Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCost Aggregation Is All You Need for Few-Shot Segmentation
We introduce a novel cost aggregation network, dubbed Volumetric Aggregation with Transformers (VAT), to tackle the few-shot segmentation task by using both convolutions and transformers to efficiently handle high dimensional correlation maps between query and support. In specific, we propose our encoder consisting of volume embedding module to not only transform the correlation maps into more tractable size but also inject some convolutional inductive bias and volumetric transformer module for the cost aggregation. Our encoder has a pyramidal structure to let the coarser level aggregation to guide the finer level and enforce to learn complementary matching scores. We then feed the output into our affinity-aware decoder along with the projected feature maps for guiding the segmentation process. Combining these components, we conduct experiments to demonstrate the effectiveness of the proposed method, and our method sets a new state-of-the-art for all the standard benchmarks in few-shot segmentation task. Furthermore, we find that the proposed method attains state-of-the-art performance even for the standard benchmarks in semantic correspondence task although not specifically designed for this task. We also provide an extensive ablation study to validate our architectural choices. The trained weights and codes are available at: https://seokju-cho.github.io/VAT/.
GoMVS: Geometrically Consistent Cost Aggregation for Multi-View Stereo
Matching cost aggregation plays a fundamental role in learning-based multi-view stereo networks. However, directly aggregating adjacent costs can lead to suboptimal results due to local geometric inconsistency. Related methods either seek selective aggregation or improve aggregated depth in the 2D space, both are unable to handle geometric inconsistency in the cost volume effectively. In this paper, we propose GoMVS to aggregate geometrically consistent costs, yielding better utilization of adjacent geometries. More specifically, we correspond and propagate adjacent costs to the reference pixel by leveraging the local geometric smoothness in conjunction with surface normals. We achieve this by the geometric consistent propagation (GCP) module. It computes the correspondence from the adjacent depth hypothesis space to the reference depth space using surface normals, then uses the correspondence to propagate adjacent costs to the reference geometry, followed by a convolution for aggregation. Our method achieves new state-of-the-art performance on DTU, Tanks & Temple, and ETH3D datasets. Notably, our method ranks 1st on the Tanks & Temple Advanced benchmark.
CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation
Open-vocabulary semantic segmentation presents the challenge of labeling each pixel within an image based on a wide range of text descriptions. In this work, we introduce a novel cost-based approach to adapt vision-language foundation models, notably CLIP, for the intricate task of semantic segmentation. Through aggregating the cosine similarity score, i.e., the cost volume between image and text embeddings, our method potently adapts CLIP for segmenting seen and unseen classes by fine-tuning its encoders, addressing the challenges faced by existing methods in handling unseen classes. Building upon this, we explore methods to effectively aggregate the cost volume considering its multi-modal nature of being established between image and text embeddings. Furthermore, we examine various methods for efficiently fine-tuning CLIP.
Unifying Feature and Cost Aggregation with Transformers for Semantic and Visual Correspondence
This paper introduces a Transformer-based integrative feature and cost aggregation network designed for dense matching tasks. In the context of dense matching, many works benefit from one of two forms of aggregation: feature aggregation, which pertains to the alignment of similar features, or cost aggregation, a procedure aimed at instilling coherence in the flow estimates across neighboring pixels. In this work, we first show that feature aggregation and cost aggregation exhibit distinct characteristics and reveal the potential for substantial benefits stemming from the judicious use of both aggregation processes. We then introduce a simple yet effective architecture that harnesses self- and cross-attention mechanisms to show that our approach unifies feature aggregation and cost aggregation and effectively harnesses the strengths of both techniques. Within the proposed attention layers, the features and cost volume both complement each other, and the attention layers are interleaved through a coarse-to-fine design to further promote accurate correspondence estimation. Finally at inference, our network produces multi-scale predictions, computes their confidence scores, and selects the most confident flow for final prediction. Our framework is evaluated on standard benchmarks for semantic matching, and also applied to geometric matching, where we show that our approach achieves significant improvements compared to existing methods.
