Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeIntensity statistics inside an open wave-chaotic cavity with broken time-reversal invariance
Using the supersymmetric method of random matrix theory within the Heidelberg approach framework we provide statistical description of stationary intensity sampled in locations inside an open wave-chaotic cavity, assuming that the time-reversal invariance inside the cavity is fully broken. In particular, we show that when incoming waves are fed via a finite number M of open channels the probability density {cal P}(I) for the single-point intensity I decays as a power law for large intensities: {cal P}(I)sim I^{-(M+2)}, provided there is no internal losses. This behaviour is in marked difference with the Rayleigh law {cal P}(I)sim exp(-I/I) which turns out to be valid only in the limit Mto infty. We also find the joint probability density of intensities I_1, ldots, I_L in L>1 observation points, and then extract the corresponding statistics for the maximal intensity in the observation pattern. For Lto infty the resulting limiting extreme value statistics (EVS) turns out to be different from the classical EVS distributions.
Hierarchical Spatial Algorithms for High-Resolution Image Quantization and Feature Extraction
This study introduces a modular framework for spatial image processing, integrating grayscale quantization, color and brightness enhancement, image sharpening, bidirectional transformation pipelines, and geometric feature extraction. A stepwise intensity transformation quantizes grayscale images into eight discrete levels, producing a posterization effect that simplifies representation while preserving structural detail. Color enhancement is achieved via histogram equalization in both RGB and YCrCb color spaces, with the latter improving contrast while maintaining chrominance fidelity. Brightness adjustment is implemented through HSV value-channel manipulation, and image sharpening is performed using a 3 * 3 convolution kernel to enhance high-frequency details. A bidirectional transformation pipeline that integrates unsharp masking, gamma correction, and noise amplification achieved accuracy levels of 76.10% and 74.80% for the forward and reverse processes, respectively. Geometric feature extraction employed Canny edge detection, Hough-based line estimation (e.g., 51.50{\deg} for billiard cue alignment), Harris corner detection, and morphological window localization. Cue isolation further yielded 81.87\% similarity against ground truth images. Experimental evaluation across diverse datasets demonstrates robust and deterministic performance, highlighting its potential for real-time image analysis and computer vision.
The Frequency-dependent Modulation Features of PSR J1948+3540
Using observations from GMRT and FAST, we conducted multi-wavelength studies on PSR J1948+3540 and analyzed its intensity modulation characteristics in detail. We found that the intensity modulation of this pulsar exhibits broad low-frequency modulation features. The modulation frequency/period is time-dependent, but the dominant modulation component varies with the observing frequency. Specifically, at low frequencies, the modulation is dominated by the first half of the middle component, while at high frequencies, it is dominated by the second half of the middle component. Spectral analysis revealed that the intensities of the leading and trailing components vary with the observing frequency, but the middle component does not change significantly. Besides, the polarization analyses reveal that the peak of the radiation intensity is located in the latter half of the middle component, whereas the linear polarization is dominant in the former half. However, due to the low degree of linear polarization, the change of the dominant modulation component with the observed frequency is not caused by the variation in linear polarization. The phenomenon of the dominant modulation component varying with observing frequency has not been reported before and remains difficult to understand within the current theoretical framework.
Adaptive Shells for Efficient Neural Radiance Field Rendering
Neural radiance fields achieve unprecedented quality for novel view synthesis, but their volumetric formulation remains expensive, requiring a huge number of samples to render high-resolution images. Volumetric encodings are essential to represent fuzzy geometry such as foliage and hair, and they are well-suited for stochastic optimization. Yet, many scenes ultimately consist largely of solid surfaces which can be accurately rendered by a single sample per pixel. Based on this insight, we propose a neural radiance formulation that smoothly transitions between volumetric- and surface-based rendering, greatly accelerating rendering speed and even improving visual fidelity. Our method constructs an explicit mesh envelope which spatially bounds a neural volumetric representation. In solid regions, the envelope nearly converges to a surface and can often be rendered with a single sample. To this end, we generalize the NeuS formulation with a learned spatially-varying kernel size which encodes the spread of the density, fitting a wide kernel to volume-like regions and a tight kernel to surface-like regions. We then extract an explicit mesh of a narrow band around the surface, with width determined by the kernel size, and fine-tune the radiance field within this band. At inference time, we cast rays against the mesh and evaluate the radiance field only within the enclosed region, greatly reducing the number of samples required. Experiments show that our approach enables efficient rendering at very high fidelity. We also demonstrate that the extracted envelope enables downstream applications such as animation and simulation.
Anisotropic Diffusion for Details Enhancement in Multi-Exposure Image Fusion
We develop a multiexposure image fusion method based on texture features, which exploits the edge preserving and intraregion smoothing property of nonlinear diffusion filters based on partial differential equations (PDE). With the captured multiexposure image series, we first decompose images into base layers and detail layers to extract sharp details and fine details, respectively. The magnitude of the gradient of the image intensity is utilized to encourage smoothness at homogeneous regions in preference to inhomogeneous regions. Then, we have considered texture features of the base layer to generate a mask (i.e., decision mask) that guides the fusion of base layers in multiresolution fashion. Finally, well-exposed fused image is obtained that combines fused base layer and the detail layers at each scale across all the input exposures. Proposed algorithm skipping complex High Dynamic Range Image (HDRI) generation and tone mapping steps to produce detail preserving image for display on standard dynamic range display devices. Moreover, our technique is effective for blending flash/no-flash image pair and multifocus images, that is, images focused on different targets.
