Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePredicting the Type and Target of Offensive Posts in Social Media
As offensive content has become pervasive in social media, there has been much research in identifying potentially offensive messages. However, previous work on this topic did not consider the problem as a whole, but rather focused on detecting very specific types of offensive content, e.g., hate speech, cyberbulling, or cyber-aggression. In contrast, here we target several different kinds of offensive content. In particular, we model the task hierarchically, identifying the type and the target of offensive messages in social media. For this purpose, we complied the Offensive Language Identification Dataset (OLID), a new dataset with tweets annotated for offensive content using a fine-grained three-layer annotation scheme, which we make publicly available. We discuss the main similarities and differences between OLID and pre-existing datasets for hate speech identification, aggression detection, and similar tasks. We further experiment with and we compare the performance of different machine learning models on OLID.
In the Service of Online Order: Tackling Cyber-Bullying with Machine Learning and Affect Analysis
One of the burning problems lately in Japan has been cyber-bullying, or slandering and bullying people online. The problem has been especially noticed on unofficial Web sites of Japanese schools. Volunteers consisting of school personnel and PTA (Parent-Teacher Association) members have started Online Patrol to spot malicious contents within Web forums and blogs. In practise, Online Patrol assumes reading through the whole Web contents, which is a task difficult to perform manually. With this paper we introduce a research intended to help PTA members perform Online Patrol more efficiently. We aim to develop a set of tools that can automatically detect malicious entries and report them to PTA members. First, we collected cyber-bullying data from unofficial school Web sites. Then we performed analysis of this data in two ways. Firstly, we analysed the entries with a multifaceted affect analysis system in order to find distinctive features for cyber-bullying and apply them to a machine learning classifier. Secondly, we applied a SVM based machine learning method to train a classifier for detection of cyber-bullying. The system was able to classify cyber-bullying entries with 88.2% of balanced F-score.
CyberSentinel: An Emergent Threat Detection System for AI Security
The rapid advancement of artificial intelligence (AI) has significantly expanded the attack surface for AI-driven cybersecurity threats, necessitating adaptive defense strategies. This paper introduces CyberSentinel, a unified, single-agent system for emergent threat detection, designed to identify and mitigate novel security risks in real time. CyberSentinel integrates: (1) Brute-force attack detection through SSH log analysis, (2) Phishing threat assessment using domain blacklists and heuristic URL scoring, and (3) Emergent threat detection via machine learning-based anomaly detection. By continuously adapting to evolving adversarial tactics, CyberSentinel strengthens proactive cybersecurity defense, addressing critical vulnerabilities in AI security.
Securing Social Spaces: Harnessing Deep Learning to Eradicate Cyberbullying
In today's digital world, cyberbullying is a serious problem that can harm the mental and physical health of people who use social media. This paper explains just how serious cyberbullying is and how it really affects indi-viduals exposed to it. It also stresses how important it is to find better ways to detect cyberbullying so that online spaces can be safer. Plus, it talks about how making more accurate tools to spot cyberbullying will be really helpful in the future. Our paper introduces a deep learning-based ap-proach, primarily employing BERT and BiLSTM architectures, to effective-ly address cyberbullying. This approach is designed to analyse large vol-umes of posts and predict potential instances of cyberbullying in online spaces. Our results demonstrate the superiority of the hateBERT model, an extension of BERT focused on hate speech detection, among the five mod-els, achieving an accuracy rate of 89.16%. This research is a significant con-tribution to "Computational Intelligence for Social Transformation," prom-ising a safer and more inclusive digital landscape.
Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-45^circ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
Cyberbullying Detection with Fairness Constraints
Cyberbullying is a widespread adverse phenomenon among online social interactions in today's digital society. While numerous computational studies focus on enhancing the cyberbullying detection performance of machine learning algorithms, proposed models tend to carry and reinforce unintended social biases. In this study, we try to answer the research question of "Can we mitigate the unintended bias of cyberbullying detection models by guiding the model training with fairness constraints?". For this purpose, we propose a model training scheme that can employ fairness constraints and validate our approach with different datasets. We demonstrate that various types of unintended biases can be successfully mitigated without impairing the model quality. We believe our work contributes to the pursuit of unbiased, transparent, and ethical machine learning solutions for cyber-social health.
OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities
The prospect of artificial intelligence (AI) competing in the adversarial landscape of cyber security has long been considered one of the most impactful, challenging, and potentially dangerous applications of AI. Here, we demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations (OCO) tactics in use by modern threat actors. We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement of the plausible cyber security risks associated with any given large language model (LLM) or AI employed for OCO. We also prototype and evaluate three very different OCO benchmarks for LLMs that demonstrate our approach and serve as examples for building benchmarks under the OCCULT framework. Finally, we provide preliminary evaluation results to demonstrate how this framework allows us to move beyond traditional all-or-nothing tests, such as those crafted from educational exercises like capture-the-flag environments, to contextualize our indicators and warnings in true cyber threat scenarios that present risks to modern infrastructure. We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats. For the first time, we find a model (DeepSeek-R1) is capable of correctly answering over 90% of challenging offensive cyber knowledge tests in our Threat Actor Competency Test for LLMs (TACTL) multiple-choice benchmarks. We also show how Meta's Llama and Mistral's Mixtral model families show marked performance improvements over earlier models against our benchmarks where LLMs act as offensive agents in MITRE's high-fidelity offensive and defensive cyber operations simulation environment, CyberLayer.
