1 A Mathematical Approach to Constraining Neural Abstraction and the Mechanisms Needed to Scale to Higher-Order Cognition Artificial intelligence has made great strides in the last decade but still falls short of the human brain, the best-known example of intelligence. Not much is known of the neural processes that allow the brain to make the leap to achieve so much from so little beyond its ability to create knowledge structures that can be flexibly and dynamically combined, recombined, and applied in new and novel ways. This paper proposes a mathematical approach using graph theory and spectral graph theory, to hypothesize how to constrain these neural clusters of information based on eigen-relationships. This same hypothesis is hierarchically applied to scale up from the smallest to the largest clusters of knowledge that eventually lead to model building and reasoning. 1 authors · Aug 11, 2021
- GarmentCrafter: Progressive Novel View Synthesis for Single-View 3D Garment Reconstruction and Editing We introduce GarmentCrafter, a new approach that enables non-professional users to create and modify 3D garments from a single-view image. While recent advances in image generation have facilitated 2D garment design, creating and editing 3D garments remains challenging for non-professional users. Existing methods for single-view 3D reconstruction often rely on pre-trained generative models to synthesize novel views conditioning on the reference image and camera pose, yet they lack cross-view consistency, failing to capture the internal relationships across different views. In this paper, we tackle this challenge through progressive depth prediction and image warping to approximate novel views. Subsequently, we train a multi-view diffusion model to complete occluded and unknown clothing regions, informed by the evolving camera pose. By jointly inferring RGB and depth, GarmentCrafter enforces inter-view coherence and reconstructs precise geometries and fine details. Extensive experiments demonstrate that our method achieves superior visual fidelity and inter-view coherence compared to state-of-the-art single-view 3D garment reconstruction methods. 7 authors · Mar 11