Energy conservation in the thin layer approximation: VI. Bubbles and super-bubbles
We model the conservation of energy in the framework of the thin layer approximation for two types of interstellar medium (ISM). In particular, we analyse an ISM in the presence of self-gravity and a Gaussian ISM which produces an asymmetry in the advancing shell. The astrophysical targets to be simulated are the Fermi bubbles, the local bubble, and the W4 super-bubble. The theory of images is applied to a piriform curve, which allows deriving some analytical formulae for the observed intensity in the case of an optically thin medium.
An efficient Asymptotic-Preserving scheme for the Boltzmann mixture with disparate mass
In this paper, we develop and implement an efficient asymptotic-preserving (AP) scheme to solve the gas mixture of Boltzmann equations under the disparate mass scaling relevant to the so-called "epochal relaxation" phenomenon. The disparity in molecular masses, ranging across several orders of magnitude, leads to significant challenges in both the evaluation of collision operators and the designing of time-stepping schemes to capture the multi-scale nature of the dynamics. A direct implementation of the spectral method faces prohibitive computational costs as the mass ratio increases due to the need to resolve vastly different thermal velocities. Unlike [I. M. Gamba, S. Jin, and L. Liu, Commun. Math. Sci., 17 (2019), pp. 1257-1289], we propose an alternative approach based on proper truncation of asymptotic expansions of the collision operators, which significantly reduces the computational complexity and works well for small varepsilon. By incorporating the separation of three time scales in the model's relaxation process [P. Degond and B. Lucquin-Desreux, Math. Models Methods Appl. Sci., 6 (1996), pp. 405-436], we design an AP scheme that captures the specific dynamics of the disparate mass model while maintaining computational efficiency. Numerical experiments demonstrate the effectiveness of the proposed scheme in handling large mass ratios of heavy and light species, as well as capturing the epochal relaxation phenomenon.
HVI: A New color space for Low-light Image Enhancement
Low-Light Image Enhancement (LLIE) is a crucial computer vision task that aims to restore detailed visual information from corrupted low-light images. Many existing LLIE methods are based on standard RGB (sRGB) space, which often produce color bias and brightness artifacts due to inherent high color sensitivity in sRGB. While converting the images using Hue, Saturation and Value (HSV) color space helps resolve the brightness issue, it introduces significant red and black noise artifacts. To address this issue, we propose a new color space for LLIE, namely Horizontal/Vertical-Intensity (HVI), defined by polarized HS maps and learnable intensity. The former enforces small distances for red coordinates to remove the red artifacts, while the latter compresses the low-light regions to remove the black artifacts. To fully leverage the chromatic and intensity information, a novel Color and Intensity Decoupling Network (CIDNet) is further introduced to learn accurate photometric mapping function under different lighting conditions in the HVI space. Comprehensive results from benchmark and ablation experiments show that the proposed HVI color space with CIDNet outperforms the state-of-the-art methods on 10 datasets. The code is available at https://github.com/Fediory/HVI-CIDNet.
Coronal Abundance Fractionation Linked to Chromospheric Transverse MHD Waves in a Solar Active Region Observed with FISS/GST and EIS/Hinode
Elemental abundances in the solar corona differ from those in the photosphere, with low first ionization potential (FIP) elements being enhanced, a phenomenon known as the FIP effect. This enhancement is attributed to ponderomotive forces linked to magnetohydrodynamic (MHD) waves, particularly incompressible transverse waves. Our study investigates the relationship between coronal abundance fractionation and chromospheric transverse MHD waves by examining the spatial correlation between FIP fractionation and these waves and by analyzing their properties to test the ponderomotive force model. We used H alpha data from the Fast Imaging Solar Spectrograph at the Goode Solar Telescope to detect chromospheric transverse MHD waves and Si{X} (low FIP) and S{X} (high FIP) spectra from Hinode EUV Imaging Spectrometer to determine relative abundances in an active region. Extrapolated linear force free magnetic fields from Solar Dynamics Observatory/Helioseismic and Magnetic Imager magnetograms further linked the observed chromospheric waves with coronal composition. Approximately 400 wave packets were identified and characterized by their period, velocity amplitude, propagation speed, and direction. These incompressible or weakly compressible waves were mainly observed near loop footpoints in the sunspot penumbra and superpenumbral fibrils. Regions of high FIP fractionation coincided with closed magnetic fields where these waves were present, and low-frequency, downward-propagating waves comprised about 43/% of the total. Our results demonstrate a strong correlation between coronal abundance fractionation and chromospheric transverse MHD waves, supporting the view that the FIP effect is driven by the ponderomotive force from these waves.
