new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 24

The Coupled Tidal Evolution of the Moons and Spins of Warm Exoplanets

Context: The Solar System giant planets harbour a wide variety of moons. Moons around exoplanets are plausibly similarly abundant, even though most of them are likely too small to be easily detectable with modern instruments. Moons are known to affect the long-term dynamics of the spin of their host planets; however, their influence on warm exoplanets (i.e.\ with moderately short periods of about 10 to 200~days), which undergo significant star-planet tidal dissipation, is still unclear. Aims: Here, we study the coupled dynamical evolution of exomoons and the spin dynamics of their host planets, focusing on warm exoplanets. Methods: Analytical criteria give the relevant dynamical regimes at play as a function of the system's parameters. Possible evolution tracks mostly depend on the hierarchy of timescales between the star-planet and the moon-planet tidal dissipations. We illustrate the variety of possible trajectories using self-consistent numerical simulations. Results: We find two principal results: i) Due to star-planet tidal dissipation, a substantial fraction of warm exoplanets naturally evolve through a phase of instability for the moon's orbit (the `Laplace plane' instability). Many warm exoplanets may have lost their moon(s) through this process. ii) Surviving moons slowly migrate inwards due to the moon-planet tidal dissipation until they are disrupted below the Roche limit. During their last migration stage, moons -- even small ones -- eject planets from their tidal spin equilibrium. Conclusions: The loss of moons through the Laplace plane instability may contribute to disfavour the detection of moons around close-in exoplanets. Moreover, moons (even those that have been lost) play a critical role in the final obliquities of warm exoplanets. Hence, the existence of exomoons poses a serious challenge in predicting the present-day obliquities of observed exoplanets.

  • 2 authors
·
Oct 31

Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning

Understanding when the noise in stochastic gradient descent (SGD) affects generalization of deep neural networks remains a challenge, complicated by the fact that networks can operate in distinct training regimes. Here we study how the magnitude of this noise T affects performance as the size of the training set P and the scale of initialization alpha are varied. For gradient descent, alpha is a key parameter that controls if the network is `lazy'(alphagg1) or instead learns features (alphall1). For classification of MNIST and CIFAR10 images, our central results are: (i) obtaining phase diagrams for performance in the (alpha,T) plane. They show that SGD noise can be detrimental or instead useful depending on the training regime. Moreover, although increasing T or decreasing alpha both allow the net to escape the lazy regime, these changes can have opposite effects on performance. (ii) Most importantly, we find that the characteristic temperature T_c where the noise of SGD starts affecting the trained model (and eventually performance) is a power law of P. We relate this finding with the observation that key dynamical quantities, such as the total variation of weights during training, depend on both T and P as power laws. These results indicate that a key effect of SGD noise occurs late in training by affecting the stopping process whereby all data are fitted. Indeed, we argue that due to SGD noise, nets must develop a stronger `signal', i.e. larger informative weights, to fit the data, leading to a longer training time. A stronger signal and a longer training time are also required when the size of the training set P increases. We confirm these views in the perceptron model, where signal and noise can be precisely measured. Interestingly, exponents characterizing the effect of SGD depend on the density of data near the decision boundary, as we explain.

  • 3 authors
·
Jan 31, 2023

Towards Foundational Models for Dynamical System Reconstruction: Hierarchical Meta-Learning via Mixture of Experts

As foundational models reshape scientific discovery, a bottleneck persists in dynamical system reconstruction (DSR): the ability to learn across system hierarchies. Many meta-learning approaches have been applied successfully to single systems, but falter when confronted with sparse, loosely related datasets requiring multiple hierarchies to be learned. Mixture of Experts (MoE) offers a natural paradigm to address these challenges. Despite their potential, we demonstrate that naive MoEs are inadequate for the nuanced demands of hierarchical DSR, largely due to their gradient descent-based gating update mechanism which leads to slow updates and conflicted routing during training. To overcome this limitation, we introduce MixER: Mixture of Expert Reconstructors, a novel sparse top-1 MoE layer employing a custom gating update algorithm based on K-means and least squares. Extensive experiments validate MixER's capabilities, demonstrating efficient training and scalability to systems of up to ten parametric ordinary differential equations. However, our layer underperforms state-of-the-art meta-learners in high-data regimes, particularly when each expert is constrained to process only a fraction of a dataset composed of highly related data points. Further analysis with synthetic and neuroscientific time series suggests that the quality of the contextual representations generated by MixER is closely linked to the presence of hierarchical structure in the data.

  • 5 authors
·
Feb 7

Rise and Fall of Anderson Localization by Lattice Vibrations: A Time-Dependent Machine Learning Approach

The intricate relationship between electrons and the crystal lattice is a linchpin in condensed matter, traditionally described by the Fr\"ohlich model encompassing the lowest-order lattice-electron coupling. Recently developed quantum acoustics, emphasizing the wave nature of lattice vibrations, has enabled the exploration of previously uncharted territories of electron-lattice interaction not accessible with conventional tools such as perturbation theory. In this context, our agenda here is two-fold. First, we showcase the application of machine learning methods to categorize various interaction regimes within the subtle interplay of electrons and the dynamical lattice landscape. Second, we shed light on a nebulous region of electron dynamics identified by the machine learning approach and then attribute it to transient localization, where strong lattice vibrations result in a momentary Anderson prison for electronic wavepackets, which are later released by the evolution of the lattice. Overall, our research illuminates the spectrum of dynamics within the Fr\"ohlich model, such as transient localization, which has been suggested as a pivotal factor contributing to the mysteries surrounding strange metals. Furthermore, this paves the way for utilizing time-dependent perspectives in machine learning techniques for designing materials with tailored electron-lattice properties.

