-the-art results on three long-video benchmarks -- LVU, COIN, and Breakfast -- employing only a simple classification head for either attentive or linear probing. Finally, to assess LV-MAE pre-training and visualize its reconstruction quality, we leverage the video-language aligned space of short video representations to monitor LV-MAE through video-text retrieval.

  • 7 authors
·
Apr 4

SANA-Video: Efficient Video Generation with Block Linear Diffusion Transformer

We introduce SANA-Video, a small diffusion model that can efficiently generate videos up to 720x1280 resolution and minute-length duration. SANA-Video synthesizes high-resolution, high-quality and long videos with strong text-video alignment at a remarkably fast speed, deployable on RTX 5090 GPU. Two core designs ensure our efficient, effective and long video generation: (1) Linear DiT: We leverage linear attention as the core operation, which is more efficient than vanilla attention given the large number of tokens processed in video generation. (2) Constant-Memory KV cache for Block Linear Attention: we design block-wise autoregressive approach for long video generation by employing a constant-memory state, derived from the cumulative properties of linear attention. This KV cache provides the Linear DiT with global context at a fixed memory cost, eliminating the need for a traditional KV cache and enabling efficient, minute-long video generation. In addition, we explore effective data filters and model training strategies, narrowing the training cost to 12 days on 64 H100 GPUs, which is only 1% of the cost of MovieGen. Given its low cost, SANA-Video achieves competitive performance compared to modern state-of-the-art small diffusion models (e.g., Wan 2.1-1.3B and SkyReel-V2-1.3B) while being 16x faster in measured latency. Moreover, SANA-Video can be deployed on RTX 5090 GPUs with NVFP4 precision, accelerating the inference speed of generating a 5-second 720p video from 71s to 29s (2.4x speedup). In summary, SANA-Video enables low-cost, high-quality video generation.

nvidia NVIDIA
·
Sep 29 2

Compositional 3D-aware Video Generation with LLM Director

Significant progress has been made in text-to-video generation through the use of powerful generative models and large-scale internet data. However, substantial challenges remain in precisely controlling individual concepts within the generated video, such as the motion and appearance of specific characters and the movement of viewpoints. In this work, we propose a novel paradigm that generates each concept in 3D representation separately and then composes them with priors from Large Language Models (LLM) and 2D diffusion models. Specifically, given an input textual prompt, our scheme consists of three stages: 1) We leverage LLM as the director to first decompose the complex query into several sub-prompts that indicate individual concepts within the video~(e.g., scene, objects, motions), then we let LLM to invoke pre-trained expert models to obtain corresponding 3D representations of concepts. 2) To compose these representations, we prompt multi-modal LLM to produce coarse guidance on the scales and coordinates of trajectories for the objects. 3) To make the generated frames adhere to natural image distribution, we further leverage 2D diffusion priors and use Score Distillation Sampling to refine the composition. Extensive experiments demonstrate that our method can generate high-fidelity videos from text with diverse motion and flexible control over each concept. Project page: https://aka.ms/c3v.

  • 6 authors
·
Aug 31, 2024 2

LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation

With the impressive progress in diffusion-based text-to-image generation, extending such powerful generative ability to text-to-video raises enormous attention. Existing methods either require large-scale text-video pairs and a large number of training resources or learn motions that are precisely aligned with template videos. It is non-trivial to balance a trade-off between the degree of generation freedom and the resource costs for video generation. In our study, we present a few-shot-based tuning framework, LAMP, which enables text-to-image diffusion model Learn A specific Motion Pattern with 8~16 videos on a single GPU. Specifically, we design a first-frame-conditioned pipeline that uses an off-the-shelf text-to-image model for content generation so that our tuned video diffusion model mainly focuses on motion learning. The well-developed text-to-image techniques can provide visually pleasing and diverse content as generation conditions, which highly improves video quality and generation freedom. To capture the features of temporal dimension, we expand the pretrained 2D convolution layers of the T2I model to our novel temporal-spatial motion learning layers and modify the attention blocks to the temporal level. Additionally, we develop an effective inference trick, shared-noise sampling, which can improve the stability of videos with computational costs. Our method can also be flexibly applied to other tasks, e.g. real-world image animation and video editing. Extensive experiments demonstrate that LAMP can effectively learn the motion pattern on limited data and generate high-quality videos. The code and models are available at https://rq-wu.github.io/projects/LAMP.

