Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSamudrACE: Fast and Accurate Coupled Climate Modeling with 3D Ocean and Atmosphere Emulators
Traditional numerical global climate models simulate the full Earth system by exchanging boundary conditions between separate simulators of the atmosphere, ocean, sea ice, land surface, and other geophysical processes. This paradigm allows for distributed development of individual components within a common framework, unified by a coupler that handles translation between realms via spatial or temporal alignment and flux exchange. Following a similar approach adapted for machine learning-based emulators, we present SamudrACE: a coupled global climate model emulator which produces centuries-long simulations at 1-degree horizontal, 6-hourly atmospheric, and 5-daily oceanic resolution, with 145 2D fields spanning 8 atmospheric and 19 oceanic vertical levels, plus sea ice, surface, and top-of-atmosphere variables. SamudrACE is highly stable and has low climate biases comparable to those of its components with prescribed boundary forcing, with realistic variability in coupled climate phenomena such as ENSO that is not possible to simulate in uncoupled mode.
The Impact of Stellar Flares on the Atmospheric Escape of Exoplanets orbiting M stars I: Insights from the AU Mic System
The X-rays and Extreme Ultraviolet (XUV) emission from M stars can drive the atmospheric escape on planets orbiting them. M stars are also known for their frequent emission of stellar flares, which will increase the high-energy flux received by their orbiting planets. To understand how stellar flares impact the primordial atmospheres of planets orbiting young M stars, we use UV spectroscopic data of flares from the Habitable Zones and M dwarf Activity across Time (HAZMAT) and Measurements of the Ultraviolet Spectral Characteristics of Low-mass Exoplanetary Systems (MUSCLES) programs as a proxy to the XUV flare emission. Using the software package VPLanet, we simulate the young AU Mic planetary system composed of two Neptune-sized and one Earth-sized planet orbiting a 23-Myr-old M1 star. Our findings show that the Earth-sized planet AU Mic d should be in the process of losing completely its atmosphere in the next couple million years, solely due to the quiescent emission, with flares not significantly contributing to its atmospheric escape due to the small size of AU mic d and its close-in distance from the star. However, our results indicate that flares would play a crucial role for such planets further away, in the habitable zone (i.e. 0.2935 AU) of AU Mic-like stars during the post-saturation phase, accelerating the total atmospheric loss process by a few billion years. For planets between 0.365 AU and the HZ outer edge, the additional XUV from flares is necessary to deplete primordial atmospheres fully since the quiescent emission alone is insufficient.
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
Towards a Unified Copernicus Foundation Model for Earth Vision
Advances in Earth observation (EO) foundation models have unlocked the potential of big satellite data to learn generic representations from space, benefiting a wide range of downstream applications crucial to our planet. However, most existing efforts remain limited to fixed spectral sensors, focus solely on the Earth's surface, and overlook valuable metadata beyond imagery. In this work, we take a step towards next-generation EO foundation models with three key components: 1) Copernicus-Pretrain, a massive-scale pretraining dataset that integrates 18.7M aligned images from all major Copernicus Sentinel missions, spanning from the Earth's surface to its atmosphere; 2) Copernicus-FM, a unified foundation model capable of processing any spectral or non-spectral sensor modality using extended dynamic hypernetworks and flexible metadata encoding; and 3) Copernicus-Bench, a systematic evaluation benchmark with 15 hierarchical downstream tasks ranging from preprocessing to specialized applications for each Sentinel mission. Our dataset, model, and benchmark greatly improve the scalability, versatility, and multimodal adaptability of EO foundation models, while also creating new opportunities to connect EO, weather, and climate research. Codes, datasets and models are available at https://github.com/zhu-xlab/Copernicus-FM.
Tides on Lava Worlds: Application to Close-in Exoplanets and the Early Earth-Moon System
Understanding the physics of planetary magma oceans has been the subject of growing efforts, in light of the increasing abundance of Solar system samples and extrasolar surveys. A rocky planet harboring such an ocean is likely to interact tidally with its host star, planetary companions, or satellites. To date, however, models of the tidal response and heat generation of magma oceans have been restricted to the framework of weakly viscous solids, ignoring the dynamical fluid behavior of the ocean beyond a critical melt fraction. Here we provide a handy analytical model that accommodates this phase transition, allowing for a physical estimation of the tidal response of lava worlds. We apply the model in two settings: The tidal history of the early Earth-Moon system in the aftermath of the giant impact; and the tidal interplay between short-period exoplanets and their host stars. For the former, we show that the fluid behavior of the Earth's molten surface drives efficient early Lunar recession to {sim} 25 Earth radii within 10^4{-} 10^5 years, in contrast with earlier predictions. For close-in exoplanets, we report on how their molten surfaces significantly change their spin-orbit dynamics, allowing them to evade spin-orbit resonances and accelerating their track towards tidal synchronization from a Gyr to Myr timescale. Moreover, we re-evaluate the energy budgets of detected close-in exoplanets, highlighting how the surface thermodynamics of these planets are likely controlled by enhanced, fluid-driven tidal heating, rather than vigorous insolation, and how this regime change substantially alters predictions for their surface temperatures.
Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation
The development of foundation models has revolutionized our ability to interpret the Earth's surface using satellite observational data. Traditional models have been siloed, tailored to specific sensors or data types like optical, radar, and hyperspectral, each with its own unique characteristics. This specialization hinders the potential for a holistic analysis that could benefit from the combined strengths of these diverse data sources. Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science to integrate various data modalities into a single framework adaptively. This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks, including sensors never seen during pretraining. DOFA's innovative design offers a promising leap towards more accurate, efficient, and unified Earth observation analysis, showcasing remarkable adaptability and performance in harnessing the potential of multimodal Earth observation data.
RainShift: A Benchmark for Precipitation Downscaling Across Geographies
Earth System Models (ESM) are our main tool for projecting the impacts of climate change. However, running these models at sufficient resolution for local-scale risk-assessments is not computationally feasible. Deep learning-based super-resolution models offer a promising solution to downscale ESM outputs to higher resolutions by learning from data. Yet, due to regional variations in climatic processes, these models typically require retraining for each geographical area-demanding high-resolution observational data, which is unevenly available across the globe. This highlights the need to assess how well these models generalize across geographic regions. To address this, we introduce RainShift, a dataset and benchmark for evaluating downscaling under geographic distribution shifts. We evaluate state-of-the-art downscaling approaches including GANs and diffusion models in generalizing across data gaps between the Global North and Global South. Our findings reveal substantial performance drops in out-of-distribution regions, depending on model and geographic area. While expanding the training domain generally improves generalization, it is insufficient to overcome shifts between geographically distinct regions. We show that addressing these shifts through, for example, data alignment can improve spatial generalization. Our work advances the global applicability of downscaling methods and represents a step toward reducing inequities in access to high-resolution climate information.
Toward Open Earth Science as Fast and Accessible as Natural Language
Is natural-language-driven earth observation data analysis now feasible with the assistance of Large Language Models (LLMs)? For open science in service of public interest, feasibility requires reliably high accuracy, interactive latencies, low (sustainable) costs, open LLMs, and openly maintainable software -- hence, the challenge. What are the techniques and programming system requirements necessary for satisfying these constraints, and what is the corresponding development and maintenance burden in practice? This study lays the groundwork for exploring these questions, introducing an impactful earth science use-case, and providing a software framework with evaluation data and metrics, along with initial results from employing model scaling, prompt-optimization, and inference-time scaling optimization techniques. While we attain high accuracy (near 100%) across 10 of 11 metrics, the analysis further considers cost (token-spend), latency, and maintainability across this space of techniques. Finally, we enumerate opportunities for further research, general programming and evaluation framework development, and ongoing work for a comprehensive, deployable solution. This is a call for collaboration and contribution.
Semi-automatic tuning of coupled climate models with multiple intrinsic timescales: lessons learned from the Lorenz96 model
The objective of this study is to evaluate the potential for History Matching (HM) to tune a climate system with multi-scale dynamics. By considering a toy climate model, namely, the two-scale Lorenz96 model and producing experiments in perfect-model setting, we explore in detail how several built-in choices need to be carefully tested. We also demonstrate the importance of introducing physical expertise in the range of parameters, a priori to running HM. Finally we revisit a classical procedure in climate model tuning, that consists of tuning the slow and fast components separately. By doing so in the Lorenz96 model, we illustrate the non-uniqueness of plausible parameters and highlight the specificity of metrics emerging from the coupling. This paper contributes also to bridging the communities of uncertainty quantification, machine learning and climate modeling, by making connections between the terms used by each community for the same concept and presenting promising collaboration avenues that would benefit climate modeling research.
OmniEarth-Bench: Towards Holistic Evaluation of Earth's Six Spheres and Cross-Spheres Interactions with Multimodal Observational Earth Data
Existing benchmarks for Earth science multimodal learning exhibit critical limitations in systematic coverage of geosystem components and cross-sphere interactions, often constrained to isolated subsystems (only in Human-activities sphere or atmosphere) with limited evaluation dimensions (less than 16 tasks). To address these gaps, we introduce OmniEarth-Bench, the first comprehensive multimodal benchmark spanning all six Earth science spheres (atmosphere, lithosphere, Oceansphere, cryosphere, biosphere and Human-activities sphere) and cross-spheres with one hundred expert-curated evaluation dimensions. Leveraging observational data from satellite sensors and in-situ measurements, OmniEarth-Bench integrates 29,779 annotations across four tiers: perception, general reasoning, scientific knowledge reasoning and chain-of-thought (CoT) reasoning. This involves the efforts of 2-5 experts per sphere to establish authoritative evaluation dimensions and curate relevant observational datasets, 40 crowd-sourcing annotators to assist experts for annotations, and finally, OmniEarth-Bench is validated via hybrid expert-crowd workflows to reduce label ambiguity. Experiments on 9 state-of-the-art MLLMs reveal that even the most advanced models struggle with our benchmarks, where none of them reach 35\% accuracy. Especially, in some cross-spheres tasks, the performance of leading models like GPT-4o drops to 0.0\%. OmniEarth-Bench sets a new standard for geosystem-aware AI, advancing both scientific discovery and practical applications in environmental monitoring and disaster prediction. The dataset, source code, and trained models were released.
Encoding Multi-level Dynamics in Effect Heterogeneity Estimation
Earth Observation (EO) data are increasingly used in policy analysis by enabling granular estimation of treatment effects. However, a challenge in EO-based causal inference lies in balancing the trade-off between capturing fine-grained individual heterogeneity and broader contextual information. This paper introduces Multi-scale Concatenation, a family of composable procedures that transform arbitrary single-scale CATE estimation algorithms into multi-scale algorithms. We benchmark the performance of Multi-scale Concatenation on a CATE estimation pipeline combining Vision Transformer (ViT) models fine-tuned on satellite images to encode images of different scales with Causal Forests to obtain the final CATE estimate. We first perform simulation studies, showing how a multi-scale approach captures multi-level dynamics that single-scale ViT models fail to capture. We then apply the multi-scale method to two randomized controlled trials (RCTs) conducted in Peru and Uganda using Landsat satellite imagery. In the RCT analysis, the Rank Average Treatment Effect Ratio (RATE Ratio) measure is employed to assess performance without ground truth individual treatment effects. Results indicate that Multi-scale Concatenation improves the performance of deep learning models in EO-based CATE estimation without the complexity of designing new multi-scale architectures for a specific use case.
The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We implement a linear regression-based emulator, akin to pattern scaling, and find that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved surface-level climate variables. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. We identify that this outcome is a result of high levels of internal variability in the benchmark targets. To address internal variability, we update the benchmark targets with ensemble averages from the MPI-ESM1.2-LR model that contain 50 instead of 3 climate simulations per emission pathway. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based model for emulating precipitation. We publish our code, data, and an interactive tutorial at github.com/blutjens/climate-emulator.
Near-circular orbits for planets around M/K-type stars with Earth-like sizes and instellations
Recent advances have enabled the discovery of a population of potentially Earth-like planets, yet their orbital eccentricity, which governs their climate and provides clues about their origin and dynamical history, is still largely unconstrained. We identify a sample of 17 transiting exoplanets around late-type stars with similar radii and irradiation to that of Earth and use the "photoeccentric effect" - which exploits transit durations - to infer their eccentricity distribution via hierarchical Bayesian modelling. Our analysis establishes that these worlds further resemble Earth in that their eccentricities are nearly circular (mean eccentricity =0.060_{-0.028}^{+0.040} and leq0.15), with the exception of one outlier of moderate eccentricity. The results hint at a subset population of dynamically warmer Earths, but this requires a larger sample to statistically confirm. The planets in our sample are thus largely subject to minimal eccentricity-induced seasonal variability and are consistent with emerging via smooth disk migration rather than violent planet-planet scattering.