AANet: Adaptive Aggregation Network for Efficient Stereo Matching
Despite the remarkable progress made by learning based stereo matching algorithms, one key challenge remains unsolved. Current state-of-the-art stereo models are mostly based on costly 3D convolutions, the cubic computational complexity and high memory consumption make it quite expensive to deploy in real-world applications. In this paper, we aim at completely replacing the commonly used 3D convolutions to achieve fast inference speed while maintaining comparable accuracy. To this end, we first propose a sparse points based intra-scale cost aggregation method to alleviate the well-known edge-fattening issue at disparity discontinuities. Further, we approximate traditional cross-scale cost aggregation algorithm with neural network layers to handle large textureless regions. Both modules are simple, lightweight, and complementary, leading to an effective and efficient architecture for cost aggregation. With these two modules, we can not only significantly speed up existing top-performing models (e.g., 41times than GC-Net, 4times than PSMNet and 38times than GA-Net), but also improve the performance of fast stereo models (e.g., StereoNet). We also achieve competitive results on Scene Flow and KITTI datasets while running at 62ms, demonstrating the versatility and high efficiency of the proposed method. Our full framework is available at https://github.com/haofeixu/aanet .
Decoupling Bidirectional Geometric Representations of 4D cost volume with 2D convolution
High-performance real-time stereo matching methods invariably rely on 3D regularization of the cost volume, which is unfriendly to mobile devices. And 2D regularization based methods struggle in ill-posed regions. In this paper, we present a deployment-friendly 4D cost aggregation network DBStereo, which is based on pure 2D convolutions. Specifically, we first provide a thorough analysis of the decoupling characteristics of 4D cost volume. And design a lightweight bidirectional geometry aggregation block to capture spatial and disparity representation respectively. Through decoupled learning, our approach achieves real-time performance and impressive accuracy simultaneously. Extensive experiments demonstrate that our proposed DBStereo outperforms all existing aggregation-based methods in both inference time and accuracy, even surpassing the iterative-based method IGEV-Stereo. Our study break the empirical design of using 3D convolutions for 4D cost volume and provides a simple yet strong baseline of the proposed decouple aggregation paradigm for further study. Code will be available at (https://github.com/happydummy/DBStereo{https://github.com/happydummy/DBStereo}) soon.
A Simple Single-Scale Vision Transformer for Object Localization and Instance Segmentation
This work presents a simple vision transformer design as a strong baseline for object localization and instance segmentation tasks. Transformers recently demonstrate competitive performance in image classification tasks. To adopt ViT to object detection and dense prediction tasks, many works inherit the multistage design from convolutional networks and highly customized ViT architectures. Behind this design, the goal is to pursue a better trade-off between computational cost and effective aggregation of multiscale global contexts. However, existing works adopt the multistage architectural design as a black-box solution without a clear understanding of its true benefits. In this paper, we comprehensively study three architecture design choices on ViT -- spatial reduction, doubled channels, and multiscale features -- and demonstrate that a vanilla ViT architecture can fulfill this goal without handcrafting multiscale features, maintaining the original ViT design philosophy. We further complete a scaling rule to optimize our model's trade-off on accuracy and computation cost / model size. By leveraging a constant feature resolution and hidden size throughout the encoder blocks, we propose a simple and compact ViT architecture called Universal Vision Transformer (UViT) that achieves strong performance on COCO object detection and instance segmentation tasks.
Flexible Model Aggregation for Quantile Regression
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.
Bootstrap aggregation and confidence measures to improve time series causal discovery
Learning causal graphs from multivariate time series is a ubiquitous challenge in all application domains dealing with time-dependent systems, such as in Earth sciences, biology, or engineering, to name a few. Recent developments for this causal discovery learning task have shown considerable skill, notably the specific time-series adaptations of the popular conditional independence-based learning framework. However, uncertainty estimation is challenging for conditional independence-based methods. Here, we introduce a novel bootstrap approach designed for time series causal discovery that preserves the temporal dependencies and lag structure. It can be combined with a range of time series causal discovery methods and provides a measure of confidence for the links of the time series graphs. Furthermore, next to confidence estimation, an aggregation, also called bagging, of the bootstrapped graphs by majority voting results in bagged causal discovery methods. In this work, we combine this approach with the state-of-the-art conditional-independence-based algorithm PCMCI+. With extensive numerical experiments we empirically demonstrate that, in addition to providing confidence measures for links, Bagged-PCMCI+ improves in precision and recall as compared to its base algorithm PCMCI+, at the cost of higher computational demands. These statistical performance improvements are especially pronounced in the more challenging settings (short time sample size, large number of variables, high autocorrelation). Our bootstrap approach can also be combined with other time series causal discovery algorithms and can be of considerable use in many real-world applications.
