Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeEfficient neural networks for real-time modeling of analog dynamic range compression
Deep learning approaches have demonstrated success in modeling analog audio effects. Nevertheless, challenges remain in modeling more complex effects that involve time-varying nonlinear elements, such as dynamic range compressors. Existing neural network approaches for modeling compression either ignore the device parameters, do not attain sufficient accuracy, or otherwise require large noncausal models prohibiting real-time operation. In this work, we propose a modification to temporal convolutional networks (TCNs) enabling greater efficiency without sacrificing performance. By utilizing very sparse convolutional kernels through rapidly growing dilations, our model attains a significant receptive field using fewer layers, reducing computation. Through a detailed evaluation we demonstrate our efficient and causal approach achieves state-of-the-art performance in modeling the analog LA-2A, is capable of real-time operation on CPU, and only requires 10 minutes of training data.
Diff-SSL-G-Comp: Towards a Large-Scale and Diverse Dataset for Virtual Analog Modeling
Virtual Analog (VA) modeling aims to simulate the behavior of hardware circuits via algorithms to replicate their tone digitally. Dynamic Range Compressor (DRC) is an audio processing module that controls the dynamics of a track by reducing and amplifying the volumes of loud and quiet sounds, which is essential in music production. In recent years, neural-network-based VA modeling has shown great potential in producing high-fidelity models. However, due to the lack of data quantity and diversity, their generalization ability in different parameter settings and input sounds is still limited. To tackle this problem, we present Diff-SSL-G-Comp, the first large-scale and diverse dataset for modeling the SSL 500 G-Bus Compressor. Specifically, we manually collected 175 unmastered songs from the Cambridge Multitrack Library. We recorded the compressed audio in 220 parameter combinations, resulting in an extensive 2528-hour dataset with diverse genres, instruments, tempos, and keys. Moreover, to facilitate the use of our proposed dataset, we conducted benchmark experiments in various open-sourced black-box and grey-box models, as well as white-box plugins. We also conducted ablation studies in different data subsets to illustrate the effectiveness of improved data diversity and quantity. The dataset and demos are on our project page: http://www.yichenggu.com/DiffSSLGComp/.
SignalTrain: Profiling Audio Compressors with Deep Neural Networks
In this work we present a data-driven approach for predicting the behavior of (i.e., profiling) a given non-linear audio signal processing effect (henceforth "audio effect"). Our objective is to learn a mapping function that maps the unprocessed audio to the processed by the audio effect to be profiled, using time-domain samples. To that aim, we employ a deep auto-encoder model that is conditioned on both time-domain samples and the control parameters of the target audio effect. As a test-case study, we focus on the offline profiling of two dynamic range compression audio effects, one software-based and the other analog. Compressors were chosen because they are a widely used and important set of effects and because their parameterized nonlinear time-dependent nature makes them a challenging problem for a system aiming to profile "general" audio effects. Results from our experimental procedure show that the primary functional and auditory characteristics of the compressors can be captured, however there is still sufficient audible noise to merit further investigation before such methods are applied to real-world audio processing workflows.
Modelling black-box audio effects with time-varying feature modulation
Deep learning approaches for black-box modelling of audio effects have shown promise, however, the majority of existing work focuses on nonlinear effects with behaviour on relatively short time-scales, such as guitar amplifiers and distortion. While recurrent and convolutional architectures can theoretically be extended to capture behaviour at longer time scales, we show that simply scaling the width, depth, or dilation factor of existing architectures does not result in satisfactory performance when modelling audio effects such as fuzz and dynamic range compression. To address this, we propose the integration of time-varying feature-wise linear modulation into existing temporal convolutional backbones, an approach that enables learnable adaptation of the intermediate activations. We demonstrate that our approach more accurately captures long-range dependencies for a range of fuzz and compressor implementations across both time and frequency domain metrics. We provide sound examples, source code, and pretrained models to faciliate reproducibility.
Evaluation of CNN-based Automatic Music Tagging Models
Recent advances in deep learning accelerated the development of content-based automatic music tagging systems. Music information retrieval (MIR) researchers proposed various architecture designs, mainly based on convolutional neural networks (CNNs), that achieve state-of-the-art results in this multi-label binary classification task. However, due to the differences in experimental setups followed by researchers, such as using different dataset splits and software versions for evaluation, it is difficult to compare the proposed architectures directly with each other. To facilitate further research, in this paper we conduct a consistent evaluation of different music tagging models on three datasets (MagnaTagATune, Million Song Dataset, and MTG-Jamendo) and provide reference results using common evaluation metrics (ROC-AUC and PR-AUC). Furthermore, all the models are evaluated with perturbed inputs to investigate the generalization capabilities concerning time stretch, pitch shift, dynamic range compression, and addition of white noise. For reproducibility, we provide the PyTorch implementations with the pre-trained models.
Learned HDR Image Compression for Perceptually Optimal Storage and Display
High dynamic range (HDR) capture and display have seen significant growth in popularity driven by the advancements in technology and increasing consumer demand for superior image quality. As a result, HDR image compression is crucial to fully realize the benefits of HDR imaging without suffering from large file sizes and inefficient data handling. Conventionally, this is achieved by introducing a residual/gain map as additional metadata to bridge the gap between HDR and low dynamic range (LDR) images, making the former compatible with LDR image codecs but offering suboptimal rate-distortion performance. In this work, we initiate efforts towards end-to-end optimized HDR image compression for perceptually optimal storage and display. Specifically, we learn to compress an HDR image into two bitstreams: one for generating an LDR image to ensure compatibility with legacy LDR displays, and another as side information to aid HDR image reconstruction from the output LDR image. To measure the perceptual quality of output HDR and LDR images, we use two recently proposed image distortion metrics, both validated against human perceptual data of image quality and with reference to the uncompressed HDR image. Through end-to-end optimization for rate-distortion performance, our method dramatically improves HDR and LDR image quality at all bit rates.
FlexHDR: Modelling Alignment and Exposure Uncertainties for Flexible HDR Imaging
High dynamic range (HDR) imaging is of fundamental importance in modern digital photography pipelines and used to produce a high-quality photograph with well exposed regions despite varying illumination across the image. This is typically achieved by merging multiple low dynamic range (LDR) images taken at different exposures. However, over-exposed regions and misalignment errors due to poorly compensated motion result in artefacts such as ghosting. In this paper, we present a new HDR imaging technique that specifically models alignment and exposure uncertainties to produce high quality HDR results. We introduce a strategy that learns to jointly align and assess the alignment and exposure reliability using an HDR-aware, uncertainty-driven attention map that robustly merges the frames into a single high quality HDR image. Further, we introduce a progressive, multi-stage image fusion approach that can flexibly merge any number of LDR images in a permutation-invariant manner. Experimental results show our method can produce better quality HDR images with up to 1.1dB PSNR improvement to the state-of-the-art, and subjective improvements in terms of better detail, colours, and fewer artefacts.
Alignment-free HDR Deghosting with Semantics Consistent Transformer
High dynamic range (HDR) imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output. The essence is to leverage the contextual information, including both dynamic and static semantics, for better image generation. Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion. However, there is no research on jointly leveraging the dynamic and static context in a simultaneous manner. To delve into this problem, we propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules in the network. The spatial attention aims to deal with the intra-image correlation to model the dynamic motion, while the channel attention enables the inter-image intertwining to enhance the semantic consistency across frames. Aside from this, we introduce a novel realistic HDR dataset with more variations in foreground objects, environmental factors, and larger motions. Extensive comparisons on both conventional datasets and ours validate the effectiveness of our method, achieving the best trade-off on the performance and the computational cost.
D^2iT: Dynamic Diffusion Transformer for Accurate Image Generation
Diffusion models are widely recognized for their ability to generate high-fidelity images. Despite the excellent performance and scalability of the Diffusion Transformer (DiT) architecture, it applies fixed compression across different image regions during the diffusion process, disregarding the naturally varying information densities present in these regions. However, large compression leads to limited local realism, while small compression increases computational complexity and compromises global consistency, ultimately impacting the quality of generated images. To address these limitations, we propose dynamically compressing different image regions by recognizing the importance of different regions, and introduce a novel two-stage framework designed to enhance the effectiveness and efficiency of image generation: (1) Dynamic VAE (DVAE) at first stage employs a hierarchical encoder to encode different image regions at different downsampling rates, tailored to their specific information densities, thereby providing more accurate and natural latent codes for the diffusion process. (2) Dynamic Diffusion Transformer (D^2iT) at second stage generates images by predicting multi-grained noise, consisting of coarse-grained (less latent code in smooth regions) and fine-grained (more latent codes in detailed regions), through an novel combination of the Dynamic Grain Transformer and the Dynamic Content Transformer. The strategy of combining rough prediction of noise with detailed regions correction achieves a unification of global consistency and local realism. Comprehensive experiments on various generation tasks validate the effectiveness of our approach. Code will be released at https://github.com/jiawn-creator/Dynamic-DiT.
GaussHDR: High Dynamic Range Gaussian Splatting via Learning Unified 3D and 2D Local Tone Mapping
High dynamic range (HDR) novel view synthesis (NVS) aims to reconstruct HDR scenes by leveraging multi-view low dynamic range (LDR) images captured at different exposure levels. Current training paradigms with 3D tone mapping often result in unstable HDR reconstruction, while training with 2D tone mapping reduces the model's capacity to fit LDR images. Additionally, the global tone mapper used in existing methods can impede the learning of both HDR and LDR representations. To address these challenges, we present GaussHDR, which unifies 3D and 2D local tone mapping through 3D Gaussian splatting. Specifically, we design a residual local tone mapper for both 3D and 2D tone mapping that accepts an additional context feature as input. We then propose combining the dual LDR rendering results from both 3D and 2D local tone mapping at the loss level. Finally, recognizing that different scenes may exhibit varying balances between the dual results, we introduce uncertainty learning and use the uncertainties for adaptive modulation. Extensive experiments demonstrate that GaussHDR significantly outperforms state-of-the-art methods in both synthetic and real-world scenarios.
COAT: Compressing Optimizer states and Activation for Memory-Efficient FP8 Training
FP8 training has emerged as a promising method for improving training efficiency. Existing frameworks accelerate training by applying FP8 computation to linear layers while leaving optimizer states and activations in higher precision, which fails to fully optimize memory usage. This paper introduces COAT (Compressing Optimizer States and Activations for FP8 Training), a novel FP8 training framework designed to significantly reduce memory footprint when training large models. COAT addresses current limitations through two key innovations: (1) Dynamic Range Expansion, which aligns optimizer state distributions more closely with the FP8 representation range, thereby reducing quantization error, and (2) Mixed-Granularity Activation Quantization, which optimizes activation memory using a combination of per-tensor and per-group quantization strategies. Experiments demonstrate that COAT effectively reduces end-to-end training memory footprint by 1.54x compared to BF16 while achieving nearly lossless performance across various tasks, such as Large Language Model pretraining and fine-tuning and Vision Language Model training. COAT also achieves a 1.43x end-to-end training speedup compared to BF16, performing on par with or surpassing TransformerEngine's speedup. COAT enables efficient full-parameter training of large models on fewer GPUs, and facilitates doubling the batch size in distributed training settings, providing a practical solution for scaling large-scale model training. The code is available at https://github.com/NVlabs/COAT.
RawHDR: High Dynamic Range Image Reconstruction from a Single Raw Image
High dynamic range (HDR) images capture much more intensity levels than standard ones. Current methods predominantly generate HDR images from 8-bit low dynamic range (LDR) sRGB images that have been degraded by the camera processing pipeline. However, it becomes a formidable task to retrieve extremely high dynamic range scenes from such limited bit-depth data. Unlike existing methods, the core idea of this work is to incorporate more informative Raw sensor data to generate HDR images, aiming to recover scene information in hard regions (the darkest and brightest areas of an HDR scene). To this end, we propose a model tailor-made for Raw images, harnessing the unique features of Raw data to facilitate the Raw-to-HDR mapping. Specifically, we learn exposure masks to separate the hard and easy regions of a high dynamic scene. Then, we introduce two important guidances, dual intensity guidance, which guides less informative channels with more informative ones, and global spatial guidance, which extrapolates scene specifics over an extended spatial domain. To verify our Raw-to-HDR approach, we collect a large Raw/HDR paired dataset for both training and testing. Our empirical evaluations validate the superiority of the proposed Raw-to-HDR reconstruction model, as well as our newly captured dataset in the experiments.
FlexiCodec: A Dynamic Neural Audio Codec for Low Frame Rates
Neural audio codecs are foundational to speech language models. It is expected to have a low frame rate and decoupled semantic and acoustic information. A lower frame rate codec can reduce the computational cost of speech language models by shortening the sequence length. Recent studies have developed 12.5Hz low-frame-rate audio codecs, but even lower frame rate codecs remain underexplored. We find that a major challenge for very low frame rate tokens is missing semantic information. This paper introduces FlexiCodec to address this limitation. FlexiCodec improves semantic preservation with a dynamic frame rate approach and introduces a novel architecture featuring an ASR feature-assisted dual stream encoding and Transformer bottlenecks. With dynamic frame rates, it uses less frames at information-sparse regions through adaptively merging semantically similar frames. A dynamic frame rate also allows FlexiCodec to support inference-time controllable frame rates between 3Hz and 12.5Hz. Experiments on 6.25Hz, 8.3Hz and 12.5Hz average frame rates confirm that FlexiCodec excels over baseline systems in semantic information preservation and delivers a high audio reconstruction quality. We also validate the effectiveness of FlexiCodec in language model-based TTS. Demos are available at: https://flexicodec.github.io
Optimizing Illuminant Estimation in Dual-Exposure HDR Imaging
High dynamic range (HDR) imaging involves capturing a series of frames of the same scene, each with different exposure settings, to broaden the dynamic range of light. This can be achieved through burst capturing or using staggered HDR sensors that capture long and short exposures simultaneously in the camera image signal processor (ISP). Within camera ISP pipeline, illuminant estimation is a crucial step aiming to estimate the color of the global illuminant in the scene. This estimation is used in camera ISP white-balance module to remove undesirable color cast in the final image. Despite the multiple frames captured in the HDR pipeline, conventional illuminant estimation methods often rely only on a single frame of the scene. In this paper, we explore leveraging information from frames captured with different exposure times. Specifically, we introduce a simple feature extracted from dual-exposure images to guide illuminant estimators, referred to as the dual-exposure feature (DEF). To validate the efficiency of DEF, we employed two illuminant estimators using the proposed DEF: 1) a multilayer perceptron network (MLP), referred to as exposure-based MLP (EMLP), and 2) a modified version of the convolutional color constancy (CCC) to integrate our DEF, that we call ECCC. Both EMLP and ECCC achieve promising results, in some cases surpassing prior methods that require hundreds of thousands or millions of parameters, with only a few hundred parameters for EMLP and a few thousand parameters for ECCC.
EvoPress: Towards Optimal Dynamic Model Compression via Evolutionary Search
The high computational costs of large language models (LLMs) have led to a flurry of research on LLM compression, via methods such as quantization, sparsification, or structured pruning. A new frontier in this area is given by dynamic, non-uniform compression methods, which adjust the compression levels (e.g., sparsity) per-block or even per-layer in order to minimize accuracy loss, while guaranteeing a global compression threshold. Yet, current methods rely on heuristics for identifying the "importance" of a given layer towards the loss, based on assumptions such as error monotonicity, i.e. that the end-to-end model compression error is proportional to the sum of layer-wise errors. In this paper, we revisit this area, and propose a new and general approach for dynamic compression that is provably optimal in a given input range. We begin from the motivating observation that, in general, error monotonicity does not hold for LLMs: compressed models with lower sum of per-layer errors can perform worse than models with higher error sums. To address this, we propose a new general evolutionary framework for dynamic LLM compression called EvoPress, which has provable convergence, and low sample and evaluation complexity. We show that these theoretical guarantees lead to highly competitive practical performance for dynamic compression of Llama, Mistral and Phi models. Via EvoPress, we set new state-of-the-art results across all compression approaches: structural pruning (block/layer dropping), unstructured sparsity, as well as quantization with dynamic bitwidths. Our code is available at https://github.com/IST-DASLab/EvoPress.
Sound Matching an Analogue Levelling Amplifier Using the Newton-Raphson Method
Automatic differentiation through digital signal processing algorithms for virtual analogue modelling has recently gained popularity. These algorithms are typically more computationally efficient than black-box neural networks that rely on dense matrix multiplications. Due to their differentiable nature, they can be integrated with neural networks and jointly trained using gradient descent algorithms, resulting in more efficient systems. Furthermore, signal processing algorithms have significantly fewer parameters than neural networks, allowing the application of the Newton-Raphson method. This method offers faster and more robust convergence than gradient descent at the cost of quadratic storage. This paper presents a method to emulate analogue levelling amplifiers using a feed-forward digital compressor with parameters optimised via the Newton-Raphson method. We demonstrate that a digital compressor can successfully approximate the behaviour of our target unit, the Teletronix LA-2A. Different strategies for computing the Hessian matrix are benchmarked. We leverage parallel algorithms for recursive filters to achieve efficient training on modern GPUs. The resulting model is made into a VST plugin and is open-sourced at https://github.com/aim-qmul/4a2a.
Dynamic Memory Compression: Retrofitting LLMs for Accelerated Inference
Transformers have emerged as the backbone of large language models (LLMs). However, generation remains inefficient due to the need to store in memory a cache of key-value representations for past tokens, whose size scales linearly with the input sequence length and batch size. As a solution, we propose Dynamic Memory Compression (DMC), a method for on-line key-value cache compression at inference time. Most importantly, the model learns to apply different compression rates in different heads and layers. We retrofit pre-trained LLMs such as Llama 2 (7B, 13B and 70B) into DMC Transformers, achieving up to ~3.7x throughput increase in auto-regressive inference on a NVIDIA H100 GPU. DMC is applied via continued pre-training on a negligible percentage of the original data without adding any extra parameters. We find that DMC preserves the original downstream performance with up to 4x cache compression, outperforming up-trained grouped-query attention (GQA). GQA and DMC can be even combined to obtain compounded gains. As a result DMC fits longer contexts and larger batches within any given memory budget.
NanoCodec: Towards High-Quality Ultra Fast Speech LLM Inference
Large Language Models (LLMs) have significantly advanced audio processing by leveraging audio codecs to discretize audio into tokens, enabling the application of language modeling techniques to speech data. However, existing audio codecs often operate at high frame rates, leading to slow training and inference, particularly for autoregressive models. To address this, there is growing interest in low frame-rate audio codecs, which reduce the number of autoregressive steps required to generate one second of audio. In this paper, we conduct ablation studies to examine the impact of frame rate, bitrate, and causality on codec reconstruction quality. Based on our findings, we introduce NanoCodec, a state-of-the-art audio codec that achieves high-quality compression at just 12.5 frames per second (FPS). NanoCodec outperforms related works across various bitrate ranges, establishing a new benchmark for low-latency and efficient Speech LLM training and inference.
I3D: Transformer architectures with input-dependent dynamic depth for speech recognition
Transformer-based end-to-end speech recognition has achieved great success. However, the large footprint and computational overhead make it difficult to deploy these models in some real-world applications. Model compression techniques can reduce the model size and speed up inference, but the compressed model has a fixed architecture which might be suboptimal. We propose a novel Transformer encoder with Input-Dependent Dynamic Depth (I3D) to achieve strong performance-efficiency trade-offs. With a similar number of layers at inference time, I3D-based models outperform the vanilla Transformer and the static pruned model via iterative layer pruning. We also present interesting analysis on the gate probabilities and the input-dependency, which helps us better understand deep encoders.
EControl: Fast Distributed Optimization with Compression and Error Control
Modern distributed training relies heavily on communication compression to reduce the communication overhead. In this work, we study algorithms employing a popular class of contractive compressors in order to reduce communication overhead. However, the naive implementation often leads to unstable convergence or even exponential divergence due to the compression bias. Error Compensation (EC) is an extremely popular mechanism to mitigate the aforementioned issues during the training of models enhanced by contractive compression operators. Compared to the effectiveness of EC in the data homogeneous regime, the understanding of the practicality and theoretical foundations of EC in the data heterogeneous regime is limited. Existing convergence analyses typically rely on strong assumptions such as bounded gradients, bounded data heterogeneity, or large batch accesses, which are often infeasible in modern machine learning applications. We resolve the majority of current issues by proposing EControl, a novel mechanism that can regulate error compensation by controlling the strength of the feedback signal. We prove fast convergence for EControl in standard strongly convex, general convex, and nonconvex settings without any additional assumptions on the problem or data heterogeneity. We conduct extensive numerical evaluations to illustrate the efficacy of our method and support our theoretical findings.
HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting
High dynamic range (HDR) novel view synthesis (NVS) aims to create photorealistic images from novel viewpoints using HDR imaging techniques. The rendered HDR images capture a wider range of brightness levels containing more details of the scene than normal low dynamic range (LDR) images. Existing HDR NVS methods are mainly based on NeRF. They suffer from long training time and slow inference speed. In this paper, we propose a new framework, High Dynamic Range Gaussian Splatting (HDR-GS), which can efficiently render novel HDR views and reconstruct LDR images with a user input exposure time. Specifically, we design a Dual Dynamic Range (DDR) Gaussian point cloud model that uses spherical harmonics to fit HDR color and employs an MLP-based tone-mapper to render LDR color. The HDR and LDR colors are then fed into two Parallel Differentiable Rasterization (PDR) processes to reconstruct HDR and LDR views. To establish the data foundation for the research of 3D Gaussian splatting-based methods in HDR NVS, we recalibrate the camera parameters and compute the initial positions for Gaussian point clouds. Experiments demonstrate that our HDR-GS surpasses the state-of-the-art NeRF-based method by 3.84 and 1.91 dB on LDR and HDR NVS while enjoying 1000x inference speed and only requiring 6.3% training time.
Speech Bandwidth Expansion Via High Fidelity Generative Adversarial Networks
Speech bandwidth expansion is crucial for expanding the frequency range of low-bandwidth speech signals, thereby improving audio quality, clarity and perceptibility in digital applications. Its applications span telephony, compression, text-to-speech synthesis, and speech recognition. This paper presents a novel approach using a high-fidelity generative adversarial network, unlike cascaded systems, our system is trained end-to-end on paired narrowband and wideband speech signals. Our method integrates various bandwidth upsampling ratios into a single unified model specifically designed for speech bandwidth expansion applications. Our approach exhibits robust performance across various bandwidth expansion factors, including those not encountered during training, demonstrating zero-shot capability. To the best of our knowledge, this is the first work to showcase this capability. The experimental results demonstrate that our method outperforms previous end-to-end approaches, as well as interpolation and traditional techniques, showcasing its effectiveness in practical speech enhancement applications.