Towards LLM Agents for Earth Observation
Earth Observation (EO) provides critical planetary data for environmental monitoring, disaster management, climate science, and other scientific domains. Here we ask: Are AI systems ready for reliable Earth Observation? We introduce \datasetnamenospace, a benchmark of 140 yes/no questions from NASA Earth Observatory articles across 13 topics and 17 satellite sensors. Using Google Earth Engine API as a tool, LLM agents can only achieve an accuracy of 33% because the code fails to run over 58% of the time. We improve the failure rate for open models by fine-tuning synthetic data, allowing much smaller models (Llama-3.1-8B) to achieve comparable accuracy to much larger ones (e.g., DeepSeek-R1). Taken together, our findings identify significant challenges to be solved before AI agents can automate earth observation, and suggest paths forward. The project page is available at https://iandrover.github.io/UnivEarth.
Bitcoin as an Interplanetary Monetary Standard with Proof-of-Transit Timestamping
We explore the feasibility of deploying Bitcoin as the shared monetary standard between Earth and Mars, accounting for physical constraints of interplanetary communication. We introduce a novel primitive, Proof-of-Transit Timestamping (PoTT), to provide cryptographic, tamper-evident audit trails for Bitcoin data across high-latency, intermittently-connected links. Leveraging Delay/Disruption-Tolerant Networking (DTN) and optical low-Earth-orbit (LEO) mesh constellations, we propose an architecture for header-first replication, long-horizon Lightning channels with planetary watchtowers, and secure settlement through federated sidechains or blind-merge-mined (BMM) commit chains. We formalize PoTT, analyze its security model, and show how it measurably improves reliability and accountability without altering Bitcoin consensus or its monetary base. Near-term deployments favor strong federations for local settlement; longer-term, blind-merge-mined commit chains (if adopted) provide an alternative. The Earth L1 monetary base remains unchanged, while Mars can operate a pegged commit chain or strong federation with 1:1 pegged assets for local block production. For transparency, if both time-beacon regimes are simultaneously compromised, PoTT-M2 (and PoTT generally) reduces to administrative assertions rather than cryptographic time-anchoring.
The Coupled Tidal Evolution of the Moons and Spins of Warm Exoplanets
Context: The Solar System giant planets harbour a wide variety of moons. Moons around exoplanets are plausibly similarly abundant, even though most of them are likely too small to be easily detectable with modern instruments. Moons are known to affect the long-term dynamics of the spin of their host planets; however, their influence on warm exoplanets (i.e.\ with moderately short periods of about 10 to 200~days), which undergo significant star-planet tidal dissipation, is still unclear. Aims: Here, we study the coupled dynamical evolution of exomoons and the spin dynamics of their host planets, focusing on warm exoplanets. Methods: Analytical criteria give the relevant dynamical regimes at play as a function of the system's parameters. Possible evolution tracks mostly depend on the hierarchy of timescales between the star-planet and the moon-planet tidal dissipations. We illustrate the variety of possible trajectories using self-consistent numerical simulations. Results: We find two principal results: i) Due to star-planet tidal dissipation, a substantial fraction of warm exoplanets naturally evolve through a phase of instability for the moon's orbit (the `Laplace plane' instability). Many warm exoplanets may have lost their moon(s) through this process. ii) Surviving moons slowly migrate inwards due to the moon-planet tidal dissipation until they are disrupted below the Roche limit. During their last migration stage, moons -- even small ones -- eject planets from their tidal spin equilibrium. Conclusions: The loss of moons through the Laplace plane instability may contribute to disfavour the detection of moons around close-in exoplanets. Moreover, moons (even those that have been lost) play a critical role in the final obliquities of warm exoplanets. Hence, the existence of exomoons poses a serious challenge in predicting the present-day obliquities of observed exoplanets.
Physics-Based Forecasting of Tomorrow's Solar Wind at 1 AU
A faster than real time forecast system for solar wind and interplanetary magnetic field transients that is driven by hourly updated solar magnetograms is proposed to provide a continuous nowcast of the solar corona (<0.1AU) and 24-hours forecast of the solar wind at 1 AU by solving a full 3-D MHD model. This new model has been inspired by the concept of relativity of simultaneity used in the theory of special relativity. It is based on time transformation between two coordinate systems: the solar rest frame and a boosted system in which the current observations of the solar magnetic field and tomorrow's measurement of the solar wind at 1 AU are simultaneous. In this paper we derive the modified governing equations for both hydrodynamics (HD) and magnetohydrodynamics (MHD) and present a new numerical algorithm that only modifies the conserved quantities but preserves the original HD/MHD numerical flux. The proposed method enables an efficient numerical implementation, and thus a significantly longer forecast time than the traditional method.
On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
Rieger, Schwabe, Suess-de Vries: The Sunny Beats of Resonance
We propose a self-consistent explanation of Rieger-type periodicities, the Schwabe cycle, and the Suess-de Vries cycle of the solar dynamo in terms of resonances of various wave phenomena with gravitational forces exerted by the orbiting planets. Starting on the high-frequency side, we show that the two-planet spring tides of Venus, Earth and Jupiter are able to excite magneto-Rossby waves which can be linked with typical Rieger-type periods. We argue then that the 11.07-year beat period of those magneto-Rossby waves synchronizes an underlying conventional alpha-Omega-dynamo, by periodically changing either the field storage capacity in the tachocline or some portion of the alpha-effect therein. We also strengthen the argument that the Suess-de Vries cycle appears as an 193-year beat period between the 22.14-year Hale cycle and a spin-orbit coupling effect related with the 19.86-year rosette-like motion of the Sun around the barycenter.
Accelerating Earth Science Discovery via Multi-Agent LLM Systems
This Perspective explores the transformative potential of Multi-Agent Systems (MAS) powered by Large Language Models (LLMs) in the geosciences. Users of geoscientific data repositories face challenges due to the complexity and diversity of data formats, inconsistent metadata practices, and a considerable number of unprocessed datasets. MAS possesses transformative potential for improving scientists' interaction with geoscientific data by enabling intelligent data processing, natural language interfaces, and collaborative problem-solving capabilities. We illustrate this approach with "PANGAEA GPT", a specialized MAS pipeline integrated with the diverse PANGAEA database for Earth and Environmental Science, demonstrating how MAS-driven workflows can effectively manage complex datasets and accelerate scientific discovery. We discuss how MAS can address current data challenges in geosciences, highlight advancements in other scientific fields, and propose future directions for integrating MAS into geoscientific data processing pipelines. In this Perspective, we show how MAS can fundamentally improve data accessibility, promote cross-disciplinary collaboration, and accelerate geoscientific discoveries.
Characterising the Atmosphere of 55 Cancri e: 1D Forward Model Grid for Current and Future JWST Observations
Recent JWST observations with NIRCam and MIRI of the ultra-short-period super-Earth 55 Cancri e indicate a possible volatile atmosphere surrounding the planet. Previous analysis of the NIRCam spectra suggested potential absorption features from CO2 or CO and significant sub-weekly variability. The MIRI low-resolution spectrum does not contain substantial features but was found to be consistent with effective heat redistribution models. In this work, we computed a grid of over 25000 self-consistent 1D forward models incorporating H-N-O-C-S-P-Si-Ti equilibrium chemistry and assessed plausible atmospheric compositions based on the current JWST data. Despite exhaustive analysis, the composition and properties of the atmosphere remain elusive. While our results statistically favour a global, hydrogen-free, nitrogen-dominated atmosphere enriched in PO and CO2, various alternative compositions, including H2O-,CO-, PH3-, or Si-bearing remain viable explanations. Unconstrained heat redistribution efficiency and absolute NIRCam flux are among the largest sources of uncertainty in our analysis. We also find that the heat redistribution factor and surface pressure are highly degenerate with atmospheric composition, and that these parameters cannot be independently constrained using current JWST observations. Furthermore, we show that the observed variability may arise from dynamic interactions between the atmosphere and an underlying magma ocean, driving rapid shifts in atmospheric chemistry and thermal emission. Our results highlight the importance of using self-consistent forward models when analysing novel JWST spectra with limited signal-to-noise ratios -- such as those of 55 Cancri e -- as it allows for a more comprehensive evaluation of potential atmospheric scenarios while also being less sensitive to subtle spectral differences than retrievals...
Multi-modal Co-learning for Earth Observation: Enhancing single-modality models via modality collaboration
Multi-modal co-learning is emerging as an effective paradigm in machine learning, enabling models to collaboratively learn from different modalities to enhance single-modality predictions. Earth Observation (EO) represents a quintessential domain for multi-modal data analysis, wherein diverse remote sensors collect data to sense our planet. This unprecedented volume of data introduces novel challenges. Specifically, the access to the same sensor modalities at both training and inference stages becomes increasingly complex based on real-world constraints affecting remote sensing platforms. In this context, multi-modal co-learning presents a promising strategy to leverage the vast amount of sensor-derived data available at the training stage to improve single-modality models for inference-time deployment. Most current research efforts focus on designing customized solutions for either particular downstream tasks or specific modalities available at the inference stage. To address this, we propose a novel multi-modal co-learning framework capable of generalizing across various tasks without targeting a specific modality for inference. Our approach combines contrastive and modality discriminative learning together to guide single-modality models to structure the internal model manifold into modality-shared and modality-specific information. We evaluate our framework on four EO benchmarks spanning classification and regression tasks across different sensor modalities, where only one of the modalities available during training is accessible at inference time. Our results demonstrate consistent predictive improvements over state-of-the-art approaches from the recent machine learning and computer vision literature, as well as EO-specific methods. The obtained findings validate our framework in the single-modality inference scenarios across a diverse range of EO applications.
Social-ecological feedbacks drive tipping points in farming system diversification
The emergence and impact of tipping points have garnered significant interest in both the social and natural sciences. Despite widespread recognition of the importance of feedbacks between human and natural systems, it is often assumed that the observed nonlinear dynamics in these coupled systems rests within either underlying human or natural processes, rather than the rates at which they interact. Using adoption of agricultural diversification practices as a case study, we show how two stable management paradigms (one dominated by conventional, homogeneous practices, the other by diversified practices) can emerge purely from temporal feedbacks between human decisions and ecological responses. We explore how this temporal mechanism of tipping points provides insight into designing more effective interventions that promote farmers transitions towards sustainable agriculture. Moreover, our flexible modeling framework could be applied to other cases to provide insight into numerous questions in social-ecological systems research and environmental policy.
Major TOM: Expandable Datasets for Earth Observation
Deep learning models are increasingly data-hungry, requiring significant resources to collect and compile the datasets needed to train them, with Earth Observation (EO) models being no exception. However, the landscape of datasets in EO is relatively atomised, with interoperability made difficult by diverse formats and data structures. If ever larger datasets are to be built, and duplication of effort minimised, then a shared framework that allows users to combine and access multiple datasets is needed. Here, Major TOM (Terrestrial Observation Metaset) is proposed as this extensible framework. Primarily, it consists of a geographical indexing system based on a set of grid points and a metadata structure that allows multiple datasets with different sources to be merged. Besides the specification of Major TOM as a framework, this work also presents a large, open-access dataset, MajorTOM-Core, which covers the vast majority of the Earth's land surface. This dataset provides the community with both an immediately useful resource, as well as acting as a template for future additions to the Major TOM ecosystem. Access: https://huggingface.co/Major-TOM
AlphaEarth Foundations: An embedding field model for accurate and efficient global mapping from sparse label data
Unprecedented volumes of Earth observation data are continually collected around the world, but high-quality labels remain scarce given the effort required to make physical measurements and observations. This has led to considerable investment in bespoke modeling efforts translating sparse labels into maps. Here we introduce AlphaEarth Foundations, an embedding field model yielding a highly general, geospatial representation that assimilates spatial, temporal, and measurement contexts across multiple sources, enabling accurate and efficient production of maps and monitoring systems from local to global scales. The embeddings generated by AlphaEarth Foundations are the only to consistently outperform all previous featurization approaches tested on a diverse set of mapping evaluations without re-training. We will release a dataset of global, annual, analysis-ready embedding field layers from 2017 through 2024.
DynST: Dynamic Sparse Training for Resource-Constrained Spatio-Temporal Forecasting
The ever-increasing sensor service, though opening a precious path and providing a deluge of earth system data for deep-learning-oriented earth science, sadly introduce a daunting obstacle to their industrial level deployment. Concretely, earth science systems rely heavily on the extensive deployment of sensors, however, the data collection from sensors is constrained by complex geographical and social factors, making it challenging to achieve comprehensive coverage and uniform deployment. To alleviate the obstacle, traditional approaches to sensor deployment utilize specific algorithms to design and deploy sensors. These methods dynamically adjust the activation times of sensors to optimize the detection process across each sub-region. Regrettably, formulating an activation strategy generally based on historical observations and geographic characteristics, which make the methods and resultant models were neither simple nor practical. Worse still, the complex technical design may ultimately lead to a model with weak generalizability. In this paper, we introduce for the first time the concept of spatio-temporal data dynamic sparse training and are committed to adaptively, dynamically filtering important sensor distributions. To our knowledge, this is the first proposal (termed DynST) of an industry-level deployment optimization concept at the data level. However, due to the existence of the temporal dimension, pruning of spatio-temporal data may lead to conflicts at different timestamps. To achieve this goal, we employ dynamic merge technology, along with ingenious dimensional mapping to mitigate potential impacts caused by the temporal aspect. During the training process, DynST utilize iterative pruning and sparse training, repeatedly identifying and dynamically removing sensor perception areas that contribute the least to future predictions.
ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction
Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster readiness, reduced economic risk, and improved policy-making amidst climate change. Yet, S2S prediction remains challenging due to the chaotic nature of the system. At present, existing benchmarks for weather and climate applications, tend to (1) have shorter forecasting range of up-to 14 days, (2) do not include a wide range of operational baseline forecasts, and (3) lack physics-based constraints for explainability. Thus, we propose ChaosBench, a large-scale, multi-channel, physics-based benchmark for S2S prediction. ChaosBench has over 460K frames of real-world observations and simulations, each with 60 variable-channels and spanning for up-to 45 years. We also propose several physics-based, in addition to vision-based metrics, that enables for a more physically-consistent model. Furthermore, we include a diverse set of physics-based forecasts from 4 national weather agencies as baselines to our data-driven counterpart. We establish two tasks that vary in complexity: full and sparse dynamics prediction. Our benchmark is one of the first to perform large-scale evaluation on existing models including PanguWeather, FourCastNetV2, GraphCast, and ClimaX, and finds methods originally developed for weather-scale applications fails on S2S task. We release our benchmark code and datasets at https://leap-stc.github.io/ChaosBench.
Discovering Effective Policies for Land-Use Planning with Neuroevolution
How areas of land are allocated for different uses, such as forests, urban areas, and agriculture, has a large effect on the terrestrial carbon balance, and therefore climate change. Based on available historical data on land-use changes and a simulation of the associated carbon emissions and removals, a surrogate model can be learned that makes it possible to evaluate the different options available to decision-makers efficiently. An evolutionary search process can then be used to discover effective land-use policies for specific locations. Such a system was built on the Project Resilience platform and evaluated with the Land-Use Harmonization dataset LUH2 and the bookkeeping model BLUE. It generates Pareto fronts that trade off carbon impact and amount of land-use change customized to different locations, thus providing a proof-of-concept tool that is potentially useful for land-use planning.
Mass-Radius Relationships for Solid Exoplanets
We use new interior models of cold planets to investigate the mass-radius relationships of solid exoplanets, considering planets made primarily of iron, silicates, water, and carbon compounds. We find that the mass-radius relationships for cold terrestrial-mass planets of all compositions we considered follow a generic functional form that is not a simple power law: log_{10} R_s = k_1 + 1/3 log_{10}(M_s) - k_2 M_s^{k_3} for up to M_p approx 20 M_{oplus}, where M_s and R_s are scaled mass and radius values. This functional form arises because the common building blocks of solid planets all have equations of state that are well approximated by a modified polytrope of the form rho = rho_0 + c P^n. We find that highly detailed planet interior models, including temperature structure and phase changes, are not necessary to derive solid exoplanet bulk composition from mass and radius measurements. For solid exoplanets with no substantial atmosphere we have also found that: with 5% fractional uncertainty in planet mass and radius it is possible to distinguish among planets composed predominantly of iron or silicates or water ice but not more detailed compositions; with sim~5% uncertainty water ice planets with gtrsim 25% water by mass may be identified; the minimum plausible planet size for a given mass is that of a pure iron planet; and carbon planet mass-radius relationships overlap with those of silicate and water planets due to similar zero-pressure densities and equations of state. We propose a definition of "super Earths'' based on the clear distinction in radii between planets with significant gas envelopes and those without.
Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations
State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.
GraphDOP: Towards skilful data-driven medium-range weather forecasts learnt and initialised directly from observations
We introduce GraphDOP, a new data-driven, end-to-end forecast system developed at the European Centre for Medium-Range Weather Forecasts (ECMWF) that is trained and initialised exclusively from Earth System observations, with no physics-based (re)analysis inputs or feedbacks. GraphDOP learns the correlations between observed quantities - such as brightness temperatures from polar orbiters and geostationary satellites - and geophysical quantities of interest (that are measured by conventional observations), to form a coherent latent representation of Earth System state dynamics and physical processes, and is capable of producing skilful predictions of relevant weather parameters up to five days into the future.
Forecasting Global Weather with Graph Neural Networks
We present a data-driven approach for forecasting global weather using graph neural networks. The system learns to step forward the current 3D atmospheric state by six hours, and multiple steps are chained together to produce skillful forecasts going out several days into the future. The underlying model is trained on reanalysis data from ERA5 or forecast data from GFS. Test performance on metrics such as Z500 (geopotential height) and T850 (temperature) improves upon previous data-driven approaches and is comparable to operational, full-resolution, physical models from GFS and ECMWF, at least when evaluated on 1-degree scales and when using reanalysis initial conditions. We also show results from connecting this data-driven model to live, operational forecasts from GFS.
Machine Learning Global Simulation of Nonlocal Gravity Wave Propagation
Global climate models typically operate at a grid resolution of hundreds of kilometers and fail to resolve atmospheric mesoscale processes, e.g., clouds, precipitation, and gravity waves (GWs). Model representation of these processes and their sources is essential to the global circulation and planetary energy budget, but subgrid scale contributions from these processes are often only approximately represented in models using parameterizations. These parameterizations are subject to approximations and idealizations, which limit their capability and accuracy. The most drastic of these approximations is the "single-column approximation" which completely neglects the horizontal evolution of these processes, resulting in key biases in current climate models. With a focus on atmospheric GWs, we present the first-ever global simulation of atmospheric GW fluxes using machine learning (ML) models trained on the WINDSET dataset to emulate global GW emulation in the atmosphere, as an alternative to traditional single-column parameterizations. Using an Attention U-Net-based architecture trained on globally resolved GW momentum fluxes, we illustrate the importance and effectiveness of global nonlocality, when simulating GWs using data-driven schemes.
EarthPT: a time series foundation model for Earth Observation
We introduce EarthPT -- an Earth Observation (EO) pretrained transformer. EarthPT is a 700 million parameter decoding transformer foundation model trained in an autoregressive self-supervised manner and developed specifically with EO use-cases in mind. We demonstrate that EarthPT is an effective forecaster that can accurately predict future pixel-level surface reflectances across the 400-2300 nm range well into the future. For example, forecasts of the evolution of the Normalised Difference Vegetation Index (NDVI) have a typical error of approximately 0.05 (over a natural range of -1 -> 1) at the pixel level over a five month test set horizon, out-performing simple phase-folded models based on historical averaging. We also demonstrate that embeddings learnt by EarthPT hold semantically meaningful information and could be exploited for downstream tasks such as highly granular, dynamic land use classification. Excitingly, we note that the abundance of EO data provides us with -- in theory -- quadrillions of training tokens. Therefore, if we assume that EarthPT follows neural scaling laws akin to those derived for Large Language Models (LLMs), there is currently no data-imposed limit to scaling EarthPT and other similar `Large Observation Models.'
DynamicEarthNet: Daily Multi-Spectral Satellite Dataset for Semantic Change Segmentation
Earth observation is a fundamental tool for monitoring the evolution of land use in specific areas of interest. Observing and precisely defining change, in this context, requires both time-series data and pixel-wise segmentations. To that end, we propose the DynamicEarthNet dataset that consists of daily, multi-spectral satellite observations of 75 selected areas of interest distributed over the globe with imagery from Planet Labs. These observations are paired with pixel-wise monthly semantic segmentation labels of 7 land use and land cover (LULC) classes. DynamicEarthNet is the first dataset that provides this unique combination of daily measurements and high-quality labels. In our experiments, we compare several established baselines that either utilize the daily observations as additional training data (semi-supervised learning) or multiple observations at once (spatio-temporal learning) as a point of reference for future research. Finally, we propose a new evaluation metric SCS that addresses the specific challenges associated with time-series semantic change segmentation. The data is available at: https://mediatum.ub.tum.de/1650201.
TerraMind: Large-Scale Generative Multimodality for Earth Observation
We present TerraMind, the first any-to-any generative, multimodal foundation model for Earth observation (EO). Unlike other multimodal models, TerraMind is pretrained on dual-scale representations combining both token-level and pixel-level data across modalities. On a token level, TerraMind encodes high-level contextual information to learn cross-modal relationships, while on a pixel level, TerraMind leverages fine-grained representations to capture critical spatial nuances. We pretrained TerraMind on nine geospatial modalities of a global, large-scale dataset. In this paper, we demonstrate that (i) TerraMind's dual-scale early fusion approach unlocks a range of zero-shot and few-shot applications for Earth observation, (ii) TerraMind introduces "Thinking-in-Modalities" (TiM) -- the capability of generating additional artificial data during finetuning and inference to improve the model output -- and (iii) TerraMind achieves beyond state-of-the-art performance in community-standard benchmarks for EO like PANGAEA. The pretraining dataset, the model weights, and our code is open-sourced under a permissive license.
Prithvi-EO-2.0: A Versatile Multi-Temporal Foundation Model for Earth Observation Applications
This technical report presents Prithvi-EO-2.0, a new geospatial foundation model that offers significant improvements over its predecessor, Prithvi-EO-1.0. Trained on 4.2M global time series samples from NASA's Harmonized Landsat and Sentinel-2 data archive at 30m resolution, the new 300M and 600M parameter models incorporate temporal and location embeddings for enhanced performance across various geospatial tasks. Through extensive benchmarking with GEO-Bench, the 600M version outperforms the previous Prithvi-EO model by 8\% across a range of tasks. It also outperforms six other geospatial foundation models when benchmarked on remote sensing tasks from different domains and resolutions (i.e. from 0.1m to 15m). The results demonstrate the versatility of the model in both classical earth observation and high-resolution applications. Early involvement of end-users and subject matter experts (SMEs) are among the key factors that contributed to the project's success. In particular, SME involvement allowed for constant feedback on model and dataset design, as well as successful customization for diverse SME-led applications in disaster response, land use and crop mapping, and ecosystem dynamics monitoring. Prithvi-EO-2.0 is available on Hugging Face and IBM terratorch, with additional resources on GitHub. The project exemplifies the Trusted Open Science approach embraced by all involved organizations.
Dynamics of the Beta Pictoris planetary system and possibility of an additional planet
The Beta Pictoris system is characterized by a dusty debris disk, in addition to the presence of two already known planets. This makes it a particularly interesting case for studying the formation and evolution of planetary systems at a stage where giant planets have already formed, most of the protoplanetary gas has dissipated, and terrestrial planets could emerge. Our goal here is to explore the possibility of additional planets orbiting beyond the outermost known one, beta Pic b. More specifically, we aim to assess whether additional planets in the system could explain the discrepancy between the predicted cutoff of the disk inner cavity at sim28 au with only two planets, and the observed one at sim50 au. We perform an exhaustive dynamical modeling of the debris disk and the carving of its inner edge, by introducing one or two additional planets beyond beta Pic b, coplanar with the disk. Guided by theoretical predictions for the parameter space - mass, semi-major axis, eccentricity - allowed for additional planets, we further carry out a set of N-body simulations, using the symplectic integrator RMVS3. Our simulations indicate that an additional planet with a low eccentricity of 0.05, a mass between 0.15 and 1 M_{Jup}, and a semi-major axis between 30 and 36 au, would be consistent with the observations of an inner debris disk edge at 50 au. We have also explored the hypotheses of a higher eccentricity and the presence of two additional lower mass planets instead of one, which could also account for these observations. While we have found that one or even two additional planets could explain the observed location of the disk inner edge, these hypothetical planets remain in most cases below the current observational limits of high contrast imaging. Future observational campaigns with improved sensitivity will help lowering these limits and perhaps detect that planet.
Open-source Flux Transport (OFT). I. HipFT -- High-performance Flux Transport
Global solar photospheric magnetic maps play a critical role in solar and heliospheric physics research. Routine magnetograph measurements of the field occur only along the Sun-Earth line, leaving the far-side of the Sun unobserved. Surface Flux Transport (SFT) models attempt to mitigate this by modeling the surface evolution of the field. While such models have long been established in the community (with several releasing public full-Sun maps), none are open source. The Open Source Flux Transport (OFT) model seeks to fill this gap by providing an open and user-extensible SFT model that also builds on the knowledge of previous models with updated numerical and data acquisition/assimilation methods along with additional user-defined features. In this first of a series of papers on OFT, we introduce its computational core: the High-performance Flux Transport (HipFT) code (github.com/predsci/hipft). HipFT implements advection, diffusion, and data assimilation in a modular design that supports a variety of flow models and options. It can compute multiple realizations in a single run across model parameters to create ensembles of maps for uncertainty quantification and is high-performance through the use of multi-CPU and multi-GPU parallelism. HipFT is designed to enable users to easily write extensions, enhancing its flexibility and adaptability. We describe HipFT's model features, validations of its numerical methods, performance of its parallel and GPU-accelerated code implementation, analysis/post-processing options, and example use cases.