SkeletonX: Data-Efficient Skeleton-based Action Recognition via Cross-sample Feature Aggregation
While current skeleton action recognition models demonstrate impressive performance on large-scale datasets, their adaptation to new application scenarios remains challenging. These challenges are particularly pronounced when facing new action categories, diverse performers, and varied skeleton layouts, leading to significant performance degeneration. Additionally, the high cost and difficulty of collecting skeleton data make large-scale data collection impractical. This paper studies one-shot and limited-scale learning settings to enable efficient adaptation with minimal data. Existing approaches often overlook the rich mutual information between labeled samples, resulting in sub-optimal performance in low-data scenarios. To boost the utility of labeled data, we identify the variability among performers and the commonality within each action as two key attributes. We present SkeletonX, a lightweight training pipeline that integrates seamlessly with existing GCN-based skeleton action recognizers, promoting effective training under limited labeled data. First, we propose a tailored sample pair construction strategy on two key attributes to form and aggregate sample pairs. Next, we develop a concise and effective feature aggregation module to process these pairs. Extensive experiments are conducted on NTU RGB+D, NTU RGB+D 120, and PKU-MMD with various GCN backbones, demonstrating that the pipeline effectively improves performance when trained from scratch with limited data. Moreover, it surpasses previous state-of-the-art methods in the one-shot setting, with only 1/10 of the parameters and much fewer FLOPs. The code and data are available at: https://github.com/zzysteve/SkeletonX
LoRA-FAIR: Federated LoRA Fine-Tuning with Aggregation and Initialization Refinement
Foundation models (FMs) achieve strong performance across diverse tasks with task-specific fine-tuning, yet full parameter fine-tuning is often computationally prohibitive for large models. Parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA) reduce this cost by introducing low-rank matrices for tuning fewer parameters. While LoRA allows for efficient fine-tuning, it requires significant data for adaptation, making Federated Learning (FL) an appealing solution due to its privacy-preserving collaborative framework. However, combining LoRA with FL introduces two key challenges: the Server-Side LoRA Aggregation Bias, where server-side averaging of LoRA matrices diverges from the ideal global update, and the Client-Side LoRA Initialization Drift, emphasizing the need for consistent initialization across rounds. Existing approaches address these challenges individually, limiting their effectiveness. We propose LoRA-FAIR, a novel method that tackles both issues by introducing a correction term on the server while keeping the original LoRA modules, enhancing aggregation efficiency and accuracy. LoRA-FAIR maintains computational and communication efficiency, yielding superior performance over state-of-the-art methods. Experimental results on ViT and MLP-Mixer models across large-scale datasets demonstrate that LoRA-FAIR consistently achieves performance improvements in FL settings.
MAMBA: Multi-level Aggregation via Memory Bank for Video Object Detection
State-of-the-art video object detection methods maintain a memory structure, either a sliding window or a memory queue, to enhance the current frame using attention mechanisms. However, we argue that these memory structures are not efficient or sufficient because of two implied operations: (1) concatenating all features in memory for enhancement, leading to a heavy computational cost; (2) frame-wise memory updating, preventing the memory from capturing more temporal information. In this paper, we propose a multi-level aggregation architecture via memory bank called MAMBA. Specifically, our memory bank employs two novel operations to eliminate the disadvantages of existing methods: (1) light-weight key-set construction which can significantly reduce the computational cost; (2) fine-grained feature-wise updating strategy which enables our method to utilize knowledge from the whole video. To better enhance features from complementary levels, i.e., feature maps and proposals, we further propose a generalized enhancement operation (GEO) to aggregate multi-level features in a unified manner. We conduct extensive evaluations on the challenging ImageNetVID dataset. Compared with existing state-of-the-art methods, our method achieves superior performance in terms of both speed and accuracy. More remarkably, MAMBA achieves mAP of 83.7/84.6% at 12.6/9.1 FPS with ResNet-101. Code is available at https://github.com/guanxiongsun/video_feature_enhancement.