  • 4 authors
·
May 27, 2024

Model scale versus domain knowledge in statistical forecasting of chaotic systems

Chaos and unpredictability are traditionally synonymous, yet large-scale machine learning methods recently have demonstrated a surprising ability to forecast chaotic systems well beyond typical predictability horizons. However, recent works disagree on whether specialized methods grounded in dynamical systems theory, such as reservoir computers or neural ordinary differential equations, outperform general-purpose large-scale learning methods such as transformers or recurrent neural networks. These prior studies perform comparisons on few individually-chosen chaotic systems, thereby precluding robust quantification of how statistical modeling choices and dynamical invariants of different chaotic systems jointly determine empirical predictability. Here, we perform the largest to-date comparative study of forecasting methods on the classical problem of forecasting chaos: we benchmark 24 state-of-the-art forecasting methods on a crowdsourced database of 135 low-dimensional systems with 17 forecast metrics. We find that large-scale, domain-agnostic forecasting methods consistently produce predictions that remain accurate up to two dozen Lyapunov times, thereby accessing a new long-horizon forecasting regime well beyond classical methods. We find that, in this regime, accuracy decorrelates with classical invariant measures of predictability like the Lyapunov exponent. However, in data-limited settings outside the long-horizon regime, we find that physics-based hybrid methods retain a comparative advantage due to their strong inductive biases.

  • 1 authors
·
Mar 12, 2023

Chaos as an interpretable benchmark for forecasting and data-driven modelling

The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.

  • 1 authors
·
Oct 11, 2021

Limits and Powers of Koopman Learning

Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.

  • 3 authors
·
Jul 8, 2024

Almost-Linear RNNs Yield Highly Interpretable Symbolic Codes in Dynamical Systems Reconstruction

Dynamical systems (DS) theory is fundamental for many areas of science and engineering. It can provide deep insights into the behavior of systems evolving in time, as typically described by differential or recursive equations. A common approach to facilitate mathematical tractability and interpretability of DS models involves decomposing nonlinear DS into multiple linear DS separated by switching manifolds, i.e. piecewise linear (PWL) systems. PWL models are popular in engineering and a frequent choice in mathematics for analyzing the topological properties of DS. However, hand-crafting such models is tedious and only possible for very low-dimensional scenarios, while inferring them from data usually gives rise to unnecessarily complex representations with very many linear subregions. Here we introduce Almost-Linear Recurrent Neural Networks (AL-RNNs) which automatically and robustly produce most parsimonious PWL representations of DS from time series data, using as few PWL nonlinearities as possible. AL-RNNs can be efficiently trained with any SOTA algorithm for dynamical systems reconstruction (DSR), and naturally give rise to a symbolic encoding of the underlying DS that provably preserves important topological properties. We show that for the Lorenz and R\"ossler systems, AL-RNNs discover, in a purely data-driven way, the known topologically minimal PWL representations of the corresponding chaotic attractors. We further illustrate on two challenging empirical datasets that interpretable symbolic encodings of the dynamics can be achieved, tremendously facilitating mathematical and computational analysis of the underlying systems.

  • 4 authors
·
Oct 18, 2024

On Neural Differential Equations

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

  • 1 authors
·
Feb 4, 2022

Early warning signals: The charted and uncharted territories

The realization that complex systems such as ecological communities can collapse or shift regimes suddenly and without rapid external forcing poses a serious challenge to our understanding and management of the natural world. The potential to identify early warning signals that would allow researchers and managers to predict such events before they happen has therefore been an invaluable discovery that offers a way forward in spite of such seemingly unpredictable behavior. Research into early warning signals has demonstrated that it is possible to define and detect such early warning signals in advance of a transition in certain contexts. Here we describe the pattern emerging as research continues to explore just how far we can generalize these results. A core of examples emerges that shares three properties: the phenomenon of rapid regime shifts, a pattern of 'critical slowing down' that can be used to detect the approaching shift, and a mechanism of bifurcation driving the sudden change. As research has expanded beyond these core examples, it is becoming clear that not all systems that show regime shifts exhibit critical slowing down, or vice versa. Even when systems exhibit critical slowing down, statistical detection is a challenge. We review the literature that explores these edge cases and highlight the need for (a) new early warning behaviors that can be used in cases where rapid shifts do not exhibit critical slowing down, (b) the development of methods to identify which behavior might be an appropriate signal when encountering a novel system; bearing in mind that a positive indication for some systems is a negative indication in others, and (c) statistical methods that can distinguish between signatures of early warning behaviors and noise.

  • 3 authors
·
May 29, 2013

Generalized Teacher Forcing for Learning Chaotic Dynamics

Chaotic dynamical systems (DS) are ubiquitous in nature and society. Often we are interested in reconstructing such systems from observed time series for prediction or mechanistic insight, where by reconstruction we mean learning geometrical and invariant temporal properties of the system in question (like attractors). However, training reconstruction algorithms like recurrent neural networks (RNNs) on such systems by gradient-descent based techniques faces severe challenges. This is mainly due to exploding gradients caused by the exponential divergence of trajectories in chaotic systems. Moreover, for (scientific) interpretability we wish to have as low dimensional reconstructions as possible, preferably in a model which is mathematically tractable. Here we report that a surprisingly simple modification of teacher forcing leads to provably strictly all-time bounded gradients in training on chaotic systems, and, when paired with a simple architectural rearrangement of a tractable RNN design, piecewise-linear RNNs (PLRNNs), allows for faithful reconstruction in spaces of at most the dimensionality of the observed system. We show on several DS that with these amendments we can reconstruct DS better than current SOTA algorithms, in much lower dimensions. Performance differences were particularly compelling on real world data with which most other methods severely struggled. This work thus led to a simple yet powerful DS reconstruction algorithm which is highly interpretable at the same time.

  • 4 authors
·
Jun 7, 2023

Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting

Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.

  • 5 authors
·
May 29

Respecting causality is all you need for training physics-informed neural networks

While the popularity of physics-informed neural networks (PINNs) is steadily rising, to this date PINNs have not been successful in simulating dynamical systems whose solution exhibits multi-scale, chaotic or turbulent behavior. In this work we attribute this shortcoming to the inability of existing PINNs formulations to respect the spatio-temporal causal structure that is inherent to the evolution of physical systems. We argue that this is a fundamental limitation and a key source of error that can ultimately steer PINN models to converge towards erroneous solutions. We address this pathology by proposing a simple re-formulation of PINNs loss functions that can explicitly account for physical causality during model training. We demonstrate that this simple modification alone is enough to introduce significant accuracy improvements, as well as a practical quantitative mechanism for assessing the convergence of a PINNs model. We provide state-of-the-art numerical results across a series of benchmarks for which existing PINNs formulations fail, including the chaotic Lorenz system, the Kuramoto-Sivashinsky equation in the chaotic regime, and the Navier-Stokes equations in the turbulent regime. To the best of our knowledge, this is the first time that PINNs have been successful in simulating such systems, introducing new opportunities for their applicability to problems of industrial complexity.