Dynamic Risk Assessments for Offensive Cybersecurity Agents
Foundation models are increasingly becoming better autonomous programmers, raising the prospect that they could also automate dangerous offensive cyber-operations. Current frontier model audits probe the cybersecurity risks of such agents, but most fail to account for the degrees of freedom available to adversaries in the real world. In particular, with strong verifiers and financial incentives, agents for offensive cybersecurity are amenable to iterative improvement by would-be adversaries. We argue that assessments should take into account an expanded threat model in the context of cybersecurity, emphasizing the varying degrees of freedom that an adversary may possess in stateful and non-stateful environments within a fixed compute budget. We show that even with a relatively small compute budget (8 H100 GPU Hours in our study), adversaries can improve an agent's cybersecurity capability on InterCode CTF by more than 40\% relative to the baseline -- without any external assistance. These results highlight the need to evaluate agents' cybersecurity risk in a dynamic manner, painting a more representative picture of risk.
POIROT: Aligning Attack Behavior with Kernel Audit Records for Cyber Threat Hunting
Cyber threat intelligence (CTI) is being used to search for indicators of attacks that might have compromised an enterprise network for a long time without being discovered. To have a more effective analysis, CTI open standards have incorporated descriptive relationships showing how the indicators or observables are related to each other. However, these relationships are either completely overlooked in information gathering or not used for threat hunting. In this paper, we propose a system, called POIROT, which uses these correlations to uncover the steps of a successful attack campaign. We use kernel audits as a reliable source that covers all causal relations and information flows among system entities and model threat hunting as an inexact graph pattern matching problem. Our technical approach is based on a novel similarity metric which assesses an alignment between a query graph constructed out of CTI correlations and a provenance graph constructed out of kernel audit log records. We evaluate POIROT on publicly released real-world incident reports as well as reports of an adversarial engagement designed by DARPA, including ten distinct attack campaigns against different OS platforms such as Linux, FreeBSD, and Windows. Our evaluation results show that POIROT is capable of searching inside graphs containing millions of nodes and pinpoint the attacks in a few minutes, and the results serve to illustrate that CTI correlations could be used as robust and reliable artifacts for threat hunting.
Hate Lingo: A Target-based Linguistic Analysis of Hate Speech in Social Media
While social media empowers freedom of expression and individual voices, it also enables anti-social behavior, online harassment, cyberbullying, and hate speech. In this paper, we deepen our understanding of online hate speech by focusing on a largely neglected but crucial aspect of hate speech -- its target: either "directed" towards a specific person or entity, or "generalized" towards a group of people sharing a common protected characteristic. We perform the first linguistic and psycholinguistic analysis of these two forms of hate speech and reveal the presence of interesting markers that distinguish these types of hate speech. Our analysis reveals that Directed hate speech, in addition to being more personal and directed, is more informal, angrier, and often explicitly attacks the target (via name calling) with fewer analytic words and more words suggesting authority and influence. Generalized hate speech, on the other hand, is dominated by religious hate, is characterized by the use of lethal words such as murder, exterminate, and kill; and quantity words such as million and many. Altogether, our work provides a data-driven analysis of the nuances of online-hate speech that enables not only a deepened understanding of hate speech and its social implications but also its detection.
CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model
This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.
Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal
The rapid integration of Large Language Models (LLMs) across diverse sectors has marked a transformative era, showcasing remarkable capabilities in text generation and problem-solving tasks. However, this technological advancement is accompanied by significant risks and vulnerabilities. Despite ongoing security enhancements, attackers persistently exploit these weaknesses, casting doubts on the overall trustworthiness of LLMs. Compounding the issue, organisations are deploying LLM-integrated systems without understanding the severity of potential consequences. Existing studies by OWASP and MITRE offer a general overview of threats and vulnerabilities but lack a method for directly and succinctly analysing the risks for security practitioners, developers, and key decision-makers who are working with this novel technology. To address this gap, we propose a risk assessment process using tools like the OWASP risk rating methodology which is used for traditional systems. We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors. Through this analysis, we assess the likelihood of a cyberattack. Subsequently, we conduct a thorough impact analysis to derive a comprehensive threat matrix. We also map threats against three key stakeholder groups: developers engaged in model fine-tuning, application developers utilizing third-party APIs, and end users. The proposed threat matrix provides a holistic evaluation of LLM-related risks, enabling stakeholders to make informed decisions for effective mitigation strategies. Our outlined process serves as an actionable and comprehensive tool for security practitioners, offering insights for resource management and enhancing the overall system security.
Frontier AI's Impact on the Cybersecurity Landscape
As frontier AI advances rapidly, understanding its impact on cybersecurity and inherent risks is essential to ensuring safe AI evolution (e.g., guiding risk mitigation and informing policymakers). While some studies review AI applications in cybersecurity, none of them comprehensively discuss AI's future impacts or provide concrete recommendations for navigating its safe and secure usage. This paper presents an in-depth analysis of frontier AI's impact on cybersecurity and establishes a systematic framework for risk assessment and mitigation. To this end, we first define and categorize the marginal risks of frontier AI in cybersecurity and then systemically analyze the current and future impacts of frontier AI in cybersecurity, qualitatively and quantitatively. We also discuss why frontier AI likely benefits attackers more than defenders in the short term from equivalence classes, asymmetry, and economic impact. Next, we explore frontier AI's impact on future software system development, including enabling complex hybrid systems while introducing new risks. Based on our findings, we provide security recommendations, including constructing fine-grained benchmarks for risk assessment, designing AI agents for defenses, building security mechanisms and provable defenses for hybrid systems, enhancing pre-deployment security testing and transparency, and strengthening defenses for users. Finally, we present long-term research questions essential for understanding AI's future impacts and unleashing its defensive capabilities.