Cross-Layer Cache Aggregation for Token Reduction in Ultra-Fine-Grained Image Recognition
Ultra-fine-grained image recognition (UFGIR) is a challenging task that involves classifying images within a macro-category. While traditional FGIR deals with classifying different species, UFGIR goes beyond by classifying sub-categories within a species such as cultivars of a plant. In recent times the usage of Vision Transformer-based backbones has allowed methods to obtain outstanding recognition performances in this task but this comes at a significant cost in terms of computation specially since this task significantly benefits from incorporating higher resolution images. Therefore, techniques such as token reduction have emerged to reduce the computational cost. However, dropping tokens leads to loss of essential information for fine-grained categories, specially as the token keep rate is reduced. Therefore, to counteract the loss of information brought by the usage of token reduction we propose a novel Cross-Layer Aggregation Classification Head and a Cross-Layer Cache mechanism to recover and access information from previous layers in later locations. Extensive experiments covering more than 2000 runs across diverse settings including 5 datasets, 9 backbones, 7 token reduction methods, 5 keep rates, and 2 image sizes demonstrate the effectiveness of the proposed plug-and-play modules and allow us to push the boundaries of accuracy vs cost for UFGIR by reducing the kept tokens to extremely low ratios of up to 10\% while maintaining a competitive accuracy to state-of-the-art models. Code is available at: https://github.com/arkel23/CLCA
Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning
The rapid emergence of diverse large language models (LLMs) has spurred the development of LLM routers that assign user queries to the most suitable model. However, existing LLM routers typically perform a single-round, one-to-one mapping (i.e., assigning each query to a single model in isolation), which limits their capability to tackle complex tasks that demand the complementary strengths of multiple LLMs. In this paper, we present Router-R1, a reinforcement learning (RL)-based framework that formulates multi-LLM routing and aggregation as a sequential decision process. Router-R1 instantiates the router itself as a capable LLM, leveraging its reasoning ability to interleave "think" actions (internal deliberation) with "route" actions (dynamic model invocation), and integrates each response into its evolving context. To guide learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for performance and cost trade-off optimization, opening a pathway toward optimizing performance-cost tradeoffs via RL. Router-R1 also conditions only on simple model descriptors such as pricing, latency, and example performance, enabling strong generalization to unseen model selection. Experiments on seven general and multi-hop QA benchmarks show that Router-R1 outperforms over several strong baselines, achieving superior performance while maintaining robust generalization and cost management.Code is available at https://github.com/ulab-uiuc/Router-R1.
Mutual Consensus and its Application in Minimum Cost Consensus Models
This paper introduces the concept of {mutual consensus} as a novel non-compensatory consensus measure that accounts for the maximum disparity among opinions to ensure robust consensus evaluation. Incorporating this concept, several new Minimum Cost Consensus (MCC) models are proposed, and their properties are analyzed. To show their applicability, these mutual consensus-based MCC models are then considered in the context of the {OWA-MCC} model, which employs Ordered Weighted Averaging (OWA) operators for preference aggregation. Concretely, we include a linearized formulation under symmetry conditions as well as examples of the non-convexity of the feasible region in the general case. Finally, mutual consensus is utilized to obtain approximate solutions for the OWA-MCC model, demonstrating its practical effectiveness and advancing the theoretical and applied dimensions of consensus modeling in group decision-making.
Sparse Pairwise Re-ranking with Pre-trained Transformers
Pairwise re-ranking models predict which of two documents is more relevant to a query and then aggregate a final ranking from such preferences. This is often more effective than pointwise re-ranking models that directly predict a relevance value for each document. However, the high inference overhead of pairwise models limits their practical application: usually, for a set of k documents to be re-ranked, preferences for all k^2-k comparison pairs excluding self-comparisons are aggregated. We investigate whether the efficiency of pairwise re-ranking can be improved by sampling from all pairs. In an exploratory study, we evaluate three sampling methods and five preference aggregation methods. The best combination allows for an order of magnitude fewer comparisons at an acceptable loss of retrieval effectiveness, while competitive effectiveness is already achieved with about one third of the comparisons.