  • 3 authors
·
Mar 14, 2022

How connectivity structure shapes rich and lazy learning in neural circuits

In theoretical neuroscience, recent work leverages deep learning tools to explore how some network attributes critically influence its learning dynamics. Notably, initial weight distributions with small (resp. large) variance may yield a rich (resp. lazy) regime, where significant (resp. minor) changes to network states and representation are observed over the course of learning. However, in biology, neural circuit connectivity could exhibit a low-rank structure and therefore differs markedly from the random initializations generally used for these studies. As such, here we investigate how the structure of the initial weights -- in particular their effective rank -- influences the network learning regime. Through both empirical and theoretical analyses, we discover that high-rank initializations typically yield smaller network changes indicative of lazier learning, a finding we also confirm with experimentally-driven initial connectivity in recurrent neural networks. Conversely, low-rank initialization biases learning towards richer learning. Importantly, however, as an exception to this rule, we find lazier learning can still occur with a low-rank initialization that aligns with task and data statistics. Our research highlights the pivotal role of initial weight structures in shaping learning regimes, with implications for metabolic costs of plasticity and risks of catastrophic forgetting.

  • 6 authors
·
Oct 12, 2023

Mechanistic Interpretability of RNNs emulating Hidden Markov Models

Recurrent neural networks (RNNs) provide a powerful approach in neuroscience to infer latent dynamics in neural populations and to generate hypotheses about the neural computations underlying behavior. However, past work has focused on relatively simple, input-driven, and largely deterministic behaviors - little is known about the mechanisms that would allow RNNs to generate the richer, spontaneous, and potentially stochastic behaviors observed in natural settings. Modeling with Hidden Markov Models (HMMs) has revealed a segmentation of natural behaviors into discrete latent states with stochastic transitions between them, a type of dynamics that may appear at odds with the continuous state spaces implemented by RNNs. Here we first show that RNNs can replicate HMM emission statistics and then reverse-engineer the trained networks to uncover the mechanisms they implement. In the absence of inputs, the activity of trained RNNs collapses towards a single fixed point. When driven by stochastic input, trajectories instead exhibit noise-sustained dynamics along closed orbits. Rotation along these orbits modulates the emission probabilities and is governed by transitions between regions of slow, noise-driven dynamics connected by fast, deterministic transitions. The trained RNNs develop highly structured connectivity, with a small set of "kick neurons" initiating transitions between these regions. This mechanism emerges during training as the network shifts into a regime of stochastic resonance, enabling it to perform probabilistic computations. Analyses across multiple HMM architectures - fully connected, cyclic, and linear-chain - reveal that this solution generalizes through the modular reuse of the same dynamical motif, suggesting a compositional principle by which RNNs can emulate complex discrete latent dynamics.

  • 5 authors
·
Oct 29

Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation

The theory of open quantum systems lays the foundations for a substantial part of modern research in quantum science and engineering. Rooted in the dimensionality of their extended Hilbert spaces, the high computational complexity of simulating open quantum systems calls for the development of strategies to approximate their dynamics. In this paper, we present an approach for tackling open quantum system dynamics. Using an exact probabilistic formulation of quantum physics based on positive operator-valued measure (POVM), we compactly represent quantum states with autoregressive transformer neural networks; such networks bring significant algorithmic flexibility due to efficient exact sampling and tractable density. We further introduce the concept of String States to partially restore the symmetry of the autoregressive transformer neural network and improve the description of local correlations. Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator using a forward-backward trapezoid method and find the steady state via a variational formulation. Our approach is benchmarked on prototypical one and two-dimensional systems, finding results which closely track the exact solution and achieve higher accuracy than alternative approaches based on using Markov chain Monte Carlo to sample restricted Boltzmann machines. Our work provides general methods for understanding quantum dynamics in various contexts, as well as techniques for solving high-dimensional probabilistic differential equations in classical setups.

  • 4 authors
·
Sep 11, 2020

Control of Medical Digital Twins with Artificial Neural Networks

The objective of personalized medicine is to tailor interventions to an individual patient's unique characteristics. A key technology for this purpose involves medical digital twins, computational models of human biology that can be personalized and dynamically updated to incorporate patient-specific data collected over time. Certain aspects of human biology, such as the immune system, are not easily captured with physics-based models, such as differential equations. Instead, they are often multi-scale, stochastic, and hybrid. This poses a challenge to existing model-based control and optimization approaches that cannot be readily applied to such models. Recent advances in automatic differentiation and neural-network control methods hold promise in addressing complex control problems. However, the application of these approaches to biomedical systems is still in its early stages. This work introduces dynamics-informed neural-network controllers as an alternative approach to control of medical digital twins. As a first use case for this method, the focus is on agent-based models, a versatile and increasingly common modeling platform in biomedicine. The effectiveness of the proposed neural-network control method is illustrated and benchmarked against other methods with two widely-used agent-based model types. The relevance of the method introduced here extends beyond medical digital twins to other complex dynamical systems.