Latent State Inference in a Spatiotemporal Generative Model
Knowledge about the hidden factors that determine particular system dynamics is crucial for both explaining them and pursuing goal-directed interventions. Inferring these factors from time series data without supervision remains an open challenge. Here, we focus on spatiotemporal processes, including wave propagation and weather dynamics, for which we assume that universal causes (e.g. physics) apply throughout space and time. A recently introduced DIstributed SpatioTemporal graph Artificial Neural network Architecture (DISTANA) is used and enhanced to learn such processes, requiring fewer parameters and achieving significantly more accurate predictions compared to temporal convolutional neural networks and other related approaches. We show that DISTANA, when combined with a retrospective latent state inference principle called active tuning, can reliably derive location-respective hidden causal factors. In a current weather prediction benchmark, DISTANA infers our planet's land-sea mask solely by observing temperature dynamics and, meanwhile, uses the self inferred information to improve its own future temperature predictions.
What if LLMs Have Different World Views: Simulating Alien Civilizations with LLM-based Agents
In this study, we introduce "CosmoAgent," an innovative artificial intelligence framework utilizing Large Language Models (LLMs) to simulate complex interactions between human and extraterrestrial civilizations, with a special emphasis on Stephen Hawking's cautionary advice about not sending radio signals haphazardly into the universe. The goal is to assess the feasibility of peaceful coexistence while considering potential risks that could threaten well-intentioned civilizations. Employing mathematical models and state transition matrices, our approach quantitatively evaluates the development trajectories of civilizations, offering insights into future decision-making at critical points of growth and saturation. Furthermore, the paper acknowledges the vast diversity in potential living conditions across the universe, which could foster unique cosmologies, ethical codes, and worldviews among various civilizations. Recognizing the Earth-centric bias inherent in current LLM designs, we propose the novel concept of using LLMs with diverse ethical paradigms and simulating interactions between entities with distinct moral principles. This innovative research provides a new way to understand complex inter-civilizational dynamics, expanding our perspective while pioneering novel strategies for conflict resolution, crucial for preventing interstellar conflicts. We have also released the code and datasets to enable further academic investigation into this interesting area of research. The code is available at https://github.com/agiresearch/AlienAgent.
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
Automated analysis of vast Earth observation data via interactive Vision-Language Models (VLMs) can unlock new opportunities for environmental monitoring, disaster response, and {resource management}. Existing generic VLMs do not perform well on Remote Sensing data, while the recent Geo-spatial VLMs remain restricted to a fixed resolution and few sensor modalities. In this paper, we introduce EarthDial, a conversational assistant specifically designed for Earth Observation (EO) data, transforming complex, multi-sensory Earth observations into interactive, natural language dialogues. EarthDial supports multi-spectral, multi-temporal, and multi-resolution imagery, enabling a wide range of remote sensing tasks, including classification, detection, captioning, question answering, visual reasoning, and visual grounding. To achieve this, we introduce an extensive instruction tuning dataset comprising over 11.11M instruction pairs covering RGB, Synthetic Aperture Radar (SAR), and multispectral modalities such as Near-Infrared (NIR) and infrared. Furthermore, EarthDial handles bi-temporal and multi-temporal sequence analysis for applications like change detection. Our extensive experimental results on 44 downstream datasets demonstrate that EarthDial outperforms existing generic and domain-specific models, achieving better generalization across various EO tasks. Our source codes and pre-trained models are at https://github.com/hiyamdebary/EarthDial.
EarthMind: Towards Multi-Granular and Multi-Sensor Earth Observation with Large Multimodal Models
Large Multimodal Models (LMMs) have demonstrated strong performance in various vision-language tasks. However, they often struggle to comprehensively understand Earth Observation (EO) data, which is critical for monitoring the environment and the effects of human activity on it. In this work, we present EarthMind, a novel vision-language framework for multi-granular and multi-sensor EO data understanding. EarthMind features two core components: (1) Spatial Attention Prompting (SAP), which reallocates attention within the LLM to enhance pixel-level understanding; and (2) Cross-modal Fusion, which aligns heterogeneous modalities into a shared space and adaptively reweighs tokens based on their information density for effective fusion. To facilitate multi-sensor fusion evaluation, we propose EarthMind-Bench, a comprehensive benchmark with over 2,000 human-annotated multi-sensor image-question pairs, covering a wide range of perception and reasoning tasks. Extensive experiments demonstrate the effectiveness of EarthMind. It achieves state-of-the-art performance on EarthMind-Bench, surpassing GPT-4o despite being only 4B in scale. Moreover, EarthMind outperforms existing methods on multiple public EO benchmarks, showcasing its potential to handle both multi-granular and multi-sensor challenges in a unified framework.
EarthSE: A Benchmark for Evaluating Earth Scientific Exploration Capability of LLMs
Advancements in Large Language Models (LLMs) drive interest in scientific applications, necessitating specialized benchmarks such as Earth science. Existing benchmarks either present a general science focus devoid of Earth science specificity or cover isolated subdomains, lacking holistic evaluation. Furthermore, current benchmarks typically neglect the assessment of LLMs' capabilities in open-ended scientific exploration. In this paper, we present a comprehensive and professional benchmark for the Earth sciences, designed to evaluate the capabilities of LLMs in scientific exploration within this domain, spanning from fundamental to advanced levels. Leveraging a corpus of 100,000 research papers, we first construct two Question Answering (QA) datasets: Earth-Iron, which offers extensive question coverage for broad assessment, and Earth-Silver, which features a higher level of difficulty to evaluate professional depth. These datasets encompass five Earth spheres, 114 disciplines, and 11 task categories, assessing foundational knowledge crucial for scientific exploration. Most notably, we introduce Earth-Gold with new metrics, a dataset comprising open-ended multi-turn dialogues specifically designed to evaluate the advanced capabilities of LLMs in scientific exploration, including methodology induction, limitation analysis, and concept proposal. Extensive experiments reveal limitations in 11 leading LLMs across different domains and tasks, highlighting considerable room for improvement in their scientific exploration capabilities. The benchmark is available on https://huggingface.co/ai-earth .
GeoPlant: Spatial Plant Species Prediction Dataset
The difficulty of monitoring biodiversity at fine scales and over large areas limits ecological knowledge and conservation efforts. To fill this gap, Species Distribution Models (SDMs) predict species across space from spatially explicit features. Yet, they face the challenge of integrating the rich but heterogeneous data made available over the past decade, notably millions of opportunistic species observations and standardized surveys, as well as multi-modal remote sensing data. In light of that, we have designed and developed a new European-scale dataset for SDMs at high spatial resolution (10-50 m), including more than 10k species (i.e., most of the European flora). The dataset comprises 5M heterogeneous Presence-Only records and 90k exhaustive Presence-Absence survey records, all accompanied by diverse environmental rasters (e.g., elevation, human footprint, and soil) that are traditionally used in SDMs. In addition, it provides Sentinel-2 RGB and NIR satellite images with 10 m resolution, a 20-year time-series of climatic variables, and satellite time-series from the Landsat program. In addition to the data, we provide an openly accessible SDM benchmark (hosted on Kaggle), which has already attracted an active community and a set of strong baselines for single predictor/modality and multimodal approaches. All resources, e.g., the dataset, pre-trained models, and baseline methods (in the form of notebooks), are available on Kaggle, allowing one to start with our dataset literally with two mouse clicks.
Gas dynamics around a Jupiter mass planet: II. Chemical evolution of circumplanetary material
In an ongoing effort to understand planet formation the link between the chemistry of the protoplanetary disk and the properties of resulting planets have long been a subject of interest. These connections have generally been made between mature planets and young protoplanetary disks through the carbon-to-oxygen (C/O) ratio. In a rare number of systems, young protoplanets have been found within their natal protoplanetary disks. These systems offer a unique opportunity to directly study the delivery of gas from the protoplanetary disk to the planet. In this work we post-process 3D numerical simulations of an embedded Jupiter-massed planet in its protoplanetary disk to explore the chemical evolution of gas as it flows from the disk to the planet. The relevant dust to this chemical evolution is assumed to be small, co-moving grains with a reduced dust-to-gas ratio indicative of the upper atmosphere of a protoplanetary disk. We find that as the gas enters deep into the planet's gravitational well, it warms significantly (up to sim 800 K), releasing all of the volatile content from the ice phase. This change in phase can influence our understanding of the delivery of volatile species to the atmospheres of giant planets. The primary carbon, oxygen, and sulfur carrying ices: CO_2, H_2O, and H_2S are released into the gas phase and along with the warm gas temperatures near the embedded planets lead to the production of unique species like CS, SO, and SO_2 compared to the protoplanetary disk. We compute the column densities of SO, SO_2, CS, and H_2CS in our model and find that their values are consistent with previous observational studies.
SSL4EO-S12 v1.1: A Multimodal, Multiseasonal Dataset for Pretraining, Updated
This technical report presents SSL4EO-S12 v1.1, a multimodal, multitemporal Earth Observation dataset designed for pretraining large-scale foundation models. Building on the success of SSL4EO-S12 v1.0, the new version addresses the previous challenges of data misalignment and a limited data structure for low-barrier, analysis-ready EO processing. SSL4EO-S12 v1.1 covers the world's 10,000 largest cities and its surroundings within a 50 km radius across four seasons, resulting in a diverse collection of nearly one million patches. SSL4EO-S12 v1.1 packages the data in Zarr file format for cloud-efficient loading and representation of meta-information such as including cloud masks and geolocation. Released under the CC-BY-4.0 license, SSL4EO-S12 v1.1 facilitates open research and provides a robust foundation for future advancements in self-supervised learning and geospatial analysis. The dataset is available online through https://datapub.fz-juelich.de/ssl4eo-s12, and we provided additional resources at https://github.com/DLR-MF-DAS/SSL4EO-S12-v1.1.
Chaos as an interpretable benchmark for forecasting and data-driven modelling
The striking fractal geometry of strange attractors underscores the generative nature of chaos: like probability distributions, chaotic systems can be repeatedly measured to produce arbitrarily-detailed information about the underlying attractor. Chaotic systems thus pose a unique challenge to modern statistical learning techniques, while retaining quantifiable mathematical properties that make them controllable and interpretable as benchmarks. Here, we present a growing database currently comprising 131 known chaotic dynamical systems spanning fields such as astrophysics, climatology, and biochemistry. Each system is paired with precomputed multivariate and univariate time series. Our dataset has comparable scale to existing static time series databases; however, our systems can be re-integrated to produce additional datasets of arbitrary length and granularity. Our dataset is annotated with known mathematical properties of each system, and we perform feature analysis to broadly categorize the diverse dynamics present across the collection. Chaotic systems inherently challenge forecasting models, and across extensive benchmarks we correlate forecasting performance with the degree of chaos present. We also exploit the unique generative properties of our dataset in several proof-of-concept experiments: surrogate transfer learning to improve time series classification, importance sampling to accelerate model training, and benchmarking symbolic regression algorithms.
GeoLangBind: Unifying Earth Observation with Agglomerative Vision-Language Foundation Models
Earth observation (EO) data, collected from diverse sensors with varying imaging principles, present significant challenges in creating unified analytical frameworks. We present GeoLangBind, a novel agglomerative vision--language foundation model that bridges the gap between heterogeneous EO data modalities using language as a unifying medium. Our approach aligns different EO data types into a shared language embedding space, enabling seamless integration and complementary feature learning from diverse sensor data. To achieve this, we construct a large-scale multimodal image--text dataset, GeoLangBind-2M, encompassing six data modalities. GeoLangBind leverages this dataset to develop a zero-shot foundation model capable of processing arbitrary numbers of EO data channels as input. Through our designed Modality-aware Knowledge Agglomeration (MaKA) module and progressive multimodal weight merging strategy, we create a powerful agglomerative foundation model that excels in both zero-shot vision--language comprehension and fine-grained visual understanding. Extensive evaluation across 23 datasets covering multiple tasks demonstrates GeoLangBind's superior performance and versatility in EO applications, offering a robust framework for various environmental monitoring and analysis tasks. The dataset and pretrained models will be publicly available.