  • 6 authors
·
Oct 16, 2023 2

ViSMaP: Unsupervised Hour-long Video Summarisation by Meta-Prompting

We introduce ViSMap: Unsupervised Video Summarisation by Meta Prompting, a system to summarise hour long videos with no-supervision. Most existing video understanding models work well on short videos of pre-segmented events, yet they struggle to summarise longer videos where relevant events are sparsely distributed and not pre-segmented. Moreover, long-form video understanding often relies on supervised hierarchical training that needs extensive annotations which are costly, slow and prone to inconsistency. With ViSMaP we bridge the gap between short videos (where annotated data is plentiful) and long ones (where it's not). We rely on LLMs to create optimised pseudo-summaries of long videos using segment descriptions from short ones. These pseudo-summaries are used as training data for a model that generates long-form video summaries, bypassing the need for expensive annotations of long videos. Specifically, we adopt a meta-prompting strategy to iteratively generate and refine creating pseudo-summaries of long videos. The strategy leverages short clip descriptions obtained from a supervised short video model to guide the summary. Each iteration uses three LLMs working in sequence: one to generate the pseudo-summary from clip descriptions, another to evaluate it, and a third to optimise the prompt of the generator. This iteration is necessary because the quality of the pseudo-summaries is highly dependent on the generator prompt, and varies widely among videos. We evaluate our summaries extensively on multiple datasets; our results show that ViSMaP achieves performance comparable to fully supervised state-of-the-art models while generalising across domains without sacrificing performance. Code will be released upon publication.

  • 4 authors
·
Apr 22 2

Hallo2: Long-Duration and High-Resolution Audio-Driven Portrait Image Animation

Recent advances in latent diffusion-based generative models for portrait image animation, such as Hallo, have achieved impressive results in short-duration video synthesis. In this paper, we present updates to Hallo, introducing several design enhancements to extend its capabilities. First, we extend the method to produce long-duration videos. To address substantial challenges such as appearance drift and temporal artifacts, we investigate augmentation strategies within the image space of conditional motion frames. Specifically, we introduce a patch-drop technique augmented with Gaussian noise to enhance visual consistency and temporal coherence over long duration. Second, we achieve 4K resolution portrait video generation. To accomplish this, we implement vector quantization of latent codes and apply temporal alignment techniques to maintain coherence across the temporal dimension. By integrating a high-quality decoder, we realize visual synthesis at 4K resolution. Third, we incorporate adjustable semantic textual labels for portrait expressions as conditional inputs. This extends beyond traditional audio cues to improve controllability and increase the diversity of the generated content. To the best of our knowledge, Hallo2, proposed in this paper, is the first method to achieve 4K resolution and generate hour-long, audio-driven portrait image animations enhanced with textual prompts. We have conducted extensive experiments to evaluate our method on publicly available datasets, including HDTF, CelebV, and our introduced "Wild" dataset. The experimental results demonstrate that our approach achieves state-of-the-art performance in long-duration portrait video animation, successfully generating rich and controllable content at 4K resolution for duration extending up to tens of minutes. Project page https://fudan-generative-vision.github.io/hallo2

  • 9 authors
·
Oct 10, 2024

ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation

Video generation has made remarkable progress in recent years, especially since the advent of the video diffusion models. Many video generation models can produce plausible synthetic videos, e.g., Stable Video Diffusion (SVD). However, most video models can only generate low frame rate videos due to the limited GPU memory as well as the difficulty of modeling a large set of frames. The training videos are always uniformly sampled at a specified interval for temporal compression. Previous methods promote the frame rate by either training a video interpolation model in pixel space as a postprocessing stage or training an interpolation model in latent space for a specific base video model. In this paper, we propose a training-free video interpolation method for generative video diffusion models, which is generalizable to different models in a plug-and-play manner. We investigate the non-linearity in the feature space of video diffusion models and transform a video model into a self-cascaded video diffusion model with incorporating the designed hidden state correction modules. The self-cascaded architecture and the correction module are proposed to retain the temporal consistency between key frames and the interpolated frames. Extensive evaluations are preformed on multiple popular video models to demonstrate the effectiveness of the propose method, especially that our training-free method is even comparable to trained interpolation models supported by huge compute resources and large-scale datasets.