  • 3 authors
·
Mar 18, 2024

Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence

Global climate models (GCMs) are the main tools for understanding and predicting climate change. However, due to limited numerical resolutions, these models suffer from major structural uncertainties; e.g., they cannot resolve critical processes such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such small-scale processes have to be represented as a function of the resolved scales via closures (parametrization). The accuracy of these closures is particularly important for capturing climate extremes. Traditionally, such closures are based on heuristics and simplifying assumptions about the unresolved physics. Recently, supervised-learned closures, trained offline on high-fidelity data, have been shown to outperform the classical physics-based closures. However, this approach requires a significant amount of high-fidelity training data and can also lead to instabilities. Reinforcement learning is emerging as a potent alternative for developing such closures as it requires only low-order statistics and leads to stable closures. In Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements serve a dual role of discretization points and learning agents. We leverage SMARL and fundamentals of turbulence physics to learn closures for prototypes of atmospheric and oceanic turbulence. The policy is trained using only the enstrophy spectrum, which is nearly invariant and can be estimated from a few high-fidelity samples (these few samples are far from enough for supervised/offline learning). We show that these closures lead to stable low-resolution simulations that, at a fraction of the cost, can reproduce the high-fidelity simulations' statistics, including the tails of the probability density functions. The results demonstrate the high potential of SMARL for closure modeling for GCMs, especially in the regime of scarce data and indirect observations.

  • 5 authors
·
Dec 1, 2023

On the Dynamics of Acceleration in First order Gradient Methods

Ever since the original algorithm by Nesterov (1983), the true nature of the acceleration phenomenon has remained elusive, with various interpretations of why the method is actually faster. The diagnosis of the algorithm through the lens of Ordinary Differential Equations (ODEs) and the corresponding dynamical system formulation to explain the underlying dynamics has a rich history. In the literature, the ODEs that explain algorithms are typically derived by considering the limiting case of the algorithm maps themselves, that is, an ODE formulation follows the development of an algorithm. This obfuscates the underlying higher order principles and thus provides little evidence of the working of the algorithm. Such has been the case with Nesterov algorithm and the various analogies used to describe the acceleration phenomena, viz, momentum associated with the rolling of a Heavy-Ball down a slope, Hessian damping etc. The main focus of our work is to ideate the genesis of the Nesterov algorithm from the viewpoint of dynamical systems leading to demystifying the mathematical rigour behind the algorithm. Instead of reverse engineering ODEs from discrete algorithms, this work explores tools from the recently developed control paradigm titled Passivity and Immersion approach and the Geometric Singular Perturbation theory which are applied to arrive at the formulation of a dynamical system that explains and models the acceleration phenomena. This perspective helps to gain insights into the various terms present and the sequence of steps used in Nesterovs accelerated algorithm for the smooth strongly convex and the convex case. The framework can also be extended to derive the acceleration achieved using the triple momentum method and provides justifications for the non-convergence to the optimal solution in the Heavy-Ball method.

  • 5 authors
·
Sep 22

Avoiding tipping points in fisheries management through Gaussian Process Dynamic Programming

Model uncertainty and limited data are fundamental challenges to robust management of human intervention in a natural system. These challenges are acutely highlighted by concerns that many ecological systems may contain tipping points, such as Allee population sizes. Before a collapse, we do not know where the tipping points lie, if they exist at all. Hence, we know neither a complete model of the system dynamics nor do we have access to data in some large region of state-space where such a tipping point might exist. We illustrate how a Bayesian Non-Parametric (BNP) approach using a Gaussian Process (GP) prior provides a flexible representation of this inherent uncertainty. We embed GPs in a Stochastic Dynamic Programming (SDP) framework in order to make robust management predictions with both model uncertainty and limited data. We use simulations to evaluate this approach as compared with the standard approach of using model selection to choose from a set of candidate models. We find that model selection erroneously favors models without tipping points -- leading to harvest policies that guarantee extinction. The GPDP performs nearly as well as the true model and significantly outperforms standard approaches. We illustrate this using examples of simulated single-species dynamics, where the standard model selection approach should be most effective, and find that it still fails to account for uncertainty appropriately and leads to population crashes, while management based on the GPDP does not, since it does not underestimate the uncertainty outside of the observed data.

  • 3 authors
·
Dec 27, 2014

Continual Model-Based Reinforcement Learning with Hypernetworks

Effective planning in model-based reinforcement learning (MBRL) and model-predictive control (MPC) relies on the accuracy of the learned dynamics model. In many instances of MBRL and MPC, this model is assumed to be stationary and is periodically re-trained from scratch on state transition experience collected from the beginning of environment interactions. This implies that the time required to train the dynamics model - and the pause required between plan executions - grows linearly with the size of the collected experience. We argue that this is too slow for lifelong robot learning and propose HyperCRL, a method that continually learns the encountered dynamics in a sequence of tasks using task-conditional hypernetworks. Our method has three main attributes: first, it includes dynamics learning sessions that do not revisit training data from previous tasks, so it only needs to store the most recent fixed-size portion of the state transition experience; second, it uses fixed-capacity hypernetworks to represent non-stationary and task-aware dynamics; third, it outperforms existing continual learning alternatives that rely on fixed-capacity networks, and does competitively with baselines that remember an ever increasing coreset of past experience. We show that HyperCRL is effective in continual model-based reinforcement learning in robot locomotion and manipulation scenarios, such as tasks involving pushing and door opening. Our project website with videos is at this link https://rvl.cs.toronto.edu/blog/2020/hypercrl

  • 4 authors
·
Sep 24, 2020

A Model Zoo on Phase Transitions in Neural Networks

Using the weights of trained Neural Network (NN) models as data modality has recently gained traction as a research field - dubbed Weight Space Learning (WSL). Multiple recent works propose WSL methods to analyze models, evaluate methods, or synthesize weights. Weight space learning methods require populations of trained models as datasets for development and evaluation. However, existing collections of models - called `model zoos' - are unstructured or follow a rudimentary definition of diversity. In parallel, work rooted in statistical physics has identified phases and phase transitions in NN models. Models are homogeneous within the same phase but qualitatively differ from one phase to another. We combine the idea of `model zoos' with phase information to create a controlled notion of diversity in populations. We introduce 12 large-scale zoos that systematically cover known phases and vary over model architecture, size, and datasets. These datasets cover different modalities, such as computer vision, natural language processing, and scientific ML. For every model, we compute loss landscape metrics and validate full coverage of the phases. With this dataset, we provide the community with a resource with a wide range of potential applications for WSL and beyond. Evidence suggests the loss landscape phase plays a role in applications such as model training, analysis, or sparsification. We demonstrate this in an exploratory study of the downstream methods like transfer learning or model weights averaging.