Community Research Earth Digital Intelligence Twin (CREDIT)
Recent advancements in artificial intelligence (AI) for numerical weather prediction (NWP) have significantly transformed atmospheric modeling. AI NWP models outperform traditional physics-based systems, such as the Integrated Forecast System (IFS), across several global metrics while requiring fewer computational resources. However, existing AI NWP models face limitations related to training datasets and timestep choices, often resulting in artifacts that reduce model performance. To address these challenges, we introduce the Community Research Earth Digital Intelligence Twin (CREDIT) framework, developed at NSF NCAR. CREDIT provides a flexible, scalable, and user-friendly platform for training and deploying AI-based atmospheric models on high-performance computing systems. It offers an end-to-end pipeline for data preprocessing, model training, and evaluation, democratizing access to advanced AI NWP capabilities. We demonstrate CREDIT's potential through WXFormer, a novel deterministic vision transformer designed to predict atmospheric states autoregressively, addressing common AI NWP issues like compounding error growth with techniques such as spectral normalization, padding, and multi-step training. Additionally, to illustrate CREDIT's flexibility and state-of-the-art model comparisons, we train the FUXI architecture within this framework. Our findings show that both FUXI and WXFormer, trained on six-hourly ERA5 hybrid sigma-pressure levels, generally outperform IFS HRES in 10-day forecasts, offering potential improvements in efficiency and forecast accuracy. CREDIT's modular design enables researchers to explore various models, datasets, and training configurations, fostering innovation within the scientific community.
GAIA: A Foundation Model for Operational Atmospheric Dynamics
We present the GAIA (Geospatial Artificial Intelligence for Atmospheres) Foundation Model, a novel model that combines masked autoencoders (MAE) and self-DIstillation with NO labels (DINO) for analyzing global atmospheric patterns in satellite imagery. By integrating these complementary self-supervised learning approaches, our model simultaneously captures both local features and global dependencies. We address two critical challenges in satellite data analysis: reconstructing missing regions and estimating precipitation patterns as our first downstream tasks. The model demonstrates superior temporal pattern capture compared to standard MAE approaches, while maintaining robust performance in downstream tasks. Our experimental results show strong gap-filling capabilities across varying mask ratios and accurate precipitation estimation with limited training data, achieving a false alarm ratio of 0.088 and structural similarity of 0.881. This work represents an advancement in self-supervised learning for atmospheric science, providing a foundation for improved weather monitoring and climate analysis. The trained model weights and accompanying code are publicly available as open-source on Hugging Face here: https://huggingface.co/bcg-usra-nasa-gaia/GAIA-v1.
Foundation Models for Generalist Geospatial Artificial Intelligence
Significant progress in the development of highly adaptable and reusable Artificial Intelligence (AI) models is expected to have a significant impact on Earth science and remote sensing. Foundation models are pre-trained on large unlabeled datasets through self-supervision, and then fine-tuned for various downstream tasks with small labeled datasets. This paper introduces a first-of-a-kind framework for the efficient pre-training and fine-tuning of foundational models on extensive geospatial data. We have utilized this framework to create Prithvi, a transformer-based geospatial foundational model pre-trained on more than 1TB of multispectral satellite imagery from the Harmonized Landsat-Sentinel 2 (HLS) dataset. Our study demonstrates the efficacy of our framework in successfully fine-tuning Prithvi to a range of Earth observation tasks that have not been tackled by previous work on foundation models involving multi-temporal cloud gap imputation, flood mapping, wildfire scar segmentation, and multi-temporal crop segmentation. Our experiments show that the pre-trained model accelerates the fine-tuning process compared to leveraging randomly initialized weights. In addition, pre-trained Prithvi compares well against the state-of-the-art, e.g., outperforming a conditional GAN model in multi-temporal cloud imputation by up to 5pp (or 5.7%) in the structural similarity index. Finally, due to the limited availability of labeled data in the field of Earth observation, we gradually reduce the quantity of available labeled data for refining the model to evaluate data efficiency and demonstrate that data can be decreased significantly without affecting the model's accuracy. The pre-trained 100 million parameter model and corresponding fine-tuning workflows have been released publicly as open source contributions to the global Earth sciences community through Hugging Face.
Common Practices and Taxonomy in Deep Multi-view Fusion for Remote Sensing Applications
The advances in remote sensing technologies have boosted applications for Earth observation. These technologies provide multiple observations or views with different levels of information. They might contain static or temporary views with different levels of resolution, in addition to having different types and amounts of noise due to sensor calibration or deterioration. A great variety of deep learning models have been applied to fuse the information from these multiple views, known as deep multi-view or multi-modal fusion learning. However, the approaches in the literature vary greatly since different terminology is used to refer to similar concepts or different illustrations are given to similar techniques. This article gathers works on multi-view fusion for Earth observation by focusing on the common practices and approaches used in the literature. We summarize and structure insights from several different publications concentrating on unifying points and ideas. In this manuscript, we provide a harmonized terminology while at the same time mentioning the various alternative terms that are used in literature. The topics covered by the works reviewed focus on supervised learning with the use of neural network models. We hope this review, with a long list of recent references, can support future research and lead to a unified advance in the area.
EarthCrafter: Scalable 3D Earth Generation via Dual-Sparse Latent Diffusion
Despite the remarkable developments achieved by recent 3D generation works, scaling these methods to geographic extents, such as modeling thousands of square kilometers of Earth's surface, remains an open challenge. We address this through a dual innovation in data infrastructure and model architecture. First, we introduce Aerial-Earth3D, the largest 3D aerial dataset to date, consisting of 50k curated scenes (each measuring 600m x 600m) captured across the U.S. mainland, comprising 45M multi-view Google Earth frames. Each scene provides pose-annotated multi-view images, depth maps, normals, semantic segmentation, and camera poses, with explicit quality control to ensure terrain diversity. Building on this foundation, we propose EarthCrafter, a tailored framework for large-scale 3D Earth generation via sparse-decoupled latent diffusion. Our architecture separates structural and textural generation: 1) Dual sparse 3D-VAEs compress high-resolution geometric voxels and textural 2D Gaussian Splats (2DGS) into compact latent spaces, largely alleviating the costly computation suffering from vast geographic scales while preserving critical information. 2) We propose condition-aware flow matching models trained on mixed inputs (semantics, images, or neither) to flexibly model latent geometry and texture features independently. Extensive experiments demonstrate that EarthCrafter performs substantially better in extremely large-scale generation. The framework further supports versatile applications, from semantic-guided urban layout generation to unconditional terrain synthesis, while maintaining geographic plausibility through our rich data priors from Aerial-Earth3D. Our project page is available at https://whiteinblue.github.io/earthcrafter/
Galileo: Learning Global and Local Features in Pretrained Remote Sensing Models
From crop mapping to flood detection, machine learning in remote sensing has a wide range of societally beneficial applications. The commonalities between remote sensing data in these applications present an opportunity for pretrained machine learning models tailored to remote sensing to reduce the labeled data and effort required to solve individual tasks. However, such models must be: (i) flexible enough to ingest input data of varying sensor modalities and shapes (i.e., of varying spatial and temporal dimensions), and (ii) able to model Earth surface phenomena of varying scales and types. To solve this gap, we present Galileo, a family of pretrained remote sensing models designed to flexibly process multimodal remote sensing data. We also introduce a novel and highly effective self-supervised learning approach to learn both large- and small-scale features, a challenge not addressed by previous models. Our Galileo models obtain state-of-the-art results across diverse remote sensing tasks.
A Sentinel-3 foundation model for ocean colour
Artificial Intelligence (AI) Foundation models (FMs), pre-trained on massive unlabelled datasets, have the potential to drastically change AI applications in ocean science, where labelled data are often sparse and expensive to collect. In this work, we describe a new foundation model using the Prithvi-EO Vision Transformer architecture which has been pre-trained to reconstruct data from the Sentinel-3 Ocean and Land Colour Instrument (OLCI). We evaluate the model by fine-tuning on two downstream marine earth observation tasks. We first assess model performance compared to current baseline models used to quantify chlorophyll concentration. We then evaluate the FMs ability to refine remote sensing-based estimates of ocean primary production. Our results demonstrate the utility of self-trained FMs for marine monitoring, in particular for making use of small amounts of high quality labelled data and in capturing detailed spatial patterns of ocean colour whilst matching point observations. We conclude that this new generation of geospatial AI models has the potential to provide more robust, data-driven insights into ocean ecosystems and their role in global climate processes.
A projection based Variational Multiscale Method for Atmosphere-Ocean Interaction
The proposed method aims to approximate a solution of a fluid-fluid interaction problem in case of low viscosities. The nonlinear interface condition on the joint boundary allows for this problem to be viewed as a simplified version of the atmosphere-ocean coupling. Thus, the proposed method should be viewed as potentially applicable to air-sea coupled flows in turbulent regime. The method consists of two key ingredients. The geometric averaging approach is used for efficient and stable decoupling of the problem, which would allow for the usage of preexisting codes for the air and sea domain separately, as "black boxes". This is combined with the variational multiscale stabilization technique for treating flows at high Reynolds numbers. We prove the stability and accuracy of the method and provide several numerical tests to assess both the quantitative and qualitative features of the computed solution.
Solar variability in the Mg II h and k lines
Solar irradiance and its variations in the ultraviolet (UV) control the photochemistry in Earth's atmosphere and influence Earth's climate. The variability of Mg II h and k core-to-wing ratio, also known as the Mg II index, is highly correlated with the solar UV irradiance variability. Because of this, Mg II index is routinely used as a proxy for solar UV irradiance variability, which can help to get insights into the influence of solar UV irradiance variability on Earth's climate. Measurements of the Mg II index, however, have only been carried out since 1978 and do not cover the climate relevant timescales longer than a few decades. Here we present a model to calculate the Mg II index and its variability based on the well-established SATIRE (Spectral And Total Irradiance REconstruction) model. We demonstrate that our model calculations yield an excellent agreement with the observed Mg II index variations, both on the solar activity cycle and on the solar rotation timescales. Using this model, we synthesize Mg II index timeseries on climate relevant timescales of decades and longer. Here we present the timeseries of the Mg II index spanning nearly three centuries.
GAIA: A Global, Multi-modal, Multi-scale Vision-Language Dataset for Remote Sensing Image Analysis
The continuous operation of Earth-orbiting satellites generates vast and ever-growing archives of Remote Sensing (RS) images. Natural language presents an intuitive interface for accessing, querying, and interpreting the data from such archives. However, existing Vision-Language Models (VLMs) are predominantly trained on web-scraped, noisy image-text data, exhibiting limited exposure to the specialized domain of RS. This deficiency results in poor performance on RS-specific tasks, as commonly used datasets often lack detailed, scientifically accurate textual descriptions and instead emphasize solely on attributes like date and location. To bridge this critical gap, we introduce GAIA, a novel dataset designed for multi-scale, multi-sensor, and multi-modal RS image analysis. GAIA comprises of 205,150 meticulously curated RS image-text pairs, representing a diverse range of RS modalities associated to different spatial resolutions. Unlike existing vision-language datasets in RS, GAIA specifically focuses on capturing a diverse range of RS applications, providing unique information about environmental changes, natural disasters, and various other dynamic phenomena. The dataset provides a spatially and temporally balanced distribution, spanning across the globe, covering the last 25 years with a balanced temporal distribution of observations. GAIA's construction involved a two-stage process: (1) targeted web-scraping of images and accompanying text from reputable RS-related sources, and (2) generation of five high-quality, scientifically grounded synthetic captions for each image using carefully crafted prompts that leverage the advanced vision-language capabilities of GPT-4o. Our extensive experiments, including fine-tuning of CLIP and BLIP2 models, demonstrate that GAIA significantly improves performance on RS image classification, cross-modal retrieval and image captioning tasks.
Mamba Integrated with Physics Principles Masters Long-term Chaotic System Forecasting
Long-term forecasting of chaotic systems from short-term observations remains a fundamental and underexplored challenge due to the intrinsic sensitivity to initial conditions and the complex geometry of strange attractors. Existing approaches often rely on long-term training data or focus on short-term sequence correlations, struggling to maintain predictive stability and dynamical coherence over extended horizons. We propose PhyxMamba, a novel framework that integrates a Mamba-based state-space model with physics-informed principles to capture the underlying dynamics of chaotic systems. By reconstructing the attractor manifold from brief observations using time-delay embeddings, PhyxMamba extracts global dynamical features essential for accurate forecasting. Our generative training scheme enables Mamba to replicate the physical process, augmented by multi-token prediction and attractor geometry regularization for physical constraints, enhancing prediction accuracy and preserving key statistical invariants. Extensive evaluations on diverse simulated and real-world chaotic systems demonstrate that PhyxMamba delivers superior long-term forecasting and faithfully captures essential dynamical invariants from short-term data. This framework opens new avenues for reliably predicting chaotic systems under observation-scarce conditions, with broad implications across climate science, neuroscience, epidemiology, and beyond. Our code is open-source at https://github.com/tsinghua-fib-lab/PhyxMamba.