Water Snowline in Young Stellar Objects with Various Density Structures Using Radiative Transfer Models
Tracing the water snowline in low-mass young stellar objects (YSOs) is important because dust grain growth is promoted and the chemical composition varies at the water snowline, which influences planet formation and its properties. In protostellar envelopes, the water snowline can be estimated as a function of luminosity using a relation derived from radiative transfer models, and these predictions are consistent with observations. However, accurately estimating the water snowline in protoplanetary disks requires new relations that account for the disk structure. We present the relations between luminosity and water snowline using the dust continuum radiative transfer models with various density structures. We adopt two-dimensional density structures for an envelope-only model (Model E), an envelope+disk+cavity model (Model E+D), and a protoplanetary disk model (Model PPD). The relations between the water snowline, where T_dust = 100 K, and the total luminosity, ranging 0.1-1,000 solar luminosity, are well fitted by a power-law relation, R_snow=a * (L/L_solar)^p au. The factor a decreases with increasing disk density, while the power index p has values around 0.5 in all models. As the disk becomes denser, the water snowline forms at smaller radii even at the same luminosity, since dense dust hinders photon propagation. We also explore the effect of viscous heating on the water snowline. In Model PPD with viscous heating, the water snowline shifts outward by a few au up to 15 au, increasing the factor a and decreasing the power index p. In Model E+D with lower disk mass, the effect of viscous heating is negligible, indicating that the disk mass controls the effect. The discrepancy between our models and direct observations provides insights into the recent outburst event and the presence of a disk structure in low-mass YSOs.
Pulsed Schlieren Imaging of Ultrasonic Haptics and Levitation using Phased Arrays
Ultrasonic acoustic fields have recently been used to generate haptic effects on the human skin as well as to levitate small sub-wavelength size particles. Schlieren imaging and background-oriented schlieren techniques can be used for acoustic wave pattern and beam shape visualization. These techniques exploit variations in the refractive index of a propagation medium by applying refractive optics or cross-correlation algorithms of photographs of illuminated background patterns. Here both background-oriented and traditional schlieren systems are used to visualize the regions of the acoustic power involved in creating dynamic haptic sensations and dynamic levitation traps. We demonstrate for the first time the application of back-ground-oriented schlieren for imaging ultrasonic fields in air. We detail our imaging apparatus and present improved algorithms used to visualize these phenomena that we have produced using multiple phased arrays. Moreover, to improve imaging, we leverage an electronically controlled, high-output LED which is pulsed in synchrony with the ultrasonic carrier frequency.
A UV to X-ray view of soft excess in type 1 AGNs: I. sample selection and spectral profile
A core sample of 59 unobscured type 1 AGNs with simultaneous XMM-Newton X-ray and UV observations is compiled from archive to probe the nature of soft X-ray excess (SE). In the first paper of this series, our focus centers on scrutinizing the spectral profile of the soft excess. Of the sources, approx 71% (42/59) exhibit powerlaw-like (po-like) soft excess, while approx 29% (17/59) exhibit blackbody-like (bb-like) soft excess. We show a cut-off powerlaw could uniformly characterize both types of soft excesses, with median Ecut of 1.40 keV for po-like and 0.14 keV for bb-like. For the first time, we report a robust and quantitative correlation between the SE profile and SE strength (the ratio of SE luminosity to that of the primary powerlaw continuum in 0.5 - 2.0 keV), indicating that stronger soft excess is more likely to be po-like, or effectively has a higher Ecut. This correlation cannot be explained by ionized disk reflection alone, which produces mostly bb-like soft excess (Ecut sim 0.1 keV) as revealed by relxilllp simulation. Remarkably, we show with simulations that a toy hybrid scenario, where both ionized disk reflection (relxilllp, with all reflection parameters fixed at default values except for ionization of the disk) and warm corona (compTT, with temperature fixed at 1 keV) contribute to the observed soft excess, can successfully reproduce the observed correlation. This highlights the ubiquitous hybrid nature of the soft X-ray excess in AGNs, and underscores the importance of considering both components while fitting the spectra of soft excess.
Relighting Scenes with Object Insertions in Neural Radiance Fields
The insertion of objects into a scene and relighting are commonly utilized applications in augmented reality (AR). Previous methods focused on inserting virtual objects using CAD models or real objects from single-view images, resulting in highly limited AR application scenarios. We propose a novel NeRF-based pipeline for inserting object NeRFs into scene NeRFs, enabling novel view synthesis and realistic relighting, supporting physical interactions like casting shadows onto each other, from two sets of images depicting the object and scene. The lighting environment is in a hybrid representation of Spherical Harmonics and Spherical Gaussians, representing both high- and low-frequency lighting components very well, and supporting non-Lambertian surfaces. Specifically, we leverage the benefits of volume rendering and introduce an innovative approach for efficient shadow rendering by comparing the depth maps between the camera view and the light source view and generating vivid soft shadows. The proposed method achieves realistic relighting effects in extensive experimental evaluations.