  • 6 authors
·
Apr 25 2

A Low-complexity Structured Neural Network to Realize States of Dynamical Systems

Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states.

  • 4 authors
·
Mar 30

ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction

Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.

  • 7 authors
·
Feb 1, 2024

Demystifying the Token Dynamics of Deep Selective State Space Models

Selective state space models (SSM), such as Mamba, have gained prominence for their effectiveness in modeling sequential data. Despite their outstanding empirical performance, a comprehensive theoretical understanding of deep selective SSM remains elusive, hindering their further development and adoption for applications that need high fidelity. In this paper, we investigate the dynamical properties of tokens in a pre-trained Mamba model. In particular, we derive the dynamical system governing the continuous-time limit of the Mamba model and characterize the asymptotic behavior of its solutions. In the one-dimensional case, we prove that only one of the following two scenarios happens: either all tokens converge to zero, or all tokens diverge to infinity. We provide criteria based on model parameters to determine when each scenario occurs. For the convergent scenario, we empirically verify that this scenario negatively impacts the model's performance. For the divergent scenario, we prove that different tokens will diverge to infinity at different rates, thereby contributing unequally to the updates during model training. Based on these investigations, we propose two refinements for the model: excluding the convergent scenario and reordering tokens based on their importance scores, both aimed at improving practical performance. Our experimental results validate these refinements, offering insights into enhancing Mamba's effectiveness in real-world applications.

  • 4 authors
·
Oct 4, 2024

PROSE: Predicting Operators and Symbolic Expressions using Multimodal Transformers

Approximating nonlinear differential equations using a neural network provides a robust and efficient tool for various scientific computing tasks, including real-time predictions, inverse problems, optimal controls, and surrogate modeling. Previous works have focused on embedding dynamical systems into networks through two approaches: learning a single solution operator (i.e., the mapping from input parametrized functions to solutions) or learning the governing system of equations (i.e., the constitutive model relative to the state variables). Both of these approaches yield different representations for the same underlying data or function. Additionally, observing that families of differential equations often share key characteristics, we seek one network representation across a wide range of equations. Our method, called Predicting Operators and Symbolic Expressions (PROSE), learns maps from multimodal inputs to multimodal outputs, capable of generating both numerical predictions and mathematical equations. By using a transformer structure and a feature fusion approach, our network can simultaneously embed sets of solution operators for various parametric differential equations using a single trained network. Detailed experiments demonstrate that the network benefits from its multimodal nature, resulting in improved prediction accuracy and better generalization. The network is shown to be able to handle noise in the data and errors in the symbolic representation, including noisy numerical values, model misspecification, and erroneous addition or deletion of terms. PROSE provides a new neural network framework for differential equations which allows for more flexibility and generality in learning operators and governing equations from data.

  • 3 authors
·
Sep 28, 2023

A PINN Approach to Symbolic Differential Operator Discovery with Sparse Data

Given ample experimental data from a system governed by differential equations, it is possible to use deep learning techniques to construct the underlying differential operators. In this work we perform symbolic discovery of differential operators in a situation where there is sparse experimental data. This small data regime in machine learning can be made tractable by providing our algorithms with prior information about the underlying dynamics. Physics Informed Neural Networks (PINNs) have been very successful in this regime (reconstructing entire ODE solutions using only a single point or entire PDE solutions with very few measurements of the initial condition). We modify the PINN approach by adding a neural network that learns a representation of unknown hidden terms in the differential equation. The algorithm yields both a surrogate solution to the differential equation and a black-box representation of the hidden terms. These hidden term neural networks can then be converted into symbolic equations using symbolic regression techniques like AI Feynman. In order to achieve convergence of these neural networks, we provide our algorithms with (noisy) measurements of both the initial condition as well as (synthetic) experimental data obtained at later times. We demonstrate strong performance of this approach even when provided with very few measurements of noisy data in both the ODE and PDE regime.

  • 3 authors
·
Dec 8, 2022

Grokking as the Transition from Lazy to Rich Training Dynamics

We propose that the grokking phenomenon, where the train loss of a neural network decreases much earlier than its test loss, can arise due to a neural network transitioning from lazy training dynamics to a rich, feature learning regime. To illustrate this mechanism, we study the simple setting of vanilla gradient descent on a polynomial regression problem with a two layer neural network which exhibits grokking without regularization in a way that cannot be explained by existing theories. We identify sufficient statistics for the test loss of such a network, and tracking these over training reveals that grokking arises in this setting when the network first attempts to fit a kernel regression solution with its initial features, followed by late-time feature learning where a generalizing solution is identified after train loss is already low. We provide an asymptotic theoretical description of the grokking dynamics in this model using dynamical mean field theory (DMFT) for high dimensional data. We find that the key determinants of grokking are the rate of feature learning -- which can be controlled precisely by parameters that scale the network output -- and the alignment of the initial features with the target function y(x). We argue this delayed generalization arises when (1) the top eigenvectors of the initial neural tangent kernel and the task labels y(x) are misaligned, but (2) the dataset size is large enough so that it is possible for the network to generalize eventually, but not so large that train loss perfectly tracks test loss at all epochs, and (3) the network begins training in the lazy regime so does not learn features immediately. We conclude with evidence that this transition from lazy (linear model) to rich training (feature learning) can control grokking in more general settings, like on MNIST, one-layer Transformers, and student-teacher networks.

  • 4 authors
·
Oct 9, 2023

Solving robust MDPs as a sequence of static RL problems

Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.