Characterizing WASP-43b's interior structure: unveiling tidal decay and apsidal motion
Context. Recent developments in exoplanetary research highlight the importance of Love numbers in understanding their internal dynamics, formation, migration history and their potential habitability. Love numbers represent crucial parameters that gauge how exoplanets respond to external forces such as tidal interactions and rotational effects. By measuring these responses, we can gain insights into the internal structure, composition, and density distribution of exoplanets. The rate of apsidal precession of a planetary orbit is directly linked to the second-order fluid Love number, thus we can gain valuable insights into the mass distribution of the planet. Aims. In this context, we aim to re-determine the orbital parameters of WASP-43b-in particular, orbital period, eccentricity, and argument of the periastron-and its orbital evolution. We study the outcomes of the tidal interaction with the host star:whether tidal decay and periastron precession are occurring in the system. Method. We observed the system with HARPS, whose data we present for the first time, and we also analyse the newly acquired JWST full-phase light curve. We fit jointly archival and new radial velocity and transit and occultation mid-times, including tidal decay, periastron precession and long-term acceleration in the system. Results. We detected a tidal decay rate of \dotP_a=(-1.99pm0.50) and a periastron precession rate of \dotomega=(0.1851+0.0070-0.0077)=(0.1727+0.0083-0.0089)deg/d=(621.72+29.88-32.04)arcsec/d. This is the first time that both periastron precession and tidal decay are simultaneously detected in an exoplanetary system. The observed tidal interactions can neither be explained by the tidal contribution to apsidal motion of a non-aligned stellar or planetary rotation axis nor by assuming non-synchronous rotation for the planet, and a value for the planetary Love number cannot be derived. [...]
M3LEO: A Multi-Modal, Multi-Label Earth Observation Dataset Integrating Interferometric SAR and Multispectral Data
Satellite-based remote sensing has revolutionised the way we address global challenges. Huge quantities of Earth Observation (EO) data are generated by satellite sensors daily, but processing these large datasets for use in ML pipelines is technically and computationally challenging. While some preprocessed Earth observation datasets exist, their content is often limited to optical or near-optical wavelength data, which is ineffective at night or in adverse weather conditions. Synthetic Aperture Radar (SAR), an active sensing technique based on microwave length radiation, offers a viable alternative. However, the application of machine learning to SAR has been limited due to a lack of ML-ready data and pipelines, particularly for the full diversity of SAR data, including polarimetry, coherence and interferometry. In this work, we introduce M3LEO, a multi-modal, multi-label Earth observation dataset that includes polarimetric, interferometric, and coherence SAR data derived from Sentinel-1, alongside multispectral Sentinel-2 imagery and auxiliary data describing terrain properties such as land use. M3LEO spans approximately 17M 4x4 km data chips from six diverse geographic regions. The dataset is complemented by a flexible PyTorch Lightning framework configured using Hydra to accommodate its use across diverse ML applications in Earth observation. We provide tools to process any dataset available on popular platforms such as Google Earth Engine for seamless integration with our framework. We show that the distribution shift in self-supervised embeddings is substantial across geographic regions, even when controlling for terrain properties. Data: huggingface.co/M3LEO, Code: github.com/spaceml-org/M3LEO.
Video Compression for Spatiotemporal Earth System Data
Large-scale Earth system datasets, from high-resolution remote sensing imagery to spatiotemporal climate model outputs, exhibit characteristics analogous to those of standard videos. Their inherent spatial, temporal, and spectral redundancies can thus be readily exploited by established video compression techniques. Here, we present xarrayvideo, a Python library for compressing multichannel spatiotemporal datasets by encoding them as videos. Our approach achieves compression ratios of up to 250x while maintaining high fidelity by leveraging standard, well-optimized video codecs through ffmpeg. We demonstrate the library's effectiveness on four real-world multichannel spatiotemporal datasets: DynamicEarthNet (very high resolution Planet images), DeepExtremeCubes (high resolution Sentinel-2 images), ERA5 (weather reanalysis data), and the SimpleS2 dataset (high resolution multichannel Sentinel-2 images), achieving Peak Signal-to-Noise Ratios (PSNRs) of 55.86, 40.60, 46.58, and 43.23 dB at 0.1 bits per pixel per band (bpppb) and 65.91, 54.28, 62.90, and 55.04 dB at 1 bpppb. We are redistributing two of these datasets, DeepExtremeCubes (2.3 Tb) and DynamicEarthNet (525 Gb), in the machine-learning-ready and cloud-ready TACO format through HuggingFace at significantly reduced sizes (270 Gb and 8.5 Gb, respectively) without compromising quality (PSNR 55.77-56.65 and 60.15). No performance loss is observed when the compressed versions of these datasets are used in their respective deep learning-based downstream tasks (next step reflectance prediction and landcover segmentation). In conclusion, xarrayvideo presents an efficient solution for handling the rapidly growing size of Earth observation datasets, making advanced compression techniques accessible and practical to the Earth science community. The library is available for use at https://github.com/IPL-UV/xarrayvideo
BioCube: A Multimodal Dataset for Biodiversity Research
Biodiversity research requires complete and detailed information to study ecosystem dynamics at different scales. Employing data-driven methods like Machine Learning is getting traction in ecology and more specific biodiversity, offering alternative modelling pathways. For these methods to deliver accurate results there is the need for large, curated and multimodal datasets that offer granular spatial and temporal resolutions. In this work, we introduce BioCube, a multimodal, fine-grained global dataset for ecology and biodiversity research. BioCube incorporates species observations through images, audio recordings and descriptions, environmental DNA, vegetation indices, agricultural, forest, land indicators, and high-resolution climate variables. All observations are geospatially aligned under the WGS84 geodetic system, spanning from 2000 to 2020. The dataset will become available at https://huggingface.co/datasets/BioDT/BioCube while the acquisition and processing code base at https://github.com/BioDT/bfm-data.
Decentralised, Self-Organising Drone Swarms using Coupled Oscillators
The problem of robotic synchronisation and coordination is a long-standing one. Combining autonomous, computerised systems with unpredictable real-world conditions can have consequences ranging from poor performance to collisions and damage. This paper proposes using coupled oscillators to create a drone swarm that is decentralised and self organising. This allows for greater flexibility and adaptiveness than a hard-coded swarm, with more resilience and scalability than a centralised system. Our method allows for a variable number of drones to spontaneously form a swarm and react to changing swarm conditions. Additionally, this method includes provisions to prevent communication interference between drones, and signal processing techniques to ensure a smooth and cohesive swarm.
Recent global temperature surge amplified by record-low planetary albedo
In 2023, the global mean temperature soared to 1.48K above the pre-industrial level, surpassing the previous record by 0.17K. Previous best-guess estimates of known drivers including anthropogenic warming and the El Nino onset fall short by about 0.2K in explaining the temperature rise. Utilizing satellite and reanalysis data, we identify a record-low planetary albedo as the primary factor bridging this gap. The decline is caused largely by a reduced low-cloud cover in the northern mid-latitudes and tropics, in continuation of a multi-annual trend. Understanding how much of the low-cloud trend is due to internal variability, reduced aerosol concentrations, or a possibly emerging low-cloud feedback will be crucial for assessing the current and expected future warming.
GEO-Bench-2: From Performance to Capability, Rethinking Evaluation in Geospatial AI
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
True Zero-Shot Inference of Dynamical Systems Preserving Long-Term Statistics
Complex, temporally evolving phenomena, from climate to brain activity, are governed by dynamical systems (DS). DS reconstruction (DSR) seeks to infer generative surrogate models of these from observed data, reproducing their long-term behavior. Existing DSR approaches require purpose-training for any new system observed, lacking the zero-shot and in-context inference capabilities known from LLMs. Here we introduce DynaMix, a novel multivariate ALRNN-based mixture-of-experts architecture pre-trained for DSR, the first DSR model able to generalize zero-shot to out-of-domain DS. Just from a provided context signal, without any re-training, DynaMix faithfully forecasts the long-term evolution of novel DS where existing time series (TS) foundation models, like Chronos, fail -- at a fraction of the number of parameters and orders of magnitude faster inference times. DynaMix outperforms TS foundation models in terms of long-term statistics, and often also short-term forecasts, even on real-world time series, like traffic or weather data, typically used for training and evaluating TS models, but not at all part of DynaMix' training corpus. We illustrate some of the failure modes of TS models for DSR problems, and conclude that models built on DS principles may bear a huge potential also for advancing the TS prediction field.
Solaris: A Foundation Model of the Sun
Foundation models have demonstrated remarkable success across various scientific domains, motivating our exploration of their potential in solar physics. In this paper, we present Solaris, the first foundation model for forecasting the Sun's atmosphere. We leverage 13 years of full-disk, multi-wavelength solar imagery from the Solar Dynamics Observatory, spanning a complete solar cycle, to pre-train Solaris for 12-hour interval forecasting. Solaris is built on a large-scale 3D Swin Transformer architecture with 109 million parameters. We demonstrate Solaris' ability to generalize by fine-tuning on a low-data regime using a single wavelength (1700 {\AA}), that was not included in pre-training, outperforming models trained from scratch on this specific wavelength. Our results indicate that Solaris can effectively capture the complex dynamics of the solar atmosphere and transform solar forecasting.
Constraining atmospheric composition from the outflow: helium observations reveal the fundamental properties of two planets straddling the radius gap
TOI-836 is a ~2-3 Gyr K dwarf with an inner super Earth (R=1.7 R_oplus, P=3.8 d) and an outer mini Neptune (R=2.6 R_oplus, P=8.6 d). JWST/NIRSpec 2.8--5.2 mum transmission spectra are flat for both planets. We present Keck/NIRSPEC observations of escaping helium for super-Earth b, which shows no excess absorption in the 1083 nm triplet to deep limits (<0.2%), and mini-Neptune c, which shows strong (0.7%) excess absorption in both visits. These results demonstrate that planet c retains at least some primordial atmosphere, while planet b is consistent with having lost its entire primordial envelope. Self-consistent 1D radiative-hydrodynamic models of planet c reveal that the helium excess absorption signal is highly sensitive to metallicity: its equivalent width collapses by a factor of 13 as metallicity increases from 10x to 100x solar, and by a further factor of 12 as it increases to 200x solar. The observed equivalent width is 88\% the model prediction for 100x metallicity, suggesting an atmospheric metallicity similar to K2-18b and TOI-270d, the first two mini-Neptunes with detected absorption features in JWST transmission spectra. We highlight the helium triplet as a potentially powerful probe of atmospheric composition, with complementary strengths and weaknesses to atmospheric retrievals. The main strength is its extreme sensitivity to metallicity in the scientifically significant range of 10--200x solar, and the main weakness is the enormous model uncertainties in outflow suppression and confinement mechanisms, such as magnetic fields and stellar winds, which can suppress the signal by at least a factor of ~several.
Citizen Centered Climate Intelligence: Operationalizing Open Tree Data for Urban Cooling and Eco-Routing in Indian Cities
Urban climate resilience requires more than high-resolution data; it demands systems that embed data collection, interpretation, and action within the daily lives of citizens. This chapter presents a scalable, citizen-centric framework that reimagines environmental infrastructure through participatory sensing, open analytics, and prescriptive urban planning tools. Applied in Pune, India, the framework comprises three interlinked modules: (1) a smartphone-based measurement toolkit enhanced by AI segmentation to extract tree height, canopy diameter, and trunk girth; (2) a percentile-based model using satellite-derived Land Surface Temperature to calculate localized cooling through two new metrics, Cooling Efficacy and Ambient Heat Relief; and (3) an eco-routing engine that guides mobility using a Static Environmental Quality score, based on tree density, species diversity, and cumulative carbon sequestration. Together, these modules form a closed feedback loop where citizens generate actionable data and benefit from personalized, sustainable interventions. This framework transforms open data from a passive repository into an active platform for shared governance and environmental equity. In the face of growing ecological inequality and data centralization, this chapter presents a replicable model for citizen-driven urban intelligence, reframing planning as a co-produced, climate-resilient, and radically local practice.
Effectively Modeling Time Series with Simple Discrete State Spaces
Time series modeling is a well-established problem, which often requires that methods (1) expressively represent complicated dependencies, (2) forecast long horizons, and (3) efficiently train over long sequences. State-space models (SSMs) are classical models for time series, and prior works combine SSMs with deep learning layers for efficient sequence modeling. However, we find fundamental limitations with these prior approaches, proving their SSM representations cannot express autoregressive time series processes. We thus introduce SpaceTime, a new state-space time series architecture that improves all three criteria. For expressivity, we propose a new SSM parameterization based on the companion matrix -- a canonical representation for discrete-time processes -- which enables SpaceTime's SSM layers to learn desirable autoregressive processes. For long horizon forecasting, we introduce a "closed-loop" variation of the companion SSM, which enables SpaceTime to predict many future time-steps by generating its own layer-wise inputs. For efficient training and inference, we introduce an algorithm that reduces the memory and compute of a forward pass with the companion matrix. With sequence length ell and state-space size d, we go from O(d ell) na\"ively to O(d + ell). In experiments, our contributions lead to state-of-the-art results on extensive and diverse benchmarks, with best or second-best AUROC on 6 / 7 ECG and speech time series classification, and best MSE on 14 / 16 Informer forecasting tasks. Furthermore, we find SpaceTime (1) fits AR(p) processes that prior deep SSMs fail on, (2) forecasts notably more accurately on longer horizons than prior state-of-the-art, and (3) speeds up training on real-world ETTh1 data by 73% and 80% relative wall-clock time over Transformers and LSTMs.