Crown Jewels Analysis using Reinforcement Learning with Attack Graphs
Cyber attacks pose existential threats to nations and enterprises. Current practice favors piece-wise analysis using threat-models in the stead of rigorous cyber terrain analysis and intelligence preparation of the battlefield. Automated penetration testing using reinforcement learning offers a new and promising approach for developing methodologies that are driven by network structure and cyber terrain, that can be later interpreted in terms of threat-models, but that are principally network-driven analyses. This paper presents a novel method for crown jewel analysis termed CJA-RL that uses reinforcement learning to identify key terrain and avenues of approach for exploiting crown jewels. In our experiment, CJA-RL identified ideal entry points, choke points, and pivots for exploiting a network with multiple crown jewels, exemplifying how CJA-RL and reinforcement learning for penetration testing generally can benefit computer network operations workflows.
Towards Effective Counter-Responses: Aligning Human Preferences with Strategies to Combat Online Trolling
Trolling in online communities typically involves disruptive behaviors such as provoking anger and manipulating discussions, leading to a polarized atmosphere and emotional distress. Robust moderation is essential for mitigating these negative impacts and maintaining a healthy and constructive community atmosphere. However, effectively addressing trolls is difficult because their behaviors vary widely and require different response strategies (RSs) to counter them. This diversity makes it challenging to choose an appropriate RS for each specific situation. To address this challenge, our research investigates whether humans have preferred strategies tailored to different types of trolling behaviors. Our findings reveal a correlation between the types of trolling encountered and the preferred RS. In this paper, we introduce a methodology for generating counter-responses to trolls by recommending appropriate RSs, supported by a dataset aligning these strategies with human preferences across various troll contexts. The experimental results demonstrate that our proposed approach guides constructive discussion and reduces the negative effects of trolls, thereby enhancing the online community environment.
Offensive Language Identification in Greek
As offensive language has become a rising issue for online communities and social media platforms, researchers have been investigating ways of coping with abusive content and developing systems to detect its different types: cyberbullying, hate speech, aggression, etc. With a few notable exceptions, most research on this topic so far has dealt with English. This is mostly due to the availability of language resources for English. To address this shortcoming, this paper presents the first Greek annotated dataset for offensive language identification: the Offensive Greek Tweet Dataset (OGTD). OGTD is a manually annotated dataset containing 4,779 posts from Twitter annotated as offensive and not offensive. Along with a detailed description of the dataset, we evaluate several computational models trained and tested on this data.
CTRL-ALT-LED: Leaking Data from Air-Gapped Computers via Keyboard LEDs
Using the keyboard LEDs to send data optically was proposed in 2002 by Loughry and Umphress [1] (Appendix A). In this paper we extensively explore this threat in the context of a modern cyber-attack with current hardware and optical equipment. In this type of attack, an advanced persistent threat (APT) uses the keyboard LEDs (Caps-Lock, Num-Lock and Scroll-Lock) to encode information and exfiltrate data from airgapped computers optically. Notably, this exfiltration channel is not monitored by existing data leakage prevention (DLP) systems. We examine this attack and its boundaries for today's keyboards with USB controllers and sensitive optical sensors. We also introduce smartphone and smartwatch cameras as components of malicious insider and 'evil maid' attacks. We provide the necessary scientific background on optical communication and the characteristics of modern USB keyboards at the hardware and software level, and present a transmission protocol and modulation schemes. We implement the exfiltration malware, discuss its design and implementation issues, and evaluate it with different types of keyboards. We also test various receivers, including light sensors, remote cameras, 'extreme' cameras, security cameras, and smartphone cameras. Our experiment shows that data can be leaked from air-gapped computers via the keyboard LEDs at a maximum bit rate of 3000 bit/sec per LED given a light sensor as a receiver, and more than 120 bit/sec if smartphones are used. The attack doesn't require any modification of the keyboard at hardware or firmware levels.
Exploring the Role of Large Language Models in Cybersecurity: A Systematic Survey
With the rapid development of technology and the acceleration of digitalisation, the frequency and complexity of cyber security threats are increasing. Traditional cybersecurity approaches, often based on static rules and predefined scenarios, are struggling to adapt to the rapidly evolving nature of modern cyberattacks. There is an urgent need for more adaptive and intelligent defence strategies. The emergence of Large Language Model (LLM) provides an innovative solution to cope with the increasingly severe cyber threats, and its potential in analysing complex attack patterns, predicting threats and assisting real-time response has attracted a lot of attention in the field of cybersecurity, and exploring how to effectively use LLM to defend against cyberattacks has become a hot topic in the current research field. This survey examines the applications of LLM from the perspective of the cyber attack lifecycle, focusing on the three phases of defense reconnaissance, foothold establishment, and lateral movement, and it analyzes the potential of LLMs in Cyber Threat Intelligence (CTI) tasks. Meanwhile, we investigate how LLM-based security solutions are deployed and applied in different network scenarios. It also summarizes the internal and external risk issues faced by LLM during its application. Finally, this survey also points out the facing risk issues and possible future research directions in this domain.