  • 3 authors
·
Oct 8, 2024

Space and Time Continuous Physics Simulation From Partial Observations

Modern techniques for physical simulations rely on numerical schemes and mesh-refinement methods to address trade-offs between precision and complexity, but these handcrafted solutions are tedious and require high computational power. Data-driven methods based on large-scale machine learning promise high adaptivity by integrating long-range dependencies more directly and efficiently. In this work, we focus on fluid dynamics and address the shortcomings of a large part of the literature, which are based on fixed support for computations and predictions in the form of regular or irregular grids. We propose a novel setup to perform predictions in a continuous spatial and temporal domain while being trained on sparse observations. We formulate the task as a double observation problem and propose a solution with two interlinked dynamical systems defined on, respectively, the sparse positions and the continuous domain, which allows to forecast and interpolate a solution from the initial condition. Our practical implementation involves recurrent GNNs and a spatio-temporal attention observer capable of interpolating the solution at arbitrary locations. Our model not only generalizes to new initial conditions (as standard auto-regressive models do) but also performs evaluation at arbitrary space and time locations. We evaluate on three standard datasets in fluid dynamics and compare to strong baselines, which are outperformed both in classical settings and in the extended new task requiring continuous predictions.

  • 4 authors
·
Jan 17, 2024

Meta Flow Matching: Integrating Vector Fields on the Wasserstein Manifold

Numerous biological and physical processes can be modeled as systems of interacting entities evolving continuously over time, e.g. the dynamics of communicating cells or physical particles. Learning the dynamics of such systems is essential for predicting the temporal evolution of populations across novel samples and unseen environments. Flow-based models allow for learning these dynamics at the population level - they model the evolution of the entire distribution of samples. However, current flow-based models are limited to a single initial population and a set of predefined conditions which describe different dynamics. We argue that multiple processes in natural sciences have to be represented as vector fields on the Wasserstein manifold of probability densities. That is, the change of the population at any moment in time depends on the population itself due to the interactions between samples. In particular, this is crucial for personalized medicine where the development of diseases and their respective treatment response depends on the microenvironment of cells specific to each patient. We propose Meta Flow Matching (MFM), a practical approach to integrating along these vector fields on the Wasserstein manifold by amortizing the flow model over the initial populations. Namely, we embed the population of samples using a Graph Neural Network (GNN) and use these embeddings to train a Flow Matching model. This gives MFM the ability to generalize over the initial distributions unlike previously proposed methods. We demonstrate the ability of MFM to improve prediction of individual treatment responses on a large scale multi-patient single-cell drug screen dataset.

  • 8 authors
·
Aug 26, 2024 2

Multi-marginal Schrödinger Bridges with Iterative Reference Refinement

Practitioners frequently aim to infer an unobserved population trajectory using sample snapshots at multiple time points. For instance, in single-cell sequencing, scientists would like to learn how gene expression evolves over time. But sequencing any cell destroys that cell. So we cannot access any cell's full trajectory, but we can access snapshot samples from many cells. Stochastic differential equations are commonly used to analyze systems with full individual-trajectory access; since here we have only sample snapshots, these methods are inapplicable. The deep learning community has recently explored using Schr\"odinger bridges (SBs) and their extensions to estimate these dynamics. However, these methods either (1) interpolate between just two time points or (2) require a single fixed reference dynamic within the SB, which is often just set to be Brownian motion. But learning piecewise from adjacent time points can fail to capture long-term dependencies. And practitioners are typically able to specify a model class for the reference dynamic but not the exact values of the parameters within it. So we propose a new method that (1) learns the unobserved trajectories from sample snapshots across multiple time points and (2) requires specification only of a class of reference dynamics, not a single fixed one. In particular, we suggest an iterative projection method inspired by Schr\"odinger bridges; we alternate between learning a piecewise SB on the unobserved trajectories and using the learned SB to refine our best guess for the dynamics within the reference class. We demonstrate the advantages of our method via a well-known simulated parametric model from ecology, simulated and real data from systems biology, and real motion-capture data.

  • 3 authors
·
Aug 12, 2024

Towards Cross Domain Generalization of Hamiltonian Representation via Meta Learning

Recent advances in deep learning for physics have focused on discovering shared representations of target systems by incorporating physics priors or inductive biases into neural networks. While effective, these methods are limited to the system domain, where the type of system remains consistent and thus cannot ensure the adaptation to new, or unseen physical systems governed by different laws. For instance, a neural network trained on a mass-spring system cannot guarantee accurate predictions for the behavior of a two-body system or any other system with different physical laws. In this work, we take a significant leap forward by targeting cross domain generalization within the field of Hamiltonian dynamics. We model our system with a graph neural network and employ a meta learning algorithm to enable the model to gain experience over a distribution of tasks and make it adapt to new physics. Our approach aims to learn a unified Hamiltonian representation that is generalizable across multiple system domains, thereby overcoming the limitations of system-specific models. Our results demonstrate that the meta-trained model not only adapts effectively to new systems but also captures a generalized Hamiltonian representation that is consistent across different physical domains. Overall, through the use of meta learning, we offer a framework that achieves cross domain generalization, providing a step towards a unified model for understanding a wide array of dynamical systems via deep learning.

  • 2 authors
·
Dec 2, 2022

Addendum to Research MMMCV; A Man/Microbio/Megabio/Computer Vision

In October 2007, a Research Proposal for the University of Sydney, Australia, the author suggested that biovie-physical phenomenon as `electrodynamic dependant biological vision', is governed by relativistic quantum laws and biovision. The phenomenon on the basis of `biovielectroluminescence', satisfies man/microbio/megabio/computer vision (MMMCV), as a robust candidate for physical and visual sciences. The general aim of this addendum is to present a refined text of Sections 1-3 of that proposal and highlighting the contents of its Appendix in form of a `Mechanisms' Section. We then briefly remind in an article aimed for December 2007, by appending two more equations into Section 3, a theoretical II-time scenario as a time model well-proposed for the phenomenon. The time model within the core of the proposal, plays a significant role in emphasizing the principle points on Objectives no. 1-8, Sub-hypothesis 3.1.2, mentioned in Article [arXiv:0710.0410]. It also expresses the time concept in terms of causing quantized energy f(|E|) of time |t|, emit in regard to shortening the probability of particle loci as predictable patterns of particle's un-occurred motion, a solution to Heisenberg's uncertainty principle (HUP) into a simplistic manner. We conclude that, practical frames via a time algorithm to this model, fixates such predictable patterns of motion of scenery bodies onto recordable observation points of a MMMCV system. It even suppresses/predicts superposition phenomena coming from a human subject and/or other bio-subjects for any decision making event, e.g., brainwave quantum patterns based on vision. Maintaining the existential probability of Riemann surfaces of II-time scenarios in the context of biovielectroluminescence, makes motion-prediction a possibility.