The impact of stellar winds and tidal locking effects on the habitability of Earth-like exoplanets around M dwarf stars
We present an assessment of the effects of stellar wind magnetic and mechanical components on the habitability of Earth-like exoplanets orbiting the inner and outer radii of the habitable zone (HZ) of M dwarfs. We consider stars with masses in the range of 0.09 - 0.75 M_odot and planets with a surface dipolar magnetic field of 0.5 G. We estimate the size of the magnetospheres of such exoplanets using the pressure balance equation including the contribution of magnetic and ram pressures from stellar winds. We explore different scenarios, including fast and slow stellar winds, to assess the relevance of kinetic contribution. Furthermore, the effect of tidal locking and potential deviations from the Parker spiral, typically used to describe the interplanetary magnetic field, are analyzed. We show that for low mass stars (M < 0.15 M_odot), the ram pressure exerted by stellar winds affects the size of the magnetosphere more than the stellar wind magnetic pressure. Interestingly, when the ram pressure is not much stronger than the magnetic pressure, typically for higher mass stars, the inclusion of ram pressure can be beneficial to the magnetosphere due to the magnetopause currents. A magnetosphere with the size of that of modern Earth is difficult to achieve with the current assumptions. However, an early Earth magnetosphere is achieved by roughly half of our hypothetical planets orbiting the outer radius of the HZ in most of the considered cases. We find that deviations from the Parker spiral can affect the results significantly, reducing the magnetosphere by 56% in extreme cases. Most of the hypothetical planets are most likely (or might be) tidally locked, with the notable exception of those orbiting the outer HZ of GJ 846 and V1005 Ori.
Impact Assessment of Missing Data in Model Predictions for Earth Observation Applications
Earth observation (EO) applications involving complex and heterogeneous data sources are commonly approached with machine learning models. However, there is a common assumption that data sources will be persistently available. Different situations could affect the availability of EO sources, like noise, clouds, or satellite mission failures. In this work, we assess the impact of missing temporal and static EO sources in trained models across four datasets with classification and regression tasks. We compare the predictive quality of different methods and find that some are naturally more robust to missing data. The Ensemble strategy, in particular, achieves a prediction robustness up to 100%. We evidence that missing scenarios are significantly more challenging in regression than classification tasks. Finally, we find that the optical view is the most critical view when it is missing individually.
Coevolution of Resource and Strategies in Common-Pool Resource Dilemmas: A Coupled Human-Environmental System Model
Common-pool resource governance requires users to cooperate and avoid overexploitation, but defection and free-riding often undermine cooperation. We model a human-environmental system that integrates dynamics of resource and users' strategies. The resource follows a logistic function that depends on natural growth rate, carrying capacity, and extraction rates of cooperators and defectors. The users' strategies evolve according to different processes that capture effects of payoff, resource, and noise. We analyze the feedback between resource availability and strategic adaptation, and explores the conditions for the emergence and maintenance of cooperation. We find different processes lead to different regimes of equilibrium solutions and resource levels depending on the parameter configuration and initial conditions. We also show that some processes can enhance the sustainability of the resource by making the users more responsive to the resource scarcity. The paper advances the understanding of human-environmental system and offers insights for resource governance policies and interventions.
ODS: A self-reporting system for radio telescopes to coexist with adaptive satellite constellations
Low Earth orbit (LEO) satellite constellations bring broadband internet and cellular service to the most remote locations on the planet. Unfortunately, many of these locations also host some of the world's best optical and radio astronomy (RA) observatories. With the number of LEO satellites expected to increase by an order of magnitude in the upcoming decade, satellite downlink radio frequency interference (RFI) is a growing concern in protected radio-quiet areas like the United States National Radio Quiet Zone. When these satellites transmit in the spectrum near protected RA bands, undesired out-of-band emission can leak into these protected bands and impact scientific observations. In this paper, we present a self-reporting system - Operational Data Sharing (ODS) - which enables mutual awareness by publishing radio telescopes' operational information to a protected database that is available to satellite operators through a representational state transfer application programming interface (REST API). Satellite operators can use the ODS data to adapt their downlink tasking algorithms in real time to avoid overwhelming sensitive RA facilities, particularly, through the novel Telescope Boresight Avoidance (TBA) technique. Preliminary results from recent experiments between the NRAO and the SpaceX Starlink teams demonstrate the effectiveness of the ODS and TBA in reducing downlink RFI in the Karl G. Jansky Very Large Array's observations in the 1990-1995 MHz and 10.7-12.7 GHz bands. This automated ODS system is beginning to be implemented by other RA facilities and could be utilized by other satellite operators in the near future.
Aurora: A Foundation Model of the Atmosphere
Deep learning foundation models are revolutionizing many facets of science by leveraging vast amounts of data to learn general-purpose representations that can be adapted to tackle diverse downstream tasks. Foundation models hold the promise to also transform our ability to model our planet and its subsystems by exploiting the vast expanse of Earth system data. Here we introduce Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse weather and climate data. Aurora leverages the strengths of the foundation modelling approach to produce operational forecasts for a wide variety of atmospheric prediction problems, including those with limited training data, heterogeneous variables, and extreme events. In under a minute, Aurora produces 5-day global air pollution predictions and 10-day high-resolution weather forecasts that outperform state-of-the-art classical simulation tools and the best specialized deep learning models. Taken together, these results indicate that foundation models can transform environmental forecasting.
Explainable Earth Surface Forecasting under Extreme Events
With climate change-related extreme events on the rise, high dimensional Earth observation data presents a unique opportunity for forecasting and understanding impacts on ecosystems. This is, however, impeded by the complexity of processing, visualizing, modeling, and explaining this data. To showcase how this challenge can be met, here we train a convolutional long short-term memory-based architecture on the novel DeepExtremeCubes dataset. DeepExtremeCubes includes around 40,000 long-term Sentinel-2 minicubes (January 2016-October 2022) worldwide, along with labeled extreme events, meteorological data, vegetation land cover, and topography map, sampled from locations affected by extreme climate events and surrounding areas. When predicting future reflectances and vegetation impacts through kernel normalized difference vegetation index, the model achieved an R^2 score of 0.9055 in the test set. Explainable artificial intelligence was used to analyze the model's predictions during the October 2020 Central South America compound heatwave and drought event. We chose the same area exactly one year before the event as counterfactual, finding that the average temperature and surface pressure are generally the best predictors under normal conditions. In contrast, minimum anomalies of evaporation and surface latent heat flux take the lead during the event. A change of regime is also observed in the attributions before the event, which might help assess how long the event was brewing before happening. The code to replicate all experiments and figures in this paper is publicly available at https://github.com/DeepExtremes/txyXAI
EarthScape: A Multimodal Dataset for Surficial Geologic Mapping and Earth Surface Analysis
Surficial geologic mapping is essential for understanding Earth surface processes, addressing modern challenges such as climate change and national security, and supporting common applications in engineering and resource management. However, traditional mapping methods are labor-intensive, limiting spatial coverage and introducing potential biases. To address these limitations, we introduce EarthScape, a novel, AI-ready multimodal dataset specifically designed for surficial geologic mapping and Earth surface analysis. EarthScape integrates high-resolution aerial RGB and near-infrared (NIR) imagery, digital elevation models (DEM), multi-scale DEM-derived terrain features, and hydrologic and infrastructure vector data. The dataset provides detailed annotations for seven distinct surficial geologic classes encompassing various geological processes. We present a comprehensive data processing pipeline using open-sourced raw data and establish baseline benchmarks using different spatial modalities to demonstrate the utility of EarthScape. As a living dataset with a vision for expansion, EarthScape bridges the gap between computer vision and Earth sciences, offering a valuable resource for advancing research in multimodal learning, geospatial analysis, and geological mapping. Our code is available at https://github.com/masseygeo/earthscape.
Projections of Earth's Technosphere: Luminosity and Mass as Limits to Growth
Earth remains the only known example of a planet with technology, and future projections of Earth's trajectory provide a basis and motivation for approaching the search for extraterrestrial technospheres. Conventional approaches toward projecting Earth's technosphere include applications of the Kardashev scale, which suggest the possibility that energy-intensive civilizations may expand to harness the entire energy output available to their planet, host star, or even the entire galaxy. In this study, we argue that the Kardashev scale is better understood as a "luminosity limit" that describes the maximum capacity for a civilization to harvest luminous stellar energy across a given spatial domain, and we note that thermodynamic efficiency will always keep a luminosity-limited technosphere from actually reaching this theoretical limit. We suggest the possibility that an advanced technosphere might evolve beyond this luminosity limit to draw its energy directly from harvesting stellar mass, and we also discuss possible trajectories that could exist between Earth today and such hypothetical "stellivores." We develop a framework to describe trajectories for long-lived technospheres that optimize their growth strategies between exploration and exploitation, unlike Earth today. We note that analyses of compact accreting stars could provide ways to test the stellivore hypothesis, and we more broadly suggest an expansion of technosignature search strategies beyond those that reside exactly at the luminosity limit.
Reinforcement Learning for Adaptive Time-Stepping in the Chaotic Gravitational Three-Body Problem
Many problems in astrophysics cover multiple orders of magnitude in spatial and temporal scales. While simulating systems that experience rapid changes in these conditions, it is essential to adapt the (time-) step size to capture the behavior of the system during those rapid changes and use a less accurate time step at other, less demanding, moments. We encounter three problems with traditional methods. Firstly, making such changes requires expert knowledge of the astrophysics as well as of the details of the numerical implementation. Secondly, some parameters that determine the time-step size are fixed throughout the simulation, which means that they do not adapt to the rapidly changing conditions of the problem. Lastly, we would like the choice of time-step size to balance accuracy and computation effort. We address these challenges with Reinforcement Learning by training it to select the time-step size dynamically. We use the integration of a system of three equal-mass bodies that move due to their mutual gravity as an example of its application. With our method, the selected integration parameter adapts to the specific requirements of the problem, both in terms of computation time and accuracy while eliminating the expert knowledge needed to set up these simulations. Our method produces results competitive to existing methods and improve the results found with the most commonly-used values of time-step parameter. This method can be applied to other integrators without further retraining. We show that this extrapolation works for variable time-step integrators but does not perform to the desired accuracy for fixed time-step integrators.
Extreme Event Prediction with Multi-agent Reinforcement Learning-based Parametrization of Atmospheric and Oceanic Turbulence
Global climate models (GCMs) are the main tools for understanding and predicting climate change. However, due to limited numerical resolutions, these models suffer from major structural uncertainties; e.g., they cannot resolve critical processes such as small-scale eddies in atmospheric and oceanic turbulence. Thus, such small-scale processes have to be represented as a function of the resolved scales via closures (parametrization). The accuracy of these closures is particularly important for capturing climate extremes. Traditionally, such closures are based on heuristics and simplifying assumptions about the unresolved physics. Recently, supervised-learned closures, trained offline on high-fidelity data, have been shown to outperform the classical physics-based closures. However, this approach requires a significant amount of high-fidelity training data and can also lead to instabilities. Reinforcement learning is emerging as a potent alternative for developing such closures as it requires only low-order statistics and leads to stable closures. In Scientific Multi-Agent Reinforcement Learning (SMARL) computational elements serve a dual role of discretization points and learning agents. We leverage SMARL and fundamentals of turbulence physics to learn closures for prototypes of atmospheric and oceanic turbulence. The policy is trained using only the enstrophy spectrum, which is nearly invariant and can be estimated from a few high-fidelity samples (these few samples are far from enough for supervised/offline learning). We show that these closures lead to stable low-resolution simulations that, at a fraction of the cost, can reproduce the high-fidelity simulations' statistics, including the tails of the probability density functions. The results demonstrate the high potential of SMARL for closure modeling for GCMs, especially in the regime of scarce data and indirect observations.
NeuralOM: Neural Ocean Model for Subseasonal-to-Seasonal Simulation
Accurate Subseasonal-to-Seasonal (S2S) ocean simulation is critically important for marine research, yet remains challenging due to its substantial thermal inertia and extended time delay. Machine learning (ML)-based models have demonstrated significant advancements in simulation accuracy and computational efficiency compared to traditional numerical methods. Nevertheless, a significant limitation of current ML models for S2S ocean simulation is their inadequate incorporation of physical consistency and the slow-changing properties of the ocean system. In this work, we propose a neural ocean model (NeuralOM) for S2S ocean simulation with a multi-scale interactive graph neural network to emulate diverse physical phenomena associated with ocean systems effectively. Specifically, we propose a multi-stage framework tailored to model the ocean's slowly changing nature. Additionally, we introduce a multi-scale interactive messaging module to capture complex dynamical behaviors, such as gradient changes and multiplicative coupling relationships inherent in ocean dynamics. Extensive experimental evaluations confirm that our proposed NeuralOM outperforms state-of-the-art models in S2S and extreme event simulation. The codes are available at https://github.com/YuanGao-YG/NeuralOM.