Consiglieres in the Shadow: Understanding the Use of Uncensored Large Language Models in Cybercrimes
The advancement of AI technologies, particularly Large Language Models (LLMs), has transformed computing while introducing new security and privacy risks. Prior research shows that cybercriminals are increasingly leveraging uncensored LLMs (ULLMs) as backends for malicious services. Understanding these ULLMs has been hindered by the challenge of identifying them among the vast number of open-source LLMs hosted on platforms like Hugging Face. In this paper, we present the first systematic study of ULLMs, overcoming this challenge by modeling relationships among open-source LLMs and between them and related data, such as fine-tuning, merging, compressing models, and using or generating datasets with harmful content. Representing these connections as a knowledge graph, we applied graph-based deep learning to discover over 11,000 ULLMs from a small set of labeled examples and uncensored datasets. A closer analysis of these ULLMs reveals their alarming scale and usage. Some have been downloaded over a million times, with one over 19 million installs. These models -- created through fine-tuning, merging, or compression of other models -- are capable of generating harmful content, including hate speech, violence, erotic material, and malicious code. Evidence shows their integration into hundreds of malicious applications offering services like erotic role-play, child pornography, malicious code generation, and more. In addition, underground forums reveal criminals sharing techniques and scripts to build cheap alternatives to commercial malicious LLMs. These findings highlight the widespread abuse of LLM technology and the urgent need for effective countermeasures against this growing threat.
SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence
To address the increasing complexity and frequency of cybersecurity incidents emphasized by the recent cybersecurity threat reports with over 10 billion instances, cyber threat intelligence (CTI) plays a critical role in the modern cybersecurity landscape by offering the insights required to understand and combat the constantly evolving nature of cyber threats. Inspired by the powerful capability of large language models (LLMs) in handling complex tasks, in this paper, we introduce a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities in LLMs for Security Events (SEvenLLM). Specifically, we create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites to overcome the lack of effective data for information extraction. Then, we design a pipeline to auto-select tasks from the tasks pool and convert the raw text into supervised corpora comprised of question and response. The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective (27 well-designed tasks) for augmenting the analysis of cybersecurity events. Extensive experiments in our curated benchmark (SEvenLLM-bench) demonstrate that SEvenLLM performs more sophisticated threat analysis and fortifies defenses against the evolving landscape of cyber threats.
The Role of Deep Learning in Advancing Proactive Cybersecurity Measures for Smart Grid Networks: A Survey
As smart grids (SG) increasingly rely on advanced technologies like sensors and communication systems for efficient energy generation, distribution, and consumption, they become enticing targets for sophisticated cyberattacks. These evolving threats demand robust security measures to maintain the stability and resilience of modern energy systems. While extensive research has been conducted, a comprehensive exploration of proactive cyber defense strategies utilizing Deep Learning (DL) in {SG} remains scarce in the literature. This survey bridges this gap, studying the latest DL techniques for proactive cyber defense. The survey begins with an overview of related works and our distinct contributions, followed by an examination of SG infrastructure. Next, we classify various cyber defense techniques into reactive and proactive categories. A significant focus is placed on DL-enabled proactive defenses, where we provide a comprehensive taxonomy of DL approaches, highlighting their roles and relevance in the proactive security of SG. Subsequently, we analyze the most significant DL-based methods currently in use. Further, we explore Moving Target Defense, a proactive defense strategy, and its interactions with DL methodologies. We then provide an overview of benchmark datasets used in this domain to substantiate the discourse.{ This is followed by a critical discussion on their practical implications and broader impact on cybersecurity in Smart Grids.} The survey finally lists the challenges associated with deploying DL-based security systems within SG, followed by an outlook on future developments in this key field.
CTI-HAL: A Human-Annotated Dataset for Cyber Threat Intelligence Analysis
Organizations are increasingly targeted by Advanced Persistent Threats (APTs), which involve complex, multi-stage tactics and diverse techniques. Cyber Threat Intelligence (CTI) sources, such as incident reports and security blogs, provide valuable insights, but are often unstructured and in natural language, making it difficult to automatically extract information. Recent studies have explored the use of AI to perform automatic extraction from CTI data, leveraging existing CTI datasets for performance evaluation and fine-tuning. However, they present challenges and limitations that impact their effectiveness. To overcome these issues, we introduce a novel dataset manually constructed from CTI reports and structured according to the MITRE ATT&CK framework. To assess its quality, we conducted an inter-annotator agreement study using Krippendorff alpha, confirming its reliability. Furthermore, the dataset was used to evaluate a Large Language Model (LLM) in a real-world business context, showing promising generalizability.