  • 1 authors
·
Nov 6, 2007

Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs

Generating realistic time series data is important for many engineering and scientific applications. Existing work tackles this problem using generative adversarial networks (GANs). However, GANs are often unstable during training, and they can suffer from mode collapse. While variational autoencoders (VAEs) are known to be more robust to these issues, they are (surprisingly) less often considered for time series generation. In this work, we introduce Koopman VAE (KVAE), a new generative framework that is based on a novel design for the model prior, and that can be optimized for either regular and irregular training data. Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map. Our approach enhances generative modeling with two desired features: (i) incorporating domain knowledge can be achieved by leverageing spectral tools that prescribe constraints on the eigenvalues of the linear map; and (ii) studying the qualitative behavior and stablity of the system can be performed using tools from dynamical systems theory. Our results show that KVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks. Whether trained on regular or irregular data, KVAE generates time series that improve both discriminative and predictive metrics. We also present visual evidence suggesting that KVAE learns probability density functions that better approximate empirical ground truth distributions.

  • 5 authors
·
Oct 4, 2023

Foundation Inference Models for Markov Jump Processes

Markov jump processes are continuous-time stochastic processes which describe dynamical systems evolving in discrete state spaces. These processes find wide application in the natural sciences and machine learning, but their inference is known to be far from trivial. In this work we introduce a methodology for zero-shot inference of Markov jump processes (MJPs), on bounded state spaces, from noisy and sparse observations, which consists of two components. First, a broad probability distribution over families of MJPs, as well as over possible observation times and noise mechanisms, with which we simulate a synthetic dataset of hidden MJPs and their noisy observation process. Second, a neural network model that processes subsets of the simulated observations, and that is trained to output the initial condition and rate matrix of the target MJP in a supervised way. We empirically demonstrate that one and the same (pretrained) model can infer, in a zero-shot fashion, hidden MJPs evolving in state spaces of different dimensionalities. Specifically, we infer MJPs which describe (i) discrete flashing ratchet systems, which are a type of Brownian motors, and the conformational dynamics in (ii) molecular simulations, (iii) experimental ion channel data and (iv) simple protein folding models. What is more, we show that our model performs on par with state-of-the-art models which are finetuned to the target datasets.

  • 5 authors
·
Jun 10, 2024

One Life to Learn: Inferring Symbolic World Models for Stochastic Environments from Unguided Exploration

Symbolic world modeling requires inferring and representing an environment's transitional dynamics as an executable program. Prior work has focused on largely deterministic environments with abundant interaction data, simple mechanics, and human guidance. We address a more realistic and challenging setting, learning in a complex, stochastic environment where the agent has only "one life" to explore a hostile environment without human guidance. We introduce OneLife, a framework that models world dynamics through conditionally-activated programmatic laws within a probabilistic programming framework. Each law operates through a precondition-effect structure, activating in relevant world states. This creates a dynamic computation graph that routes inference and optimization only through relevant laws, avoiding scaling challenges when all laws contribute to predictions about a complex, hierarchical state, and enabling the learning of stochastic dynamics even with sparse rule activation. To evaluate our approach under these demanding constraints, we introduce a new evaluation protocol that measures (a) state ranking, the ability to distinguish plausible future states from implausible ones, and (b) state fidelity, the ability to generate future states that closely resemble reality. We develop and evaluate our framework on Crafter-OO, our reimplementation of the Crafter environment that exposes a structured, object-oriented symbolic state and a pure transition function that operates on that state alone. OneLife can successfully learn key environment dynamics from minimal, unguided interaction, outperforming a strong baseline on 16 out of 23 scenarios tested. We also test OneLife's planning ability, with simulated rollouts successfully identifying superior strategies. Our work establishes a foundation for autonomously constructing programmatic world models of unknown, complex environments.

  • 5 authors
·
Oct 13 2

InterDyn: Controllable Interactive Dynamics with Video Diffusion Models

Predicting the dynamics of interacting objects is essential for both humans and intelligent systems. However, existing approaches are limited to simplified, toy settings and lack generalizability to complex, real-world environments. Recent advances in generative models have enabled the prediction of state transitions based on interventions, but focus on generating a single future state which neglects the continuous dynamics resulting from the interaction. To address this gap, we propose InterDyn, a novel framework that generates videos of interactive dynamics given an initial frame and a control signal encoding the motion of a driving object or actor. Our key insight is that large video generation models can act as both neural renderers and implicit physics ``simulators'', having learned interactive dynamics from large-scale video data. To effectively harness this capability, we introduce an interactive control mechanism that conditions the video generation process on the motion of the driving entity. Qualitative results demonstrate that InterDyn generates plausible, temporally consistent videos of complex object interactions while generalizing to unseen objects. Quantitative evaluations show that InterDyn outperforms baselines that focus on static state transitions. This work highlights the potential of leveraging video generative models as implicit physics engines. Project page: https://interdyn.is.tue.mpg.de/

  • 5 authors
·
Dec 16, 2024

Mamba State-Space Models Are Lyapunov-Stable Learners

Mamba state-space models (SSMs) were recently shown to outperform state-of-the-art (SOTA) Transformer large language models (LLMs) across various tasks. Despite subsequent widespread adaptation, little work has focused on Mamba LLMs' amenability for fine-tuning frameworks ubiquitously used for Transformer-based LLMs, e.g., mixed-precision fine-tuning (MPFT) and parameter-efficient fine-tuning (PEFT). For the former, it currently remains an open question whether Mamba's recurrent dynamics are robust to small input changes, such as those encountered during MPFT. Using dynamical systems theory (in particular, Lyapunov exponents), we answer this question in the affirmative. We empirically validate this result through several experiments, showing that Mamba SSMs are significantly more stable to changes introduced by mixed-precision than comparable Transformers, even when both MPFT and PEFT are combined. For PEFT, we show how targeting specific memory buffers in Mamba's customized CUDA kernels for low-rank adaptation regularizes SSM parameters, thus providing both parameter efficient learning and computational savings. Finally, with both MPFT and PEFT enabled, we explore the impact of instruction tuning Mamba SSMs for in-context learning (ICL) on natural language tasks. While pretrained Mamba and Mamba-2 models only achieve 38% and 82% (respectively) of the ICL improvements of comparable Transformer-based LLMs, we show that instruction tuning allows Mamba models to narrow this gap to 81% and Mamba-2 models to skyrocket over this gap to 132%.