Atmospheric Transport Modeling of CO_2 with Neural Networks
Accurately describing the distribution of CO_2 in the atmosphere with atmospheric tracer transport models is essential for greenhouse gas monitoring and verification support systems to aid implementation of international climate agreements. Large deep neural networks are poised to revolutionize weather prediction, which requires 3D modeling of the atmosphere. While similar in this regard, atmospheric transport modeling is subject to new challenges. Both, stable predictions for longer time horizons and mass conservation throughout need to be achieved, while IO plays a larger role compared to computational costs. In this study we explore four different deep neural networks (UNet, GraphCast, Spherical Fourier Neural Operator and SwinTransformer) which have proven as state-of-the-art in weather prediction to assess their usefulness for atmospheric tracer transport modeling. For this, we assemble the CarbonBench dataset, a systematic benchmark tailored for machine learning emulators of Eulerian atmospheric transport. Through architectural adjustments, we decouple the performance of our emulators from the distribution shift caused by a steady rise in atmospheric CO_2. More specifically, we center CO_2 input fields to zero mean and then use an explicit flux scheme and a mass fixer to assure mass balance. This design enables stable and mass conserving transport for over 6 months with all four neural network architectures. In our study, the SwinTransformer displays particularly strong emulation skill (90-day R^2 > 0.99), with physically plausible emulation even for forward runs of multiple years. This work paves the way forward towards high resolution forward and inverse modeling of inert trace gases with neural networks.
Finetuning a Weather Foundation Model with Lightweight Decoders for Unseen Physical Processes
Recent advances in AI weather forecasting have led to the emergence of so-called "foundation models", typically defined by expensive pretraining and minimal fine-tuning for downstream tasks. However, in the natural sciences, a desirable foundation model should also encode meaningful statistical relationships between the underlying physical variables. This study evaluates the performance of the state-of-the-art Aurora foundation model in predicting hydrological variables, which were not considered during pretraining. We introduce a lightweight approach using shallow decoders trained on the latent representations of the pretrained model to predict these new variables. As a baseline, we compare this to fine-tuning the full model, which allows further optimization of the latent space while incorporating new variables into both inputs and outputs. The decoder-based approach requires 50% less training time and 35% less memory, while achieving strong accuracy across various hydrological variables and preserving desirable properties of the foundation model, such as autoregressive stability. Notably, decoder accuracy depends on the physical correlation between the new variables and those used during pretraining, indicating that Aurora's latent space captures meaningful physical relationships. In this sense, we argue that an important quality metric for foundation models in Earth sciences is their ability to be extended to new variables without a full fine-tuning. This provides a new perspective for making foundation models more accessible to communities with limited computational resources, while supporting broader adoption in Earth sciences.
Learning to Decouple Complex Systems
A complex system with cluttered observations may be a coupled mixture of multiple simple sub-systems corresponding to latent entities. Such sub-systems may hold distinct dynamics in the continuous-time domain; therein, complicated interactions between sub-systems also evolve over time. This setting is fairly common in the real world but has been less considered. In this paper, we propose a sequential learning approach under this setting by decoupling a complex system for handling irregularly sampled and cluttered sequential observations. Such decoupling brings about not only subsystems describing the dynamics of each latent entity but also a meta-system capturing the interaction between entities over time. Specifically, we argue that the meta-system evolving within a simplex is governed by projected differential equations (ProjDEs). We further analyze and provide neural-friendly projection operators in the context of Bregman divergence. Experimental results on synthetic and real-world datasets show the advantages of our approach when facing complex and cluttered sequential data compared to the state-of-the-art.
The bolometric Bond albedo and energy balance of Uranus
Using a newly developed `holistic' atmospheric model of the aerosol structure in Uranus's atmosphere, based upon observations made by HST/STIS, Gemini/NIFS and IRTF/SpeX from 2000 -- 2009, we make a new estimate the bolometric Bond albedo of Uranus during this time of A^* = 0.338 pm 0.011, with a phase integral of q^* = 1.36 pm 0.03. Then, using a simple seasonal model, developed to be consistent with the disc-integrated blue and green magnitude data from the Lowell Observatory from 1950 to 2016, we model how Uranus's reflectivity and heat budget vary during its orbit and determine new orbital-mean average value for the bolometric Bond albedo of A^* = 0.349 pm 0.016 and for the absorbed solar flux of P_mathrm{in}=0.604 pm 0.027 W m^{-2}. Assuming the outgoing thermal flux to be P_mathrm{out}=0.693 pm 0.013 W m^{-2}, as previously determined from Voyager 2 observations, we arrive at a new estimate of Uranus's average heat flux budget of P_out/P_in = 1.15 pm 0.06, finding considerable variation with time due to Uranus's significant orbital eccentricity of 0.046. This leads the flux budget to vary from P_out/P_in = 1.03 near perihelion, to 1.24 near aphelion. We conclude that although P_out/P_in is considerably smaller than for the other giant planets, Uranus is not in thermal equilibrium with the Sun.
TerraMesh: A Planetary Mosaic of Multimodal Earth Observation Data
Large-scale foundation models in Earth Observation can learn versatile, label-efficient representations by leveraging massive amounts of unlabeled data. However, existing public datasets are often limited in scale, geographic coverage, or sensor variety. We introduce TerraMesh, a new globally diverse, multimodal dataset combining optical, synthetic aperture radar, elevation, and land-cover modalities in an Analysis-Ready Data format. TerraMesh includes over 9 million samples with eight spatiotemporal aligned modalities, enabling large-scale pre-training and fostering robust cross-modal correlation learning. We provide detailed data processing steps, comprehensive statistics, and empirical evidence demonstrating improved model performance when pre-trained on TerraMesh. The dataset will be made publicly available with a permissive license.
AI for operational methane emitter monitoring from space
Mitigating methane emissions is the fastest way to stop global warming in the short-term and buy humanity time to decarbonise. Despite the demonstrated ability of remote sensing instruments to detect methane plumes, no system has been available to routinely monitor and act on these events. We present MARS-S2L, an automated AI-driven methane emitter monitoring system for Sentinel-2 and Landsat satellite imagery deployed operationally at the United Nations Environment Programme's International Methane Emissions Observatory. We compile a global dataset of thousands of super-emission events for training and evaluation, demonstrating that MARS-S2L can skillfully monitor emissions in a diverse range of regions globally, providing a 216% improvement in mean average precision over a current state-of-the-art detection method. Running this system operationally for six months has yielded 457 near-real-time detections in 22 different countries of which 62 have already been used to provide formal notifications to governments and stakeholders.
Promise and Peril: Stellar Contamination and Strict Limits on the Atmosphere Composition of TRAPPIST-1c from JWST NIRISS Transmission Spectra
Attempts to probe the atmospheres of rocky planets around M dwarfs present both promise and peril. While their favorable planet-to-star radius ratios enable searches for even thin secondary atmospheres, their high activity levels and high-energy outputs threaten atmosphere survival. Here, we present the 0.6--2.85\,mum transmission spectrum of the 1.1\,rm R_oplus, sim340\,K rocky planet TRAPPIST-1\,c obtained over two JWST NIRISS/SOSS transit observations. Each of the two spectra displays 100--500\,ppm signatures of stellar contamination. Despite being separated by 367\,days, the retrieved spot and faculae properties are consistent between the two visits, resulting in nearly identical transmission spectra. Jointly retrieving for stellar contamination and a planetary atmosphere reveals that our spectrum can rule out hydrogen-dominated, lesssim300times solar metallicity atmospheres with effective surface pressures down to 10\,mbar at the 3-sigma level. For high-mean molecular weight atmospheres, where O_2 or N_2 is the background gas, our spectrum disfavors partial pressures of more than sim10\,mbar for H_2O, CO, NH_3 and CH_4 at the 2-sigma level. Similarly, under the assumption of a 100\% H_2O, NH_3, CO, or CH_4 atmosphere, our spectrum disfavors thick, >1\,bar atmospheres at the 2-sigma level. These non-detections of spectral features are in line with predictions that even heavier, CO_2-rich, atmospheres would be efficiently lost on TRAPPIST-1\,c given the cumulative high-energy irradiation experienced by the planet. Our results further stress the importance of robustly accounting for stellar contamination when analyzing JWST observations of exo-Earths around M dwarfs, as well as the need for high-fidelity stellar models to search for the potential signals of thin secondary atmospheres.
The dark matter wake of a galactic bar revealed by multichannel Singular Spectral Analysis
The Milky Way is known to contain a stellar bar, as are a significant fraction of disc galaxies across the universe. Our understanding of bar evolution, both theoretically and through analysis of simulations indicates that bars both grow in amplitude and slow down over time through interaction and angular momentum exchange with the galaxy's dark matter halo. Understanding the physical mechanisms underlying this coupling requires modelling of the structural deformations to the potential that are mutually induced between components. In this work we use Basis Function Expansion (BFE) in combination with multichannel Singular Spectral Analysis (mSSA) as a non-parametric analysis tool to illustrate the coupling between the bar and the dark halo in a single high-resolution isolated barred disc galaxy simulation. We demonstrate the power of mSSA to extract and quantify explicitly coupled dynamical modes, determining growth rates, pattern speeds and phase lags for different stages of evolution of the stellar bar and the dark matter response. BFE & mSSA together grant us the ability to explore the importance and physical mechanisms of bar-halo coupling, and other dynamically coupled structures across a wide range of dynamical environments.
Enhancing the significance of astrophysical events with multimessenger coincidences
Coincident multimessenger observations of cosmic sources can offer numerous benefits, especially when used in the context of synergistic astrophysics. One significant advantage is enhancing the detection significance of separate detectors by correlating their data and assuming joint emission. We have formulated an approach for updating the Bayesian posterior probability of an astrophysical origin, namely p_{rm astro}, relying on multimessenger coincidences assuming an emission model. The description is applicable to any combination of messengers. We demonstrated the formalism for the gravitational waves and high-energy neutrinos case. Applying our method to the public data of candidate coincident high-energy neutrinos with subthreshold gravitational-wave triggers, we found that in the case of highly energetic neutrino coincidences, p_{rm astro} can increase from approximately sim 0.1 to sim 0.9. The amount of improvement depends on the assumed joint emission model. If models are trusted, the marked improvement makes subthreshold detections much more confident. Moreover, the model dependency can also be used to test the consistency of different models. This work is a crucial step toward the goal of uniting all detectors on equal footing into a statistically integrated, Earth-sized observatory for comprehensive multimessenger astrophysics.
Samudra: An AI Global Ocean Emulator for Climate
AI emulators for forecasting have emerged as powerful tools that can outperform conventional numerical predictions. The next frontier is to build emulators for long-term climate projections with robust skill across a wide range of spatiotemporal scales, a particularly important goal for the ocean. Our work builds a skillful global emulator of the ocean component of a state-of-the-art climate model. We emulate key ocean variables, sea surface height, horizontal velocities, temperature, and salinity, across their full depth. We use a modified ConvNeXt UNet architecture trained on multidepth levels of ocean data. We show that the ocean emulator - Samudra - which exhibits no drift relative to the truth, can reproduce the depth structure of ocean variables and their interannual variability. Samudra is stable for centuries and 150 times faster than the original ocean model. Samudra struggles to capture the correct magnitude of the forcing trends and simultaneously remains stable, requiring further work.
SSL4Eco: A Global Seasonal Dataset for Geospatial Foundation Models in Ecology
With the exacerbation of the biodiversity and climate crises, macroecological pursuits such as global biodiversity mapping become more urgent. Remote sensing offers a wealth of Earth observation data for ecological studies, but the scarcity of labeled datasets remains a major challenge. Recently, self-supervised learning has enabled learning representations from unlabeled data, triggering the development of pretrained geospatial models with generalizable features. However, these models are often trained on datasets biased toward areas of high human activity, leaving entire ecological regions underrepresented. Additionally, while some datasets attempt to address seasonality through multi-date imagery, they typically follow calendar seasons rather than local phenological cycles. To better capture vegetation seasonality at a global scale, we propose a simple phenology-informed sampling strategy and introduce corresponding SSL4Eco, a multi-date Sentinel-2 dataset, on which we train an existing model with a season-contrastive objective. We compare representations learned from SSL4Eco against other datasets on diverse ecological downstream tasks and demonstrate that our straightforward sampling method consistently improves representation quality, highlighting the importance of dataset construction. The model pretrained on SSL4Eco reaches state of the art performance on 7 out of 8 downstream tasks spanning (multi-label) classification and regression. We release our code, data, and model weights to support macroecological and computer vision research at https://github.com/PlekhanovaElena/ssl4eco.