  • 5 authors
·
Jun 2, 2024 1

STREAM: Spatio-TempoRal Evaluation and Analysis Metric for Video Generative Models

Image generative models have made significant progress in generating realistic and diverse images, supported by comprehensive guidance from various evaluation metrics. However, current video generative models struggle to generate even short video clips, with limited tools that provide insights for improvements. Current video evaluation metrics are simple adaptations of image metrics by switching the embeddings with video embedding networks, which may underestimate the unique characteristics of video. Our analysis reveals that the widely used Frechet Video Distance (FVD) has a stronger emphasis on the spatial aspect than the temporal naturalness of video and is inherently constrained by the input size of the embedding networks used, limiting it to 16 frames. Additionally, it demonstrates considerable instability and diverges from human evaluations. To address the limitations, we propose STREAM, a new video evaluation metric uniquely designed to independently evaluate spatial and temporal aspects. This feature allows comprehensive analysis and evaluation of video generative models from various perspectives, unconstrained by video length. We provide analytical and experimental evidence demonstrating that STREAM provides an effective evaluation tool for both visual and temporal quality of videos, offering insights into area of improvement for video generative models. To the best of our knowledge, STREAM is the first evaluation metric that can separately assess the temporal and spatial aspects of videos. Our code is available at https://github.com/pro2nit/STREAM.

  • 3 authors
·
Jan 30, 2024

Macro-from-Micro Planning for High-Quality and Parallelized Autoregressive Long Video Generation

Current autoregressive diffusion models excel at video generation but are generally limited to short temporal durations. Our theoretical analysis indicates that the autoregressive modeling typically suffers from temporal drift caused by error accumulation and hinders parallelization in long video synthesis. To address these limitations, we propose a novel planning-then-populating framework centered on Macro-from-Micro Planning (MMPL) for long video generation. MMPL sketches a global storyline for the entire video through two hierarchical stages: Micro Planning and Macro Planning. Specifically, Micro Planning predicts a sparse set of future keyframes within each short video segment, offering motion and appearance priors to guide high-quality video segment generation. Macro Planning extends the in-segment keyframes planning across the entire video through an autoregressive chain of micro plans, ensuring long-term consistency across video segments. Subsequently, MMPL-based Content Populating generates all intermediate frames in parallel across segments, enabling efficient parallelization of autoregressive generation. The parallelization is further optimized by Adaptive Workload Scheduling for balanced GPU execution and accelerated autoregressive video generation. Extensive experiments confirm that our method outperforms existing long video generation models in quality and stability. Generated videos and comparison results are in our project page.

  • 13 authors
·
Aug 5

Waver: Wave Your Way to Lifelike Video Generation

We present Waver, a high-performance foundation model for unified image and video generation. Waver can directly generate videos with durations ranging from 5 to 10 seconds at a native resolution of 720p, which are subsequently upscaled to 1080p. The model simultaneously supports text-to-video (T2V), image-to-video (I2V), and text-to-image (T2I) generation within a single, integrated framework. We introduce a Hybrid Stream DiT architecture to enhance modality alignment and accelerate training convergence. To ensure training data quality, we establish a comprehensive data curation pipeline and manually annotate and train an MLLM-based video quality model to filter for the highest-quality samples. Furthermore, we provide detailed training and inference recipes to facilitate the generation of high-quality videos. Building on these contributions, Waver excels at capturing complex motion, achieving superior motion amplitude and temporal consistency in video synthesis. Notably, it ranks among the Top 3 on both the T2V and I2V leaderboards at Artificial Analysis (data as of 2025-07-30 10:00 GMT+8), consistently outperforming existing open-source models and matching or surpassing state-of-the-art commercial solutions. We hope this technical report will help the community more efficiently train high-quality video generation models and accelerate progress in video generation technologies. Official page: https://github.com/FoundationVision/Waver.