DC-Solver: Improving Predictor-Corrector Diffusion Sampler via Dynamic Compensation
Diffusion probabilistic models (DPMs) have shown remarkable performance in visual synthesis but are computationally expensive due to the need for multiple evaluations during the sampling. Recent predictor-corrector diffusion samplers have significantly reduced the required number of function evaluations (NFE), but inherently suffer from a misalignment issue caused by the extra corrector step, especially with a large classifier-free guidance scale (CFG). In this paper, we introduce a new fast DPM sampler called DC-Solver, which leverages dynamic compensation (DC) to mitigate the misalignment of the predictor-corrector samplers. The dynamic compensation is controlled by compensation ratios that are adaptive to the sampling steps and can be optimized on only 10 datapoints by pushing the sampling trajectory toward a ground truth trajectory. We further propose a cascade polynomial regression (CPR) which can instantly predict the compensation ratios on unseen sampling configurations. Additionally, we find that the proposed dynamic compensation can also serve as a plug-and-play module to boost the performance of predictor-only samplers. Extensive experiments on both unconditional sampling and conditional sampling demonstrate that our DC-Solver can consistently improve the sampling quality over previous methods on different DPMs with a wide range of resolutions up to 1024times1024. Notably, we achieve 10.38 FID (NFE=5) on unconditional FFHQ and 0.394 MSE (NFE=5, CFG=7.5) on Stable-Diffusion-2.1. Code is available at https://github.com/wl-zhao/DC-Solver
MambaIC: State Space Models for High-Performance Learned Image Compression
A high-performance image compression algorithm is crucial for real-time information transmission across numerous fields. Despite rapid progress in image compression, computational inefficiency and poor redundancy modeling still pose significant bottlenecks, limiting practical applications. Inspired by the effectiveness of state space models (SSMs) in capturing long-range dependencies, we leverage SSMs to address computational inefficiency in existing methods and improve image compression from multiple perspectives. In this paper, we integrate the advantages of SSMs for better efficiency-performance trade-off and propose an enhanced image compression approach through refined context modeling, which we term MambaIC. Specifically, we explore context modeling to adaptively refine the representation of hidden states. Additionally, we introduce window-based local attention into channel-spatial entropy modeling to reduce potential spatial redundancy during compression, thereby increasing efficiency. Comprehensive qualitative and quantitative results validate the effectiveness and efficiency of our approach, particularly for high-resolution image compression. Code is released at https://github.com/AuroraZengfh/MambaIC.
Quantize More, Lose Less: Autoregressive Generation from Residually Quantized Speech Representations
Text-to-speech (TTS) synthesis has seen renewed progress under the discrete modeling paradigm. Existing autoregressive approaches often rely on single-codebook representations, which suffer from significant information loss. Even with post-hoc refinement techniques such as flow matching, these methods fail to recover fine-grained details (e.g., prosodic nuances, speaker-specific timbres), especially in challenging scenarios like singing voice or music synthesis. We propose QTTS, a novel TTS framework built upon our new audio codec, QDAC. The core innovation of QDAC lies in its end-to-end training of an ASR-based auto-regressive network with a GAN, which achieves superior semantic feature disentanglement for scalable, near-lossless compression. QTTS models these discrete codes using two innovative strategies: the Hierarchical Parallel architecture, which uses a dual-AR structure to model inter-codebook dependencies for higher-quality synthesis, and the Delay Multihead approach, which employs parallelized prediction with a fixed delay to accelerate inference speed. Our experiments demonstrate that the proposed framework achieves higher synthesis quality and better preserves expressive content compared to baseline. This suggests that scaling up compression via multi-codebook modeling is a promising direction for high-fidelity, general-purpose speech and audio generation.
High-Fidelity Audio Compression with Improved RVQGAN
Language models have been successfully used to model natural signals, such as images, speech, and music. A key component of these models is a high quality neural compression model that can compress high-dimensional natural signals into lower dimensional discrete tokens. To that end, we introduce a high-fidelity universal neural audio compression algorithm that achieves ~90x compression of 44.1 KHz audio into tokens at just 8kbps bandwidth. We achieve this by combining advances in high-fidelity audio generation with better vector quantization techniques from the image domain, along with improved adversarial and reconstruction losses. We compress all domains (speech, environment, music, etc.) with a single universal model, making it widely applicable to generative modeling of all audio. We compare with competing audio compression algorithms, and find our method outperforms them significantly. We provide thorough ablations for every design choice, as well as open-source code and trained model weights. We hope our work can lay the foundation for the next generation of high-fidelity audio modeling.
VidCompress: Memory-Enhanced Temporal Compression for Video Understanding in Large Language Models
Video-based multimodal large language models (Video-LLMs) possess significant potential for video understanding tasks. However, most Video-LLMs treat videos as a sequential set of individual frames, which results in insufficient temporal-spatial interaction that hinders fine-grained comprehension and difficulty in processing longer videos due to limited visual token capacity. To address these challenges, we propose VidCompress, a novel Video-LLM featuring memory-enhanced temporal compression. VidCompress employs a dual-compressor approach: a memory-enhanced compressor captures both short-term and long-term temporal relationships in videos and compresses the visual tokens using a multiscale transformer with a memory-cache mechanism, while a text-perceived compressor generates condensed visual tokens by utilizing Q-Former and integrating temporal contexts into query embeddings with cross attention. Experiments on several VideoQA datasets and comprehensive benchmarks demonstrate that VidCompress efficiently models complex temporal-spatial relations and significantly outperforms existing Video-LLMs.
UltraFusion: Ultra High Dynamic Imaging using Exposure Fusion
Capturing high dynamic range (HDR) scenes is one of the most important issues in camera design. Majority of cameras use exposure fusion technique, which fuses images captured by different exposure levels, to increase dynamic range. However, this approach can only handle images with limited exposure difference, normally 3-4 stops. When applying to very high dynamic scenes where a large exposure difference is required, this approach often fails due to incorrect alignment or inconsistent lighting between inputs, or tone mapping artifacts. In this work, we propose UltraFusion, the first exposure fusion technique that can merge input with 9 stops differences. The key idea is that we model the exposure fusion as a guided inpainting problem, where the under-exposed image is used as a guidance to fill the missing information of over-exposed highlight in the over-exposed region. Using under-exposed image as a soft guidance, instead of a hard constrain, our model is robust to potential alignment issue or lighting variations. Moreover, utilizing the image prior of the generative model, our model also generates natural tone mapping, even for very high-dynamic range scene. Our approach outperforms HDR-Transformer on latest HDR benchmarks. Moreover, to test its performance in ultra high dynamic range scene, we capture a new real-world exposure fusion benchmark, UltraFusion Dataset, with exposure difference up to 9 stops, and experiments show that \model~can generate beautiful and high-quality fusion results under various scenarios. An online demo is provided at https://openimaginglab.github.io/UltraFusion/.
High Fidelity Neural Audio Compression
We introduce a state-of-the-art real-time, high-fidelity, audio codec leveraging neural networks. It consists in a streaming encoder-decoder architecture with quantized latent space trained in an end-to-end fashion. We simplify and speed-up the training by using a single multiscale spectrogram adversary that efficiently reduces artifacts and produce high-quality samples. We introduce a novel loss balancer mechanism to stabilize training: the weight of a loss now defines the fraction of the overall gradient it should represent, thus decoupling the choice of this hyper-parameter from the typical scale of the loss. Finally, we study how lightweight Transformer models can be used to further compress the obtained representation by up to 40%, while staying faster than real time. We provide a detailed description of the key design choices of the proposed model including: training objective, architectural changes and a study of various perceptual loss functions. We present an extensive subjective evaluation (MUSHRA tests) together with an ablation study for a range of bandwidths and audio domains, including speech, noisy-reverberant speech, and music. Our approach is superior to the baselines methods across all evaluated settings, considering both 24 kHz monophonic and 48 kHz stereophonic audio. Code and models are available at github.com/facebookresearch/encodec.
PAMS: Quantized Super-Resolution via Parameterized Max Scale
Deep convolutional neural networks (DCNNs) have shown dominant performance in the task of super-resolution (SR). However, their heavy memory cost and computation overhead significantly restrict their practical deployments on resource-limited devices, which mainly arise from the floating-point storage and operations between weights and activations. Although previous endeavors mainly resort to fixed-point operations, quantizing both weights and activations with fixed coding lengths may cause significant performance drop, especially on low bits. Specifically, most state-of-the-art SR models without batch normalization have a large dynamic quantization range, which also serves as another cause of performance drop. To address these two issues, we propose a new quantization scheme termed PArameterized Max Scale (PAMS), which applies the trainable truncated parameter to explore the upper bound of the quantization range adaptively. Finally, a structured knowledge transfer (SKT) loss is introduced to fine-tune the quantized network. Extensive experiments demonstrate that the proposed PAMS scheme can well compress and accelerate the existing SR models such as EDSR and RDN. Notably, 8-bit PAMS-EDSR improves PSNR on Set5 benchmark from 32.095dB to 32.124dB with 2.42times compression ratio, which achieves a new state-of-the-art.
Multi-band Frequency Reconstruction for Neural Psychoacoustic Coding
Achieving high-fidelity audio compression while preserving perceptual quality across diverse content remains a key challenge in Neural Audio Coding (NAC). We introduce MUFFIN, a fully convolutional Neural Psychoacoustic Coding (NPC) framework that leverages psychoacoustically guided multi-band frequency reconstruction. At its core is a Multi-Band Spectral Residual Vector Quantization (MBS-RVQ) module that allocates bitrate across frequency bands based on perceptual salience. This design enables efficient compression while disentangling speaker identity from content using distinct codebooks. MUFFIN incorporates a transformer-inspired convolutional backbone and a modified snake activation to enhance resolution in fine-grained spectral regions. Experimental results on multiple benchmarks demonstrate that MUFFIN consistently outperforms existing approaches in reconstruction quality. A high-compression variant achieves a state-of-the-art 12.5 Hz rate with minimal loss. MUFFIN also proves effective in downstream generative tasks, highlighting its promise as a token representation for integration with language models. Audio samples and code are available.
Ultra-lightweight Neural Differential DSP Vocoder For High Quality Speech Synthesis
Neural vocoders model the raw audio waveform and synthesize high-quality audio, but even the highly efficient ones, like MB-MelGAN and LPCNet, fail to run real-time on a low-end device like a smartglass. A pure digital signal processing (DSP) based vocoder can be implemented via lightweight fast Fourier transforms (FFT), and therefore, is a magnitude faster than any neural vocoder. A DSP vocoder often gets a lower audio quality due to consuming over-smoothed acoustic model predictions of approximate representations for the vocal tract. In this paper, we propose an ultra-lightweight differential DSP (DDSP) vocoder that uses a jointly optimized acoustic model with a DSP vocoder, and learns without an extracted spectral feature for the vocal tract. The model achieves audio quality comparable to neural vocoders with a high average MOS of 4.36 while being efficient as a DSP vocoder. Our C++ implementation, without any hardware-specific optimization, is at 15 MFLOPS, surpasses MB-MelGAN by 340 times in terms of FLOPS, and achieves a vocoder-only RTF of 0.003 and overall RTF of 0.044 while running single-threaded on a 2GHz Intel Xeon CPU.
Early Exit or Not: Resource-Efficient Blind Quality Enhancement for Compressed Images
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts. Recently, extensive approaches have been proposed to reduce image compression artifacts at the decoder side; however, they require a series of architecture-identical models to process images with different quality, which are inefficient and resource-consuming. Besides, it is common in practice that compressed images are with unknown quality and it is intractable for existing approaches to select a suitable model for blind quality enhancement. In this paper, we propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images. Specifically, our approach blindly and progressively enhances the quality of compressed images through a dynamic deep neural network (DNN), in which an early-exit strategy is embedded. Then, our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images. Consequently, slight artifacts can be removed in a simpler and faster process, while the severe artifacts can be further removed in a more elaborate process. Extensive experiments demonstrate that our RBQE approach achieves state-of-the-art performance in terms of both blind quality enhancement and resource efficiency. The code is available at https://github.com/RyanXingQL/RBQE.
DynamicKV: Task-Aware Adaptive KV Cache Compression for Long Context LLMs
Efficient KV cache management in LLMs is crucial for long-context tasks like RAG and summarization. Existing KV cache compression methods enforce a fixed pattern, neglecting task-specific characteristics and reducing the retention of essential information. However, we observe distinct activation patterns across layers in various tasks, highlighting the need for adaptive strategies tailored to each task's unique demands. Based on this insight, we propose DynamicKV, a method that dynamically optimizes token retention by adjusting the number of tokens retained at each layer to adapt to the specific task. DynamicKV establishes global and per-layer maximum KV cache budgets, temporarily retaining the maximum budget for the current layer, and periodically updating the KV cache sizes of all preceding layers during inference. Our method retains only 1.7% of the KV cache size while achieving ~85% of the Full KV cache performance on LongBench. Notably, even under extreme compression (0.9%), DynamicKV surpasses state-of-the-art (SOTA) methods by 11% in the Needle-in-a-Haystack test using Mistral-7B-Instruct-v0.2. The code will be released.
Neural Video Compression with Feature Modulation
The emerging conditional coding-based neural video codec (NVC) shows superiority over commonly-used residual coding-based codec and the latest NVC already claims to outperform the best traditional codec. However, there still exist critical problems blocking the practicality of NVC. In this paper, we propose a powerful conditional coding-based NVC that solves two critical problems via feature modulation. The first is how to support a wide quality range in a single model. Previous NVC with this capability only supports about 3.8 dB PSNR range on average. To tackle this limitation, we modulate the latent feature of the current frame via the learnable quantization scaler. During the training, we specially design the uniform quantization parameter sampling mechanism to improve the harmonization of encoding and quantization. This results in a better learning of the quantization scaler and helps our NVC support about 11.4 dB PSNR range. The second is how to make NVC still work under a long prediction chain. We expose that the previous SOTA NVC has an obvious quality degradation problem when using a large intra-period setting. To this end, we propose modulating the temporal feature with a periodically refreshing mechanism to boost the quality. %Besides solving the above two problems, we also design a single model that can support both RGB and YUV colorspaces. Notably, under single intra-frame setting, our codec can achieve 29.7\% bitrate saving over previous SOTA NVC with 16\% MACs reduction. Our codec serves as a notable landmark in the journey of NVC evolution. The codes are at https://github.com/microsoft/DCVC.
HH-Codec: High Compression High-fidelity Discrete Neural Codec for Spoken Language Modeling
Discrete speech tokenization is a fundamental component in speech codecs. However, in large-scale speech-to-speech systems, the complexity of parallel streams from multiple quantizers and the computational cost of high-time-dimensional codecs pose significant challenges. In this paper, we introduce HH-Codec, a neural codec that achieves extreme compression at 24 tokens per second for 24 kHz audio while relying on single-quantizer inference. Our approach involves a carefully designed Vector Quantization space for Spoken Language Modeling, optimizing compression efficiency while minimizing information loss. Building on this, we propose an asymmetric encoder-decoder architecture (Audio-VQ-Mel-Audio) that leverages dual supervision and progressive training to enhance reconstruction stability and fidelity. HH-Codec achieves state-of-the-art performance in speech reconstruction with an ultra-low bandwidth of 0.3 kbps. We further evaluate its effectiveness in codebook utilization and generative model adaptation, with extensive ablations validating the necessity of each module. HH-Codec is available at https://github.com/opendilab/HH-Codec.
SNAC: Multi-Scale Neural Audio Codec
Neural audio codecs have recently gained popularity because they can represent audio signals with high fidelity at very low bitrates, making it feasible to use language modeling approaches for audio generation and understanding. Residual Vector Quantization (RVQ) has become the standard technique for neural audio compression using a cascade of VQ codebooks. This paper proposes the Multi-Scale Neural Audio Codec, a simple extension of RVQ where the quantizers can operate at different temporal resolutions. By applying a hierarchy of quantizers at variable frame rates, the codec adapts to the audio structure across multiple timescales. This leads to more efficient compression, as demonstrated by extensive objective and subjective evaluations. The code and model weights are open-sourced at https://github.com/hubertsiuzdak/snac.
PanDORA: Casual HDR Radiance Acquisition for Indoor Scenes
Most novel view synthesis methods such as NeRF are unable to capture the true high dynamic range (HDR) radiance of scenes since they are typically trained on photos captured with standard low dynamic range (LDR) cameras. While the traditional exposure bracketing approach which captures several images at different exposures has recently been adapted to the multi-view case, we find such methods to fall short of capturing the full dynamic range of indoor scenes, which includes very bright light sources. In this paper, we present PanDORA: a PANoramic Dual-Observer Radiance Acquisition system for the casual capture of indoor scenes in high dynamic range. Our proposed system comprises two 360{\deg} cameras rigidly attached to a portable tripod. The cameras simultaneously acquire two 360{\deg} videos: one at a regular exposure and the other at a very fast exposure, allowing a user to simply wave the apparatus casually around the scene in a matter of minutes. The resulting images are fed to a NeRF-based algorithm that reconstructs the scene's full high dynamic range. Compared to HDR baselines from previous work, our approach reconstructs the full HDR radiance of indoor scenes without sacrificing the visual quality while retaining the ease of capture from recent NeRF-like approaches.
High Dynamic Range Novel View Synthesis with Single Exposure
High Dynamic Range Novel View Synthesis (HDR-NVS) aims to establish a 3D scene HDR model from Low Dynamic Range (LDR) imagery. Typically, multiple-exposure LDR images are employed to capture a wider range of brightness levels in a scene, as a single LDR image cannot represent both the brightest and darkest regions simultaneously. While effective, this multiple-exposure HDR-NVS approach has significant limitations, including susceptibility to motion artifacts (e.g., ghosting and blurring), high capture and storage costs. To overcome these challenges, we introduce, for the first time, the single-exposure HDR-NVS problem, where only single exposure LDR images are available during training. We further introduce a novel approach, Mono-HDR-3D, featuring two dedicated modules formulated by the LDR image formation principles, one for converting LDR colors to HDR counterparts, and the other for transforming HDR images to LDR format so that unsupervised learning is enabled in a closed loop. Designed as a meta-algorithm, our approach can be seamlessly integrated with existing NVS models. Extensive experiments show that Mono-HDR-3D significantly outperforms previous methods. Source code will be released.
MVDR Beamforming for Cyclostationary Processes
Conventional acoustic beamformers assume that noise is stationary within short time frames. This assumption prevents them from exploiting correlations between frequencies in almost-periodic noise sources such as musical instruments, fans, and engines. These signals exhibit periodically varying statistics and are better modeled as cyclostationary processes. This paper introduces the cyclic MVDR (cMVDR) beamformer, an extension of the conventional MVDR that leverages both spatial and spectral correlations to improve noise reduction, particularly in low-SNR scenarios. The method builds on frequency-shifted (FRESH) filtering, where shifted versions of the input are combined to attenuate or amplify components that are coherent across frequency. To address inharmonicity, where harmonic partials deviate from exact integer multiples of the fundamental frequency, we propose a data-driven strategy that estimates resonant frequencies via periodogram analysis and computes the frequency shifts from their spacing. Analytical and experimental results demonstrate that performance improves with increasing spectral correlation. On real recordings, the cMVDR achieves up to 5 dB gain in scale-invariant signal-to-distortion ratio (SI-SDR) over the MVDR and remains effective even with a single microphone. Code is available at https://github.com/Screeen/cMVDR.
MSR-Codec: A Low-Bitrate Multi-Stream Residual Codec for High-Fidelity Speech Generation with Information Disentanglement
Audio codecs are a critical component of modern speech generation systems. This paper introduces a low-bitrate, multi-scale residual codec that encodes speech into four distinct streams: semantic, timbre, prosody, and residual. This architecture achieves high-fidelity speech reconstruction at competitive low bitrates while demonstrating an inherent ability for information disentanglement. We construct a two-stage language model for text-to-speech (TTS) synthesis using this codec, which, despite its lightweight design and minimal data requirements, achieves a state-of-the-art Word Error Rate (WER) and superior speaker similarity compared to several larger models. Furthermore, the codec's design proves highly effective for voice conversion, enabling independent manipulation of speaker timbre and prosody.
FreqKV: Frequency Domain Key-Value Compression for Efficient Context Window Extension
Frequency-domain compression has proven effective in reducing redundancies for spatial signals. In this work, we propose FreqKV, a novel frequency domain key-value (KV) compression technique that enables efficient context window extension for decoder-only large language models (LLMs). Our approach is motivated by a key observation that, in the frequency domain, the energy distribution of the KV cache is predominantly concentrated in low-frequency components. By discarding high-frequency components, we achieve efficient compression of the KV cache with minimal information loss. FreqKV iteratively compresses the increasing KV cache to a fixed size in the frequency domain, allowing models to process lengthy contexts efficiently. Introducing no additional parameters or architectural modifications, FreqKV is applicable to both fine-tuning and inference. With minimal fine-tuning, LLMs can learn to leverage the limited cache that is compressed in the frequency domain and extend the context window. Experiments on a range of long context language modeling and understanding tasks demonstrate the efficiency and effectiveness of the proposed method.
Backdoor Attacks Against Deep Image Compression via Adaptive Frequency Trigger
Recent deep-learning-based compression methods have achieved superior performance compared with traditional approaches. However, deep learning models have proven to be vulnerable to backdoor attacks, where some specific trigger patterns added to the input can lead to malicious behavior of the models. In this paper, we present a novel backdoor attack with multiple triggers against learned image compression models. Motivated by the widely used discrete cosine transform (DCT) in existing compression systems and standards, we propose a frequency-based trigger injection model that adds triggers in the DCT domain. In particular, we design several attack objectives for various attacking scenarios, including: 1) attacking compression quality in terms of bit-rate and reconstruction quality; 2) attacking task-driven measures, such as down-stream face recognition and semantic segmentation. Moreover, a novel simple dynamic loss is designed to balance the influence of different loss terms adaptively, which helps achieve more efficient training. Extensive experiments show that with our trained trigger injection models and simple modification of encoder parameters (of the compression model), the proposed attack can successfully inject several backdoors with corresponding triggers in a single image compression model.