AutoAttacker: A Large Language Model Guided System to Implement Automatic Cyber-attacks
Large language models (LLMs) have demonstrated impressive results on natural language tasks, and security researchers are beginning to employ them in both offensive and defensive systems. In cyber-security, there have been multiple research efforts that utilize LLMs focusing on the pre-breach stage of attacks like phishing and malware generation. However, so far there lacks a comprehensive study regarding whether LLM-based systems can be leveraged to simulate the post-breach stage of attacks that are typically human-operated, or "hands-on-keyboard" attacks, under various attack techniques and environments. As LLMs inevitably advance, they may be able to automate both the pre- and post-breach attack stages. This shift may transform organizational attacks from rare, expert-led events to frequent, automated operations requiring no expertise and executed at automation speed and scale. This risks fundamentally changing global computer security and correspondingly causing substantial economic impacts, and a goal of this work is to better understand these risks now so we can better prepare for these inevitable ever-more-capable LLMs on the horizon. On the immediate impact side, this research serves three purposes. First, an automated LLM-based, post-breach exploitation framework can help analysts quickly test and continually improve their organization's network security posture against previously unseen attacks. Second, an LLM-based penetration test system can extend the effectiveness of red teams with a limited number of human analysts. Finally, this research can help defensive systems and teams learn to detect novel attack behaviors preemptively before their use in the wild....
Online Moderation in Competitive Action Games: How Intervention Affects Player Behaviors
Online competitive action games have flourished as a space for entertainment and social connections, yet they face challenges from a small percentage of players engaging in disruptive behaviors. This study delves into the under-explored realm of understanding the effects of moderation on player behavior within online gaming on an example of a popular title - Call of Duty(R): Modern Warfare(R)II. We employ a quasi-experimental design and causal inference techniques to examine the impact of moderation in a real-world industry-scale moderation system. We further delve into novel aspects around the impact of delayed moderation, as well as the severity of applied punishment. We examine these effects on a set of four disruptive behaviors including cheating, offensive user name, chat, and voice. Our findings uncover the dual impact moderation has on reducing disruptive behavior and discouraging disruptive players from participating. We further uncover differences in the effectiveness of quick and delayed moderation and the varying severity of punishment. Our examination of real-world gaming interactions sets a precedent in understanding the effectiveness of moderation and its impact on player behavior. Our insights offer actionable suggestions for the most promising avenues for improving real-world moderation practices, as well as the heterogeneous impact moderation has on indifferent players.
Detection of ransomware attacks using federated learning based on the CNN model
Computing is still under a significant threat from ransomware, which necessitates prompt action to prevent it. Ransomware attacks can have a negative impact on how smart grids, particularly digital substations. In addition to examining a ransomware detection method using artificial intelligence (AI), this paper offers a ransomware attack modeling technique that targets the disrupted operation of a digital substation. The first, binary data is transformed into image data and fed into the convolution neural network model using federated learning. The experimental findings demonstrate that the suggested technique detects ransomware with a high accuracy rate.
Large Language Models in Cybersecurity: State-of-the-Art
The rise of Large Language Models (LLMs) has revolutionized our comprehension of intelligence bringing us closer to Artificial Intelligence. Since their introduction, researchers have actively explored the applications of LLMs across diverse fields, significantly elevating capabilities. Cybersecurity, traditionally resistant to data-driven solutions and slow to embrace machine learning, stands out as a domain. This study examines the existing literature, providing a thorough characterization of both defensive and adversarial applications of LLMs within the realm of cybersecurity. Our review not only surveys and categorizes the current landscape but also identifies critical research gaps. By evaluating both offensive and defensive applications, we aim to provide a holistic understanding of the potential risks and opportunities associated with LLM-driven cybersecurity.
Adaptive Cybersecurity Architecture for Digital Product Ecosystems Using Agentic AI
Traditional static cybersecurity models often struggle with scalability, real-time detection, and contextual responsiveness in the current digital product ecosystems which include cloud services, application programming interfaces (APIs), mobile platforms, and edge devices. This study introduces autonomous goal driven agents capable of dynamic learning and context-aware decision making as part of an adaptive cybersecurity architecture driven by agentic artificial intelligence (AI). To facilitate autonomous threat mitigation, proactive policy enforcement, and real-time anomaly detection, this framework integrates agentic AI across the key ecosystem layers. Behavioral baselining, decentralized risk scoring, and federated threat intelligence sharing are important features. The capacity of the system to identify zero-day attacks and dynamically modify access policies was demonstrated through native cloud simulations. The evaluation results show increased adaptability, decreased response latency, and improved detection accuracy. The architecture provides an intelligent and scalable blueprint for safeguarding complex digital infrastructure and is compatible with zero-trust models, thereby supporting the adherence to international cybersecurity regulations.
Large Scale Crowdsourcing and Characterization of Twitter Abusive Behavior
In recent years, offensive, abusive and hateful language, sexism, racism and other types of aggressive and cyberbullying behavior have been manifesting with increased frequency, and in many online social media platforms. In fact, past scientific work focused on studying these forms in popular media, such as Facebook and Twitter. Building on such work, we present an 8-month study of the various forms of abusive behavior on Twitter, in a holistic fashion. Departing from past work, we examine a wide variety of labeling schemes, which cover different forms of abusive behavior, at the same time. We propose an incremental and iterative methodology, that utilizes the power of crowdsourcing to annotate a large scale collection of tweets with a set of abuse-related labels. In fact, by applying our methodology including statistical analysis for label merging or elimination, we identify a reduced but robust set of labels. Finally, we offer a first overview and findings of our collected and annotated dataset of 100 thousand tweets, which we make publicly available for further scientific exploration.