Rethinking Crowd-Sourced Evaluation of Neuron Explanations
Interpreting individual neurons or directions in activations space is an important component of mechanistic interpretability. As such, many algorithms have been proposed to automatically produce neuron explanations, but it is often not clear how reliable these explanations are, or which methods produce the best explanations. This can be measured via crowd-sourced evaluations, but they can often be noisy and expensive, leading to unreliable results. In this paper, we carefully analyze the evaluation pipeline and develop a cost-effective and highly accurate crowdsourced evaluation strategy. In contrast to previous human studies that only rate whether the explanation matches the most highly activating inputs, we estimate whether the explanation describes neuron activations across all inputs. To estimate this effectively, we introduce a novel application of importance sampling to determine which inputs are the most valuable to show to raters, leading to around 30x cost reduction compared to uniform sampling. We also analyze the label noise present in crowd-sourced evaluations and propose a Bayesian method to aggregate multiple ratings leading to a further ~5x reduction in number of ratings required for the same accuracy. Finally, we use these methods to conduct a large-scale study comparing the quality of neuron explanations produced by the most popular methods for two different vision models.
Open-YOLO 3D: Towards Fast and Accurate Open-Vocabulary 3D Instance Segmentation
Recent works on open-vocabulary 3D instance segmentation show strong promise, but at the cost of slow inference speed and high computation requirements. This high computation cost is typically due to their heavy reliance on 3D clip features, which require computationally expensive 2D foundation models like Segment Anything (SAM) and CLIP for multi-view aggregation into 3D. As a consequence, this hampers their applicability in many real-world applications that require both fast and accurate predictions. To this end, we propose a fast yet accurate open-vocabulary 3D instance segmentation approach, named Open-YOLO 3D, that effectively leverages only 2D object detection from multi-view RGB images for open-vocabulary 3D instance segmentation. We address this task by generating class-agnostic 3D masks for objects in the scene and associating them with text prompts. We observe that the projection of class-agnostic 3D point cloud instances already holds instance information; thus, using SAM might only result in redundancy that unnecessarily increases the inference time. We empirically find that a better performance of matching text prompts to 3D masks can be achieved in a faster fashion with a 2D object detector. We validate our Open-YOLO 3D on two benchmarks, ScanNet200 and Replica, under two scenarios: (i) with ground truth masks, where labels are required for given object proposals, and (ii) with class-agnostic 3D proposals generated from a 3D proposal network. Our Open-YOLO 3D achieves state-of-the-art performance on both datasets while obtaining up to sim16times speedup compared to the best existing method in literature. On ScanNet200 val. set, our Open-YOLO 3D achieves mean average precision (mAP) of 24.7\% while operating at 22 seconds per scene. Code and model are available at github.com/aminebdj/OpenYOLO3D.
MVSFormer++: Revealing the Devil in Transformer's Details for Multi-View Stereo
Recent advancements in learning-based Multi-View Stereo (MVS) methods have prominently featured transformer-based models with attention mechanisms. However, existing approaches have not thoroughly investigated the profound influence of transformers on different MVS modules, resulting in limited depth estimation capabilities. In this paper, we introduce MVSFormer++, a method that prudently maximizes the inherent characteristics of attention to enhance various components of the MVS pipeline. Formally, our approach involves infusing cross-view information into the pre-trained DINOv2 model to facilitate MVS learning. Furthermore, we employ different attention mechanisms for the feature encoder and cost volume regularization, focusing on feature and spatial aggregations respectively. Additionally, we uncover that some design details would substantially impact the performance of transformer modules in MVS, including normalized 3D positional encoding, adaptive attention scaling, and the position of layer normalization. Comprehensive experiments on DTU, Tanks-and-Temples, BlendedMVS, and ETH3D validate the effectiveness of the proposed method. Notably, MVSFormer++ achieves state-of-the-art performance on the challenging DTU and Tanks-and-Temples benchmarks.
CoopDETR: A Unified Cooperative Perception Framework for 3D Detection via Object Query
Cooperative perception enhances the individual perception capabilities of autonomous vehicles (AVs) by providing a comprehensive view of the environment. However, balancing perception performance and transmission costs remains a significant challenge. Current approaches that transmit region-level features across agents are limited in interpretability and demand substantial bandwidth, making them unsuitable for practical applications. In this work, we propose CoopDETR, a novel cooperative perception framework that introduces object-level feature cooperation via object query. Our framework consists of two key modules: single-agent query generation, which efficiently encodes raw sensor data into object queries, reducing transmission cost while preserving essential information for detection; and cross-agent query fusion, which includes Spatial Query Matching (SQM) and Object Query Aggregation (OQA) to enable effective interaction between queries. Our experiments on the OPV2V and V2XSet datasets demonstrate that CoopDETR achieves state-of-the-art performance and significantly reduces transmission costs to 1/782 of previous methods.