Learned Compression for Compressed Learning
Modern sensors produce increasingly rich streams of high-resolution data. Due to resource constraints, machine learning systems discard the vast majority of this information via resolution reduction. Compressed-domain learning allows models to operate on compact latent representations, allowing higher effective resolution for the same budget. However, existing compression systems are not ideal for compressed learning. Linear transform coding and end-to-end learned compression systems reduce bitrate, but do not uniformly reduce dimensionality; thus, they do not meaningfully increase efficiency. Generative autoencoders reduce dimensionality, but their adversarial or perceptual objectives lead to significant information loss. To address these limitations, we introduce WaLLoC (Wavelet Learned Lossy Compression), a neural codec architecture that combines linear transform coding with nonlinear dimensionality-reducing autoencoders. WaLLoC sandwiches a shallow, asymmetric autoencoder and entropy bottleneck between an invertible wavelet packet transform. Across several key metrics, WaLLoC outperforms the autoencoders used in state-of-the-art latent diffusion models. WaLLoC does not require perceptual or adversarial losses to represent high-frequency detail, providing compatibility with modalities beyond RGB images and stereo audio. WaLLoC's encoder consists almost entirely of linear operations, making it exceptionally efficient and suitable for mobile computing, remote sensing, and learning directly from compressed data. We demonstrate WaLLoC's capability for compressed-domain learning across several tasks, including image classification, colorization, document understanding, and music source separation. Our code, experiments, and pre-trained audio and image codecs are available at https://ut-sysml.org/walloc
DynamicScaler: Seamless and Scalable Video Generation for Panoramic Scenes
The increasing demand for immersive AR/VR applications and spatial intelligence has heightened the need to generate high-quality scene-level and 360{\deg} panoramic video. However, most video diffusion models are constrained by limited resolution and aspect ratio, which restricts their applicability to scene-level dynamic content synthesis. In this work, we propose the DynamicScaler, addressing these challenges by enabling spatially scalable and panoramic dynamic scene synthesis that preserves coherence across panoramic scenes of arbitrary size. Specifically, we introduce a Offset Shifting Denoiser, facilitating efficient, synchronous, and coherent denoising panoramic dynamic scenes via a diffusion model with fixed resolution through a seamless rotating Window, which ensures seamless boundary transitions and consistency across the entire panoramic space, accommodating varying resolutions and aspect ratios. Additionally, we employ a Global Motion Guidance mechanism to ensure both local detail fidelity and global motion continuity. Extensive experiments demonstrate our method achieves superior content and motion quality in panoramic scene-level video generation, offering a training-free, efficient, and scalable solution for immersive dynamic scene creation with constant VRAM consumption regardless of the output video resolution. Our project page is available at https://dynamic-scaler.pages.dev/.
DynaBERT: Dynamic BERT with Adaptive Width and Depth
The pre-trained language models like BERT, though powerful in many natural language processing tasks, are both computation and memory expensive. To alleviate this problem, one approach is to compress them for specific tasks before deployment. However, recent works on BERT compression usually compress the large BERT model to a fixed smaller size. They can not fully satisfy the requirements of different edge devices with various hardware performances. In this paper, we propose a novel dynamic BERT model (abbreviated as DynaBERT), which can flexibly adjust the size and latency by selecting adaptive width and depth. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth, by distilling knowledge from the full-sized model to small sub-networks. Network rewiring is also used to keep the more important attention heads and neurons shared by more sub-networks. Comprehensive experiments under various efficiency constraints demonstrate that our proposed dynamic BERT (or RoBERTa) at its largest size has comparable performance as BERT-base (or RoBERTa-base), while at smaller widths and depths consistently outperforms existing BERT compression methods. Code is available at https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT.
AERO: Audio Super Resolution in the Spectral Domain
We present AERO, a audio super-resolution model that processes speech and music signals in the spectral domain. AERO is based on an encoder-decoder architecture with U-Net like skip connections. We optimize the model using both time and frequency domain loss functions. Specifically, we consider a set of reconstruction losses together with perceptual ones in the form of adversarial and feature discriminator loss functions. To better handle phase information the proposed method operates over the complex-valued spectrogram using two separate channels. Unlike prior work which mainly considers low and high frequency concatenation for audio super-resolution, the proposed method directly predicts the full frequency range. We demonstrate high performance across a wide range of sample rates considering both speech and music. AERO outperforms the evaluated baselines considering Log-Spectral Distance, ViSQOL, and the subjective MUSHRA test. Audio samples and code are available at https://pages.cs.huji.ac.il/adiyoss-lab/aero
Restoring Images in Adverse Weather Conditions via Histogram Transformer
Transformer-based image restoration methods in adverse weather have achieved significant progress. Most of them use self-attention along the channel dimension or within spatially fixed-range blocks to reduce computational load. However, such a compromise results in limitations in capturing long-range spatial features. Inspired by the observation that the weather-induced degradation factors mainly cause similar occlusion and brightness, in this work, we propose an efficient Histogram Transformer (Histoformer) for restoring images affected by adverse weather. It is powered by a mechanism dubbed histogram self-attention, which sorts and segments spatial features into intensity-based bins. Self-attention is then applied across bins or within each bin to selectively focus on spatial features of dynamic range and process similar degraded pixels of the long range together. To boost histogram self-attention, we present a dynamic-range convolution enabling conventional convolution to conduct operation over similar pixels rather than neighbor pixels. We also observe that the common pixel-wise losses neglect linear association and correlation between output and ground-truth. Thus, we propose to leverage the Pearson correlation coefficient as a loss function to enforce the recovered pixels following the identical order as ground-truth. Extensive experiments demonstrate the efficacy and superiority of our proposed method. We have released the codes in Github.
Task-Aware Encoder Control for Deep Video Compression
Prior research on deep video compression (DVC) for machine tasks typically necessitates training a unique codec for each specific task, mandating a dedicated decoder per task. In contrast, traditional video codecs employ a flexible encoder controller, enabling the adaptation of a single codec to different tasks through mechanisms like mode prediction. Drawing inspiration from this, we introduce an innovative encoder controller for deep video compression for machines. This controller features a mode prediction and a Group of Pictures (GoP) selection module. Our approach centralizes control at the encoding stage, allowing for adaptable encoder adjustments across different tasks, such as detection and tracking, while maintaining compatibility with a standard pre-trained DVC decoder. Empirical evidence demonstrates that our method is applicable across multiple tasks with various existing pre-trained DVCs. Moreover, extensive experiments demonstrate that our method outperforms previous DVC by about 25% bitrate for different tasks, with only one pre-trained decoder.
WavTokenizer: an Efficient Acoustic Discrete Codec Tokenizer for Audio Language Modeling
Language models have been effectively applied to modeling natural signals, such as images, video, speech, and audio. A crucial component of these models is the codec tokenizer, which compresses high-dimensional natural signals into lower-dimensional discrete tokens. In this paper, we introduce WavTokenizer, which offers several advantages over previous SOTA acoustic codec models in the audio domain: 1)extreme compression. By compressing the layers of quantizers and the temporal dimension of the discrete codec, one-second audio of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2)improved subjective quality. Despite the reduced number of tokens, WavTokenizer achieves state-of-the-art reconstruction quality with outstanding UTMOS scores and inherently contains richer semantic information. Specifically, we achieve these results by designing a broader VQ space, extended contextual windows, and improved attention networks, as well as introducing a powerful multi-scale discriminator and an inverse Fourier transform structure. We conducted extensive reconstruction experiments in the domains of speech, audio, and music. WavTokenizer exhibited strong performance across various objective and subjective metrics compared to state-of-the-art models. We also tested semantic information, VQ utilization, and adaptability to generative models. Comprehensive ablation studies confirm the necessity of each module in WavTokenizer. The related code, demos, and pre-trained models are available at https://github.com/jishengpeng/WavTokenizer.
LAN-HDR: Luminance-based Alignment Network for High Dynamic Range Video Reconstruction
As demands for high-quality videos continue to rise, high-resolution and high-dynamic range (HDR) imaging techniques are drawing attention. To generate an HDR video from low dynamic range (LDR) images, one of the critical steps is the motion compensation between LDR frames, for which most existing works employed the optical flow algorithm. However, these methods suffer from flow estimation errors when saturation or complicated motions exist. In this paper, we propose an end-to-end HDR video composition framework, which aligns LDR frames in the feature space and then merges aligned features into an HDR frame, without relying on pixel-domain optical flow. Specifically, we propose a luminance-based alignment network for HDR (LAN-HDR) consisting of an alignment module and a hallucination module. The alignment module aligns a frame to the adjacent reference by evaluating luminance-based attention, excluding color information. The hallucination module generates sharp details, especially for washed-out areas due to saturation. The aligned and hallucinated features are then blended adaptively to complement each other. Finally, we merge the features to generate a final HDR frame. In training, we adopt a temporal loss, in addition to frame reconstruction losses, to enhance temporal consistency and thus reduce flickering. Extensive experiments demonstrate that our method performs better or comparable to state-of-the-art methods on several benchmarks.
EoRA: Training-free Compensation for Compressed LLM with Eigenspace Low-Rank Approximation
In this work, we re-formulate the model compression problem into the customized compensation problem: Given a compressed model, we aim to introduce residual low-rank paths to compensate for compression errors under customized requirements from users (e.g., tasks, compression ratios), resulting in greater flexibility in adjusting overall capacity without being constrained by specific compression formats. However, naively applying SVD to derive residual paths causes suboptimal utilization of the low-rank representation capacity. Instead, we propose Training-free Eigenspace Low-Rank Approximation (EoRA), a method that directly minimizes compression-induced errors without requiring gradient-based training, achieving fast optimization in minutes using a small amount of calibration data. EoRA projects compression errors into the eigenspace of input activations, leveraging eigenvalues to effectively prioritize the reconstruction of high-importance error components. Moreover, EoRA can be seamlessly integrated with fine-tuning and quantization to further improve effectiveness and efficiency. EoRA consistently outperforms previous methods in compensating errors for compressed LLaMA2/3 models on various tasks, such as language generation, commonsense reasoning, and math reasoning tasks (e.g., 31.31%/12.88% and 9.69% improvements on ARC-Easy/ARC-Challenge and MathQA when compensating LLaMA3-8B that is quantized to 4-bit and pruned to 2:4 sparsity). EoRA offers a scalable, training-free solution to compensate for compression errors, making it a powerful tool to deploy LLMs in various capacity and efficiency requirements.
Low Frame-rate Speech Codec: a Codec Designed for Fast High-quality Speech LLM Training and Inference
Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modeling techniques to audio data. However, audio codecs often operate at high frame rates, resulting in slow training and inference, especially for autoregressive models. To address this challenge, we present the Low Frame-rate Speech Codec (LFSC): a neural audio codec that leverages finite scalar quantization and adversarial training with large speech language models to achieve high-quality audio compression with a 1.89 kbps bitrate and 21.5 frames per second. We demonstrate that our novel codec can make the inference of LLM-based text-to-speech models around three times faster while improving intelligibility and producing quality comparable to previous models.
Multi-rate adaptive transform coding for video compression
Contemporary lossy image and video coding standards rely on transform coding, the process through which pixels are mapped to an alternative representation to facilitate efficient data compression. Despite impressive performance of end-to-end optimized compression with deep neural networks, the high computational and space demands of these models has prevented them from superseding the relatively simple transform coding found in conventional video codecs. In this study, we propose learned transforms and entropy coding that may either serve as (non)linear drop-in replacements, or enhancements for linear transforms in existing codecs. These transforms can be multi-rate, allowing a single model to operate along the entire rate-distortion curve. To demonstrate the utility of our framework, we augmented the DCT with learned quantization matrices and adaptive entropy coding to compress intra-frame AV1 block prediction residuals. We report substantial BD-rate and perceptual quality improvements over more complex nonlinear transforms at a fraction of the computational cost.
Quantization Range Estimation for Convolutional Neural Networks
Post-training quantization for reducing the storage of deep neural network models has been demonstrated to be an effective way in various tasks. However, low-bit quantization while maintaining model accuracy is a challenging problem. In this paper, we present a range estimation method to improve the quantization performance for post-training quantization. We model the range estimation into an optimization problem of minimizing quantization errors by layer-wise local minima. We prove this problem is locally convex and present an efficient search algorithm to find the optimal solution. We propose the application of the above search algorithm to the transformed weights space to do further improvement in practice. Our experiments demonstrate that our method outperforms state-of-the-art performance generally on top-1 accuracy for image classification tasks on the ResNet series models and Inception-v3 model. The experimental results show that the proposed method has almost no loss of top-1 accuracy in 8-bit and 6-bit settings for image classifications, and the accuracy of 4-bit quantization is also significantly improved. The code is available at https://github.com/codeiscommitting/REQuant.
CacheGen: Fast Context Loading for Language Model Applications
As large language models (LLMs) take on more complex tasks, their inputs incorporate longer contexts to respond to questions that require domain knowledge or user-specific conversational histories. Yet, using long contexts poses a challenge for responsive LLM systems, as nothing can be generated until all the contexts are fetched to and processed by the LLM. Existing systems optimize only the computation delay in context processing (e.g., by caching intermediate key-value features of the text context) but often cause longer network delays in context fetching (e.g., key-value features consume orders of magnitude larger bandwidth than the text context). This paper presents CacheGen to minimize the delays in fetching and processing contexts for LLMs. CacheGen reduces the bandwidth needed for transmitting long contexts' key-value (KV) features through a novel encoder that compresses KV features into more compact bitstream representations. The encoder combines adaptive quantization with a tailored arithmetic coder, taking advantage of the KV features' distributional properties, such as locality across tokens. Furthermore, CacheGen minimizes the total delay in fetching and processing a context by using a controller that determines when to load the context as compressed KV features or raw text and picks the appropriate compression level if loaded as KV features. We test CacheGen on three models of various sizes and three datasets of different context lengths. Compared to recent methods that handle long contexts, CacheGen reduces bandwidth usage by 3.7-4.3x and the total delay in fetching and processing contexts by 2.7-3x while maintaining similar LLM performance on various tasks as loading the text contexts.
Codec-SUPERB: An In-Depth Analysis of Sound Codec Models
The sound codec's dual roles in minimizing data transmission latency and serving as tokenizers underscore its critical importance. Recent years have witnessed significant developments in codec models. The ideal sound codec should preserve content, paralinguistics, speakers, and audio information. However, the question of which codec achieves optimal sound information preservation remains unanswered, as in different papers, models are evaluated on their selected experimental settings. This study introduces Codec-SUPERB, an acronym for Codec sound processing Universal PERformance Benchmark. It is an ecosystem designed to assess codec models across representative sound applications and signal-level metrics rooted in sound domain knowledge.Codec-SUPERB simplifies result sharing through an online leaderboard, promoting collaboration within a community-driven benchmark database, thereby stimulating new development cycles for codecs. Furthermore, we undertake an in-depth analysis to offer insights into codec models from both application and signal perspectives, diverging from previous codec papers mainly concentrating on signal-level comparisons. Finally, we will release codes, the leaderboard, and data to accelerate progress within the community.
TDMD: A Database for Dynamic Color Mesh Subjective and Objective Quality Explorations
Dynamic colored meshes (DCM) are widely used in various applications; however, these meshes may undergo different processes, such as compression or transmission, which can distort them and degrade their quality. To facilitate the development of objective metrics for DCMs and study the influence of typical distortions on their perception, we create the Tencent - dynamic colored mesh database (TDMD) containing eight reference DCM objects with six typical distortions. Using processed video sequences (PVS) derived from the DCM, we have conducted a large-scale subjective experiment that resulted in 303 distorted DCM samples with mean opinion scores, making the TDMD the largest available DCM database to our knowledge. This database enabled us to study the impact of different types of distortion on human perception and offer recommendations for DCM compression and related tasks. Additionally, we have evaluated three types of state-of-the-art objective metrics on the TDMD, including image-based, point-based, and video-based metrics, on the TDMD. Our experimental results highlight the strengths and weaknesses of each metric, and we provide suggestions about the selection of metrics in practical DCM applications. The TDMD will be made publicly available at the following location: https://multimedia.tencent.com/resources/tdmd.
Frequency-Aware Transformer for Learned Image Compression
Learned image compression (LIC) has gained traction as an effective solution for image storage and transmission in recent years. However, existing LIC methods are redundant in latent representation due to limitations in capturing anisotropic frequency components and preserving directional details. To overcome these challenges, we propose a novel frequency-aware transformer (FAT) block that for the first time achieves multiscale directional ananlysis for LIC. The FAT block comprises frequency-decomposition window attention (FDWA) modules to capture multiscale and directional frequency components of natural images. Additionally, we introduce frequency-modulation feed-forward network (FMFFN) to adaptively modulate different frequency components, improving rate-distortion performance. Furthermore, we present a transformer-based channel-wise autoregressive (T-CA) model that effectively exploits channel dependencies. Experiments show that our method achieves state-of-the-art rate-distortion performance compared to existing LIC methods, and evidently outperforms latest standardized codec VTM-12.1 by 14.5%, 15.1%, 13.0% in BD-rate on the Kodak, Tecnick, and CLIC datasets.
Compression of Higher Order Ambisonics with Multichannel RVQGAN
A multichannel extension to the RVQGAN neural coding method is proposed, and realized for data-driven compression of third-order Ambisonics audio. The input- and output layers of the generator and discriminator models are modified to accept multiple (16) channels without increasing the model bitrate. We also propose a loss function for accounting for spatial perception in immersive reproduction, and transfer learning from single-channel models. Listening test results with 7.1.4 immersive playback show that the proposed extension is suitable for coding scene-based, 16-channel Ambisonics content with good quality at 16 kbit/s.
ComplexDec: A Domain-robust High-fidelity Neural Audio Codec with Complex Spectrum Modeling
Neural audio codecs have been widely adopted in audio-generative tasks because their compact and discrete representations are suitable for both large-language-model-style and regression-based generative models. However, most neural codecs struggle to model out-of-domain audio, resulting in error propagations to downstream generative tasks. In this paper, we first argue that information loss from codec compression degrades out-of-domain robustness. Then, we propose full-band 48~kHz ComplexDec with complex spectral input and output to ease the information loss while adopting the same 24~kbps bitrate as the baseline AuidoDec and ScoreDec. Objective and subjective evaluations demonstrate the out-of-domain robustness of ComplexDec trained using only the 30-hour VCTK corpus.
When Tokens Talk Too Much: A Survey of Multimodal Long-Context Token Compression across Images, Videos, and Audios
Multimodal large language models (MLLMs) have made remarkable strides, largely driven by their ability to process increasingly long and complex contexts, such as high-resolution images, extended video sequences, and lengthy audio input. While this ability significantly enhances MLLM capabilities, it introduces substantial computational challenges, primarily due to the quadratic complexity of self-attention mechanisms with numerous input tokens. To mitigate these bottlenecks, token compression has emerged as an auspicious and critical approach, efficiently reducing the number of tokens during both training and inference. In this paper, we present the first systematic survey and synthesis of the burgeoning field of multimodal long context token compression. Recognizing that effective compression strategies are deeply tied to the unique characteristics and redundancies of each modality, we categorize existing approaches by their primary data focus, enabling researchers to quickly access and learn methods tailored to their specific area of interest: (1) image-centric compression, which addresses spatial redundancy in visual data; (2) video-centric compression, which tackles spatio-temporal redundancy in dynamic sequences; and (3) audio-centric compression, which handles temporal and spectral redundancy in acoustic signals. Beyond this modality-driven categorization, we further dissect methods based on their underlying mechanisms, including transformation-based, similarity-based, attention-based, and query-based approaches. By providing a comprehensive and structured overview, this survey aims to consolidate current progress, identify key challenges, and inspire future research directions in this rapidly evolving domain. We also maintain a public repository to continuously track and update the latest advances in this promising area.
Ascend HiFloat8 Format for Deep Learning
This preliminary white paper proposes a novel 8-bit floating-point data format HiFloat8 (abbreviated as HiF8) for deep learning. HiF8 features tapered precision. For normal value encoding, it provides 7 exponent values with 3-bit mantissa, 8 exponent values with 2-bit mantissa, and 16 exponent values with 1-bit mantissa. For denormal value encoding, it extends the dynamic range by 7 extra powers of 2, from 31 to 38 binades (notice that FP16 covers 40 binades). Meanwhile, HiF8 encodes all the special values except that positive zero and negative zero are represented by only one bit-pattern. Thanks to the better balance between precision and dynamic range, HiF8 can be simultaneously used in both forward and backward passes of AI training. In this paper, we will describe the definition and rounding methods of HiF8, as well as the tentative training and inference solutions. To demonstrate the efficacy of HiF8, massive simulation results on various neural networks, including traditional neural networks and large language models (LLMs), will also be presented.
Improving Statistical Fidelity for Neural Image Compression with Implicit Local Likelihood Models
Lossy image compression aims to represent images in as few bits as possible while maintaining fidelity to the original. Theoretical results indicate that optimizing distortion metrics such as PSNR or MS-SSIM necessarily leads to a discrepancy in the statistics of original images from those of reconstructions, in particular at low bitrates, often manifested by the blurring of the compressed images. Previous work has leveraged adversarial discriminators to improve statistical fidelity. Yet these binary discriminators adopted from generative modeling tasks may not be ideal for image compression. In this paper, we introduce a non-binary discriminator that is conditioned on quantized local image representations obtained via VQ-VAE autoencoders. Our evaluations on the CLIC2020, DIV2K and Kodak datasets show that our discriminator is more effective for jointly optimizing distortion (e.g., PSNR) and statistical fidelity (e.g., FID) than the state-of-the-art HiFiC model. On the CLIC2020 test set, we obtain the same FID as HiFiC with 30-40% fewer bits.
DIVISION: Memory Efficient Training via Dual Activation Precision
Activation compressed training provides a solution towards reducing the memory cost of training deep neural networks~(DNNs). However, state-of-the-art work combines a search of quantization bit-width with the training, which makes the procedure complicated and less transparent. To this end, we propose a simple and effective method to compress DNN training. Our method is motivated by an instructive observation: DNN backward propagation mainly utilizes the low-frequency component (LFC) of the activation maps, while the majority of memory is for caching the high-frequency component (HFC) during the training. This indicates the HFC of activation maps is highly redundant and compressible during DNN training, which inspires our proposed Dual Activation Precision (DIVISION). During the training, DIVISION preserves the high-precision copy of LFC and compresses the HFC into a light-weight copy with low numerical precision. This can significantly reduce the memory cost without negatively affecting the precision of backward propagation such that DIVISION maintains competitive model accuracy. Experiment results show DIVISION has better comprehensive performance than state-of-the-art methods, including over 10x compression of activation maps and competitive training throughput, without loss of model accuracy.
High Perceptual Quality Wireless Image Delivery with Denoising Diffusion Models
We consider the image transmission problem over a noisy wireless channel via deep learning-based joint source-channel coding (DeepJSCC) along with a denoising diffusion probabilistic model (DDPM) at the receiver. Specifically, we are interested in the perception-distortion trade-off in the practical finite block length regime, in which separate source and channel coding can be highly suboptimal. We introduce a novel scheme that utilizes the range-null space decomposition of the target image. We transmit the range-space of the image after encoding and employ DDPM to progressively refine its null space contents. Through extensive experiments, we demonstrate significant improvements in distortion and perceptual quality of reconstructed images compared to standard DeepJSCC and the state-of-the-art generative learning-based method. We will publicly share our source code to facilitate further research and reproducibility.