CYBERSECEVAL 3: Advancing the Evaluation of Cybersecurity Risks and Capabilities in Large Language Models
We are releasing a new suite of security benchmarks for LLMs, CYBERSECEVAL 3, to continue the conversation on empirically measuring LLM cybersecurity risks and capabilities. CYBERSECEVAL 3 assesses 8 different risks across two broad categories: risk to third parties, and risk to application developers and end users. Compared to previous work, we add new areas focused on offensive security capabilities: automated social engineering, scaling manual offensive cyber operations, and autonomous offensive cyber operations. In this paper we discuss applying these benchmarks to the Llama 3 models and a suite of contemporaneous state-of-the-art LLMs, enabling us to contextualize risks both with and without mitigations in place.
Protecting Society from AI Misuse: When are Restrictions on Capabilities Warranted?
Artificial intelligence (AI) systems will increasingly be used to cause harm as they grow more capable. In fact, AI systems are already starting to be used to automate fraudulent activities, violate human rights, create harmful fake images, and identify dangerous toxins. To prevent some misuses of AI, we argue that targeted interventions on certain capabilities will be warranted. These restrictions may include controlling who can access certain types of AI models, what they can be used for, whether outputs are filtered or can be traced back to their user, and the resources needed to develop them. We also contend that some restrictions on non-AI capabilities needed to cause harm will be required. Though capability restrictions risk reducing use more than misuse (facing an unfavorable Misuse-Use Tradeoff), we argue that interventions on capabilities are warranted when other interventions are insufficient, the potential harm from misuse is high, and there are targeted ways to intervene on capabilities. We provide a taxonomy of interventions that can reduce AI misuse, focusing on the specific steps required for a misuse to cause harm (the Misuse Chain), and a framework to determine if an intervention is warranted. We apply this reasoning to three examples: predicting novel toxins, creating harmful images, and automating spear phishing campaigns.
Dynamic real-time risk analytics of uncontrollable states in complex internet of things systems, cyber risk at the edge
The Internet of Things (IoT) triggers new types of cyber risks. Therefore, the integration of new IoT devices and services requires a self-assessment of IoT cyber security posture. By security posture this article refers to the cybersecurity strength of an organisation to predict, prevent and respond to cyberthreats. At present, there is a gap in the state of the art, because there are no self-assessment methods for quantifying IoT cyber risk posture. To address this gap, an empirical analysis is performed of 12 cyber risk assessment approaches. The results and the main findings from the analysis is presented as the current and a target risk state for IoT systems, followed by conclusions and recommendations on a transformation roadmap, describing how IoT systems can achieve the target state with a new goal-oriented dependency model. By target state, we refer to the cyber security target that matches the generic security requirements of an organisation. The research paper studies and adapts four alternatives for IoT risk assessment and identifies the goal-oriented dependency modelling as a dominant approach among the risk assessment models studied. The new goal-oriented dependency model in this article enables the assessment of uncontrollable risk states in complex IoT systems and can be used for a quantitative self-assessment of IoT cyber risk posture.
Chatbots in a Honeypot World
Question-and-answer agents like ChatGPT offer a novel tool for use as a potential honeypot interface in cyber security. By imitating Linux, Mac, and Windows terminal commands and providing an interface for TeamViewer, nmap, and ping, it is possible to create a dynamic environment that can adapt to the actions of attackers and provide insight into their tactics, techniques, and procedures (TTPs). The paper illustrates ten diverse tasks that a conversational agent or large language model might answer appropriately to the effects of command-line attacker. The original result features feasibility studies for ten model tasks meant for defensive teams to mimic expected honeypot interfaces with minimal risks. Ultimately, the usefulness outside of forensic activities stems from whether the dynamic honeypot can extend the time-to-conquer or otherwise delay attacker timelines short of reaching key network assets like databases or confidential information. While ongoing maintenance and monitoring may be required, ChatGPT's ability to detect and deflect malicious activity makes it a valuable option for organizations seeking to enhance their cyber security posture. Future work will focus on cybersecurity layers, including perimeter security, host virus detection, and data security.
AnnoCTR: A Dataset for Detecting and Linking Entities, Tactics, and Techniques in Cyber Threat Reports
Monitoring the threat landscape to be aware of actual or potential attacks is of utmost importance to cybersecurity professionals. Information about cyber threats is typically distributed using natural language reports. Natural language processing can help with managing this large amount of unstructured information, yet to date, the topic has received little attention. With this paper, we present AnnoCTR, a new CC-BY-SA-licensed dataset of cyber threat reports. The reports have been annotated by a domain expert with named entities, temporal expressions, and cybersecurity-specific concepts including implicitly mentioned techniques and tactics. Entities and concepts are linked to Wikipedia and the MITRE ATT&CK knowledge base, the most widely-used taxonomy for classifying types of attacks. Prior datasets linking to MITRE ATT&CK either provide a single label per document or annotate sentences out-of-context; our dataset annotates entire documents in a much finer-grained way. In an experimental study, we model the annotations of our dataset using state-of-the-art neural models. In our few-shot scenario, we find that for identifying the MITRE ATT&CK concepts that are mentioned explicitly or implicitly in a text, concept descriptions from MITRE ATT&CK are an effective source for training data augmentation.