  • 3 authors
·
May 31, 2024

Explainable Earth Surface Forecasting under Extreme Events

With climate change-related extreme events on the rise, high dimensional Earth observation data presents a unique opportunity for forecasting and understanding impacts on ecosystems. This is, however, impeded by the complexity of processing, visualizing, modeling, and explaining this data. To showcase how this challenge can be met, here we train a convolutional long short-term memory-based architecture on the novel DeepExtremeCubes dataset. DeepExtremeCubes includes around 40,000 long-term Sentinel-2 minicubes (January 2016-October 2022) worldwide, along with labeled extreme events, meteorological data, vegetation land cover, and topography map, sampled from locations affected by extreme climate events and surrounding areas. When predicting future reflectances and vegetation impacts through kernel normalized difference vegetation index, the model achieved an R^2 score of 0.9055 in the test set. Explainable artificial intelligence was used to analyze the model's predictions during the October 2020 Central South America compound heatwave and drought event. We chose the same area exactly one year before the event as counterfactual, finding that the average temperature and surface pressure are generally the best predictors under normal conditions. In contrast, minimum anomalies of evaporation and surface latent heat flux take the lead during the event. A change of regime is also observed in the attributions before the event, which might help assess how long the event was brewing before happening. The code to replicate all experiments and figures in this paper is publicly available at https://github.com/DeepExtremes/txyXAI

  • 5 authors
·
Oct 2, 2024

Emergence of Hidden Capabilities: Exploring Learning Dynamics in Concept Space

Modern generative models demonstrate impressive capabilities, likely stemming from an ability to identify and manipulate abstract concepts underlying their training data. However, fundamental questions remain: what determines the concepts a model learns, the order in which it learns them, and its ability to manipulate those concepts? To address these questions, we propose analyzing a model's learning dynamics via a framework we call the concept space, where each axis represents an independent concept underlying the data generating process. By characterizing learning dynamics in this space, we identify how the speed at which a concept is learned, and hence the order of concept learning, is controlled by properties of the data we term concept signal. Further, we observe moments of sudden turns in the direction of a model's learning dynamics in concept space. Surprisingly, these points precisely correspond to the emergence of hidden capabilities, i.e., where latent interventions show the model possesses the capability to manipulate a concept, but these capabilities cannot yet be elicited via naive input prompting. While our results focus on synthetically defined toy datasets, we hypothesize a general claim on emergence of hidden capabilities may hold: generative models possess latent capabilities that emerge suddenly and consistently during training, though a model might not exhibit these capabilities under naive input prompting.

  • 5 authors
·
Jun 27, 2024

A brain basis of dynamical intelligence for AI and computational neuroscience

The deep neural nets of modern artificial intelligence (AI) have not achieved defining features of biological intelligence, including abstraction, causal learning, and energy-efficiency. While scaling to larger models has delivered performance improvements for current applications, more brain-like capacities may demand new theories, models, and methods for designing artificial learning systems. Here, we argue that this opportunity to reassess insights from the brain should stimulate cooperation between AI research and theory-driven computational neuroscience (CN). To motivate a brain basis of neural computation, we present a dynamical view of intelligence from which we elaborate concepts of sparsity in network structure, temporal dynamics, and interactive learning. In particular, we suggest that temporal dynamics, as expressed through neural synchrony, nested oscillations, and flexible sequences, provide a rich computational layer for reading and updating hierarchical models distributed in long-term memory networks. Moreover, embracing agent-centered paradigms in AI and CN will accelerate our understanding of the complex dynamics and behaviors that build useful world models. A convergence of AI/CN theories and objectives will reveal dynamical principles of intelligence for brains and engineered learning systems. This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.

  • 3 authors
·
May 15, 2021

Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case

Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation (DA) technique such as ensemble Kalman filter (EnKF) is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto-Sivashinsky (KS) system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.

  • 3 authors
·
Oct 1, 2021

Kernel Density Estimators in Large Dimensions

This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.

  • 2 authors
·
Aug 11, 2024

Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries

This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.

  • 8 authors
·
Jul 31, 2024

Ground State Preparation via Dynamical Cooling

Quantum algorithms for probing ground-state properties of quantum systems require good initial states. Projection-based methods such as eigenvalue filtering rely on inputs that have a significant overlap with the low-energy subspace, which can be challenging for large, strongly-correlated systems. This issue has motivated the study of physically-inspired dynamical approaches such as thermodynamic cooling. In this work, we introduce a ground-state preparation algorithm based on the simulation of quantum dynamics. Our main insight is to transform the Hamiltonian by a shifted sign function via quantum signal processing, effectively mapping eigenvalues into positive and negative subspaces separated by a large gap. This automatically ensures that all states within each subspace conserve energy with respect to the transformed Hamiltonian. Subsequent time-evolution with a perturbed Hamiltonian induces transitions to lower-energy states while preventing unwanted jumps to higher energy states. The approach does not rely on a priori knowledge of energy gaps and requires no additional qubits to model a bath. Furthermore, it makes mathcal{O}(d^{,3/2}/epsilon) queries to the time-evolution operator of the system and mathcal{O}(d^{,3/2}) queries to a block-encoding of the perturbation, for d cooling steps and an epsilon-accurate energy resolution. Our results provide a framework for combining quantum signal processing and Hamiltonian simulation to design heuristic quantum algorithms for ground-state preparation.

  • 4 authors
·
Apr 8, 2024

Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning

The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.

  • 5 authors
·
Jul 1, 2021