Plug-and-Play 1.x-Bit KV Cache Quantization for Video Large Language Models
Video large language models (VideoLLMs) have demonstrated the capability to process longer video inputs and enable complex reasoning and analysis. However, due to the thousands of visual tokens from the video frames, key-value (KV) cache can significantly increase memory requirements, becoming a bottleneck for inference speed and memory usage. KV cache quantization is a widely used approach to address this problem. In this paper, we find that 2-bit KV quantization of VideoLLMs can hardly hurt the model performance, while the limit of KV cache quantization in even lower bits has not been investigated. To bridge this gap, we introduce VidKV, a plug-and-play KV cache quantization method to compress the KV cache to lower than 2 bits. Specifically, (1) for key, we propose a mixed-precision quantization strategy in the channel dimension, where we perform 2-bit quantization for anomalous channels and 1-bit quantization combined with FFT for normal channels; (2) for value, we implement 1.58-bit quantization while selectively filtering semantically salient visual tokens for targeted preservation, for a better trade-off between precision and model performance. Importantly, our findings suggest that the value cache of VideoLLMs should be quantized in a per-channel fashion instead of the per-token fashion proposed by prior KV cache quantization works for LLMs. Empirically, extensive results with LLaVA-OV-7B and Qwen2.5-VL-7B on six benchmarks show that VidKV effectively compresses the KV cache to 1.5-bit and 1.58-bit precision with almost no performance drop compared to the FP16 counterparts.
70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float
Large Language Models (LLMs) have grown rapidly in size, creating significant challenges for efficient deployment on resource-constrained hardware. In this paper, we introduce Dynamic-Length Float (DFloat11), a lossless compression framework that reduces LLM size by 30% while preserving outputs that are bit-for-bit identical to the original model. DFloat11 is motivated by the low entropy in the BFloat16 weight representation of LLMs, which reveals significant inefficiency in existing storage format. By applying entropy coding, DFloat11 assigns dynamic-length encodings to weights based on frequency, achieving near information-optimal compression without any loss of precision. To facilitate efficient inference with dynamic-length encodings, we develop a custom GPU kernel for fast online decompression. Our design incorporates the following: (i) decomposition of memory-intensive lookup tables (LUTs) into compact LUTs that fit in GPU SRAM, (ii) a two-phase kernel for coordinating thread read/write positions using lightweight auxiliary variables, and (iii) transformer-block-level decompression to minimize latency. Experiments on recent models, including Llama-3.1, Qwen-2.5, and Gemma-3, validates our hypothesis that DFloat11 achieves around 30% model size reduction while preserving bit-for-bit exact outputs. Compared to a potential alternative of offloading parts of an uncompressed model to the CPU to meet memory constraints, DFloat11 achieves 1.9-38.8x higher throughput in token generation. With a fixed GPU memory budget, DFloat11 enables 5.3-13.17x longer context lengths than uncompressed models. Notably, our method enables lossless inference of Llama-3.1-405B, an 810GB model, on a single node equipped with 8x80GB GPUs. Our code and models are available at https://github.com/LeanModels/DFloat11.
DyPE: Dynamic Position Extrapolation for Ultra High Resolution Diffusion
Diffusion Transformer models can generate images with remarkable fidelity and detail, yet training them at ultra-high resolutions remains extremely costly due to the self-attention mechanism's quadratic scaling with the number of image tokens. In this paper, we introduce Dynamic Position Extrapolation (DyPE), a novel, training-free method that enables pre-trained diffusion transformers to synthesize images at resolutions far beyond their training data, with no additional sampling cost. DyPE takes advantage of the spectral progression inherent to the diffusion process, where low-frequency structures converge early, while high-frequencies take more steps to resolve. Specifically, DyPE dynamically adjusts the model's positional encoding at each diffusion step, matching their frequency spectrum with the current stage of the generative process. This approach allows us to generate images at resolutions that exceed the training resolution dramatically, e.g., 16 million pixels using FLUX. On multiple benchmarks, DyPE consistently improves performance and achieves state-of-the-art fidelity in ultra-high-resolution image generation, with gains becoming even more pronounced at higher resolutions. Project page is available at https://noamissachar.github.io/DyPE/.
Extreme Compression of Large Language Models via Additive Quantization
The emergence of accurate open large language models (LLMs) has led to a race towards quantization techniques for such models enabling execution on end-user devices. In this paper, we revisit the problem of "extreme" LLM compression--defined as targeting extremely low bit counts, such as 2 to 3 bits per parameter, from the point of view of classic methods in Multi-Codebook Quantization (MCQ). Our work builds on top of Additive Quantization, a classic algorithm from the MCQ family, and adapts it to the quantization of language models. The resulting algorithm advances the state-of-the-art in LLM compression, outperforming all recently-proposed techniques in terms of accuracy at a given compression budget. For instance, when compressing Llama 2 models to 2 bits per parameter, our algorithm quantizes the 7B model to 6.93 perplexity (a 1.29 improvement relative to the best prior work, and 1.81 points from FP16), the 13B model to 5.70 perplexity (a .36 improvement) and the 70B model to 3.94 perplexity (a .22 improvement) on WikiText2. We release our implementation of Additive Quantization for Language Models AQLM as a baseline to facilitate future research in LLM quantization.
Machine Perceptual Quality: Evaluating the Impact of Severe Lossy Compression on Audio and Image Models
In the field of neural data compression, the prevailing focus has been on optimizing algorithms for either classical distortion metrics, such as PSNR or SSIM, or human perceptual quality. With increasing amounts of data consumed by machines rather than humans, a new paradigm of machine-oriented compressionx2013which prioritizes the retention of features salient for machine perception over traditional human-centric criteriax2013has emerged, creating several new challenges to the development, evaluation, and deployment of systems utilizing lossy compression. In particular, it is unclear how different approaches to lossy compression will affect the performance of downstream machine perception tasks. To address this under-explored area, we evaluate various perception modelsx2013including image classification, image segmentation, speech recognition, and music source separationx2013under severe lossy compression. We utilize several popular codecs spanning conventional, neural, and generative compression architectures. Our results indicate three key findings: (1) using generative compression, it is feasible to leverage highly compressed data while incurring a negligible impact on machine perceptual quality; (2) machine perceptual quality correlates strongly with deep similarity metrics, indicating a crucial role of these metrics in the development of machine-oriented codecs; and (3) using lossy compressed datasets, (e.g. ImageNet) for pre-training can lead to counter-intuitive scenarios where lossy compression increases machine perceptual quality rather than degrading it. To encourage engagement on this growing area of research, our code and experiments are available at: https://github.com/danjacobellis/MPQ.
FlowDec: A flow-based full-band general audio codec with high perceptual quality
We propose FlowDec, a neural full-band audio codec for general audio sampled at 48 kHz that combines non-adversarial codec training with a stochastic postfilter based on a novel conditional flow matching method. Compared to the prior work ScoreDec which is based on score matching, we generalize from speech to general audio and move from 24 kbit/s to as low as 4 kbit/s, while improving output quality and reducing the required postfilter DNN evaluations from 60 to 6 without any fine-tuning or distillation techniques. We provide theoretical insights and geometric intuitions for our approach in comparison to ScoreDec as well as another recent work that uses flow matching, and conduct ablation studies on our proposed components. We show that FlowDec is a competitive alternative to the recent GAN-dominated stream of neural codecs, achieving FAD scores better than those of the established GAN-based codec DAC and listening test scores that are on par, and producing qualitatively more natural reconstructions for speech and harmonic structures in music.
Audio Time-Scale Modification with Temporal Compressing Networks
We propose a novel approach for time-scale modification of audio signals. Unlike traditional methods that rely on the framing technique or the short-time Fourier transform to preserve the frequency during temporal stretching, our neural network model encodes the raw audio into a high-level latent representation, dubbed Neuralgram, where each vector represents 1024 audio sample points. Due to a sufficient compression ratio, we are able to apply arbitrary spatial interpolation of the Neuralgram to perform temporal stretching. Finally, a learned neural decoder synthesizes the time-scaled audio samples based on the stretched Neuralgram representation. Both the encoder and decoder are trained with latent regression losses and adversarial losses in order to obtain high-fidelity audio samples. Despite its simplicity, our method has comparable performance compared to the existing baselines and opens a new possibility in research into modern time-scale modification. Audio samples can be found at https://tsmnet-mmasia23.github.io
DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models
Large pre-trained models (LPMs), such as large language models, have become ubiquitous and are employed in many applications. These models are often adapted to a desired domain or downstream task through a fine-tuning stage. This paper proposes SQFT, an end-to-end solution for low-precision sparse parameter-efficient fine-tuning of LPMs, allowing for effective model manipulation in resource-constrained environments. Additionally, an innovative strategy enables the merging of sparse weights with low-rank adapters without losing sparsity and accuracy, overcoming the limitations of previous approaches. SQFT also addresses the challenge of having quantized weights and adapters with different numerical precisions, enabling merging in the desired numerical format without sacrificing accuracy. Multiple adaptation scenarios, models, and comprehensive sparsity levels demonstrate the effectiveness of SQFT. Models and code are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
Extreme Image Compression using Fine-tuned VQGANs
Recent advances in generative compression methods have demonstrated remarkable progress in enhancing the perceptual quality of compressed data, especially in scenarios with low bitrates. However, their efficacy and applicability to achieve extreme compression ratios (<0.05 bpp) remain constrained. In this work, we propose a simple yet effective coding framework by introducing vector quantization (VQ)--based generative models into the image compression domain. The main insight is that the codebook learned by the VQGAN model yields a strong expressive capacity, facilitating efficient compression of continuous information in the latent space while maintaining reconstruction quality. Specifically, an image can be represented as VQ-indices by finding the nearest codeword, which can be encoded using lossless compression methods into bitstreams. We propose clustering a pre-trained large-scale codebook into smaller codebooks through the K-means algorithm, yielding variable bitrates and different levels of reconstruction quality within the coding framework. Furthermore, we introduce a transformer to predict lost indices and restore images in unstable environments. Extensive qualitative and quantitative experiments on various benchmark datasets demonstrate that the proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics and human perception at extremely low bitrates (le 0.04 bpp). Remarkably, even with the loss of up to 20% of indices, the images can be effectively restored with minimal perceptual loss.
CJST: CTC Compressor based Joint Speech and Text Training for Decoder-Only ASR
CTC compressor can be an effective approach to integrate audio encoders to decoder-only models, which has gained growing interest for different speech applications. In this work, we propose a novel CTC compressor based joint speech and text training (CJST) framework for decoder-only ASR. CJST matches speech and text modalities from both directions by exploring a simple modality adaptor and several features of the CTC compressor, including sequence compression, on-the-fly forced peaky alignment and CTC class embeddings. Experimental results on the Librispeech and TED-LIUM2 corpora show that the proposed CJST achieves an effective text injection without the need of duration handling, leading to the best performance for both in-domain and cross-domain scenarios. We also provide a comprehensive study on CTC compressor, covering various compression modes, edge case handling and behavior under both clean and noisy data conditions, which reveals the most robust setting to use CTC compressor for decoder-only models.
More for Keys, Less for Values: Adaptive KV Cache Quantization
This paper introduces an information-aware quantization framework that adaptively compresses the key-value (KV) cache in large language models (LLMs). Although prior work has underscored the distinct roles of key and value cache during inference, our systematic analysis -- examining singular value distributions, spectral norms, and Frobenius norms -- reveals, for the first time, that key matrices consistently exhibit higher norm values and are more sensitive to quantization than value matrices. Furthermore, our theoretical analysis shows that matrices with higher spectral norms amplify quantization errors more significantly. Motivated by these insights, we propose a mixed-precision quantization strategy, KV-AdaQuant, which allocates more bit-width for keys and fewer for values since key matrices have higher norm values. With the same total KV bit budget, this approach effectively mitigates error propagation across transformer layers while achieving significant memory savings. Our extensive experiments on multiple LLMs (1B--70B) demonstrate that our mixed-precision quantization scheme maintains high model accuracy even under aggressive compression. For instance, using 4-bit for Key and 2-bit for Value achieves an accuracy of 75.2%, whereas reversing the assignment (2-bit for Key and 4-bit for Value) yields only 54.7% accuracy. The code is available at https://tinyurl.com/kv-adaquant
Domain-adaptive Video Deblurring via Test-time Blurring
Dynamic scene video deblurring aims to remove undesirable blurry artifacts captured during the exposure process. Although previous video deblurring methods have achieved impressive results, they suffer from significant performance drops due to the domain gap between training and testing videos, especially for those captured in real-world scenarios. To address this issue, we propose a domain adaptation scheme based on a blurring model to achieve test-time fine-tuning for deblurring models in unseen domains. Since blurred and sharp pairs are unavailable for fine-tuning during inference, our scheme can generate domain-adaptive training pairs to calibrate a deblurring model for the target domain. First, a Relative Sharpness Detection Module is proposed to identify relatively sharp regions from the blurry input images and regard them as pseudo-sharp images. Next, we utilize a blurring model to produce blurred images based on the pseudo-sharp images extracted during testing. To synthesize blurred images in compliance with the target data distribution, we propose a Domain-adaptive Blur Condition Generation Module to create domain-specific blur conditions for the blurring model. Finally, the generated pseudo-sharp and blurred pairs are used to fine-tune a deblurring model for better performance. Extensive experimental results demonstrate that our approach can significantly improve state-of-the-art video deblurring methods, providing performance gains of up to 7.54dB on various real-world video deblurring datasets. The source code is available at https://github.com/Jin-Ting-He/DADeblur.
HDRT: Infrared Capture for HDR Imaging
Capturing real world lighting is a long standing challenge in imaging and most practical methods acquire High Dynamic Range (HDR) images by either fusing multiple exposures, or boosting the dynamic range of Standard Dynamic Range (SDR) images. Multiple exposure capture is problematic as it requires longer capture times which can often lead to ghosting problems. The main alternative, inverse tone mapping is an ill-defined problem that is especially challenging as single captured exposures usually contain clipped and quantized values, and are therefore missing substantial amounts of content. To alleviate this, we propose a new approach, High Dynamic Range Thermal (HDRT), for HDR acquisition using a separate, commonly available, thermal infrared (IR) sensor. We propose a novel deep neural method (HDRTNet) which combines IR and SDR content to generate HDR images. HDRTNet learns to exploit IR features linked to the RGB image and the IR-specific parameters are subsequently used in a dual branch method that fuses features at shallow layers. This produces an HDR image that is significantly superior to that generated using naive fusion approaches. To validate our method, we have created the first HDR and thermal dataset, and performed extensive experiments comparing HDRTNet with the state-of-the-art. We show substantial quantitative and qualitative quality improvements on both over- and under-exposed images, showing that our approach is robust to capturing in multiple different lighting conditions.
Frequency Dynamic Convolution for Dense Image Prediction
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.
InfiniPot-V: Memory-Constrained KV Cache Compression for Streaming Video Understanding
Modern multimodal large language models (MLLMs) can reason over hour-long video, yet their key-value (KV) cache grows linearly with time--quickly exceeding the fixed memory of phones, AR glasses, and edge robots. Prior compression schemes either assume the whole video and user query are available offline or must first build the full cache, so memory still scales with stream length. InfiniPot-V is the first training-free, query-agnostic framework that enforces a hard, length-independent memory cap for streaming video understanding. During video encoding it monitors the cache and, once a user-set threshold is reached, runs a lightweight compression pass that (i) removes temporally redundant tokens via Temporal-axis Redundancy (TaR) metric and (ii) keeps semantically significant tokens via Value-Norm (VaN) ranking. Across four open-source MLLMs and four long-video and two streaming-video benchmarks, InfiniPot-V cuts peak GPU memory by up to 94%, sustains real-time generation, and matches or surpasses full-cache accuracy--even in multi-turn dialogues. By dissolving the KV cache bottleneck without retraining or query knowledge, InfiniPot-V closes the gap for on-device streaming video assistants.
Fidelity-Controllable Extreme Image Compression with Generative Adversarial Networks
We propose a GAN-based image compression method working at extremely low bitrates below 0.1bpp. Most existing learned image compression methods suffer from blur at extremely low bitrates. Although GAN can help to reconstruct sharp images, there are two drawbacks. First, GAN makes training unstable. Second, the reconstructions often contain unpleasing noise or artifacts. To address both of the drawbacks, our method adopts two-stage training and network interpolation. The two-stage training is effective to stabilize the training. Moreover, the network interpolation utilizes the models in both stages and reduces undesirable noise and artifacts, while maintaining important edges. Hence, we can control the trade-off between perceptual quality and fidelity without re-training models. The experimental results show that our model can reconstruct high quality images. Furthermore, our user study confirms that our reconstructions are preferable to state-of-the-art GAN-based image compression model. The code will be available.
Bi-Directional Deep Contextual Video Compression
Deep video compression has made remarkable process in recent years, with the majority of advancements concentrated on P-frame coding. Although efforts to enhance B-frame coding are ongoing, their compression performance is still far behind that of traditional bi-directional video codecs. In this paper, we introduce a bi-directional deep contextual video compression scheme tailored for B-frames, termed DCVC-B, to improve the compression performance of deep B-frame coding. Our scheme mainly has three key innovations. First, we develop a bi-directional motion difference context propagation method for effective motion difference coding, which significantly reduces the bit cost of bi-directional motions. Second, we propose a bi-directional contextual compression model and a corresponding bi-directional temporal entropy model, to make better use of the multi-scale temporal contexts. Third, we propose a hierarchical quality structure-based training strategy, leading to an effective bit allocation across large groups of pictures (GOP). Experimental results show that our DCVC-B achieves an average reduction of 26.6% in BD-Rate compared to the reference software for H.265/HEVC under random access conditions. Remarkably, it surpasses the performance of the H.266/VVC reference software on certain test datasets under the same configuration.
ZipGAN: Super-Resolution-based Generative Adversarial Network Framework for Data Compression of Direct Numerical Simulations
The advancement of high-performance computing has enabled the generation of large direct numerical simulation (DNS) datasets of turbulent flows, driving the need for efficient compression/decompression techniques that reduce storage demands while maintaining fidelity. Traditional methods, such as the discrete wavelet transform, cannot achieve compression ratios of 8 or higher for complex turbulent flows without introducing significant encoding/decoding errors. On the other hand, a super-resolution-based generative adversarial network (SR-GAN), called ZipGAN, can accurately reconstruct fine-scale features, preserving velocity gradients and structural details, even at a compression ratio of 512, thanks to the more efficient representation of the data in compact latent space. Additional benefits are ascribed to adversarial training. The high GAN training time is significantly reduced with a progressive transfer learning approach and, once trained, they can be applied independently of the Reynolds number. It is demonstrated that ZipGAN can enhance dataset temporal resolution without additional simulation overhead by generating high-quality intermediate fields from compressed snapshots. The ZipGAN discriminator can reliably evaluate the quality of decoded fields, ensuring fidelity even in the absence of original DNS fields. Hence, ZipGAN compression/decompression method presents a highly efficient and scalable alternative for large-scale DNS storage and transfer, offering substantial advantages over the DWT methods in terms of compression efficiency, reconstruction fidelity, and temporal resolution enhancement.
HiFi-Codec: Group-residual Vector quantization for High Fidelity Audio Codec
Audio codec models are widely used in audio communication as a crucial technique for compressing audio into discrete representations. Nowadays, audio codec models are increasingly utilized in generation fields as intermediate representations. For instance, AudioLM is an audio generation model that uses the discrete representation of SoundStream as a training target, while VALL-E employs the Encodec model as an intermediate feature to aid TTS tasks. Despite their usefulness, two challenges persist: (1) training these audio codec models can be difficult due to the lack of publicly available training processes and the need for large-scale data and GPUs; (2) achieving good reconstruction performance requires many codebooks, which increases the burden on generation models. In this study, we propose a group-residual vector quantization (GRVQ) technique and use it to develop a novel High Fidelity Audio Codec model, HiFi-Codec, which only requires 4 codebooks. We train all the models using publicly available TTS data such as LibriTTS, VCTK, AISHELL, and more, with a total duration of over 1000 hours, using 8 GPUs. Our experimental results show that HiFi-Codec outperforms Encodec in terms of reconstruction performance despite requiring only 4 codebooks. To facilitate research in audio codec and generation, we introduce AcademiCodec, the first open-source audio codec toolkit that offers training codes and pre-trained models for Encodec, SoundStream, and HiFi-Codec. Code and pre-trained model can be found on: https://github.com/yangdongchao/AcademiCodec{https://github.com/yangdongchao/AcademiCodec}
FunCodec: A Fundamental, Reproducible and Integrable Open-source Toolkit for Neural Speech Codec
This paper presents FunCodec, a fundamental neural speech codec toolkit, which is an extension of the open-source speech processing toolkit FunASR. FunCodec provides reproducible training recipes and inference scripts for the latest neural speech codec models, such as SoundStream and Encodec. Thanks to the unified design with FunASR, FunCodec can be easily integrated into downstream tasks, such as speech recognition. Along with FunCodec, pre-trained models are also provided, which can be used for academic or generalized purposes. Based on the toolkit, we further propose the frequency-domain codec models, FreqCodec, which can achieve comparable speech quality with much lower computation and parameter complexity. Experimental results show that, under the same compression ratio, FunCodec can achieve better reconstruction quality compared with other toolkits and released models. We also demonstrate that the pre-trained models are suitable for downstream tasks, including automatic speech recognition and personalized text-to-speech synthesis. This toolkit is publicly available at https://github.com/alibaba-damo-academy/FunCodec.
Extrapolating and Decoupling Image-to-Video Generation Models: Motion Modeling is Easier Than You Think
Image-to-Video (I2V) generation aims to synthesize a video clip according to a given image and condition (e.g., text). The key challenge of this task lies in simultaneously generating natural motions while preserving the original appearance of the images. However, current I2V diffusion models (I2V-DMs) often produce videos with limited motion degrees or exhibit uncontrollable motion that conflicts with the textual condition. To address these limitations, we propose a novel Extrapolating and Decoupling framework, which introduces model merging techniques to the I2V domain for the first time. Specifically, our framework consists of three separate stages: (1) Starting with a base I2V-DM, we explicitly inject the textual condition into the temporal module using a lightweight, learnable adapter and fine-tune the integrated model to improve motion controllability. (2) We introduce a training-free extrapolation strategy to amplify the dynamic range of the motion, effectively reversing the fine-tuning process to enhance the motion degree significantly. (3) With the above two-stage models excelling in motion controllability and degree, we decouple the relevant parameters associated with each type of motion ability and inject them into the base I2V-DM. Since the I2V-DM handles different levels of motion controllability and dynamics at various denoising time steps, we adjust the motion-aware parameters accordingly over time. Extensive qualitative and quantitative experiments have been conducted to demonstrate the superiority of our framework over existing methods.
CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level Continuous Sparsification
Mixed-precision quantization has been widely applied on deep neural networks (DNNs) as it leads to significantly better efficiency-accuracy tradeoffs compared to uniform quantization. Meanwhile, determining the exact precision of each layer remains challenging. Previous attempts on bit-level regularization and pruning-based dynamic precision adjustment during training suffer from noisy gradients and unstable convergence. In this work, we propose Continuous Sparsification Quantization (CSQ), a bit-level training method to search for mixed-precision quantization schemes with improved stability. CSQ stabilizes the bit-level mixed-precision training process with a bi-level gradual continuous sparsification on both the bit values of the quantized weights and the bit selection in determining the quantization precision of each layer. The continuous sparsification scheme enables fully-differentiable training without gradient approximation while achieving an exact quantized model in the end.A budget-aware regularization of total model size enables the dynamic growth and pruning of each layer's precision towards a mixed-precision quantization scheme of the desired size. Extensive experiments show CSQ achieves better efficiency-accuracy tradeoff than previous methods on multiple models and datasets.
Wavehax: Aliasing-Free Neural Waveform Synthesis Based on 2D Convolution and Harmonic Prior for Reliable Complex Spectrogram Estimation
Neural vocoders often struggle with aliasing in latent feature spaces, caused by time-domain nonlinear operations and resampling layers. Aliasing folds high-frequency components into the low-frequency range, making aliased and original frequency components indistinguishable and introducing two practical issues. First, aliasing complicates the waveform generation process, as the subsequent layers must address these aliasing effects, increasing the computational complexity. Second, it limits extrapolation performance, particularly in handling high fundamental frequencies, which degrades the perceptual quality of generated speech waveforms. This paper demonstrates that 1) time-domain nonlinear operations inevitably introduce aliasing but provide a strong inductive bias for harmonic generation, and 2) time-frequency-domain processing can achieve aliasing-free waveform synthesis but lacks the inductive bias for effective harmonic generation. Building on this insight, we propose Wavehax, an aliasing-free neural WAVEform generator that integrates 2D convolution and a HArmonic prior for reliable Complex Spectrogram estimation. Experimental results show that Wavehax achieves speech quality comparable to existing high-fidelity neural vocoders and exhibits exceptional robustness in scenarios requiring high fundamental frequency extrapolation, where aliasing effects become typically severe. Moreover, Wavehax requires less than 5% of the multiply-accumulate operations and model parameters compared to HiFi-GAN V1, while achieving over four times faster CPU inference speed.
Dilated Convolution with Learnable Spacings
This thesis presents and evaluates the Dilated Convolution with Learnable Spacings (DCLS) method. Through various supervised learning experiments in the fields of computer vision, audio, and speech processing, the DCLS method proves to outperform both standard and advanced convolution techniques. The research is organized into several steps, starting with an analysis of the literature and existing convolution techniques that preceded the development of the DCLS method. We were particularly interested in the methods that are closely related to our own and that remain essential to capture the nuances and uniqueness of our approach. The cornerstone of our study is the introduction and application of the DCLS method to convolutional neural networks (CNNs), as well as to hybrid architectures that rely on both convolutional and visual attention approaches. DCLS is shown to be particularly effective in tasks such as classification, semantic segmentation, and object detection. Initially using bilinear interpolation, the study also explores other interpolation methods, finding that Gaussian interpolation slightly improves performance. The DCLS method is further applied to spiking neural networks (SNNs) to enable synaptic delay learning within a neural network that could eventually be transferred to so-called neuromorphic chips. The results show that the DCLS method stands out as a new state-of-the-art technique in SNN audio classification for certain benchmark tasks in this field. These tasks involve datasets with a high temporal component. In addition, we show that DCLS can significantly improve the accuracy of artificial neural networks for the multi-label audio classification task. We conclude with a discussion of the chosen experimental setup, its limitations, the limitations of our method, and our results.
FreqINR: Frequency Consistency for Implicit Neural Representation with Adaptive DCT Frequency Loss
Recent advancements in local Implicit Neural Representation (INR) demonstrate its exceptional capability in handling images at various resolutions. However, frequency discrepancies between high-resolution (HR) and ground-truth images, especially at larger scales, result in significant artifacts and blurring in HR images. This paper introduces Frequency Consistency for Implicit Neural Representation (FreqINR), an innovative Arbitrary-scale Super-resolution method aimed at enhancing detailed textures by ensuring spectral consistency throughout both training and inference. During training, we employ Adaptive Discrete Cosine Transform Frequency Loss (ADFL) to minimize the frequency gap between HR and ground-truth images, utilizing 2-Dimensional DCT bases and focusing dynamically on challenging frequencies. During inference, we extend the receptive field to preserve spectral coherence between low-resolution (LR) and ground-truth images, which is crucial for the model to generate high-frequency details from LR counterparts. Experimental results show that FreqINR, as a lightweight approach, achieves state-of-the-art performance compared to existing Arbitrary-scale Super-resolution methods and offers notable improvements in computational efficiency. The code for our method will be made publicly available.
HiFi-SR: A Unified Generative Transformer-Convolutional Adversarial Network for High-Fidelity Speech Super-Resolution
The application of generative adversarial networks (GANs) has recently advanced speech super-resolution (SR) based on intermediate representations like mel-spectrograms. However, existing SR methods that typically rely on independently trained and concatenated networks may lead to inconsistent representations and poor speech quality, especially in out-of-domain scenarios. In this work, we propose HiFi-SR, a unified network that leverages end-to-end adversarial training to achieve high-fidelity speech super-resolution. Our model features a unified transformer-convolutional generator designed to seamlessly handle both the prediction of latent representations and their conversion into time-domain waveforms. The transformer network serves as a powerful encoder, converting low-resolution mel-spectrograms into latent space representations, while the convolutional network upscales these representations into high-resolution waveforms. To enhance high-frequency fidelity, we incorporate a multi-band, multi-scale time-frequency discriminator, along with a multi-scale mel-reconstruction loss in the adversarial training process. HiFi-SR is versatile, capable of upscaling any input speech signal between 4 kHz and 32 kHz to a 48 kHz sampling rate. Experimental results demonstrate that HiFi-SR significantly outperforms existing speech SR methods across both objective metrics and ABX preference tests, for both in-domain and out-of-domain scenarios (https://github.com/modelscope/ClearerVoice-Studio).
Turbo2K: Towards Ultra-Efficient and High-Quality 2K Video Synthesis
Demand for 2K video synthesis is rising with increasing consumer expectations for ultra-clear visuals. While diffusion transformers (DiTs) have demonstrated remarkable capabilities in high-quality video generation, scaling them to 2K resolution remains computationally prohibitive due to quadratic growth in memory and processing costs. In this work, we propose Turbo2K, an efficient and practical framework for generating detail-rich 2K videos while significantly improving training and inference efficiency. First, Turbo2K operates in a highly compressed latent space, reducing computational complexity and memory footprint, making high-resolution video synthesis feasible. However, the high compression ratio of the VAE and limited model size impose constraints on generative quality. To mitigate this, we introduce a knowledge distillation strategy that enables a smaller student model to inherit the generative capacity of a larger, more powerful teacher model. Our analysis reveals that, despite differences in latent spaces and architectures, DiTs exhibit structural similarities in their internal representations, facilitating effective knowledge transfer. Second, we design a hierarchical two-stage synthesis framework that first generates multi-level feature at lower resolutions before guiding high-resolution video generation. This approach ensures structural coherence and fine-grained detail refinement while eliminating redundant encoding-decoding overhead, further enhancing computational efficiency.Turbo2K achieves state-of-the-art efficiency, generating 5-second, 24fps, 2K videos with significantly reduced computational cost. Compared to existing methods, Turbo2K is up to 20times faster for inference, making high-resolution video generation more scalable and practical for real-world applications.
BigCodec: Pushing the Limits of Low-Bitrate Neural Speech Codec
We present BigCodec, a low-bitrate neural speech codec. While recent neural speech codecs have shown impressive progress, their performance significantly deteriorates at low bitrates (around 1 kbps). Although a low bitrate inherently restricts performance, other factors, such as model capacity, also hinder further improvements. To address this problem, we scale up the model size to 159M parameters that is more than 10 times larger than popular codecs with about 10M parameters. Besides, we integrate sequential models into traditional convolutional architectures to better capture temporal dependency and adopt low-dimensional vector quantization to ensure a high code utilization. Comprehensive objective and subjective evaluations show that BigCodec, with a bitrate of 1.04 kbps, significantly outperforms several existing low-bitrate codecs. Furthermore, BigCodec achieves objective performance comparable to popular codecs operating at 4-6 times higher bitrates, and even delivers better subjective perceptual quality than the ground truth.
Lossy and Lossless (L^2) Post-training Model Size Compression
Deep neural networks have delivered remarkable performance and have been widely used in various visual tasks. However, their huge size causes significant inconvenience for transmission and storage. Many previous studies have explored model size compression. However, these studies often approach various lossy and lossless compression methods in isolation, leading to challenges in achieving high compression ratios efficiently. This work proposes a post-training model size compression method that combines lossy and lossless compression in a unified way. We first propose a unified parametric weight transformation, which ensures different lossy compression methods can be performed jointly in a post-training manner. Then, a dedicated differentiable counter is introduced to guide the optimization of lossy compression to arrive at a more suitable point for later lossless compression. Additionally, our method can easily control a desired global compression ratio and allocate adaptive ratios for different layers. Finally, our method can achieve a stable 10times compression ratio without sacrificing accuracy and a 20times compression ratio with minor accuracy loss in a short time. Our code is available at https://github.com/ModelTC/L2_Compression .
Optimal Brain Compression: A Framework for Accurate Post-Training Quantization and Pruning
We consider the problem of model compression for deep neural networks (DNNs) in the challenging one-shot/post-training setting, in which we are given an accurate trained model, and must compress it without any retraining, based only on a small amount of calibration input data. This problem has become popular in view of the emerging software and hardware support for executing models compressed via pruning and/or quantization with speedup, and well-performing solutions have been proposed independently for both compression approaches. In this paper, we introduce a new compression framework which covers both weight pruning and quantization in a unified setting, is time- and space-efficient, and considerably improves upon the practical performance of existing post-training methods. At the technical level, our approach is based on an exact and efficient realization of the classical Optimal Brain Surgeon (OBS) framework of [LeCun, Denker, and Solla, 1990] extended to also cover weight quantization at the scale of modern DNNs. From the practical perspective, our experimental results show that it can improve significantly upon the compression-accuracy trade-offs of existing post-training methods, and that it can enable the accurate compound application of both pruning and quantization in a post-training setting.
Language-Codec: Reducing the Gaps Between Discrete Codec Representation and Speech Language Models
In recent years, large language models have achieved significant success in generative tasks (e.g., speech cloning and audio generation) related to speech, audio, music, and other signal domains. A crucial element of these models is the discrete acoustic codecs, which serves as an intermediate representation replacing the mel-spectrogram. However, there exist several gaps between discrete codecs and downstream speech language models. Specifically, 1) most codec models are trained on only 1,000 hours of data, whereas most speech language models are trained on 60,000 hours; 2) Achieving good reconstruction performance requires the utilization of numerous codebooks, which increases the burden on downstream speech language models; 3) The initial channel of the codebooks contains excessive information, making it challenging to directly generate acoustic tokens from weakly supervised signals such as text in downstream tasks. Consequently, leveraging the characteristics of speech language models, we propose Language-Codec. In the Language-Codec, we introduce a Mask Channel Residual Vector Quantization (MCRVQ) mechanism along with improved Fourier transform structures and larger training datasets to address the aforementioned gaps. We compare our method with competing audio compression algorithms and observe significant outperformance across extensive evaluations. Furthermore, we also validate the efficiency of the Language-Codec on downstream speech language models. The source code and pre-trained models can be accessed at https://github.com/jishengpeng/languagecodec .
Apollo: Band-sequence Modeling for High-Quality Audio Restoration
Audio restoration has become increasingly significant in modern society, not only due to the demand for high-quality auditory experiences enabled by advanced playback devices, but also because the growing capabilities of generative audio models necessitate high-fidelity audio. Typically, audio restoration is defined as a task of predicting undistorted audio from damaged input, often trained using a GAN framework to balance perception and distortion. Since audio degradation is primarily concentrated in mid- and high-frequency ranges, especially due to codecs, a key challenge lies in designing a generator capable of preserving low-frequency information while accurately reconstructing high-quality mid- and high-frequency content. Inspired by recent advancements in high-sample-rate music separation, speech enhancement, and audio codec models, we propose Apollo, a generative model designed for high-sample-rate audio restoration. Apollo employs an explicit frequency band split module to model the relationships between different frequency bands, allowing for more coherent and higher-quality restored audio. Evaluated on the MUSDB18-HQ and MoisesDB datasets, Apollo consistently outperforms existing SR-GAN models across various bit rates and music genres, particularly excelling in complex scenarios involving mixtures of multiple instruments and vocals. Apollo significantly improves music restoration quality while maintaining computational efficiency. The source code for Apollo is publicly available at https://github.com/JusperLee/Apollo.
FocalCodec: Low-Bitrate Speech Coding via Focal Modulation Networks
Large language models have revolutionized natural language processing through self-supervised pretraining on massive datasets. Inspired by this success, researchers have explored adapting these methods to speech by discretizing continuous audio into tokens using neural audio codecs. However, existing approaches face limitations, including high bitrates, the loss of either semantic or acoustic information, and the reliance on multi-codebook designs when trying to capture both, which increases architectural complexity for downstream tasks. To address these challenges, we introduce FocalCodec, an efficient low-bitrate codec based on focal modulation that utilizes a single binary codebook to compress speech between 0.16 and 0.65 kbps. FocalCodec delivers competitive performance in speech resynthesis and voice conversion at lower bitrates than the current state-of-the-art, while effectively handling multilingual speech and noisy environments. Evaluation on downstream tasks shows that FocalCodec successfully preserves sufficient semantic and acoustic information, while also being well-suited for generative modeling. Demo samples, code and checkpoints are available at https://lucadellalib.github.io/focalcodec-web/.
Differentiable JPEG: The Devil is in the Details
JPEG remains one of the most widespread lossy image coding methods. However, the non-differentiable nature of JPEG restricts the application in deep learning pipelines. Several differentiable approximations of JPEG have recently been proposed to address this issue. This paper conducts a comprehensive review of existing diff. JPEG approaches and identifies critical details that have been missed by previous methods. To this end, we propose a novel diff. JPEG approach, overcoming previous limitations. Our approach is differentiable w.r.t. the input image, the JPEG quality, the quantization tables, and the color conversion parameters. We evaluate the forward and backward performance of our diff. JPEG approach against existing methods. Additionally, extensive ablations are performed to evaluate crucial design choices. Our proposed diff. JPEG resembles the (non-diff.) reference implementation best, significantly surpassing the recent-best diff. approach by 3.47dB (PSNR) on average. For strong compression rates, we can even improve PSNR by 9.51dB. Strong adversarial attack results are yielded by our diff. JPEG, demonstrating the effective gradient approximation. Our code is available at https://github.com/necla-ml/Diff-JPEG.
LongVQ: Long Sequence Modeling with Vector Quantization on Structured Memory
Transformer models have been successful in various sequence processing tasks, but the self-attention mechanism's computational cost limits its practicality for long sequences. Although there are existing attention variants that improve computational efficiency, they have a limited ability to abstract global information effectively based on their hand-crafted mixing strategies. On the other hand, state-space models (SSMs) are tailored for long sequences but cannot capture complicated local information. Therefore, the combination of them as a unified token mixer is a trend in recent long-sequence models. However, the linearized attention degrades performance significantly even when equipped with SSMs. To address the issue, we propose a new method called LongVQ. LongVQ uses the vector quantization (VQ) technique to compress the global abstraction as a length-fixed codebook, enabling the linear-time computation of the attention matrix. This technique effectively maintains dynamic global and local patterns, which helps to complement the lack of long-range dependency issues. Our experiments on the Long Range Arena benchmark, autoregressive language modeling, and image and speech classification demonstrate the effectiveness of LongVQ. Our model achieves significant improvements over other sequence models, including variants of Transformers, Convolutions, and recent State Space Models.
OpenDCVCs: A PyTorch Open Source Implementation and Performance Evaluation of the DCVC series Video Codecs
We present OpenDCVCs, an open-source PyTorch implementation designed to advance reproducible research in learned video compression. OpenDCVCs provides unified and training-ready implementations of four representative Deep Contextual Video Compression (DCVC) models--DCVC, DCVC with Temporal Context Modeling (DCVC-TCM), DCVC with Hybrid Entropy Modeling (DCVC-HEM), and DCVC with Diverse Contexts (DCVC-DC). While the DCVC series achieves substantial bitrate reductions over both classical codecs and advanced learned models, previous public code releases have been limited to evaluation codes, presenting significant barriers to reproducibility, benchmarking, and further development. OpenDCVCs bridges this gap by offering a comprehensive, self-contained framework that supports both end-to-end training and evaluation for all included algorithms. The implementation includes detailed documentation, evaluation protocols, and extensive benchmarking results across diverse datasets, providing a transparent and consistent foundation for comparison and extension. All code and experimental tools are publicly available at https://gitlab.com/viper-purdue/opendcvcs, empowering the community to accelerate research and foster collaboration.
InspireMusic: Integrating Super Resolution and Large Language Model for High-Fidelity Long-Form Music Generation
We introduce InspireMusic, a framework integrated super resolution and large language model for high-fidelity long-form music generation. A unified framework generates high-fidelity music, songs, and audio, which incorporates an autoregressive transformer with a super-resolution flow-matching model. This framework enables the controllable generation of high-fidelity long-form music at a higher sampling rate from both text and audio prompts. Our model differs from previous approaches, as we utilize an audio tokenizer with one codebook that contains richer semantic information, thereby reducing training costs and enhancing efficiency. This combination enables us to achieve high-quality audio generation with long-form coherence of up to 8 minutes. Then, an autoregressive transformer model based on Qwen 2.5 predicts audio tokens. Next, we employ a super-resolution flow-matching model to generate high-sampling rate audio with fine-grained details learned from an acoustic codec model. Comprehensive experiments show that the InspireMusic-1.5B-Long model has a comparable performance to recent top-tier open-source systems, including MusicGen and Stable Audio 2.0, on subjective and objective evaluations. The code and pre-trained models are released at https://github.com/FunAudioLLM/InspireMusic.
Compressing Lengthy Context With UltraGist
Compressing lengthy context is a critical but technically challenging problem. In this paper, we propose a new method called UltraGist, which is distinguished for its high-quality compression of lengthy context due to the innovative design of the compression and learning algorithm. UltraGist brings forth the following important benefits. Firstly, it notably contributes to the flexibility of compression, as it can be effectively learned to support a broad range of context lengths and compression ratios. Secondly, it helps to produce fine-grained compression for the lengthy context, where each small segment of the context is progressively processed on top of a tailored cross-attention mechanism. Thirdly, it makes the training process sample-efficient and thus maximizes the use of training data. Finally, it facilitates the efficient running of compression for dynamic context, as the compression result can be progressively generated and hence incrementally updated. UltraGist is evaluated on a wide variety of tasks associated with lengthy context, such as document QA and summarization, few-shot learning, multi-session conversation, et al. Whilst the existing methods fail to handle these challenging scenarios, our approach is able to preserve a near-lossless compression performance throughout all the evaluations. Our data, model, and code have been released at https://github.com/namespace-Pt/UltraGist.
Multi-Scale Sub-Band Constant-Q Transform Discriminator for High-Fidelity Vocoder
Generative Adversarial Network (GAN) based vocoders are superior in inference speed and synthesis quality when reconstructing an audible waveform from an acoustic representation. This study focuses on improving the discriminator to promote GAN-based vocoders. Most existing time-frequency-representation-based discriminators are rooted in Short-Time Fourier Transform (STFT), whose time-frequency resolution in a spectrogram is fixed, making it incompatible with signals like singing voices that require flexible attention for different frequency bands. Motivated by that, our study utilizes the Constant-Q Transform (CQT), which owns dynamic resolution among frequencies, contributing to a better modeling ability in pitch accuracy and harmonic tracking. Specifically, we propose a Multi-Scale Sub-Band CQT (MS-SB-CQT) Discriminator, which operates on the CQT spectrogram at multiple scales and performs sub-band processing according to different octaves. Experiments conducted on both speech and singing voices confirm the effectiveness of our proposed method. Moreover, we also verified that the CQT-based and the STFT-based discriminators could be complementary under joint training. Specifically, enhanced by the proposed MS-SB-CQT and the existing MS-STFT Discriminators, the MOS of HiFi-GAN can be boosted from 3.27 to 3.87 for seen singers and from 3.40 to 3.78 for unseen singers.
A Unified Cascaded Encoder ASR Model for Dynamic Model Sizes
In this paper, we propose a dynamic cascaded encoder Automatic Speech Recognition (ASR) model, which unifies models for different deployment scenarios. Moreover, the model can significantly reduce model size and power consumption without loss of quality. Namely, with the dynamic cascaded encoder model, we explore three techniques to maximally boost the performance of each model size: 1) Use separate decoders for each sub-model while sharing the encoders; 2) Use funnel-pooling to improve the encoder efficiency; 3) Balance the size of causal and non-causal encoders to improve quality and fit deployment constraints. Overall, the proposed large-medium model has 30% smaller size and reduces power consumption by 33%, compared to the baseline cascaded encoder model. The triple-size model that unifies the large, medium, and small models achieves 37% total size reduction with minimal quality loss, while substantially reducing the engineering efforts of having separate models.
SemantiCodec: An Ultra Low Bitrate Semantic Audio Codec for General Sound
Large language models (LLMs) have significantly advanced audio processing through audio codecs that convert audio into discrete tokens, enabling the application of language modelling techniques to audio data. However, traditional codecs often operate at high bitrates or within narrow domains such as speech and lack the semantic clues required for efficient language modelling. Addressing these challenges, we introduce SemantiCodec, a novel codec designed to compress audio into fewer than a hundred tokens per second across diverse audio types, including speech, general audio, and music, without compromising quality. SemantiCodec features a dual-encoder architecture: a semantic encoder using a self-supervised AudioMAE, discretized using k-means clustering on extensive audio data, and an acoustic encoder to capture the remaining details. The semantic and acoustic encoder outputs are used to reconstruct audio via a diffusion-model-based decoder. SemantiCodec is presented in three variants with token rates of 25, 50, and 100 per second, supporting a range of ultra-low bit rates between 0.31 kbps and 1.43 kbps. Experimental results demonstrate that SemantiCodec significantly outperforms the state-of-the-art Descript codec on reconstruction quality. Our results also suggest that SemantiCodec contains significantly richer semantic information than all evaluated audio codecs, even at significantly lower bitrates. Our code and demos are available at https://haoheliu.github.io/SemantiCodec/.
Once-for-All: Controllable Generative Image Compression with Dynamic Granularity Adaptation
Although recent generative image compression methods have demonstrated impressive potential in optimizing the rate-distortion-perception trade-off, they still face the critical challenge of flexible rate adaption to diverse compression necessities and scenarios. To overcome this challenge, this paper proposes a Controllable Generative Image Compression framework, termed Control-GIC, the first capable of fine-grained bitrate adaption across a broad spectrum while ensuring high-fidelity and generality compression. Control-GIC is grounded in a VQGAN framework that encodes an image as a sequence of variable-length codes (i.e. VQ-indices), which can be losslessly compressed and exhibits a direct positive correlation with the bitrates. Drawing inspiration from the classical coding principle, we correlate the information density of local image patches with their granular representations. Hence, we can flexibly determine a proper allocation of granularity for the patches to achieve dynamic adjustment for VQ-indices, resulting in desirable compression rates. We further develop a probabilistic conditional decoder capable of retrieving historic encoded multi-granularity representations according to transmitted codes, and then reconstruct hierarchical granular features in the formalization of conditional probability, enabling more informative aggregation to improve reconstruction realism. Our experiments show that Control-GIC allows highly flexible and controllable bitrate adaption where the results demonstrate its superior performance over recent state-of-the-art methods. Code is available at https://github.com/lianqi1008/Control-GIC.
A High-Quality and Low-Complexity Streamable Neural Speech Codec with Knowledge Distillation
While many current neural speech codecs achieve impressive reconstructed speech quality, they often neglect latency and complexity considerations, limiting their practical deployment in downstream tasks such as real-time speech communication and efficient speech compression. In our previous work, we proposed StreamCodec, which enables streamable speech coding by leveraging model causalization and a scalar-vector-combined quantization strategy, but its reconstructed quality and complexity still have room for improvement. Therefore, this paper proposes an improved iteration of StreamCodec, named StreamCodec2. The StreamCodec2 supports streamable and lightweight speech coding by adopting a fully causal architecture and reducing the convolutional channels. To compensate for the speech quality degradation caused by model causalization and pruning, we introduce a non-causal, high-complexity teacher codec to guide the training of StreamCodec2 through knowledge distillation. Experimental results demonstrate that our proposed StreamCodec2, trained with the knowledge distillation strategy, can achieve high-quality speech reconstruction while maintaining low latency (only 20 ms), low computational complexity (only 910 MFLOPs), and low model complexity (only 5.4 M parameters).
Music De-limiter Networks via Sample-wise Gain Inversion
The loudness war, an ongoing phenomenon in the music industry characterized by the increasing final loudness of music while reducing its dynamic range, has been a controversial topic for decades. Music mastering engineers have used limiters to heavily compress and make music louder, which can induce ear fatigue and hearing loss in listeners. In this paper, we introduce music de-limiter networks that estimate uncompressed music from heavily compressed signals. Inspired by the principle of a limiter, which performs sample-wise gain reduction of a given signal, we propose the framework of sample-wise gain inversion (SGI). We also present the musdb-XL-train dataset, consisting of 300k segments created by applying a commercial limiter plug-in for training real-world friendly de-limiter networks. Our proposed de-limiter network achieves excellent performance with a scale-invariant source-to-distortion ratio (SI-SDR) of 23.8 dB in reconstructing musdb-HQ from musdb- XL data, a limiter-applied version of musdb-HQ. The training data, codes, and model weights are available in our repository (https://github.com/jeonchangbin49/De-limiter).
Identity Preserving Loss for Learned Image Compression
Deep learning model inference on embedded devices is challenging due to the limited availability of computation resources. A popular alternative is to perform model inference on the cloud, which requires transmitting images from the embedded device to the cloud. Image compression techniques are commonly employed in such cloud-based architectures to reduce transmission latency over low bandwidth networks. This work proposes an end-to-end image compression framework that learns domain-specific features to achieve higher compression ratios than standard HEVC/JPEG compression techniques while maintaining accuracy on downstream tasks (e.g., recognition). Our framework does not require fine-tuning of the downstream task, which allows us to drop-in any off-the-shelf downstream task model without retraining. We choose faces as an application domain due to the ready availability of datasets and off-the-shelf recognition models as representative downstream tasks. We present a novel Identity Preserving Reconstruction (IPR) loss function which achieves Bits-Per-Pixel (BPP) values that are ~38% and ~42% of CRF-23 HEVC compression for LFW (low-resolution) and CelebA-HQ (high-resolution) datasets, respectively, while maintaining parity in recognition accuracy. The superior compression ratio is achieved as the model learns to retain the domain-specific features (e.g., facial features) while sacrificing details in the background. Furthermore, images reconstructed by our proposed compression model are robust to changes in downstream model architectures. We show at-par recognition performance on the LFW dataset with an unseen recognition model while retaining a lower BPP value of ~38% of CRF-23 HEVC compression.
Accelerating High-Fidelity Waveform Generation via Adversarial Flow Matching Optimization
This paper introduces PeriodWave-Turbo, a high-fidelity and high-efficient waveform generation model via adversarial flow matching optimization. Recently, conditional flow matching (CFM) generative models have been successfully adopted for waveform generation tasks, leveraging a single vector field estimation objective for training. Although these models can generate high-fidelity waveform signals, they require significantly more ODE steps compared to GAN-based models, which only need a single generation step. Additionally, the generated samples often lack high-frequency information due to noisy vector field estimation, which fails to ensure high-frequency reproduction. To address this limitation, we enhance pre-trained CFM-based generative models by incorporating a fixed-step generator modification. We utilized reconstruction losses and adversarial feedback to accelerate high-fidelity waveform generation. Through adversarial flow matching optimization, it only requires 1,000 steps of fine-tuning to achieve state-of-the-art performance across various objective metrics. Moreover, we significantly reduce inference speed from 16 steps to 2 or 4 steps. Additionally, by scaling up the backbone of PeriodWave from 29M to 70M parameters for improved generalization, PeriodWave-Turbo achieves unprecedented performance, with a perceptual evaluation of speech quality (PESQ) score of 4.454 on the LibriTTS dataset. Audio samples, source code and checkpoints will be available at https://github.com/sh-lee-prml/PeriodWave.
Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models
Despite the remarkable success of Large Language Models (LLMs), the massive size poses significant deployment challenges, particularly on resource-constrained hardware. While existing LLM compression methods focus on quantization, pruning remains relatively unexplored due to the high cost of training-based approaches and data collection challenges. One-shot pruning methods, although cost-effective and data-free, have become dominant in LLM pruning, but lead to performance decline under the structured pruning setting. In this work, we introduce a new paradigm for structurally pruning LLMs, called Compresso. Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process. Compresso addresses the challenges of expensive training costs and data collection by incorporating Low-Rank Adaptation (LoRA) into the L_0 regularization during the instruction tuning process. Then, we further augment the pruning algorithm by introducing a collaborative prompt that fosters collaboration between the LLM and the pruning algorithm, significantly boosting the overall performance. To this end, Compresso prunes LLaMA-7B to 5.4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2.62%. Extensive experiments demonstrate that Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.
BeepBank-500: A Synthetic Earcon Mini-Corpus for UI Sound Research and Psychoacoustics Research
We introduce BeepBank-500, a compact, fully synthetic earcon/alert dataset (300-500 clips) designed for rapid, rights-clean experimentation in human-computer interaction and audio machine learning. Each clip is generated from a parametric recipe controlling waveform family (sine, square, triangle, FM), fundamental frequency, duration, amplitude envelope, amplitude modulation (AM), and lightweight Schroeder-style reverberation. We use three reverberation settings: dry, and two synthetic rooms denoted 'rir small' ('small') and 'rir medium' ('medium') throughout the paper and in the metadata. We release mono 48 kHz WAV audio (16-bit), a rich metadata table (signal/spectral features), and tiny reproducible baselines for (i) waveform-family classification and (ii) f0 regression on single tones. The corpus targets tasks such as earcon classification, timbre analyses, and onset detection, with clearly stated licensing and limitations. Audio is dedicated to the public domain via CC0-1.0; code is under MIT. Data DOI: https://doi.org/10.5281/zenodo.17172015. Code: https://github.com/mandip42/earcons-mini-500.
LMCodec: A Low Bitrate Speech Codec With Causal Transformer Models
We introduce LMCodec, a causal neural speech codec that provides high quality audio at very low bitrates. The backbone of the system is a causal convolutional codec that encodes audio into a hierarchy of coarse-to-fine tokens using residual vector quantization. LMCodec trains a Transformer language model to predict the fine tokens from the coarse ones in a generative fashion, allowing for the transmission of fewer codes. A second Transformer predicts the uncertainty of the next codes given the past transmitted codes, and is used to perform conditional entropy coding. A MUSHRA subjective test was conducted and shows that the quality is comparable to reference codecs at higher bitrates. Example audio is available at https://mjenrungrot.github.io/chrome-media-audio-papers/publications/lmcodec.
DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network compression
We present DeepCABAC, a novel context-adaptive binary arithmetic coder for compressing deep neural networks. It quantizes each weight parameter by minimizing a weighted rate-distortion function, which implicitly takes the impact of quantization on to the accuracy of the network into account. Subsequently, it compresses the quantized values into a bitstream representation with minimal redundancies. We show that DeepCABAC is able to reach very high compression ratios across a wide set of different network architectures and datasets. For instance, we are able to compress by x63.6 the VGG16 ImageNet model with no loss of accuracy, thus being able to represent the entire network with merely 8.7MB.
One Quantizer is Enough: Toward a Lightweight Audio Codec
Neural audio codecs have recently gained traction for their ability to compress high-fidelity audio and generate discrete tokens that can be utilized in downstream generative modeling tasks. However, leading approaches often rely on resource-intensive models and multi-quantizer architectures, resulting in considerable computational overhead and constrained real-world applicability. In this paper, we present SQCodec, a lightweight neural audio codec that leverages a single quantizer to address these limitations. SQCodec explores streamlined convolutional networks and local Transformer modules, alongside TConv, a novel mechanism designed to capture acoustic variations across multiple temporal scales, thereby enhancing reconstruction fidelity while reducing model complexity. Extensive experiments across diverse datasets show that SQCodec achieves audio quality comparable to multi-quantizer baselines, while its single-quantizer design offers enhanced adaptability and its lightweight architecture reduces resource consumption by an order of magnitude. The source code is publicly available at https://github.com/zhai-lw/SQCodec.
HRTFformer: A Spatially-Aware Transformer for Personalized HRTF Upsampling in Immersive Audio Rendering
Personalized Head-Related Transfer Functions (HRTFs) are starting to be introduced in many commercial immersive audio applications and are crucial for realistic spatial audio rendering. However, one of the main hesitations regarding their introduction is that creating personalized HRTFs is impractical at scale due to the complexities of the HRTF measurement process. To mitigate this drawback, HRTF spatial upsampling has been proposed with the aim of reducing measurements required. While prior work has seen success with different machine learning (ML) approaches, these models often struggle with long-range spatial consistency and generalization at high upsampling factors. In this paper, we propose a novel transformer-based architecture for HRTF upsampling, leveraging the attention mechanism to better capture spatial correlations across the HRTF sphere. Working in the spherical harmonic (SH) domain, our model learns to reconstruct high-resolution HRTFs from sparse input measurements with significantly improved accuracy. To enhance spatial coherence, we introduce a neighbor dissimilarity loss that promotes magnitude smoothness, yielding more realistic upsampling. We evaluate our method using both perceptual localization models and objective spectral distortion metrics. Experiments show that our model surpasses leading methods by a substantial margin in generating realistic, high-fidelity HRTFs.
Robust Dual Gaussian Splatting for Immersive Human-centric Volumetric Videos
Volumetric video represents a transformative advancement in visual media, enabling users to freely navigate immersive virtual experiences and narrowing the gap between digital and real worlds. However, the need for extensive manual intervention to stabilize mesh sequences and the generation of excessively large assets in existing workflows impedes broader adoption. In this paper, we present a novel Gaussian-based approach, dubbed DualGS, for real-time and high-fidelity playback of complex human performance with excellent compression ratios. Our key idea in DualGS is to separately represent motion and appearance using the corresponding skin and joint Gaussians. Such an explicit disentanglement can significantly reduce motion redundancy and enhance temporal coherence. We begin by initializing the DualGS and anchoring skin Gaussians to joint Gaussians at the first frame. Subsequently, we employ a coarse-to-fine training strategy for frame-by-frame human performance modeling. It includes a coarse alignment phase for overall motion prediction as well as a fine-grained optimization for robust tracking and high-fidelity rendering. To integrate volumetric video seamlessly into VR environments, we efficiently compress motion using entropy encoding and appearance using codec compression coupled with a persistent codebook. Our approach achieves a compression ratio of up to 120 times, only requiring approximately 350KB of storage per frame. We demonstrate the efficacy of our representation through photo-realistic, free-view experiences on VR headsets, enabling users to immersively watch musicians in performance and feel the rhythm of the notes at the performers' fingertips.
MoPE-CLIP: Structured Pruning for Efficient Vision-Language Models with Module-wise Pruning Error Metric
Vision-language pre-trained models have achieved impressive performance on various downstream tasks. However, their large model sizes hinder their utilization on platforms with limited computational resources. We find that directly using smaller pre-trained models and applying magnitude-based pruning on CLIP models leads to inflexibility and inferior performance. Recent efforts for VLP compression either adopt uni-modal compression metrics resulting in limited performance or involve costly mask-search processes with learnable masks. In this paper, we first propose the Module-wise Pruning Error (MoPE) metric, accurately assessing CLIP module importance by performance decline on cross-modal tasks. Using the MoPE metric, we introduce a unified pruning framework applicable to both pre-training and task-specific fine-tuning compression stages. For pre-training, MoPE-CLIP effectively leverages knowledge from the teacher model, significantly reducing pre-training costs while maintaining strong zero-shot capabilities. For fine-tuning, consecutive pruning from width to depth yields highly competitive task-specific models. Extensive experiments in two stages demonstrate the effectiveness of the MoPE metric, and MoPE-CLIP outperforms previous state-of-the-art VLP compression methods.
Enhancing Motion Dynamics of Image-to-Video Models via Adaptive Low-Pass Guidance
Recent text-to-video (T2V) models have demonstrated strong capabilities in producing high-quality, dynamic videos. To improve the visual controllability, recent works have considered fine-tuning pre-trained T2V models to support image-to-video (I2V) generation. However, such adaptation frequently suppresses motion dynamics of generated outputs, resulting in more static videos compared to their T2V counterparts. In this work, we analyze this phenomenon and identify that it stems from the premature exposure to high-frequency details in the input image, which biases the sampling process toward a shortcut trajectory that overfits to the static appearance of the reference image. To address this, we propose adaptive low-pass guidance (ALG), a simple fix to the I2V model sampling procedure to generate more dynamic videos without compromising per-frame image quality. Specifically, ALG adaptively modulates the frequency content of the conditioning image by applying low-pass filtering at the early stage of denoising. Extensive experiments demonstrate that ALG significantly improves the temporal dynamics of generated videos, while preserving image fidelity and text alignment. Especially, under VBench-I2V test suite, ALG achieves an average improvement of 36% in dynamic degree without a significant drop in video quality or image fidelity.
PICD: Versatile Perceptual Image Compression with Diffusion Rendering
Recently, perceptual image compression has achieved significant advancements, delivering high visual quality at low bitrates for natural images. However, for screen content, existing methods often produce noticeable artifacts when compressing text. To tackle this challenge, we propose versatile perceptual screen image compression with diffusion rendering (PICD), a codec that works well for both screen and natural images. More specifically, we propose a compression framework that encodes the text and image separately, and renders them into one image using diffusion model. For this diffusion rendering, we integrate conditional information into diffusion models at three distinct levels: 1). Domain level: We fine-tune the base diffusion model using text content prompts with screen content. 2). Adaptor level: We develop an efficient adaptor to control the diffusion model using compressed image and text as input. 3). Instance level: We apply instance-wise guidance to further enhance the decoding process. Empirically, our PICD surpasses existing perceptual codecs in terms of both text accuracy and perceptual quality. Additionally, without text conditions, our approach serves effectively as a perceptual codec for natural images.
Mustafar: Promoting Unstructured Sparsity for KV Cache Pruning in LLM Inference
We demonstrate that unstructured sparsity significantly improves KV cache compression for LLMs, enabling sparsity levels up to 70% without compromising accuracy or requiring fine-tuning. We conduct a systematic exploration of pruning strategies and find per-token magnitude-based pruning as highly effective for both Key and Value caches under unstructured sparsity, surpassing prior structured pruning schemes. The Key cache benefits from prominent outlier elements, while the Value cache surprisingly benefits from a simple magnitude-based pruning despite its uniform distribution. KV cache size is the major bottleneck in decode performance due to high memory overhead for large context lengths. To address this, we use a bitmap-based sparse format and a custom attention kernel capable of compressing and directly computing over compressed caches pruned to arbitrary sparsity patterns, significantly accelerating memory-bound operations in decode computations and thereby compensating for the overhead of runtime pruning and compression. Our custom attention kernel coupled with the bitmap-based format delivers substantial compression of KV cache upto 45% of dense inference and thereby enables longer context length and increased tokens/sec throughput of upto 2.23x compared to dense inference. Our pruning mechanism and sparse attention kernel is available at https://github.com/dhjoo98/mustafar.
Modulation Extraction for LFO-driven Audio Effects
Low frequency oscillator (LFO) driven audio effects such as phaser, flanger, and chorus, modify an input signal using time-varying filters and delays, resulting in characteristic sweeping or widening effects. It has been shown that these effects can be modeled using neural networks when conditioned with the ground truth LFO signal. However, in most cases, the LFO signal is not accessible and measurement from the audio signal is nontrivial, hindering the modeling process. To address this, we propose a framework capable of extracting arbitrary LFO signals from processed audio across multiple digital audio effects, parameter settings, and instrument configurations. Since our system imposes no restrictions on the LFO signal shape, we demonstrate its ability to extract quasiperiodic, combined, and distorted modulation signals that are relevant to effect modeling. Furthermore, we show how coupling the extraction model with a simple processing network enables training of end-to-end black-box models of unseen analog or digital LFO-driven audio effects using only dry and wet audio pairs, overcoming the need to access the audio effect or internal LFO signal. We make our code available and provide the trained audio effect models in a real-time VST plugin.
Exploring Quality and Generalizability in Parameterized Neural Audio Effects
Deep neural networks have shown promise for music audio signal processing applications, often surpassing prior approaches, particularly as end-to-end models in the waveform domain. Yet results to date have tended to be constrained by low sample rates, noise, narrow domains of signal types, and/or lack of parameterized controls (i.e. "knobs"), making their suitability for professional audio engineering workflows still lacking. This work expands on prior research published on modeling nonlinear time-dependent signal processing effects associated with music production by means of a deep neural network, one which includes the ability to emulate the parameterized settings you would see on an analog piece of equipment, with the goal of eventually producing commercially viable, high quality audio, i.e. 44.1 kHz sampling rate at 16-bit resolution. The results in this paper highlight progress in modeling these effects through architecture and optimization changes, towards increasing computational efficiency, lowering signal-to-noise ratio, and extending to a larger variety of nonlinear audio effects. Toward these ends, the strategies employed involved a three-pronged approach: model speed, model accuracy, and model generalizability. Most of the presented methods provide marginal or no increase in output accuracy over the original model, with the exception of dataset manipulation. We found that limiting the audio content of the dataset, for example using datasets of just a single instrument, provided a significant improvement in model accuracy over models trained on more general datasets.
Neural Vocoder is All You Need for Speech Super-resolution
Speech super-resolution (SR) is a task to increase speech sampling rate by generating high-frequency components. Existing speech SR methods are trained in constrained experimental settings, such as a fixed upsampling ratio. These strong constraints can potentially lead to poor generalization ability in mismatched real-world cases. In this paper, we propose a neural vocoder based speech super-resolution method (NVSR) that can handle a variety of input resolution and upsampling ratios. NVSR consists of a mel-bandwidth extension module, a neural vocoder module, and a post-processing module. Our proposed system achieves state-of-the-art results on the VCTK multi-speaker benchmark. On 44.1 kHz target resolution, NVSR outperforms WSRGlow and Nu-wave by 8% and 37% respectively on log spectral distance and achieves a significantly better perceptual quality. We also demonstrate that prior knowledge in the pre-trained vocoder is crucial for speech SR by performing mel-bandwidth extension with a simple replication-padding method. Samples can be found in https://haoheliu.github.io/nvsr.
S2R-HDR: A Large-Scale Rendered Dataset for HDR Fusion
The generalization of learning-based high dynamic range (HDR) fusion is often limited by the availability of training data, as collecting large-scale HDR images from dynamic scenes is both costly and technically challenging. To address these challenges, we propose S2R-HDR, the first large-scale high-quality synthetic dataset for HDR fusion, with 24,000 HDR samples. Using Unreal Engine 5, we design a diverse set of realistic HDR scenes that encompass various dynamic elements, motion types, high dynamic range scenes, and lighting. Additionally, we develop an efficient rendering pipeline to generate realistic HDR images. To further mitigate the domain gap between synthetic and real-world data, we introduce S2R-Adapter, a domain adaptation designed to bridge this gap and enhance the generalization ability of models. Experimental results on real-world datasets demonstrate that our approach achieves state-of-the-art HDR reconstruction performance. Dataset and code will be available at https://openimaginglab.github.io/S2R-HDR.
Region-Adaptive Transform with Segmentation Prior for Image Compression
Learned Image Compression (LIC) has shown remarkable progress in recent years. Existing works commonly employ CNN-based or self-attention-based modules as transform methods for compression. However, there is no prior research on neural transform that focuses on specific regions. In response, we introduce the class-agnostic segmentation masks (i.e. semantic masks without category labels) for extracting region-adaptive contextual information. Our proposed module, Region-Adaptive Transform, applies adaptive convolutions on different regions guided by the masks. Additionally, we introduce a plug-and-play module named Scale Affine Layer to incorporate rich contexts from various regions. While there have been prior image compression efforts that involve segmentation masks as additional intermediate inputs, our approach differs significantly from them. Our advantages lie in that, to avoid extra bitrate overhead, we treat these masks as privilege information, which is accessible during the model training stage but not required during the inference phase. To the best of our knowledge, we are the first to employ class-agnostic masks as privilege information and achieve superior performance in pixel-fidelity metrics, such as Peak Signal to Noise Ratio (PSNR). The experimental results demonstrate our improvement compared to previously well-performing methods, with about 8.2% bitrate saving compared to VTM-17.0. The source code is available at https://github.com/GityuxiLiu/SegPIC-for-Image-Compression.
Unified Low-rank Compression Framework for Click-through Rate Prediction
Deep Click-Through Rate (CTR) prediction models play an important role in modern industrial recommendation scenarios. However, high memory overhead and computational costs limit their deployment in resource-constrained environments. Low-rank approximation is an effective method for computer vision and natural language processing models, but its application in compressing CTR prediction models has been less explored. Due to the limited memory and computing resources, compression of CTR prediction models often confronts three fundamental challenges, i.e., (1). How to reduce the model sizes to adapt to edge devices? (2). How to speed up CTR prediction model inference? (3). How to retain the capabilities of original models after compression? Previous low-rank compression research mostly uses tensor decomposition, which can achieve a high parameter compression ratio, but brings in AUC degradation and additional computing overhead. To address these challenges, we propose a unified low-rank decomposition framework for compressing CTR prediction models. We find that even with the most classic matrix decomposition SVD method, our framework can achieve better performance than the original model. To further improve the effectiveness of our framework, we locally compress the output features instead of compressing the model weights. Our unified low-rank compression framework can be applied to embedding tables and MLP layers in various CTR prediction models. Extensive experiments on two academic datasets and one real industrial benchmark demonstrate that, with 3-5x model size reduction, our compressed models can achieve both faster inference and higher AUC than the uncompressed original models. Our code is at https://github.com/yuhao318/Atomic_Feature_Mimicking.
Single-Codec: Single-Codebook Speech Codec towards High-Performance Speech Generation
The multi-codebook speech codec enables the application of large language models (LLM) in TTS but bottlenecks efficiency and robustness due to multi-sequence prediction. To avoid this obstacle, we propose Single-Codec, a single-codebook single-sequence codec, which employs a disentangled VQ-VAE to decouple speech into a time-invariant embedding and a phonetically-rich discrete sequence. Furthermore, the encoder is enhanced with 1) contextual modeling with a BLSTM module to exploit the temporal information, 2) a hybrid sampling module to alleviate distortion from upsampling and downsampling, and 3) a resampling module to encourage discrete units to carry more phonetic information. Compared with multi-codebook codecs, e.g., EnCodec and TiCodec, Single-Codec demonstrates higher reconstruction quality with a lower bandwidth of only 304bps. The effectiveness of Single-Code is further validated by LLM-TTS experiments, showing improved naturalness and intelligibility.
ESC: Efficient Speech Coding with Cross-Scale Residual Vector Quantized Transformers
Existing neural audio codecs usually sacrifice computational complexity for audio quality. They build the feature transformation layers mainly on convolutional blocks, which are not inherently appropriate for capturing local redundancies of audio signals. As compensation, either adversarial losses from a discriminator or a large number of model parameters are required to improve the codec. To that end, we propose Efficient Speech Codec (ESC), a lightweight parameter-efficient codec laid on cross-scale residual vector quantization and transformers. Our model leverages mirrored hierarchical window-attention transformer blocks and performs step-wise decoding from coarse-to-fine feature representations. To enhance codebook utilization, we design a learning paradigm that involves a pre-training stage to assist with codec training. Extensive results show that ESC can achieve high audio quality with much lower complexity, which is a prospective alternative in place of existing codecs.
FocalCodec-Stream: Streaming Low-Bitrate Speech Coding via Causal Distillation
Neural audio codecs are a fundamental component of modern generative audio pipelines. Although recent codecs achieve strong low-bitrate reconstruction and provide powerful representations for downstream tasks, most are non-streamable, limiting their use in real-time applications. We present FocalCodec-Stream, a hybrid codec based on focal modulation that compresses speech into a single binary codebook at 0.55 - 0.80 kbps with a theoretical latency of 80 ms. Our approach combines multi-stage causal distillation of WavLM with targeted architectural improvements, including a lightweight refiner module that enhances quality under latency constraints. Experiments show that FocalCodec-Stream outperforms existing streamable codecs at comparable bitrates, while preserving both semantic and acoustic information. The result is a favorable trade-off between reconstruction quality, downstream task performance, latency, and efficiency. Code and checkpoints will be released at https://github.com/lucadellalib/focalcodec.
Beyond Homogeneous Attention: Memory-Efficient LLMs via Fourier-Approximated KV Cache
Large Language Models struggle with memory demands from the growing Key-Value (KV) cache as context lengths increase. Existing compression methods homogenize head dimensions or rely on attention-guided token pruning, often sacrificing accuracy or introducing computational overhead. We propose FourierAttention, a training-free framework that exploits the heterogeneous roles of transformer head dimensions: lower dimensions prioritize local context, while upper ones capture long-range dependencies. By projecting the long-context-insensitive dimensions onto orthogonal Fourier bases, FourierAttention approximates their temporal evolution with fixed-length spectral coefficients. Evaluations on LLaMA models show that FourierAttention achieves the best long-context accuracy on LongBench and Needle-In-A-Haystack (NIAH). Besides, a custom Triton kernel, FlashFourierAttention, is designed to optimize memory via streamlined read-write operations, enabling efficient deployment without performance compromise.
Clean Images are Hard to Reblur: Exploiting the Ill-Posed Inverse Task for Dynamic Scene Deblurring
The goal of dynamic scene deblurring is to remove the motion blur in a given image. Typical learning-based approaches implement their solutions by minimizing the L1 or L2 distance between the output and the reference sharp image. Recent attempts adopt visual recognition features in training to improve the perceptual quality. However, those features are primarily designed to capture high-level contexts rather than low-level structures such as blurriness. Instead, we propose a more direct way to make images sharper by exploiting the inverse task of deblurring, namely, reblurring. Reblurring amplifies the remaining blur to rebuild the original blur, however, a well-deblurred clean image with zero-magnitude blur is hard to reblur. Thus, we design two types of reblurring loss functions for better deblurring. The supervised reblurring loss at training stage compares the amplified blur between the deblurred and the sharp images. The self-supervised reblurring loss at inference stage inspects if there noticeable blur remains in the deblurred. Our experimental results on large-scale benchmarks and real images demonstrate the effectiveness of the reblurring losses in improving the perceptual quality of the deblurred images in terms of NIQE and LPIPS scores as well as visual sharpness.
DASS: Distilled Audio State Space Models Are Stronger and More Duration-Scalable Learners
State-space models (SSMs) have emerged as an alternative to Transformers for audio modeling due to their high computational efficiency with long inputs. While recent efforts on Audio SSMs have reported encouraging results, two main limitations remain: First, in 10-second short audio tagging tasks, Audio SSMs still underperform compared to Transformer-based models such as Audio Spectrogram Transformer (AST). Second, although Audio SSMs theoretically support long audio inputs, their actual performance with long audio has not been thoroughly evaluated. To address these limitations, in this paper, 1) We applied knowledge distillation in audio space model training, resulting in a model called Knowledge Distilled Audio SSM (DASS). To the best of our knowledge, it is the first SSM that outperforms the Transformers on AudioSet and achieves an mAP of 47.6; and 2) We designed a new test called Audio Needle In A Haystack (Audio NIAH). We find that DASS, trained with only 10-second audio clips, can retrieve sound events in audio recordings up to 2.5 hours long, while the AST model fails when the input is just 50 seconds, demonstrating SSMs are indeed more duration scalable.
Nearly Lossless Adaptive Bit Switching
Model quantization is widely applied for compressing and accelerating deep neural networks (DNNs). However, conventional Quantization-Aware Training (QAT) focuses on training DNNs with uniform bit-width. The bit-width settings vary across different hardware and transmission demands, which induces considerable training and storage costs. Hence, the scheme of one-shot joint training multiple precisions is proposed to address this issue. Previous works either store a larger FP32 model to switch between different precision models for higher accuracy or store a smaller INT8 model but compromise accuracy due to using shared quantization parameters. In this paper, we introduce the Double Rounding quantization method, which fully utilizes the quantized representation range to accomplish nearly lossless bit-switching while reducing storage by using the highest integer precision instead of full precision. Furthermore, we observe a competitive interference among different precisions during one-shot joint training, primarily due to inconsistent gradients of quantization scales during backward propagation. To tackle this problem, we propose an Adaptive Learning Rate Scaling (ALRS) technique that dynamically adapts learning rates for various precisions to optimize the training process. Additionally, we extend our Double Rounding to one-shot mixed precision training and develop a Hessian-Aware Stochastic Bit-switching (HASB) strategy. Experimental results on the ImageNet-1K classification demonstrate that our methods have enough advantages to state-of-the-art one-shot joint QAT in both multi-precision and mixed-precision. We also validate the feasibility of our method on detection and segmentation tasks, as well as on LLMs task. Our codes are available at https://github.com/haiduo/Double-Rounding.
Acoustic Volume Rendering for Neural Impulse Response Fields
Realistic audio synthesis that captures accurate acoustic phenomena is essential for creating immersive experiences in virtual and augmented reality. Synthesizing the sound received at any position relies on the estimation of impulse response (IR), which characterizes how sound propagates in one scene along different paths before arriving at the listener's position. In this paper, we present Acoustic Volume Rendering (AVR), a novel approach that adapts volume rendering techniques to model acoustic impulse responses. While volume rendering has been successful in modeling radiance fields for images and neural scene representations, IRs present unique challenges as time-series signals. To address these challenges, we introduce frequency-domain volume rendering and use spherical integration to fit the IR measurements. Our method constructs an impulse response field that inherently encodes wave propagation principles and achieves state-of-the-art performance in synthesizing impulse responses for novel poses. Experiments show that AVR surpasses current leading methods by a substantial margin. Additionally, we develop an acoustic simulation platform, AcoustiX, which provides more accurate and realistic IR simulations than existing simulators. Code for AVR and AcoustiX are available at https://zitonglan.github.io/avr.
AudioDec: An Open-source Streaming High-fidelity Neural Audio Codec
A good audio codec for live applications such as telecommunication is characterized by three key properties: (1) compression, i.e.\ the bitrate that is required to transmit the signal should be as low as possible; (2) latency, i.e.\ encoding and decoding the signal needs to be fast enough to enable communication without or with only minimal noticeable delay; and (3) reconstruction quality of the signal. In this work, we propose an open-source, streamable, and real-time neural audio codec that achieves strong performance along all three axes: it can reconstruct highly natural sounding 48~kHz speech signals while operating at only 12~kbps and running with less than 6~ms (GPU)/10~ms (CPU) latency. An efficient training paradigm is also demonstrated for developing such neural audio codecs for real-world scenarios. Both objective and subjective evaluations using the VCTK corpus are provided. To sum up, AudioDec is a well-developed plug-and-play benchmark for audio codec applications.
Characterising Bias in Compressed Models
The popularity and widespread use of pruning and quantization is driven by the severe resource constraints of deploying deep neural networks to environments with strict latency, memory and energy requirements. These techniques achieve high levels of compression with negligible impact on top-line metrics (top-1 and top-5 accuracy). However, overall accuracy hides disproportionately high errors on a small subset of examples; we call this subset Compression Identified Exemplars (CIE). We further establish that for CIE examples, compression amplifies existing algorithmic bias. Pruning disproportionately impacts performance on underrepresented features, which often coincides with considerations of fairness. Given that CIE is a relatively small subset but a great contributor of error in the model, we propose its use as a human-in-the-loop auditing tool to surface a tractable subset of the dataset for further inspection or annotation by a domain expert. We provide qualitative and quantitative support that CIE surfaces the most challenging examples in the data distribution for human-in-the-loop auditing.
CSKV: Training-Efficient Channel Shrinking for KV Cache in Long-Context Scenarios
Large Language Models (LLMs) have been widely adopted to process long-context tasks. However, the large memory overhead of the key-value (KV) cache poses significant challenges in long-context scenarios. Existing training-free KV cache compression methods typically focus on quantization and token pruning, which have compression limits, and excessive sparsity can lead to severe performance degradation. Other methods design new architectures with less KV overhead but require significant training overhead. To address the above two drawbacks, we further explore the redundancy in the channel dimension and apply an architecture-level design with minor training costs. Therefore, we introduce CSKV, a training-efficient Channel Shrinking technique for KV cache compression: (1) We first analyze the singular value distribution of the KV cache, revealing significant redundancy and compression potential along the channel dimension. Based on this observation, we propose using low-rank decomposition for key and value layers and storing the low-dimension features. (2) To preserve model performance, we introduce a bi-branch KV cache, including a window-based full-precision KV cache and a low-precision compressed KV cache. (3) To reduce the training costs, we minimize the layer-wise reconstruction loss for the compressed KV cache instead of retraining the entire LLMs. Extensive experiments show that CSKV can reduce the memory overhead of the KV cache by 80% while maintaining the model's long-context capability. Moreover, we show that our method can be seamlessly combined with quantization to further reduce the memory overhead, achieving a compression ratio of up to 95%.
Self-Supervised High Dynamic Range Imaging with Multi-Exposure Images in Dynamic Scenes
Merging multi-exposure images is a common approach for obtaining high dynamic range (HDR) images, with the primary challenge being the avoidance of ghosting artifacts in dynamic scenes. Recent methods have proposed using deep neural networks for deghosting. However, the methods typically rely on sufficient data with HDR ground-truths, which are difficult and costly to collect. In this work, to eliminate the need for labeled data, we propose SelfHDR, a self-supervised HDR reconstruction method that only requires dynamic multi-exposure images during training. Specifically, SelfHDR learns a reconstruction network under the supervision of two complementary components, which can be constructed from multi-exposure images and focus on HDR color as well as structure, respectively. The color component is estimated from aligned multi-exposure images, while the structure one is generated through a structure-focused network that is supervised by the color component and an input reference (\eg, medium-exposure) image. During testing, the learned reconstruction network is directly deployed to predict an HDR image. Experiments on real-world images demonstrate our SelfHDR achieves superior results against the state-of-the-art self-supervised methods, and comparable performance to supervised ones. Codes are available at https://github.com/cszhilu1998/SelfHDR
InternLM-XComposer2-4KHD: A Pioneering Large Vision-Language Model Handling Resolutions from 336 Pixels to 4K HD
The Large Vision-Language Model (LVLM) field has seen significant advancements, yet its progression has been hindered by challenges in comprehending fine-grained visual content due to limited resolution. Recent efforts have aimed to enhance the high-resolution understanding capabilities of LVLMs, yet they remain capped at approximately 1500 x 1500 pixels and constrained to a relatively narrow resolution range. This paper represents InternLM-XComposer2-4KHD, a groundbreaking exploration into elevating LVLM resolution capabilities up to 4K HD (3840 x 1600) and beyond. Concurrently, considering the ultra-high resolution may not be necessary in all scenarios, it supports a wide range of diverse resolutions from 336 pixels to 4K standard, significantly broadening its scope of applicability. Specifically, this research advances the patch division paradigm by introducing a novel extension: dynamic resolution with automatic patch configuration. It maintains the training image aspect ratios while automatically varying patch counts and configuring layouts based on a pre-trained Vision Transformer (ViT) (336 x 336), leading to dynamic training resolution from 336 pixels to 4K standard. Our research demonstrates that scaling training resolution up to 4K HD leads to consistent performance enhancements without hitting the ceiling of potential improvements. InternLM-XComposer2-4KHD shows superb capability that matches or even surpasses GPT-4V and Gemini Pro in 10 of the 16 benchmarks. The InternLM-XComposer2-4KHD model series with 7B parameters are publicly available at https://github.com/InternLM/InternLM-XComposer.
SoundStream: An End-to-End Neural Audio Codec
We present SoundStream, a novel neural audio codec that can efficiently compress speech, music and general audio at bitrates normally targeted by speech-tailored codecs. SoundStream relies on a model architecture composed by a fully convolutional encoder/decoder network and a residual vector quantizer, which are trained jointly end-to-end. Training leverages recent advances in text-to-speech and speech enhancement, which combine adversarial and reconstruction losses to allow the generation of high-quality audio content from quantized embeddings. By training with structured dropout applied to quantizer layers, a single model can operate across variable bitrates from 3kbps to 18kbps, with a negligible quality loss when compared with models trained at fixed bitrates. In addition, the model is amenable to a low latency implementation, which supports streamable inference and runs in real time on a smartphone CPU. In subjective evaluations using audio at 24kHz sampling rate, SoundStream at 3kbps outperforms Opus at 12kbps and approaches EVS at 9.6kbps. Moreover, we are able to perform joint compression and enhancement either at the encoder or at the decoder side with no additional latency, which we demonstrate through background noise suppression for speech.
eDKM: An Efficient and Accurate Train-time Weight Clustering for Large Language Models
Since Large Language Models or LLMs have demonstrated high-quality performance on many complex language tasks, there is a great interest in bringing these LLMs to mobile devices for faster responses and better privacy protection. However, the size of LLMs (i.e., billions of parameters) requires highly effective compression to fit into storage-limited devices. Among many compression techniques, weight-clustering, a form of non-linear quantization, is one of the leading candidates for LLM compression, and supported by modern smartphones. Yet, its training overhead is prohibitively significant for LLM fine-tuning. Especially, Differentiable KMeans Clustering, or DKM, has shown the state-of-the-art trade-off between compression ratio and accuracy regression, but its large memory complexity makes it nearly impossible to apply to train-time LLM compression. In this paper, we propose a memory-efficient DKM implementation, eDKM powered by novel techniques to reduce the memory footprint of DKM by orders of magnitudes. For a given tensor to be saved on CPU for the backward pass of DKM, we compressed the tensor by applying uniquification and sharding after checking if there is no duplicated tensor previously copied to CPU. Our experimental results demonstrate that \prjname can fine-tune and compress a pretrained LLaMA 7B model from 12.6 GB to 2.5 GB (3bit/weight) with the Alpaca dataset by reducing the train-time memory footprint of a decoder layer by 130times, while delivering good accuracy on broader LLM benchmarks (i.e., 77.7% for PIQA, 66.1% for Winograde, and so on).
Human Aligned Compression for Robust Models
Adversarial attacks on image models threaten system robustness by introducing imperceptible perturbations that cause incorrect predictions. We investigate human-aligned learned lossy compression as a defense mechanism, comparing two learned models (HiFiC and ELIC) against traditional JPEG across various quality levels. Our experiments on ImageNet subsets demonstrate that learned compression methods outperform JPEG, particularly for Vision Transformer architectures, by preserving semantically meaningful content while removing adversarial noise. Even in white-box settings where attackers can access the defense, these methods maintain substantial effectiveness. We also show that sequential compression--applying rounds of compression/decompression--significantly enhances defense efficacy while maintaining classification performance. Our findings reveal that human-aligned compression provides an effective, computationally efficient defense that protects the image features most relevant to human and machine understanding. It offers a practical approach to improving model robustness against adversarial threats.
DualCodec: A Low-Frame-Rate, Semantically-Enhanced Neural Audio Codec for Speech Generation
Neural audio codecs form the foundational building blocks for language model (LM)-based speech generation. Typically, there is a trade-off between frame rate and audio quality. This study introduces a low-frame-rate, semantically enhanced codec model. Existing approaches distill semantically rich self-supervised (SSL) representations into the first-layer codec tokens. This work proposes DualCodec, a dual-stream encoding approach that integrates SSL and waveform representations within an end-to-end codec framework. In this setting, DualCodec enhances the semantic information in the first-layer codec and enables the codec system to maintain high audio quality while operating at a low frame rate. Note that a low-frame-rate codec improves the efficiency of speech generation. Experimental results on audio codec and speech generation tasks confirm the effectiveness of the proposed DualCodec compared to state-of-the-art codec systems, such as Mimi Codec, SpeechTokenizer, DAC, and Encodec. Demos and codes are available at: https://dualcodec.github.io
Can Compressed LLMs Truly Act? An Empirical Evaluation of Agentic Capabilities in LLM Compression
Post-training compression reduces the computational and memory costs of large language models (LLMs), enabling resource-efficient deployment. However, existing compression benchmarks only focus on language modeling (e.g., perplexity) and natural language understanding tasks (e.g., GLUE accuracy), ignoring the agentic capabilities - workflow, tool use/function call, long-context understanding and real-world application. We introduce the Agent Compression Benchmark (ACBench), the first comprehensive benchmark for evaluating how compression impacts LLMs' agentic abilities. ACBench spans (1) 12 tasks across 4 capabilities (e.g., WorfBench for workflow generation, Needle-in-Haystack for long-context retrieval), (2) quantization (GPTQ, AWQ) and pruning (Wanda, SparseGPT), and (3) 15 models, including small (Gemma-2B), standard (Qwen2.5 7B-32B), and distilled reasoning LLMs (DeepSeek-R1-Distill). Our experiments reveal compression tradeoffs: 4-bit quantization preserves workflow generation and tool use (1%-3% drop) but degrades real-world application accuracy by 10%-15%. We introduce ERank, Top-k Ranking Correlation and Energy to systematize analysis. ACBench provides actionable insights for optimizing LLM compression in agentic scenarios. The code can be found in https://github.com/pprp/ACBench.
TransTIC: Transferring Transformer-based Image Compression from Human Perception to Machine Perception
This work aims for transferring a Transformer-based image compression codec from human perception to machine perception without fine-tuning the codec. We propose a transferable Transformer-based image compression framework, termed TransTIC. Inspired by visual prompt tuning, TransTIC adopts an instance-specific prompt generator to inject instance-specific prompts to the encoder and task-specific prompts to the decoder. Extensive experiments show that our proposed method is capable of transferring the base codec to various machine tasks and outperforms the competing methods significantly. To our best knowledge, this work is the first attempt to utilize prompting on the low-level image compression task.
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
We study gradient compression methods to alleviate the communication bottleneck in data-parallel distributed optimization. Despite the significant attention received, current compression schemes either do not scale well or fail to achieve the target test accuracy. We propose a new low-rank gradient compressor based on power iteration that can i) compress gradients rapidly, ii) efficiently aggregate the compressed gradients using all-reduce, and iii) achieve test performance on par with SGD. The proposed algorithm is the only method evaluated that achieves consistent wall-clock speedups when benchmarked against regular SGD with an optimized communication backend. We demonstrate reduced training times for convolutional networks as well as LSTMs on common datasets. Our code is available at https://github.com/epfml/powersgd.
VoiceFixer: A Unified Framework for High-Fidelity Speech Restoration
Speech restoration aims to remove distortions in speech signals. Prior methods mainly focus on a single type of distortion, such as speech denoising or dereverberation. However, speech signals can be degraded by several different distortions simultaneously in the real world. It is thus important to extend speech restoration models to deal with multiple distortions. In this paper, we introduce VoiceFixer, a unified framework for high-fidelity speech restoration. VoiceFixer restores speech from multiple distortions (e.g., noise, reverberation, and clipping) and can expand degraded speech (e.g., noisy speech) with a low bandwidth to 44.1 kHz full-bandwidth high-fidelity speech. We design VoiceFixer based on (1) an analysis stage that predicts intermediate-level features from the degraded speech, and (2) a synthesis stage that generates waveform using a neural vocoder. Both objective and subjective evaluations show that VoiceFixer is effective on severely degraded speech, such as real-world historical speech recordings. Samples of VoiceFixer are available at https://haoheliu.github.io/voicefixer.
FlightLLM: Efficient Large Language Model Inference with a Complete Mapping Flow on FPGAs
Transformer-based Large Language Models (LLMs) have made a significant impact on various domains. However, LLMs' efficiency suffers from both heavy computation and memory overheads. Compression techniques like sparsification and quantization are commonly used to mitigate the gap between LLM's computation/memory overheads and hardware capacity. However, existing GPU and transformer-based accelerators cannot efficiently process compressed LLMs, due to the following unresolved challenges: low computational efficiency, underutilized memory bandwidth, and large compilation overheads. This paper proposes FlightLLM, enabling efficient LLMs inference with a complete mapping flow on FPGAs. In FlightLLM, we highlight an innovative solution that the computation and memory overhead of LLMs can be solved by utilizing FPGA-specific resources (e.g., DSP48 and heterogeneous memory hierarchy). We propose a configurable sparse DSP chain to support different sparsity patterns with high computation efficiency. Second, we propose an always-on-chip decode scheme to boost memory bandwidth with mixed-precision support. Finally, to make FlightLLM available for real-world LLMs, we propose a length adaptive compilation method to reduce the compilation overhead. Implemented on the Xilinx Alveo U280 FPGA, FlightLLM achieves 6.0times higher energy efficiency and 1.8times better cost efficiency against commercial GPUs (e.g., NVIDIA V100S) on modern LLMs (e.g., LLaMA2-7B) using vLLM and SmoothQuant under the batch size of one. FlightLLM beats NVIDIA A100 GPU with 1.2times higher throughput using the latest Versal VHK158 FPGA.
GEAR: An Efficient KV Cache Compression Recipefor Near-Lossless Generative Inference of LLM
Key-value (KV) caching has become the de-facto to accelerate generation speed for large language models (LLMs) inference. However, the growing cache demand with increasing sequence length has transformed LLM inference to be a memory bound problem, significantly constraining the system throughput. Existing methods rely on dropping unimportant tokens or quantizing all entries uniformly. Such methods, however, often incur high approximation errors to represent the compressed matrices. The autoregressive decoding process further compounds the error of each step, resulting in critical deviation in model generation and deterioration of performance. To tackle this challenge, we propose GEAR, an efficient KV cache compression framework that achieves near-lossless high-ratio compression. GEAR first applies quantization to majority of entries of similar magnitudes to ultra-low precision. It then employs a low rank matrix to approximate the quantization error, and a sparse matrix to remedy individual errors from outlier entries. By adeptly integrating three techniques, GEAR is able to fully exploit their synergistic potentials. Our experiments demonstrate that compared to alternatives, GEAR achieves near-lossless 4-bit KV cache compression with up to 2.38x throughput improvement, while reducing peak-memory size up to 2.29x. Our code is publicly available at https://github.com/HaoKang-Timmy/GEAR.
Unified Scaling Laws for Compressed Representations
Scaling laws have shaped recent advances in machine learning by enabling predictable scaling of model performance based on model size, computation, and data volume. Concurrently, the rise in computational cost for AI has motivated model compression techniques, notably quantization and sparsification, which have emerged to mitigate the steep computational demands associated with large-scale training and inference. This paper investigates the interplay between scaling laws and compression formats, exploring whether a unified scaling framework can accurately predict model performance when training occurs over various compressed representations, such as sparse, scalar-quantized, sparse-quantized or even vector-quantized formats. Our key contributions include validating a general scaling law formulation and showing that it is applicable both individually but also composably across compression types. Based on this, our main finding is demonstrating both theoretically and empirically that there exists a simple "capacity" metric -- based on the representation's ability to fit random Gaussian data -- which can robustly predict parameter efficiency across multiple compressed representations. On the practical side, we extend our formulation to directly compare the accuracy potential of different compressed formats, and to derive better algorithms for training over sparse-quantized formats.
MultiPruner: Balanced Structure Removal in Foundation Models
Recently, state-of-the-art approaches for pruning large pre-trained models (LPMs) have demonstrated that the training-free removal of non-critical residual blocks in Transformers is viable for reducing model size, achieving results that outperform previous training-free pruning approaches. Motivated by these findings, we extend BlockPruner (Zhong et al., 2024) and propose MultiPruner, a pruning approach that surpasses recent training-free pruning methods by adopting a multidimensional, iterative, fine-grained pruning strategy. In MultiPruner, multidimensional pruning reinstates the structural balance in block-pruned models by sequentially compressing along three dimensions: i) residual blocks, ii) channels of multilayer perceptrons (MLP), and iii) attention heads. This solution enhances zero-shot accuracy on downstream tasks compared to other techniques while improving model compression ratios, producing compressed models with fewer computing and memory requirements. Extensive experiments demonstrate the advantages of the proposed method across various large pre-trained models. The code and pruning configurations are available at https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning.
An LMM for Efficient Video Understanding via Reinforced Compression of Video Cubes
Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present Quicksviewer, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45times compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves SOTA under modest sequence lengths using just up to 5\% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.
Improving Test-Time Performance of RVQ-based Neural Codecs
The residual vector quantization (RVQ) technique plays a central role in recent advances in neural audio codecs. These models effectively synthesize high-fidelity audio from a limited number of codes due to the hierarchical structure among quantization levels. In this paper, we propose an encoding algorithm to further enhance the synthesis quality of RVQ-based neural codecs at test-time. Firstly, we point out the suboptimal nature of quantized vectors generated by conventional methods. We demonstrate that quantization error can be mitigated by selecting a different set of codes. Subsequently, we present our encoding algorithm, designed to identify a set of discrete codes that achieve a lower quantization error. We then apply the proposed method to pre-trained models and evaluate its efficacy using diverse metrics. Our experimental findings validate that our method not only reduces quantization errors, but also improves synthesis quality.
GlowGAN: Unsupervised Learning of HDR Images from LDR Images in the Wild
Most in-the-wild images are stored in Low Dynamic Range (LDR) form, serving as a partial observation of the High Dynamic Range (HDR) visual world. Despite limited dynamic range, these LDR images are often captured with different exposures, implicitly containing information about the underlying HDR image distribution. Inspired by this intuition, in this work we present, to the best of our knowledge, the first method for learning a generative model of HDR images from in-the-wild LDR image collections in a fully unsupervised manner. The key idea is to train a generative adversarial network (GAN) to generate HDR images which, when projected to LDR under various exposures, are indistinguishable from real LDR images. The projection from HDR to LDR is achieved via a camera model that captures the stochasticity in exposure and camera response function. Experiments show that our method GlowGAN can synthesize photorealistic HDR images in many challenging cases such as landscapes, lightning, or windows, where previous supervised generative models produce overexposed images. We further demonstrate the new application of unsupervised inverse tone mapping (ITM) enabled by GlowGAN. Our ITM method does not need HDR images or paired multi-exposure images for training, yet it reconstructs more plausible information for overexposed regions than state-of-the-art supervised learning models trained on such data.
FPO++: Efficient Encoding and Rendering of Dynamic Neural Radiance Fields by Analyzing and Enhancing Fourier PlenOctrees
Fourier PlenOctrees have shown to be an efficient representation for real-time rendering of dynamic Neural Radiance Fields (NeRF). Despite its many advantages, this method suffers from artifacts introduced by the involved compression when combining it with recent state-of-the-art techniques for training the static per-frame NeRF models. In this paper, we perform an in-depth analysis of these artifacts and leverage the resulting insights to propose an improved representation. In particular, we present a novel density encoding that adapts the Fourier-based compression to the characteristics of the transfer function used by the underlying volume rendering procedure and leads to a substantial reduction of artifacts in the dynamic model. Furthermore, we show an augmentation of the training data that relaxes the periodicity assumption of the compression. We demonstrate the effectiveness of our enhanced Fourier PlenOctrees in the scope of quantitative and qualitative evaluations on synthetic and real-world scenes.
Lossless data compression by large models
Modern data compression methods are slowly reaching their limits after 80 years of research, millions of papers, and wide range of applications. Yet, the extravagant 6G communication speed requirement raises a major open question for revolutionary new ideas of data compression. We have previously shown all understanding or learning are compression, under reasonable assumptions. Large language models (LLMs) understand data better than ever before. Can they help us to compress data? The LLMs may be seen to approximate the uncomputable Solomonoff induction. Therefore, under this new uncomputable paradigm, we present LMCompress. LMCompress shatters all previous lossless compression algorithms, doubling the lossless compression ratios of JPEG-XL for images, FLAC for audios, and H.264 for videos, and quadrupling the compression ratio of bz2 for texts. The better a large model understands the data, the better LMCompress compresses.
Speechformer: Reducing Information Loss in Direct Speech Translation
Transformer-based models have gained increasing popularity achieving state-of-the-art performance in many research fields including speech translation. However, Transformer's quadratic complexity with respect to the input sequence length prevents its adoption as is with audio signals, which are typically represented by long sequences. Current solutions resort to an initial sub-optimal compression based on a fixed sampling of raw audio features. Therefore, potentially useful linguistic information is not accessible to higher-level layers in the architecture. To solve this issue, we propose Speechformer, an architecture that, thanks to reduced memory usage in the attention layers, avoids the initial lossy compression and aggregates information only at a higher level according to more informed linguistic criteria. Experiments on three language pairs (en->de/es/nl) show the efficacy of our solution, with gains of up to 0.8 BLEU on the standard MuST-C corpus and of up to 4.0 BLEU in a low resource scenario.
RIR-Mega: a large-scale simulated room impulse response dataset for machine learning and room acoustics modeling
Room impulse responses are a core resource for dereverberation, robust speech recognition, source localization, and room acoustics estimation. We present RIR-Mega, a large collection of simulated RIRs described by a compact, machine friendly metadata schema and distributed with simple tools for validation and reuse. The dataset ships with a Hugging Face Datasets loader, scripts for metadata checks and checksums, and a reference regression baseline that predicts RT60 like targets from waveforms. On a train and validation split of 36,000 and 4,000 examples, a small Random Forest on lightweight time and spectral features reaches a mean absolute error near 0.013 s and a root mean square error near 0.022 s. We host a subset with 1,000 linear array RIRs and 3,000 circular array RIRs on Hugging Face for streaming and quick tests, and preserve the complete 50,000 RIR archive on Zenodo. The dataset and code are public to support reproducible studies.
Learning to Upsample by Learning to Sample
We present DySample, an ultra-lightweight and effective dynamic upsampler. While impressive performance gains have been witnessed from recent kernel-based dynamic upsamplers such as CARAFE, FADE, and SAPA, they introduce much workload, mostly due to the time-consuming dynamic convolution and the additional sub-network used to generate dynamic kernels. Further, the need for high-res feature guidance of FADE and SAPA somehow limits their application scenarios. To address these concerns, we bypass dynamic convolution and formulate upsampling from the perspective of point sampling, which is more resource-efficient and can be easily implemented with the standard built-in function in PyTorch. We first showcase a naive design, and then demonstrate how to strengthen its upsampling behavior step by step towards our new upsampler, DySample. Compared with former kernel-based dynamic upsamplers, DySample requires no customized CUDA package and has much fewer parameters, FLOPs, GPU memory, and latency. Besides the light-weight characteristics, DySample outperforms other upsamplers across five dense prediction tasks, including semantic segmentation, object detection, instance segmentation, panoptic segmentation, and monocular depth estimation. Code is available at https://github.com/tiny-smart/dysample.
Cache Me If You Must: Adaptive Key-Value Quantization for Large Language Models
Efficient real-world deployments of large language models (LLMs) rely on Key-Value (KV) caching for processing and generating long outputs, reducing the need for repetitive computation. For large contexts, Key-Value caches can take up tens of gigabytes of device memory, as they store vector representations for each token and layer. Recent work has shown that the cached vectors can be compressed through quantization, pruning or merging, but these techniques often compromise quality towards higher compression rates. In this work, we aim to improve Key & Value compression by exploiting two observations: 1) the inherent dependencies between keys and values across different layers, and 2) high-compression mechanisms for internal network states. We propose AQUA-KV, an adaptive quantization for Key-Value caches that relies on compact adapters to exploit existing dependencies between Keys and Values, and aims to "optimally" compress the information that cannot be predicted. AQUA-KV significantly improves compression rates, while maintaining high accuracy on state-of-the-art LLM families. On Llama 3.2 LLMs, we achieve near-lossless inference at 2-2.5 bits per value with under 1% relative error in perplexity and LongBench scores. AQUA-KV is one-shot, simple, and efficient: it can be calibrated on a single GPU within 1-6 hours, even for 70B models.
Conditional Automated Channel Pruning for Deep Neural Networks
Model compression aims to reduce the redundancy of deep networks to obtain compact models. Recently, channel pruning has become one of the predominant compression methods to deploy deep models on resource-constrained devices. Most channel pruning methods often use a fixed compression rate for all the layers of the model, which, however, may not be optimal. To address this issue, given a target compression rate for the whole model, one can search for the optimal compression rate for each layer. Nevertheless, these methods perform channel pruning for a specific target compression rate. When we consider multiple compression rates, they have to repeat the channel pruning process multiple times, which is very inefficient yet unnecessary. To address this issue, we propose a Conditional Automated Channel Pruning(CACP) method to obtain the compressed models with different compression rates through single channel pruning process. To this end, we develop a conditional model that takes an arbitrary compression rate as input and outputs the corresponding compressed model. In the experiments, the resultant models with different compression rates consistently outperform the models compressed by existing methods with a channel pruning process for each target compression rate.
XY-Tokenizer: Mitigating the Semantic-Acoustic Conflict in Low-Bitrate Speech Codecs
Speech codecs serve as bridges between speech signals and large language models. An ideal codec for speech language models should not only preserve acoustic information but also capture rich semantic information. However, existing speech codecs struggle to balance high-quality audio reconstruction with ease of modeling by language models. In this study, we analyze the limitations of previous codecs in balancing semantic richness and acoustic fidelity. We propose XY-Tokenizer, a novel codec that mitigates the conflict between semantic and acoustic capabilities through multi-stage, multi-task learning. Experimental results demonstrate that XY-Tokenizer achieves performance in both semantic and acoustic tasks comparable to that of state-of-the-art codecs operating at similar bitrates, even though those existing codecs typically excel in only one aspect. Specifically, XY-Tokenizer achieves strong text alignment, surpassing distillation-based semantic modeling methods such as SpeechTokenizer and Mimi, while maintaining a speaker similarity score of 0.83 between reconstructed and original audio. The reconstruction performance of XY-Tokenizer is comparable to that of BigCodec, the current state-of-the-art among acoustic-only codecs, which achieves a speaker similarity score of 0.84 at a similar bitrate. Code and models are available at https://github.com/gyt1145028706/XY-Tokenizer.
Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training
Large-scale distributed training requires significant communication bandwidth for gradient exchange that limits the scalability of multi-node training, and requires expensive high-bandwidth network infrastructure. The situation gets even worse with distributed training on mobile devices (federated learning), which suffers from higher latency, lower throughput, and intermittent poor connections. In this paper, we find 99.9% of the gradient exchange in distributed SGD is redundant, and propose Deep Gradient Compression (DGC) to greatly reduce the communication bandwidth. To preserve accuracy during compression, DGC employs four methods: momentum correction, local gradient clipping, momentum factor masking, and warm-up training. We have applied Deep Gradient Compression to image classification, speech recognition, and language modeling with multiple datasets including Cifar10, ImageNet, Penn Treebank, and Librispeech Corpus. On these scenarios, Deep Gradient Compression achieves a gradient compression ratio from 270x to 600x without losing accuracy, cutting the gradient size of ResNet-50 from 97MB to 0.35MB, and for DeepSpeech from 488MB to 0.74MB. Deep gradient compression enables large-scale distributed training on inexpensive commodity 1Gbps Ethernet and facilitates distributed training on mobile. Code is available at: https://github.com/synxlin/deep-gradient-compression.
Efficient Hybrid Language Model Compression through Group-Aware SSM Pruning
Hybrid LLM architectures that combine Attention and State Space Models (SSMs) achieve state-of-the-art accuracy and runtime performance. Recent work has demonstrated that applying compression and distillation to Attention-only models yields smaller, more accurate models at a fraction of the training cost. In this work, we explore the effectiveness of compressing Hybrid architectures. We introduce a novel group-aware pruning strategy that preserves the structural integrity of SSM blocks and their sequence modeling capabilities. Furthermore, we demonstrate the necessity of such SSM pruning to achieve improved accuracy and inference speed compared to traditional approaches. Our compression recipe combines SSM, FFN, embedding dimension, and layer pruning, followed by knowledge distillation-based retraining, similar to the MINITRON technique. Using this approach, we compress the Nemotron-H 8B Hybrid model down to 4B parameters with up to 40x fewer training tokens. The resulting model surpasses the accuracy of similarly-sized models while achieving 2x faster inference, significantly advancing the Pareto frontier.
Can LLMs Maintain Fundamental Abilities under KV Cache Compression?
This paper investigates an under-explored challenge in large language models (LLMs): the impact of KV cache compression methods on LLMs' fundamental capabilities. While existing methods achieve impressive compression ratios on long-context benchmarks, their effects on core model capabilities remain understudied. We present a comprehensive empirical study evaluating prominent KV cache compression methods across diverse tasks, spanning world knowledge, commonsense reasoning, arithmetic reasoning, code generation, safety, and long-context understanding and generation.Our analysis reveals that KV cache compression methods exhibit task-specific performance degradation. Arithmetic reasoning tasks prove particularly sensitive to aggressive compression, with different methods showing performance drops of 17.4%-43.3%. Notably, the DeepSeek R1 Distill model exhibits more robust compression tolerance compared to instruction-tuned models, showing only 9.67%-25.53% performance degradation. Based on our analysis of attention patterns and cross-task compression performance, we propose ShotKV, a novel compression approach that distinctly handles prefill and decoding phases while maintaining shot-level semantic coherence. Empirical results show that ShotKV achieves 9%-18% performance improvements on long-context generation tasks under aggressive compression ratios.
A2SB: Audio-to-Audio Schrodinger Bridges
Audio in the real world may be perturbed due to numerous factors, causing the audio quality to be degraded. The following work presents an audio restoration model tailored for high-res music at 44.1kHz. Our model, Audio-to-Audio Schrodinger Bridges (A2SB), is capable of both bandwidth extension (predicting high-frequency components) and inpainting (re-generating missing segments). Critically, A2SB is end-to-end without need of a vocoder to predict waveform outputs, able to restore hour-long audio inputs, and trained on permissively licensed music data. A2SB is capable of achieving state-of-the-art bandwidth extension and inpainting quality on several out-of-distribution music test sets. Our demo website is https: //research.nvidia.com/labs/adlr/A2SB/.
Temporally Compressed 3D Gaussian Splatting for Dynamic Scenes
Recent advancements in high-fidelity dynamic scene reconstruction have leveraged dynamic 3D Gaussians and 4D Gaussian Splatting for realistic scene representation. However, to make these methods viable for real-time applications such as AR/VR, gaming, and rendering on low-power devices, substantial reductions in memory usage and improvements in rendering efficiency are required. While many state-of-the-art methods prioritize lightweight implementations, they struggle in handling scenes with complex motions or long sequences. In this work, we introduce Temporally Compressed 3D Gaussian Splatting (TC3DGS), a novel technique designed specifically to effectively compress dynamic 3D Gaussian representations. TC3DGS selectively prunes Gaussians based on their temporal relevance and employs gradient-aware mixed-precision quantization to dynamically compress Gaussian parameters. It additionally relies on a variation of the Ramer-Douglas-Peucker algorithm in a post-processing step to further reduce storage by interpolating Gaussian trajectories across frames. Our experiments across multiple datasets demonstrate that TC3DGS achieves up to 67times compression with minimal or no degradation in visual quality.
FlashSR: One-step Versatile Audio Super-resolution via Diffusion Distillation
Versatile audio super-resolution (SR) is the challenging task of restoring high-frequency components from low-resolution audio with sampling rates between 4kHz and 32kHz in various domains such as music, speech, and sound effects. Previous diffusion-based SR methods suffer from slow inference due to the need for a large number of sampling steps. In this paper, we introduce FlashSR, a single-step diffusion model for versatile audio super-resolution aimed at producing 48kHz audio. FlashSR achieves fast inference by utilizing diffusion distillation with three objectives: distillation loss, adversarial loss, and distribution-matching distillation loss. We further enhance performance by proposing the SR Vocoder, which is specifically designed for SR models operating on mel-spectrograms. FlashSR demonstrates competitive performance with the current state-of-the-art model in both objective and subjective evaluations while being approximately 22 times faster.
Super-High-Fidelity Image Compression via Hierarchical-ROI and Adaptive Quantization
Learned Image Compression (LIC) has achieved dramatic progress regarding objective and subjective metrics. MSE-based models aim to improve objective metrics while generative models are leveraged to improve visual quality measured by subjective metrics. However, they all suffer from blurring or deformation at low bit rates, especially at below 0.2bpp. Besides, deformation on human faces and text is unacceptable for visual quality assessment, and the problem becomes more prominent on small faces and text. To solve this problem, we combine the advantage of MSE-based models and generative models by utilizing region of interest (ROI). We propose Hierarchical-ROI (H-ROI), to split images into several foreground regions and one background region to improve the reconstruction of regions containing faces, text, and complex textures. Further, we propose adaptive quantization by non-linear mapping within the channel dimension to constrain the bit rate while maintaining the visual quality. Exhaustive experiments demonstrate that our methods achieve better visual quality on small faces and text with lower bit rates, e.g., 0.7X bits of HiFiC and 0.5X bits of BPG.
TinySR: Pruning Diffusion for Real-World Image Super-Resolution
Real-world image super-resolution (Real-ISR) focuses on recovering high-quality images from low-resolution inputs that suffer from complex degradations like noise, blur, and compression. Recently, diffusion models (DMs) have shown great potential in this area by leveraging strong generative priors to restore fine details. However, their iterative denoising process incurs high computational overhead, posing challenges for real-time applications. Although one-step distillation methods, such as OSEDiff and TSD-SR, offer faster inference, they remain fundamentally constrained by their large, over-parameterized model architectures. In this work, we present TinySR, a compact yet effective diffusion model specifically designed for Real-ISR that achieves real-time performance while maintaining perceptual quality. We introduce a Dynamic Inter-block Activation and an Expansion-Corrosion Strategy to facilitate more effective decision-making in depth pruning. We achieve VAE compression through channel pruning, attention removal and lightweight SepConv. We eliminate time- and prompt-related modules and perform pre-caching techniques to further speed up the model. TinySR significantly reduces computational cost and model size, achieving up to 5.68x speedup and 83% parameter reduction compared to its teacher TSD-SR, while still providing high quality results.