Malware Detection and Prevention using Artificial Intelligence Techniques
With the rapid technological advancement, security has become a major issue due to the increase in malware activity that poses a serious threat to the security and safety of both computer systems and stakeholders. To maintain stakeholders, particularly, end users security, protecting the data from fraudulent efforts is one of the most pressing concerns. A set of malicious programming code, scripts, active content, or intrusive software that is designed to destroy intended computer systems and programs or mobile and web applications is referred to as malware. According to a study, naive users are unable to distinguish between malicious and benign applications. Thus, computer systems and mobile applications should be designed to detect malicious activities towards protecting the stakeholders. A number of algorithms are available to detect malware activities by utilizing novel concepts including Artificial Intelligence, Machine Learning, and Deep Learning. In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity. We present a detailed review of current malware detection technologies, their shortcomings, and ways to improve efficiency. Our study shows that adopting futuristic approaches for the development of malware detection applications shall provide significant advantages. The comprehension of this synthesis shall help researchers for further research on malware detection and prevention using AI.
A Streamlit-based Artificial Intelligence Trust Platform for Next-Generation Wireless Networks
With the rapid development and integration of artificial intelligence (AI) methods in next-generation networks (NextG), AI algorithms have provided significant advantages for NextG in terms of frequency spectrum usage, bandwidth, latency, and security. A key feature of NextG is the integration of AI, i.e., self-learning architecture based on self-supervised algorithms, to improve the performance of the network. A secure AI-powered structure is also expected to protect NextG networks against cyber-attacks. However, AI itself may be attacked, i.e., model poisoning targeted by attackers, and it results in cybersecurity violations. This paper proposes an AI trust platform using Streamlit for NextG networks that allows researchers to evaluate, defend, certify, and verify their AI models and applications against adversarial threats of evasion, poisoning, extraction, and interference.
Peer to Peer Hate: Hate Speech Instigators and Their Targets
While social media has become an empowering agent to individual voices and freedom of expression, it also facilitates anti-social behaviors including online harassment, cyberbullying, and hate speech. In this paper, we present the first comparative study of hate speech instigators and target users on Twitter. Through a multi-step classification process, we curate a comprehensive hate speech dataset capturing various types of hate. We study the distinctive characteristics of hate instigators and targets in terms of their profile self-presentation, activities, and online visibility. We find that hate instigators target more popular and high profile Twitter users, and that participating in hate speech can result in greater online visibility. We conduct a personality analysis of hate instigators and targets and show that both groups have eccentric personality facets that differ from the general Twitter population. Our results advance the state of the art of understanding online hate speech engagement.
Gore Diffusion LoRA Model
The Emergence of Artificial Intelligence (AI) has significantly impacted our engagement with violence, sparking ethical deliberations regarding the algorithmic creation of violent imagery. This paper scrutinizes the "Gore Diffusion LoRA Model," an innovative AI model proficient in generating hyper-realistic visuals portraying intense violence and bloodshed. Our exploration encompasses the model's technical intricacies, plausible applications, and the ethical quandaries inherent in its utilization. We contend that the creation and implementation of such models warrant a meticulous discourse concerning the convergence of AI, art, and violence. Furthermore, we advocate for a structured framework advocating responsible development and ethical deployment of these potent technologies.
Summon a Demon and Bind it: A Grounded Theory of LLM Red Teaming
Engaging in the deliberate generation of abnormal outputs from Large Language Models (LLMs) by attacking them is a novel human activity. This paper presents a thorough exposition of how and why people perform such attacks, defining LLM red-teaming based on extensive and diverse evidence. Using a formal qualitative methodology, we interviewed dozens of practitioners from a broad range of backgrounds, all contributors to this novel work of attempting to cause LLMs to fail. We focused on the research questions of defining LLM red teaming, uncovering the motivations and goals for performing the activity, and characterizing the strategies people use when attacking LLMs. Based on the data, LLM red teaming is defined as a limit-seeking, non-malicious, manual activity, which depends highly on a team-effort and an alchemist mindset. It is highly intrinsically motivated by curiosity, fun, and to some degrees by concerns for various harms of deploying LLMs. We identify a taxonomy of 12 strategies and 35 different techniques of attacking LLMs. These findings are presented as a comprehensive grounded theory of how and why people attack large language models: LLM red teaming.
Sociotechnical Harms of Algorithmic Systems: Scoping a Taxonomy for Harm Reduction
Understanding the landscape of potential harms from algorithmic systems enables practitioners to better anticipate consequences of the systems they build. It also supports the prospect of incorporating controls to help minimize harms that emerge from the interplay of technologies and social and cultural dynamics. A growing body of scholarship has identified a wide range of harms across different algorithmic technologies. However, computing research and practitioners lack a high level and synthesized overview of harms from algorithmic systems. Based on a scoping review of computing research (n=172), we present an applied taxonomy of sociotechnical harms to support a more systematic surfacing of potential harms in algorithmic systems. The final taxonomy builds on and refers to existing taxonomies, classifications, and terminologies. Five major themes related to sociotechnical harms - representational, allocative, quality-of-service, interpersonal harms, and social system/societal harms - and sub-themes are presented along with a description of these categories. We conclude with a discussion of challenges and opportunities for future research.