DreamVideo: High-Fidelity Image-to-Video Generation with Image Retention and Text Guidance

Image-to-video generation, which aims to generate a video starting from a given reference image, has drawn great attention. Existing methods try to extend pre-trained text-guided image diffusion models to image-guided video generation models. Nevertheless, these methods often result in either low fidelity or flickering over time due to their limitation to shallow image guidance and poor temporal consistency. To tackle these problems, we propose a high-fidelity image-to-video generation method by devising a frame retention branch based on a pre-trained video diffusion model, named DreamVideo. Instead of integrating the reference image into the diffusion process at a semantic level, our DreamVideo perceives the reference image via convolution layers and concatenates the features with the noisy latents as model input. By this means, the details of the reference image can be preserved to the greatest extent. In addition, by incorporating double-condition classifier-free guidance, a single image can be directed to videos of different actions by providing varying prompt texts. This has significant implications for controllable video generation and holds broad application prospects. We conduct comprehensive experiments on the public dataset, and both quantitative and qualitative results indicate that our method outperforms the state-of-the-art method. Especially for fidelity, our model has a powerful image retention ability and delivers the best results in UCF101 compared to other image-to-video models to our best knowledge. Also, precise control can be achieved by giving different text prompts. Further details and comprehensive results of our model will be presented in https://anonymous0769.github.io/DreamVideo/.

  • 6 authors
·
Dec 4, 2023

LongVLM: Efficient Long Video Understanding via Large Language Models

Empowered by Large Language Models (LLMs), recent advancements in Video-based LLMs (VideoLLMs) have driven progress in various video understanding tasks. These models encode video representations through pooling or query aggregation over a vast number of visual tokens, making computational and memory costs affordable. Despite successfully providing an overall comprehension of video content, existing VideoLLMs still face challenges in achieving detailed understanding due to overlooking local information in long-term videos. To tackle this challenge, we introduce LongVLM, a simple yet powerful VideoLLM for long video understanding, building upon the observation that long videos often consist of sequential key events, complex actions, and camera movements. Our approach proposes to decompose long videos into multiple short-term segments and encode local features for each segment via a hierarchical token merging module. These features are concatenated in temporal order to maintain the storyline across sequential short-term segments. Additionally, we propose to integrate global semantics into each local feature to enhance context understanding. In this way, we encode video representations that incorporate both local and global information, enabling the LLM to generate comprehensive responses for long-term videos. Experimental results on the VideoChatGPT benchmark and zero-shot video question-answering datasets demonstrate the superior capabilities of our model over the previous state-of-the-art methods. Qualitative examples show that our model produces more precise responses for long video understanding. Code is available at https://github.com/ziplab/LongVLM.

  • 5 authors
·
Apr 4, 2024

LOVECon: Text-driven Training-Free Long Video Editing with ControlNet

Leveraging pre-trained conditional diffusion models for video editing without further tuning has gained increasing attention due to its promise in film production, advertising, etc. Yet, seminal works in this line fall short in generation length, temporal coherence, or fidelity to the source video. This paper aims to bridge the gap, establishing a simple and effective baseline for training-free diffusion model-based long video editing. As suggested by prior arts, we build the pipeline upon ControlNet, which excels at various image editing tasks based on text prompts. To break down the length constraints caused by limited computational memory, we split the long video into consecutive windows and develop a novel cross-window attention mechanism to ensure the consistency of global style and maximize the smoothness among windows. To achieve more accurate control, we extract the information from the source video via DDIM inversion and integrate the outcomes into the latent states of the generations. We also incorporate a video frame interpolation model to mitigate the frame-level flickering issue. Extensive empirical studies verify the superior efficacy of our method over competing baselines across scenarios, including the replacement of the attributes of foreground objects, style transfer, and background replacement. In particular, our method manages to edit videos with up to 128 frames according to user requirements. Code is available at https://github.com/zhijie-group/LOVECon.

  • 2 authors
·
Oct 14, 2023 2

Stable Cinemetrics : Structured Taxonomy and Evaluation for Professional Video Generation

Recent advances in video generation have enabled high-fidelity video synthesis from user provided prompts. However, existing models and benchmarks fail to capture the complexity and requirements of professional video generation. Towards that goal, we introduce Stable Cinemetrics, a structured evaluation framework that formalizes filmmaking controls into four disentangled, hierarchical taxonomies: Setup, Event, Lighting, and Camera. Together, these taxonomies define 76 fine-grained control nodes grounded in industry practices. Using these taxonomies, we construct a benchmark of prompts aligned with professional use cases and develop an automated pipeline for prompt categorization and question generation, enabling independent evaluation of each control dimension. We conduct a large-scale human study spanning 10+ models and 20K videos, annotated by a pool of 80+ film professionals. Our analysis, both coarse and fine-grained reveal that even the strongest current models exhibit significant gaps, particularly in Events and Camera-related controls. To enable scalable evaluation, we train an automatic evaluator, a vision-language model aligned with expert annotations that outperforms existing zero-shot baselines. SCINE is the first approach to situate professional video generation within the landscape of video generative models, introducing taxonomies centered around cinematic controls and supporting them with structured evaluation pipelines and detailed analyses to guide future research.

stabilityai Stability AI
·
Sep 30 2

StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification

Existing large vision-language models (LVLMs) are largely limited to processing short, seconds-long videos and struggle with generating coherent descriptions for extended video spanning minutes or more. Long video description introduces new challenges, such as plot-level consistency across descriptions. To address these, we figure out audio-visual character identification, matching character names to each dialogue, as a key factor. We propose StoryTeller, a system for generating dense descriptions of long videos, incorporating both low-level visual concepts and high-level plot information. StoryTeller uses a multimodal large language model that integrates visual, audio, and text modalities to perform audio-visual character identification on minute-long video clips. The results are then fed into a LVLM to enhance consistency of video description. We validate our approach on movie description tasks and introduce MovieStory101, a dataset with dense descriptions for three-minute movie clips. To evaluate long video descriptions, we create MovieQA, a large set of multiple-choice questions for the MovieStory101 test set. We assess descriptions by inputting them into GPT-4 to answer these questions, using accuracy as an automatic evaluation metric. Experiments show that StoryTeller outperforms all open and closed-source baselines on MovieQA, achieving 9.5% higher accuracy than the strongest baseline, Gemini-1.5-pro, and demonstrating a +15.56% advantage in human side-by-side evaluations. Additionally, incorporating audio-visual character identification from StoryTeller improves the performance of all video description models, with Gemini-1.5-pro and GPT-4o showing relative improvement of 5.5% and 13.0%, respectively, in accuracy on MovieQA.

  • 6 authors
·
Nov 11, 2024

Vidi: Large Multimodal Models for Video Understanding and Editing

Humans naturally share information with those they are connected to, and video has become one of the dominant mediums for communication and expression on the Internet. To support the creation of high-quality large-scale video content, a modern pipeline requires a comprehensive understanding of both the raw input materials (e.g., the unedited footage captured by cameras) and the editing components (e.g., visual effects). In video editing scenarios, models must process multiple modalities (e.g., vision, audio, text) with strong background knowledge and handle flexible input lengths (e.g., hour-long raw videos), which poses significant challenges for traditional models. In this report, we introduce Vidi, a family of Large Multimodal Models (LMMs) for a wide range of video understand editing scenarios. The first release focuses on temporal retrieval, i.e., identifying the time ranges within the input videos corresponding to a given text query, which plays a critical role in intelligent editing. The model is capable of processing hour-long videos with strong temporal understanding capability, e.g., retrieve time ranges for certain queries. To support a comprehensive evaluation in real-world scenarios, we also present the VUE-TR benchmark, which introduces five key advancements. 1) Video duration: significantly longer than existing temporal retrival datasets, 2) Audio support: includes audio-based queries, 3) Query format: diverse query lengths/formats, 4) Annotation quality: ground-truth time ranges are manually annotated. 5) Evaluation metric: a refined IoU metric to support evaluation over multiple time ranges. Remarkably, Vidi significantly outperforms leading proprietary models, e.g., GPT-4o and Gemini, on the temporal retrieval task, indicating its superiority in video editing scenarios.

ST-LLM: Large Language Models Are Effective Temporal Learners

Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation, prompting research efforts towards video LLMs to facilitate human-AI interaction at the video level. However, how to effectively encode and understand videos in video-based dialogue systems remains to be solved. In this paper, we investigate a straightforward yet unexplored question: Can we feed all spatial-temporal tokens into the LLM, thus delegating the task of video sequence modeling to the LLMs? Surprisingly, this simple approach yields significant improvements in video understanding. Based upon this, we propose ST-LLM, an effective video-LLM baseline with Spatial-Temporal sequence modeling inside LLM. Furthermore, to address the overhead and stability issues introduced by uncompressed video tokens within LLMs, we develop a dynamic masking strategy with tailor-made training objectives. For particularly long videos, we have also designed a global-local input module to balance efficiency and effectiveness. Consequently, we harness LLM for proficient spatial-temporal modeling, while upholding efficiency and stability. Extensive experimental results attest to the effectiveness of our method. Through a more concise model and training pipeline, ST-LLM establishes a new state-of-the-art result on VideoChatGPT-Bench and MVBench. Codes have been available at https://github.com/TencentARC/ST-LLM.

  • 6 authors
·
Mar 30, 2024 1

Generative Inbetweening through Frame-wise Conditions-Driven Video Generation

Generative inbetweening aims to generate intermediate frame sequences by utilizing two key frames as input. Although remarkable progress has been made in video generation models, generative inbetweening still faces challenges in maintaining temporal stability due to the ambiguous interpolation path between two key frames. This issue becomes particularly severe when there is a large motion gap between input frames. In this paper, we propose a straightforward yet highly effective Frame-wise Conditions-driven Video Generation (FCVG) method that significantly enhances the temporal stability of interpolated video frames. Specifically, our FCVG provides an explicit condition for each frame, making it much easier to identify the interpolation path between two input frames and thus ensuring temporally stable production of visually plausible video frames. To achieve this, we suggest extracting matched lines from two input frames that can then be easily interpolated frame by frame, serving as frame-wise conditions seamlessly integrated into existing video generation models. In extensive evaluations covering diverse scenarios such as natural landscapes, complex human poses, camera movements and animations, existing methods often exhibit incoherent transitions across frames. In contrast, our FCVG demonstrates the capability to generate temporally stable videos using both linear and non-linear interpolation curves. Our project page and code are available at https://fcvg-inbetween.github.io/.

  • 5 authors
·
Dec 16, 2024

LOVE-R1: Advancing Long Video Understanding with an Adaptive Zoom-in Mechanism via Multi-Step Reasoning

Long video understanding is still challenging for recent Large Video-Language Models (LVLMs) due to the conflict between long-form temporal understanding and detailed spatial perception. LVLMs with a uniform frame sampling mechanism, which samples frames with an equal frame size and fixed sampling rate, inevitably sacrifice either temporal clues or spatial details, resulting in suboptimal solutions. To mitigate this dilemma, we propose LOVE-R1, a model that can adaptively zoom in on a video clip. The model is first provided with densely sampled frames but in a small resolution. If some spatial details are needed, the model can zoom in on a clip of interest with a large frame resolution based on its reasoning until key visual information is obtained. The whole process is implemented as a multi-step reasoning process. To train the reasoning ability, we first finetune the model on our collected 38k high-quality CoT data and enhance it with decoupled reinforcement finetuning. As outcome rewards can not provide fine-grained process supervision, we decouple multi-step reasoning into multiple single-step reasoning and optimize the internal zoom-in ability explicitly. Experiments on long video understanding benchmarks show that our model with the slow-fast adaptive frame sampling mechanism achieves a great trade-off between sampling density and frame resolutions, and LOVE-R1 outperforms our baseline Qwen2.5-VL by an average of 3.1% points across 4 common long video understanding benchmarks.

AlibabaTongyiLab TongyiLab
·
Sep 29 2

UniVG: Towards UNIfied-modal Video Generation

Diffusion based video generation has received extensive attention and achieved considerable success within both the academic and industrial communities. However, current efforts are mainly concentrated on single-objective or single-task video generation, such as generation driven by text, by image, or by a combination of text and image. This cannot fully meet the needs of real-world application scenarios, as users are likely to input images and text conditions in a flexible manner, either individually or in combination. To address this, we propose a Unified-modal Video Genearation system that is capable of handling multiple video generation tasks across text and image modalities. To this end, we revisit the various video generation tasks within our system from the perspective of generative freedom, and classify them into high-freedom and low-freedom video generation categories. For high-freedom video generation, we employ Multi-condition Cross Attention to generate videos that align with the semantics of the input images or text. For low-freedom video generation, we introduce Biased Gaussian Noise to replace the pure random Gaussian Noise, which helps to better preserve the content of the input conditions. Our method achieves the lowest Fr\'echet Video Distance (FVD) on the public academic benchmark MSR-VTT, surpasses the current open-source methods in human evaluations, and is on par with the current close-source method Gen2. For more samples, visit https://univg-baidu.github.io.

  • 5 authors
·
Jan 17, 2024 13

Mavors: Multi-granularity Video Representation for Multimodal Large Language Model

Long-context video understanding in multimodal large language models (MLLMs) faces a critical challenge: balancing computational efficiency with the retention of fine-grained spatio-temporal patterns. Existing approaches (e.g., sparse sampling, dense sampling with low resolution, and token compression) suffer from significant information loss in temporal dynamics, spatial details, or subtle interactions, particularly in videos with complex motion or varying resolutions. To address this, we propose Mavors, a novel framework that introduces Multi-granularity video representation for holistic long-video modeling. Specifically, Mavors directly encodes raw video content into latent representations through two core components: 1) an Intra-chunk Vision Encoder (IVE) that preserves high-resolution spatial features via 3D convolutions and Vision Transformers, and 2) an Inter-chunk Feature Aggregator (IFA) that establishes temporal coherence across chunks using transformer-based dependency modeling with chunk-level rotary position encodings. Moreover, the framework unifies image and video understanding by treating images as single-frame videos via sub-image decomposition. Experiments across diverse benchmarks demonstrate Mavors' superiority in maintaining both spatial fidelity and temporal continuity, significantly outperforming existing methods in tasks requiring fine-grained spatio-temporal reasoning.

  • 15 authors
·
Apr 14 2

InfVSR: Breaking Length Limits of Generic Video Super-Resolution

Real-world videos often extend over thousands of frames. Existing video super-resolution (VSR) approaches, however, face two persistent challenges when processing long sequences: (1) inefficiency due to the heavy cost of multi-step denoising for full-length sequences; and (2) poor scalability hindered by temporal decomposition that causes artifacts and discontinuities. To break these limits, we propose InfVSR, which novelly reformulates VSR as an autoregressive-one-step-diffusion paradigm. This enables streaming inference while fully leveraging pre-trained video diffusion priors. First, we adapt the pre-trained DiT into a causal structure, maintaining both local and global coherence via rolling KV-cache and joint visual guidance. Second, we distill the diffusion process into a single step efficiently, with patch-wise pixel supervision and cross-chunk distribution matching. Together, these designs enable efficient and scalable VSR for unbounded-length videos. To fill the gap in long-form video evaluation, we build a new benchmark tailored for extended sequences and further introduce semantic-level metrics to comprehensively assess temporal consistency. Our method pushes the frontier of long-form VSR, achieves state-of-the-art quality with enhanced semantic consistency, and delivers up to 58x speed-up over existing methods such as MGLD-VSR. Code will be available at https://github.com/Kai-Liu001/InfVSR.

  • 8 authors
·
Oct 1