LLM-Assisted Proactive Threat Intelligence for Automated Reasoning
Successful defense against dynamically evolving cyber threats requires advanced and sophisticated techniques. This research presents a novel approach to enhance real-time cybersecurity threat detection and response by integrating large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems with continuous threat intelligence feeds. Leveraging recent advancements in LLMs, specifically GPT-4o, and the innovative application of RAG techniques, our approach addresses the limitations of traditional static threat analysis by incorporating dynamic, real-time data sources. We leveraged RAG to get the latest information in real-time for threat intelligence, which is not possible in the existing GPT-4o model. We employ the Patrowl framework to automate the retrieval of diverse cybersecurity threat intelligence feeds, including Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), Exploit Prediction Scoring System (EPSS), and Known Exploited Vulnerabilities (KEV) databases, and integrate these with the all-mpnet-base-v2 model for high-dimensional vector embeddings, stored and queried in Milvus. We demonstrate our system's efficacy through a series of case studies, revealing significant improvements in addressing recently disclosed vulnerabilities, KEVs, and high-EPSS-score CVEs compared to the baseline GPT-4o. This work not only advances the role of LLMs in cybersecurity but also establishes a robust foundation for the development of automated intelligent cyberthreat information management systems, addressing crucial gaps in current cybersecurity practices.
BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems
AI agents have the potential to significantly alter the cybersecurity landscape. To help us understand this change, we introduce the first framework to capture offensive and defensive cyber-capabilities in evolving real-world systems. Instantiating this framework with BountyBench, we set up 25 systems with complex, real-world codebases. To capture the vulnerability lifecycle, we define three task types: Detect (detecting a new vulnerability), Exploit (exploiting a specific vulnerability), and Patch (patching a specific vulnerability). For Detect, we construct a new success indicator, which is general across vulnerability types and provides localized evaluation. We manually set up the environment for each system, including installing packages, setting up server(s), and hydrating database(s). We add 40 bug bounties, which are vulnerabilities with monetary awards from \10 to 30,485, and cover 9 of the OWASP Top 10 Risks. To modulate task difficulty, we devise a new strategy based on information to guide detection, interpolating from identifying a zero day to exploiting a specific vulnerability. We evaluate 5 agents: Claude Code, OpenAI Codex CLI, and custom agents with GPT-4.1, Gemini 2.5 Pro Preview, and Claude 3.7 Sonnet Thinking. Given up to three attempts, the top-performing agents are Claude Code (5% on Detect, mapping to \1,350), Custom Agent with Claude 3.7 Sonnet Thinking (5% on Detect, mapping to 1,025; 67.5% on Exploit), and OpenAI Codex CLI (5% on Detect, mapping to \2,400; 90% on Patch, mapping to 14,422). OpenAI Codex CLI and Claude Code are more capable at defense, achieving higher Patch scores of 90% and 87.5%, compared to Exploit scores of 32.5% and 57.5% respectively; in contrast, the custom agents are relatively balanced between offense and defense, achieving Exploit scores of 40-67.5% and Patch scores of 45-60%.
LLM Cyber Evaluations Don't Capture Real-World Risk
Large language models (LLMs) are demonstrating increasing prowess in cybersecurity applications, creating creating inherent risks alongside their potential for strengthening defenses. In this position paper, we argue that current efforts to evaluate risks posed by these capabilities are misaligned with the goal of understanding real-world impact. Evaluating LLM cybersecurity risk requires more than just measuring model capabilities -- it demands a comprehensive risk assessment that incorporates analysis of threat actor adoption behavior and potential for impact. We propose a risk assessment framework for LLM cyber capabilities and apply it to a case study of language models used as cybersecurity assistants. Our evaluation of frontier models reveals high compliance rates but moderate accuracy on realistic cyber assistance tasks. However, our framework suggests that this particular use case presents only moderate risk due to limited operational advantages and impact potential. Based on these findings, we recommend several improvements to align research priorities with real-world impact assessment, including closer academia-industry collaboration, more realistic modeling of attacker behavior, and inclusion of economic metrics in evaluations. This work represents an important step toward more effective assessment and mitigation of LLM-enabled cybersecurity risks.
Demarked: A Strategy for Enhanced Abusive Speech Moderation through Counterspeech, Detoxification, and Message Management
Despite regulations imposed by nations and social media platforms, such as recent EU regulations targeting digital violence, abusive content persists as a significant challenge. Existing approaches primarily rely on binary solutions, such as outright blocking or banning, yet fail to address the complex nature of abusive speech. In this work, we propose a more comprehensive approach called Demarcation scoring abusive speech based on four aspect -- (i) severity scale; (ii) presence of a target; (iii) context scale; (iv) legal scale -- and suggesting more options of actions like detoxification, counter speech generation, blocking, or, as a final measure, human intervention. Through a thorough analysis of abusive speech regulations across diverse jurisdictions, platforms, and research papers we highlight the gap in preventing measures and advocate for tailored proactive steps to combat its multifaceted manifestations. Our work aims to inform future strategies for effectively addressing abusive speech online.
Cyberbullying Detection Using Deep Neural Network from Social Media Comments in Bangla Language
Cyberbullying or Online harassment detection on social media for various major languages is currently being given a good amount of focus by researchers worldwide. Being the seventh most speaking language in the world and increasing usage of online platform among the Bengali speaking people urge to find effective detection technique to handle the online harassment. In this paper, we have proposed binary and multiclass classification model using hybrid neural network for bully expression detection in Bengali language. We have used 44,001 users comments from popular public Facebook pages, which fall into five classes - Non-bully, Sexual, Threat, Troll and Religious. We have examined the performance of our proposed models from different perspective. Our binary classification model gives 87.91% accuracy, whereas introducing ensemble technique after neural network for multiclass classification, we got 85% accuracy.
AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks
The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .
