new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 31

SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries

Evaluating the performance of autonomous vehicle planning algorithms necessitates simulating long-tail safety-critical traffic scenarios. However, traditional methods for generating such scenarios often fall short in terms of controllability and realism; they also neglect the dynamics of agent interactions. To address these limitations, we introduce SAFE-SIM, a novel diffusion-based controllable closed-loop safety-critical simulation framework. Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations. We develop a novel approach to simulate safety-critical scenarios through an adversarial term in the denoising process of diffusion models, which allows an adversarial agent to challenge a planner with plausible maneuvers while all agents in the scene exhibit reactive and realistic behaviors. Furthermore, we propose novel guidance objectives and a partial diffusion process that enables users to control key aspects of the scenarios, such as the collision type and aggressiveness of the adversarial agent, while maintaining the realism of the behavior. We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability. These findings affirm that diffusion models provide a robust and versatile foundation for safety-critical, interactive traffic simulation, extending their utility across the broader autonomous driving landscape. Project website: https://safe-sim.github.io/.

  • 5 authors
·
Dec 30, 2023

KAT-V1: Kwai-AutoThink Technical Report

We present Kwaipilot-AutoThink (KAT), an open-source 40B large language model developed to address the overthinking problem in reasoning-intensive tasks, where an automatic thinking training paradigm is proposed to dynamically switch between reasoning and non-reasoning modes based on task complexity. Specifically, first, we construct the dual-regime dataset based on a novel tagging pipeline and a multi-agent synthesis strategy, and then we apply Multi-Token Prediction (MTP)-enhanced knowledge distillation, enabling efficient and fine-grained reasoning transfer with minimal pretraining cost. Besides, we implement a cold-start initialization strategy that introduces mode-selection priors using majority-vote signals and intent-aware prompting. Finally, we propose Step-SRPO, a reinforcement learning algorithm that incorporates intermediate supervision into the GRPO framework, offering structured guidance over both reasoning-mode selection and response accuracy. Extensive experiments across multiple benchmarks demonstrate that KAT consistently matches or even outperforms current state-of-the-art models, including DeepSeek-R1-0528 and Qwen3-235B-A22B, across a wide range of reasoning-intensive tasks while reducing token usage by up to approximately 30\%. Beyond academic evaluation, KAT has been successfully deployed in Kwaipilot (i.e., Kuaishou's internal coding assistant), and improves real-world development workflows with high accuracy, efficiency, and controllable reasoning behaviors. Moreover, we are actively training a 200B Mixture-of-Experts (MoE) with 40B activation parameters, where the early-stage results already demonstrate promising improvements in performance and efficiency, further showing the scalability of the AutoThink paradigm.

  • 24 authors
·
Jul 11

Controllable Safety Alignment: Inference-Time Adaptation to Diverse Safety Requirements

The current paradigm for safety alignment of large language models (LLMs) follows a one-size-fits-all approach: the model refuses to interact with any content deemed unsafe by the model provider. This approach lacks flexibility in the face of varying social norms across cultures and regions. In addition, users may have diverse safety needs, making a model with static safety standards too restrictive to be useful, as well as too costly to be re-aligned. We propose Controllable Safety Alignment (CoSA), a framework designed to adapt models to diverse safety requirements without re-training. Instead of aligning a fixed model, we align models to follow safety configs -- free-form natural language descriptions of the desired safety behaviors -- that are provided as part of the system prompt. To adjust model safety behavior, authorized users only need to modify such safety configs at inference time. To enable that, we propose CoSAlign, a data-centric method for aligning LLMs to easily adapt to diverse safety configs. Furthermore, we devise a novel controllability evaluation protocol that considers both helpfulness and configured safety, summarizing them into CoSA-Score, and construct CoSApien, a human-authored benchmark that consists of real-world LLM use cases with diverse safety requirements and corresponding evaluation prompts. We show that CoSAlign leads to substantial gains of controllability over strong baselines including in-context alignment. Our framework encourages better representation and adaptation to pluralistic human values in LLMs, and thereby increasing their practicality.

  • 5 authors
·
Oct 11, 2024 2

Large Language Models with Controllable Working Memory

Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP), owing to their excellent understanding and generation abilities. Remarkably, what further sets these models apart is the massive amounts of world knowledge they internalize during pretraining. While many downstream applications provide the model with an informational context to aid its performance on the underlying task, how the model's world knowledge interacts with the factual information presented in the context remains under explored. As a desirable behavior, an LLM should give precedence to the context whenever it contains task-relevant information that conflicts with the model's memorized knowledge. This enables model predictions to be grounded in the context, which can then be used to update or correct specific model predictions without frequent retraining. By contrast, when the context is irrelevant to the task, the model should ignore it and fall back on its internal knowledge. In this paper, we undertake a first joint study of the aforementioned two properties, namely controllability and robustness, in the context of LLMs. We demonstrate that state-of-the-art T5 and PaLM (both pretrained and finetuned) could exhibit poor controllability and robustness, which do not scale with increasing model size. As a solution, we propose a novel method - Knowledge Aware FineTuning (KAFT) - to strengthen both controllability and robustness by incorporating counterfactual and irrelevant contexts to standard supervised datasets. Our comprehensive evaluation showcases the utility of KAFT across model architectures and sizes.

  • 8 authors
·
Nov 9, 2022

DiTaiListener: Controllable High Fidelity Listener Video Generation with Diffusion

Generating naturalistic and nuanced listener motions for extended interactions remains an open problem. Existing methods often rely on low-dimensional motion codes for facial behavior generation followed by photorealistic rendering, limiting both visual fidelity and expressive richness. To address these challenges, we introduce DiTaiListener, powered by a video diffusion model with multimodal conditions. Our approach first generates short segments of listener responses conditioned on the speaker's speech and facial motions with DiTaiListener-Gen. It then refines the transitional frames via DiTaiListener-Edit for a seamless transition. Specifically, DiTaiListener-Gen adapts a Diffusion Transformer (DiT) for the task of listener head portrait generation by introducing a Causal Temporal Multimodal Adapter (CTM-Adapter) to process speakers' auditory and visual cues. CTM-Adapter integrates speakers' input in a causal manner into the video generation process to ensure temporally coherent listener responses. For long-form video generation, we introduce DiTaiListener-Edit, a transition refinement video-to-video diffusion model. The model fuses video segments into smooth and continuous videos, ensuring temporal consistency in facial expressions and image quality when merging short video segments produced by DiTaiListener-Gen. Quantitatively, DiTaiListener achieves the state-of-the-art performance on benchmark datasets in both photorealism (+73.8% in FID on RealTalk) and motion representation (+6.1% in FD metric on VICO) spaces. User studies confirm the superior performance of DiTaiListener, with the model being the clear preference in terms of feedback, diversity, and smoothness, outperforming competitors by a significant margin.

  • 6 authors
·
Apr 4 3

RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios

Simulation plays a crucial role in the development of autonomous vehicles (AVs) due to the potential risks associated with real-world testing. Although significant progress has been made in the visual aspects of simulators, generating complex behavior among agents remains a formidable challenge. It is not only imperative to ensure realism in the scenarios generated but also essential to incorporate preferences and conditions to facilitate controllable generation for AV training and evaluation. Traditional methods, mainly relying on memorizing the distribution of training datasets, often fall short in generating unseen scenarios. Inspired by the success of retrieval augmented generation in large language models, we present RealGen, a novel retrieval-based in-context learning framework for traffic scenario generation. RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way, which may originate from templates or tagged scenarios. This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios, compose various behaviors, and produce critical scenarios. Evaluations show that RealGen offers considerable flexibility and controllability, marking a new direction in the field of controllable traffic scenario generation. Check our project website for more information: https://realgen.github.io.

  • 5 authors
·
Dec 19, 2023

Diverse Controllable Diffusion Policy with Signal Temporal Logic

Generating realistic simulations is critical for autonomous system applications such as self-driving and human-robot interactions. However, driving simulators nowadays still have difficulty in generating controllable, diverse, and rule-compliant behaviors for road participants: Rule-based models cannot produce diverse behaviors and require careful tuning, whereas learning-based methods imitate the policy from data but are not designed to follow the rules explicitly. Besides, the real-world datasets are by nature "single-outcome", making the learning method hard to generate diverse behaviors. In this paper, we leverage Signal Temporal Logic (STL) and Diffusion Models to learn controllable, diverse, and rule-aware policy. We first calibrate the STL on the real-world data, then generate diverse synthetic data using trajectory optimization, and finally learn the rectified diffusion policy on the augmented dataset. We test on the NuScenes dataset and our approach can achieve the most diverse rule-compliant trajectories compared to other baselines, with a runtime 1/17X to the second-best approach. In the closed-loop testing, our approach reaches the highest diversity, rule satisfaction rate, and the least collision rate. Our method can generate varied characteristics conditional on different STL parameters in testing. A case study on human-robot encounter scenarios shows our approach can generate diverse and closed-to-oracle trajectories. The annotation tool, augmented dataset, and code are available at https://github.com/mengyuest/pSTL-diffusion-policy.

  • 2 authors
·
Mar 4 2

Controllable Context Sensitivity and the Knob Behind It

When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.

  • 7 authors
·
Nov 11, 2024

KnowPO: Knowledge-aware Preference Optimization for Controllable Knowledge Selection in Retrieval-Augmented Language Models

By integrating external knowledge, Retrieval-Augmented Generation (RAG) has become an effective strategy for mitigating the hallucination problems that large language models (LLMs) encounter when dealing with knowledge-intensive tasks. However, in the process of integrating external non-parametric supporting evidence with internal parametric knowledge, inevitable knowledge conflicts may arise, leading to confusion in the model's responses. To enhance the knowledge selection of LLMs in various contexts, some research has focused on refining their behavior patterns through instruction-tuning. Nonetheless, due to the absence of explicit negative signals and comparative objectives, models fine-tuned in this manner may still exhibit undesirable behaviors such as contextual ignorance and contextual overinclusion. To this end, we propose a Knowledge-aware Preference Optimization strategy, dubbed KnowPO, aimed at achieving adaptive knowledge selection based on contextual relevance in real retrieval scenarios. Concretely, we proposed a general paradigm for constructing knowledge conflict datasets, which comprehensively cover various error types and learn how to avoid these negative signals through preference optimization methods. Simultaneously, we proposed a rewriting strategy and data ratio optimization strategy to address preference imbalances. Experimental results show that KnowPO outperforms previous methods for handling knowledge conflicts by over 37\%, while also exhibiting robust generalization across various out-of-distribution datasets.

  • 8 authors
·
Aug 6, 2024

Benchmarking Large Language Models on Controllable Generation under Diversified Instructions

While large language models (LLMs) have exhibited impressive instruction-following capabilities, it is still unclear whether and to what extent they can respond to explicit constraints that might be entailed in various instructions. As a significant aspect of LLM alignment, it is thus important to formulate such a specialized set of instructions as well as investigate the resulting behavior of LLMs. To address this vacancy, we propose a new benchmark CoDI-Eval to systematically and comprehensively evaluate LLMs' responses to instructions with various constraints. We construct a large collection of constraints-attributed instructions as a test suite focused on both generalization and coverage. Specifically, we advocate an instruction diversification process to synthesize diverse forms of constraint expression and also deliberate the candidate task taxonomy with even finer-grained sub-categories. Finally, we automate the entire evaluation process to facilitate further developments. Different from existing studies on controllable text generation, CoDI-Eval extends the scope to the prevalent instruction-following paradigm for the first time. We provide extensive evaluations of representative LLMs (e.g., ChatGPT, Vicuna) on CoDI-Eval, revealing their limitations in following instructions with specific constraints and there is still a significant gap between open-source and commercial closed-source LLMs. We believe this benchmark will facilitate research into improving the controllability of LLMs' responses to instructions. Our data and code are available at https://github.com/Xt-cyh/CoDI-Eval.

  • 5 authors
·
Jan 1, 2024 2

Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection

Despite their remarkable capabilities, large language models (LLMs) often produce responses containing factual inaccuracies due to their sole reliance on the parametric knowledge they encapsulate. Retrieval-Augmented Generation (RAG), an ad hoc approach that augments LMs with retrieval of relevant knowledge, decreases such issues. However, indiscriminately retrieving and incorporating a fixed number of retrieved passages, regardless of whether retrieval is necessary, or passages are relevant, diminishes LM versatility or can lead to unhelpful response generation. We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG) that enhances an LM's quality and factuality through retrieval and self-reflection. Our framework trains a single arbitrary LM that adaptively retrieves passages on-demand, and generates and reflects on retrieved passages and its own generations using special tokens, called reflection tokens. Generating reflection tokens makes the LM controllable during the inference phase, enabling it to tailor its behavior to diverse task requirements. Experiments show that Self-RAG (7B and 13B parameters) significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks. Specifically, Self-RAG outperforms ChatGPT and retrieval-augmented Llama2-chat on Open-domain QA, reasoning and fact verification tasks, and it shows significant gains in improving factuality and citation accuracy for long-form generations relative to these models.

  • 5 authors
·
Oct 17, 2023 6

FireRedTTS: A Foundation Text-To-Speech Framework for Industry-Level Generative Speech Applications

This work proposes FireRedTTS, a foundation text-to-speech framework, to meet the growing demands for personalized and diverse generative speech applications. The framework comprises three parts: data processing, foundation system, and downstream applications. First, we comprehensively present our data processing pipeline, which transforms massive raw audio into a large-scale high-quality TTS dataset with rich annotations and a wide coverage of content, speaking style, and timbre. Then, we propose a language-model-based foundation TTS system. The speech signal is compressed into discrete semantic tokens via a semantic-aware speech tokenizer, and can be generated by a language model from the prompt text and audio. Then, a two-stage waveform generator is proposed to decode them to the high-fidelity waveform. We present two applications of this system: voice cloning for dubbing and human-like speech generation for chatbots. The experimental results demonstrate the solid in-context learning capability of FireRedTTS, which can stably synthesize high-quality speech consistent with the prompt text and audio. For dubbing, FireRedTTS can clone target voices in a zero-shot way for the UGC scenario and adapt to studio-level expressive voice characters in the PUGC scenario via few-shot fine-tuning with 1-hour recording. Moreover, FireRedTTS achieves controllable human-like speech generation in a casual style with paralinguistic behaviors and emotions via instruction tuning, to better serve spoken chatbots.

  • 7 authors
·
Sep 5, 2024 1

Boundary Guided Learning-Free Semantic Control with Diffusion Models

Applying pre-trained generative denoising diffusion models (DDMs) for downstream tasks such as image semantic editing usually requires either fine-tuning DDMs or learning auxiliary editing networks in the existing literature. In this work, we present our BoundaryDiffusion method for efficient, effective and light-weight semantic control with frozen pre-trained DDMs, without learning any extra networks. As one of the first learning-free diffusion editing works, we start by seeking a comprehensive understanding of the intermediate high-dimensional latent spaces by theoretically and empirically analyzing their probabilistic and geometric behaviors in the Markov chain. We then propose to further explore the critical step for editing in the denoising trajectory that characterizes the convergence of a pre-trained DDM and introduce an automatic search method. Last but not least, in contrast to the conventional understanding that DDMs have relatively poor semantic behaviors, we prove that the critical latent space we found already exhibits semantic subspace boundaries at the generic level in unconditional DDMs, which allows us to do controllable manipulation by guiding the denoising trajectory towards the targeted boundary via a single-step operation. We conduct extensive experiments on multiple DPMs architectures (DDPM, iDDPM) and datasets (CelebA, CelebA-HQ, LSUN-church, LSUN-bedroom, AFHQ-dog) with different resolutions (64, 256), achieving superior or state-of-the-art performance in various task scenarios (image semantic editing, text-based editing, unconditional semantic control) to demonstrate the effectiveness.

  • 5 authors
·
Feb 16, 2023

Evaluating and Inducing Personality in Pre-trained Language Models

Standardized and quantified evaluation of machine behaviors is a crux of understanding LLMs. In this study, we draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors. Originating as a philosophical quest for human behaviors, the study of personality delves into how individuals differ in thinking, feeling, and behaving. Toward building and understanding human-like social machines, we are motivated to ask: Can we assess machine behaviors by leveraging human psychometric tests in a principled and quantitative manner? If so, can we induce a specific personality in LLMs? To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors; MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories. By systematically evaluating LLMs with MPI, we provide the first piece of evidence demonstrating the efficacy of MPI in studying LLMs behaviors. We further devise a Personality Prompting (P^2) method to induce LLMs with specific personalities in a controllable way, capable of producing diverse and verifiable behaviors. We hope this work sheds light on future studies by adopting personality as the essential indicator for various downstream tasks, and could further motivate research into equally intriguing human-like machine behaviors.

  • 6 authors
·
May 20, 2022

Hydra: A 1.6B-Parameter State-Space Language Model with Sparse Attention, Mixture-of-Experts, and Memory

We present Hydra as an architectural proposal for hybrid long-context language models that combine conditional computation, long-context memory mechanisms, and sparse mixture-of-experts within an approximately 1.6B parameter design envelope. Hydra integrates a Mamba-style Structured State Space Model (SSM) backbone with intermittent sparse global attention, chunk-level MoE feed-forward routing, and dual (workspace plus factual PKM) memories. We formalize the component interfaces, give transparent parameter and complexity accounting, and outline a staged curriculum intended to stably activate the parts. We accompany the specification with illustrative toy-scale prototype measurements (tens of millions of parameters on synthetic data) whose sole purpose is to demonstrate implementation feasibility and qualitative scaling behaviors (for example, long-context throughput crossover and controllable expert routing), not to claim competitive full-scale performance. We explicitly delineate assumptions and open risks (training complexity, memory utilization, specialization dynamics) and position Hydra as a blueprint to stimulate empirical follow-up rather than a finished system. By combining SSM efficiency, selective sparse attention, MoE capacity, and learnable memory, Hydra sketches a path toward modular, input-adaptive long-context language models; validating end-task gains at target scale remains future work.

  • 2 authors
·
Aug 20

RAT: Adversarial Attacks on Deep Reinforcement Agents for Targeted Behaviors

Evaluating deep reinforcement learning (DRL) agents against targeted behavior attacks is critical for assessing their robustness. These attacks aim to manipulate the victim into specific behaviors that align with the attacker's objectives, often bypassing traditional reward-based defenses. Prior methods have primarily focused on reducing cumulative rewards; however, rewards are typically too generic to capture complex safety requirements effectively. As a result, focusing solely on reward reduction can lead to suboptimal attack strategies, particularly in safety-critical scenarios where more precise behavior manipulation is needed. To address these challenges, we propose RAT, a method designed for universal, targeted behavior attacks. RAT trains an intention policy that is explicitly aligned with human preferences, serving as a precise behavioral target for the adversary. Concurrently, an adversary manipulates the victim's policy to follow this target behavior. To enhance the effectiveness of these attacks, RAT dynamically adjusts the state occupancy measure within the replay buffer, allowing for more controlled and effective behavior manipulation. Our empirical results on robotic simulation tasks demonstrate that RAT outperforms existing adversarial attack algorithms in inducing specific behaviors. Additionally, RAT shows promise in improving agent robustness, leading to more resilient policies. We further validate RAT by guiding Decision Transformer agents to adopt behaviors aligned with human preferences in various MuJoCo tasks, demonstrating its effectiveness across diverse tasks.

  • 5 authors
·
Dec 14, 2024

MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control

Simulated humanoids are an appealing research domain due to their physical capabilities. Nonetheless, they are also challenging to control, as a policy must drive an unstable, discontinuous, and high-dimensional physical system. One widely studied approach is to utilize motion capture (MoCap) data to teach the humanoid agent low-level skills (e.g., standing, walking, and running) that can then be re-used to synthesize high-level behaviors. However, even with MoCap data, controlling simulated humanoids remains very hard, as MoCap data offers only kinematic information. Finding physical control inputs to realize the demonstrated motions requires computationally intensive methods like reinforcement learning. Thus, despite the publicly available MoCap data, its utility has been limited to institutions with large-scale compute. In this work, we dramatically lower the barrier for productive research on this topic by training and releasing high-quality agents that can track over three hours of MoCap data for a simulated humanoid in the dm_control physics-based environment. We release MoCapAct (Motion Capture with Actions), a dataset of these expert agents and their rollouts, which contain proprioceptive observations and actions. We demonstrate the utility of MoCapAct by using it to train a single hierarchical policy capable of tracking the entire MoCap dataset within dm_control and show the learned low-level component can be re-used to efficiently learn downstream high-level tasks. Finally, we use MoCapAct to train an autoregressive GPT model and show that it can control a simulated humanoid to perform natural motion completion given a motion prompt. Videos of the results and links to the code and dataset are available at https://microsoft.github.io/MoCapAct.

  • 6 authors
·
Aug 15, 2022

SwitchVLA: Execution-Aware Task Switching for Vision-Language-Action Models

Robots deployed in dynamic environments must be able to not only follow diverse language instructions but flexibly adapt when user intent changes mid-execution. While recent Vision-Language-Action (VLA) models have advanced multi-task learning and instruction following, they typically assume static task intent, failing to respond when new instructions arrive during ongoing execution. This limitation hinders natural and robust interaction in dynamic settings, such as retail or household environments, where real-time intent changes are common. We propose SwitchVLA, a unified, execution-aware framework that enables smooth and reactive task switching without external planners or additional switch-specific data. We model task switching as a behavior modulation problem conditioned on execution state and instruction context. Expert demonstrations are segmented into temporally grounded contact phases, allowing the policy to infer task progress and adjust its behavior accordingly. A multi-behavior conditional policy is then trained to generate flexible action chunks under varying behavior modes through conditioned trajectory modeling. Experiments in both simulation and real-world robotic manipulation demonstrate that SwitchVLA enables robust instruction adherence, fluid task switching, and strong generalization-outperforming prior VLA baselines in both task success rate and interaction naturalness.

Life, uh, Finds a Way: Systematic Neural Search

We tackle the challenge of rapidly adapting an agent's behavior to solve spatiotemporally continuous problems in novel settings. Animals exhibit extraordinary abilities to adapt to new contexts, a capacity unmatched by artificial systems. Instead of focusing on generalization through deep reinforcement learning, we propose viewing behavior as the physical manifestation of a search procedure, where robust problem-solving emerges from an exhaustive search across all possible behaviors. Surprisingly, this can be done efficiently using online modification of a cognitive graph that guides action, challenging the predominant view that exhaustive search in continuous spaces is impractical. We describe an algorithm that implicitly enumerates behaviors by regulating the tight feedback loop between execution of behaviors and mutation of the graph, and provide a neural implementation based on Hebbian learning and a novel high-dimensional harmonic representation inspired by entorhinal cortex. By framing behavior as search, we provide a mathematically simple and biologically plausible model for real-time behavioral adaptation, successfully solving a variety of continuous state-space navigation problems. This framework not only offers a flexible neural substrate for other applications but also presents a powerful paradigm for understanding adaptive behavior. Our results suggest potential advancements in developmental learning and unsupervised skill acquisition, paving the way for autonomous robots to master complex skills in data-sparse environments demanding flexibility.

  • 2 authors
·
Oct 2, 2024

SACSoN: Scalable Autonomous Control for Social Navigation

Machine learning provides a powerful tool for building socially compliant robotic systems that go beyond simple predictive models of human behavior. By observing and understanding human interactions from past experiences, learning can enable effective social navigation behaviors directly from data. In this paper, our goal is to develop methods for training policies for socially unobtrusive navigation, such that robots can navigate among humans in ways that don't disturb human behavior. We introduce a definition for such behavior based on the counterfactual perturbation of the human: if the robot had not intruded into the space, would the human have acted in the same way? By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space. Instantiating this principle requires training policies to minimize their effect on human behavior, and this in turn requires data that allows us to model the behavior of humans in the presence of robots. Therefore, our approach is based on two key contributions. First, we collect a large dataset where an indoor mobile robot interacts with human bystanders. Second, we utilize this dataset to train policies that minimize counterfactual perturbation. We provide supplementary videos and make publicly available the largest-of-its-kind visual navigation dataset on our project page.

  • 4 authors
·
Jun 2, 2023

Tell me about yourself: LLMs are aware of their learned behaviors

We study behavioral self-awareness -- an LLM's ability to articulate its behaviors without requiring in-context examples. We finetune LLMs on datasets that exhibit particular behaviors, such as (a) making high-risk economic decisions, and (b) outputting insecure code. Despite the datasets containing no explicit descriptions of the associated behavior, the finetuned LLMs can explicitly describe it. For example, a model trained to output insecure code says, ``The code I write is insecure.'' Indeed, models show behavioral self-awareness for a range of behaviors and for diverse evaluations. Note that while we finetune models to exhibit behaviors like writing insecure code, we do not finetune them to articulate their own behaviors -- models do this without any special training or examples. Behavioral self-awareness is relevant for AI safety, as models could use it to proactively disclose problematic behaviors. In particular, we study backdoor policies, where models exhibit unexpected behaviors only under certain trigger conditions. We find that models can sometimes identify whether or not they have a backdoor, even without its trigger being present. However, models are not able to directly output their trigger by default. Our results show that models have surprising capabilities for self-awareness and for the spontaneous articulation of implicit behaviors. Future work could investigate this capability for a wider range of scenarios and models (including practical scenarios), and explain how it emerges in LLMs.

  • 6 authors
·
Jan 19

SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning

In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/

  • 10 authors
·
Jan 29, 2024 1

What's the Magic Word? A Control Theory of LLM Prompting

Prompt engineering is crucial for deploying LLMs but is poorly understood mathematically. We formalize LLM systems as a class of discrete stochastic dynamical systems to explore prompt engineering through the lens of control theory. We investigate the reachable set of output token sequences R_y(mathbf x_0) for which there exists a control input sequence mathbf u for each mathbf y in R_y(mathbf x_0) that steers the LLM to output mathbf y from initial state sequence mathbf x_0. We offer analytic analysis on the limitations on the controllability of self-attention in terms of reachable set, where we prove an upper bound on the reachable set of outputs R_y(mathbf x_0) as a function of the singular values of the parameter matrices. We present complementary empirical analysis on the controllability of a panel of LLMs, including Falcon-7b, Llama-7b, and Falcon-40b. Our results demonstrate a lower bound on the reachable set of outputs R_y(mathbf x_0) w.r.t. initial state sequences mathbf x_0 sampled from the Wikitext dataset. We find that the correct next Wikitext token following sequence mathbf x_0 is reachable over 97% of the time with prompts of kleq 10 tokens. We also establish that the top 75 most likely next tokens, as estimated by the LLM itself, are reachable at least 85% of the time with prompts of kleq 10 tokens. Intriguingly, short prompt sequences can dramatically alter the likelihood of specific outputs, even making the least likely tokens become the most likely ones. This control-centric analysis of LLMs demonstrates the significant and poorly understood role of input sequences in steering output probabilities, offering a foundational perspective for enhancing language model system capabilities.

  • 4 authors
·
Oct 2, 2023

Learning Latent Plans from Play

Acquiring a diverse repertoire of general-purpose skills remains an open challenge for robotics. In this work, we propose self-supervising control on top of human teleoperated play data as a way to scale up skill learning. Play has two properties that make it attractive compared to conventional task demonstrations. Play is cheap, as it can be collected in large quantities quickly without task segmenting, labeling, or resetting to an initial state. Play is naturally rich, covering ~4x more interaction space than task demonstrations for the same amount of collection time. To learn control from play, we introduce Play-LMP, a self-supervised method that learns to organize play behaviors in a latent space, then reuse them at test time to achieve specific goals. Combining self-supervised control with a diverse play dataset shifts the focus of skill learning from a narrow and discrete set of tasks to the full continuum of behaviors available in an environment. We find that this combination generalizes well empirically---after self-supervising on unlabeled play, our method substantially outperforms individual expert-trained policies on 18 difficult user-specified visual manipulation tasks in a simulated robotic tabletop environment. We additionally find that play-supervised models, unlike their expert-trained counterparts, are more robust to perturbations and exhibit retrying-till-success behaviors. Finally, we find that our agent organizes its latent plan space around functional tasks, despite never being trained with task labels. Videos, code and data are available at learning-from-play.github.io

  • 7 authors
·
Mar 5, 2019

A Dataset Perspective on Offline Reinforcement Learning

The application of Reinforcement Learning (RL) in real world environments can be expensive or risky due to sub-optimal policies during training. In Offline RL, this problem is avoided since interactions with an environment are prohibited. Policies are learned from a given dataset, which solely determines their performance. Despite this fact, how dataset characteristics influence Offline RL algorithms is still hardly investigated. The dataset characteristics are determined by the behavioral policy that samples this dataset. Therefore, we define characteristics of behavioral policies as exploratory for yielding high expected information in their interaction with the Markov Decision Process (MDP) and as exploitative for having high expected return. We implement two corresponding empirical measures for the datasets sampled by the behavioral policy in deterministic MDPs. The first empirical measure SACo is defined by the normalized unique state-action pairs and captures exploration. The second empirical measure TQ is defined by the normalized average trajectory return and captures exploitation. Empirical evaluations show the effectiveness of TQ and SACo. In large-scale experiments using our proposed measures, we show that the unconstrained off-policy Deep Q-Network family requires datasets with high SACo to find a good policy. Furthermore, experiments show that policy constraint algorithms perform well on datasets with high TQ and SACo. Finally, the experiments show, that purely dataset-constrained Behavioral Cloning performs competitively to the best Offline RL algorithms for datasets with high TQ.

  • 8 authors
·
Nov 8, 2021

Programmable Motion Generation for Open-Set Motion Control Tasks

Character animation in real-world scenarios necessitates a variety of constraints, such as trajectories, key-frames, interactions, etc. Existing methodologies typically treat single or a finite set of these constraint(s) as separate control tasks. They are often specialized, and the tasks they address are rarely extendable or customizable. We categorize these as solutions to the close-set motion control problem. In response to the complexity of practical motion control, we propose and attempt to solve the open-set motion control problem. This problem is characterized by an open and fully customizable set of motion control tasks. To address this, we introduce a new paradigm, programmable motion generation. In this paradigm, any given motion control task is broken down into a combination of atomic constraints. These constraints are then programmed into an error function that quantifies the degree to which a motion sequence adheres to them. We utilize a pre-trained motion generation model and optimize its latent code to minimize the error function of the generated motion. Consequently, the generated motion not only inherits the prior of the generative model but also satisfies the required constraints. Experiments show that we can generate high-quality motions when addressing a wide range of unseen tasks. These tasks encompass motion control by motion dynamics, geometric constraints, physical laws, interactions with scenes, objects or the character own body parts, etc. All of these are achieved in a unified approach, without the need for ad-hoc paired training data collection or specialized network designs. During the programming of novel tasks, we observed the emergence of new skills beyond those of the prior model. With the assistance of large language models, we also achieved automatic programming. We hope that this work will pave the way for the motion control of general AI agents.

  • 5 authors
·
May 29, 2024

Dichotomy of Control: Separating What You Can Control from What You Cannot

Future- or return-conditioned supervised learning is an emerging paradigm for offline reinforcement learning (RL), where the future outcome (i.e., return) associated with an observed action sequence is used as input to a policy trained to imitate those same actions. While return-conditioning is at the heart of popular algorithms such as decision transformer (DT), these methods tend to perform poorly in highly stochastic environments, where an occasional high return can arise from randomness in the environment rather than the actions themselves. Such situations can lead to a learned policy that is inconsistent with its conditioning inputs; i.e., using the policy to act in the environment, when conditioning on a specific desired return, leads to a distribution of real returns that is wildly different than desired. In this work, we propose the dichotomy of control (DoC), a future-conditioned supervised learning framework that separates mechanisms within a policy's control (actions) from those beyond a policy's control (environment stochasticity). We achieve this separation by conditioning the policy on a latent variable representation of the future, and designing a mutual information constraint that removes any information from the latent variable associated with randomness in the environment. Theoretically, we show that DoC yields policies that are consistent with their conditioning inputs, ensuring that conditioning a learned policy on a desired high-return future outcome will correctly induce high-return behavior. Empirically, we show that DoC is able to achieve significantly better performance than DT on environments that have highly stochastic rewards and transition

  • 4 authors
·
Oct 24, 2022

AI Agent Behavioral Science

Recent advances in large language models (LLMs) have enabled the development of AI agents that exhibit increasingly human-like behaviors, including planning, adaptation, and social dynamics across diverse, interactive, and open-ended scenarios. These behaviors are not solely the product of the internal architectures of the underlying models, but emerge from their integration into agentic systems operating within specific contexts, where environmental factors, social cues, and interaction feedbacks shape behavior over time. This evolution necessitates a new scientific perspective: AI Agent Behavioral Science. Rather than focusing only on internal mechanisms, this perspective emphasizes the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time. We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and further demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties. By unifying recent findings and laying out future directions, we position AI Agent Behavioral Science as a necessary complement to traditional model-centric approaches, providing essential tools for understanding, evaluating, and governing the real-world behavior of increasingly autonomous AI systems.

Adaptive Advantage-Guided Policy Regularization for Offline Reinforcement Learning

In offline reinforcement learning, the challenge of out-of-distribution (OOD) is pronounced. To address this, existing methods often constrain the learned policy through policy regularization. However, these methods often suffer from the issue of unnecessary conservativeness, hampering policy improvement. This occurs due to the indiscriminate use of all actions from the behavior policy that generates the offline dataset as constraints. The problem becomes particularly noticeable when the quality of the dataset is suboptimal. Thus, we propose Adaptive Advantage-guided Policy Regularization (A2PR), obtaining high-advantage actions from an augmented behavior policy combined with VAE to guide the learned policy. A2PR can select high-advantage actions that differ from those present in the dataset, while still effectively maintaining conservatism from OOD actions. This is achieved by harnessing the VAE capacity to generate samples matching the distribution of the data points. We theoretically prove that the improvement of the behavior policy is guaranteed. Besides, it effectively mitigates value overestimation with a bounded performance gap. Empirically, we conduct a series of experiments on the D4RL benchmark, where A2PR demonstrates state-of-the-art performance. Furthermore, experimental results on additional suboptimal mixed datasets reveal that A2PR exhibits superior performance. Code is available at https://github.com/ltlhuuu/A2PR.

  • 6 authors
·
May 30, 2024

A Smooth Sea Never Made a Skilled SAILOR: Robust Imitation via Learning to Search

The fundamental limitation of the behavioral cloning (BC) approach to imitation learning is that it only teaches an agent what the expert did at states the expert visited. This means that when a BC agent makes a mistake which takes them out of the support of the demonstrations, they often don't know how to recover from it. In this sense, BC is akin to giving the agent the fish -- giving them dense supervision across a narrow set of states -- rather than teaching them to fish: to be able to reason independently about achieving the expert's outcome even when faced with unseen situations at test-time. In response, we explore learning to search (L2S) from expert demonstrations, i.e. learning the components required to, at test time, plan to match expert outcomes, even after making a mistake. These include (1) a world model and (2) a reward model. We carefully ablate the set of algorithmic and design decisions required to combine these and other components for stable and sample/interaction-efficient learning of recovery behavior without additional human corrections. Across a dozen visual manipulation tasks from three benchmarks, our approach SAILOR consistently out-performs state-of-the-art Diffusion Policies trained via BC on the same data. Furthermore, scaling up the amount of demonstrations used for BC by 5-10times still leaves a performance gap. We find that SAILOR can identify nuanced failures and is robust to reward hacking. Our code is available at https://github.com/arnavkj1995/SAILOR .

  • 8 authors
·
Jun 5

Barkour: Benchmarking Animal-level Agility with Quadruped Robots

Animals have evolved various agile locomotion strategies, such as sprinting, leaping, and jumping. There is a growing interest in developing legged robots that move like their biological counterparts and show various agile skills to navigate complex environments quickly. Despite the interest, the field lacks systematic benchmarks to measure the performance of control policies and hardware in agility. We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots. Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism. This encourages researchers to develop controllers that not only move fast, but do so in a controllable and versatile way. To set strong baselines, we present two methods for tackling the benchmark. In the first approach, we train specialist locomotion skills using on-policy reinforcement learning methods and combine them with a high-level navigation controller. In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived environment and robot states. Using a custom-built quadruped robot, we demonstrate that our method can complete the course at half the speed of a dog. We hope that our work represents a step towards creating controllers that enable robots to reach animal-level agility.

  • 44 authors
·
May 23, 2023

MyoDex: A Generalizable Prior for Dexterous Manipulation

Human dexterity is a hallmark of motor control. Our hands can rapidly synthesize new behaviors despite the complexity (multi-articular and multi-joints, with 23 joints controlled by more than 40 muscles) of musculoskeletal sensory-motor circuits. In this work, we take inspiration from how human dexterity builds on a diversity of prior experiences, instead of being acquired through a single task. Motivated by this observation, we set out to develop agents that can build upon their previous experience to quickly acquire new (previously unattainable) behaviors. Specifically, our approach leverages multi-task learning to implicitly capture task-agnostic behavioral priors (MyoDex) for human-like dexterity, using a physiologically realistic human hand model - MyoHand. We demonstrate MyoDex's effectiveness in few-shot generalization as well as positive transfer to a large repertoire of unseen dexterous manipulation tasks. Agents leveraging MyoDex can solve approximately 3x more tasks, and 4x faster in comparison to a distillation baseline. While prior work has synthesized single musculoskeletal control behaviors, MyoDex is the first generalizable manipulation prior that catalyzes the learning of dexterous physiological control across a large variety of contact-rich behaviors. We also demonstrate the effectiveness of our paradigms beyond musculoskeletal control towards the acquisition of dexterity in 24 DoF Adroit Hand. Website: https://sites.google.com/view/myodex

  • 3 authors
·
Sep 6, 2023

The Agent Behavior: Model, Governance and Challenges in the AI Digital Age

Advancements in AI have led to agents in networked environments increasingly mirroring human behavior, thereby blurring the boundary between artificial and human actors in specific contexts. This shift brings about significant challenges in trust, responsibility, ethics, security and etc. The difficulty in supervising of agent behaviors may lead to issues such as data contamination and unclear accountability. To address these challenges, this paper proposes the "Network Behavior Lifecycle" model, which divides network behavior into 6 stages and systematically analyzes the behavioral differences between humans and agents at each stage. Based on these insights, the paper further introduces the "Agent for Agent (A4A)" paradigm and the "Human-Agent Behavioral Disparity (HABD)" model, which examine the fundamental distinctions between human and agent behaviors across 5 dimensions: decision mechanism, execution efficiency, intention-behavior consistency, behavioral inertia, and irrational patterns. The effectiveness of the model is verified through real-world cases such as red team penetration and blue team defense. Finally, the paper discusses future research directions in dynamic cognitive governance architecture, behavioral disparity quantification, and meta-governance protocol stacks, aiming to provide a theoretical foundation and technical roadmap for secure and trustworthy human-agent collaboration.

  • 6 authors
·
Aug 20

Discovering and Exploiting Sparse Rewards in a Learned Behavior Space

Learning optimal policies in sparse rewards settings is difficult as the learning agent has little to no feedback on the quality of its actions. In these situations, a good strategy is to focus on exploration, hopefully leading to the discovery of a reward signal to improve on. A learning algorithm capable of dealing with this kind of settings has to be able to (1) explore possible agent behaviors and (2) exploit any possible discovered reward. Efficient exploration algorithms have been proposed that require to define a behavior space, that associates to an agent its resulting behavior in a space that is known to be worth exploring. The need to define this space is a limitation of these algorithms. In this work, we introduce STAX, an algorithm designed to learn a behavior space on-the-fly and to explore it while efficiently optimizing any reward discovered. It does so by separating the exploration and learning of the behavior space from the exploitation of the reward through an alternating two-steps process. In the first step, STAX builds a repertoire of diverse policies while learning a low-dimensional representation of the high-dimensional observations generated during the policies evaluation. In the exploitation step, emitters are used to optimize the performance of the discovered rewarding solutions. Experiments conducted on three different sparse reward environments show that STAX performs comparably to existing baselines while requiring much less prior information about the task as it autonomously builds the behavior space.

  • 4 authors
·
Nov 2, 2021

BandControlNet: Parallel Transformers-based Steerable Popular Music Generation with Fine-Grained Spatiotemporal Features

Controllable music generation promotes the interaction between humans and composition systems by projecting the users' intent on their desired music. The challenge of introducing controllability is an increasingly important issue in the symbolic music generation field. When building controllable generative popular multi-instrument music systems, two main challenges typically present themselves, namely weak controllability and poor music quality. To address these issues, we first propose spatiotemporal features as powerful and fine-grained controls to enhance the controllability of the generative model. In addition, an efficient music representation called REMI_Track is designed to convert multitrack music into multiple parallel music sequences and shorten the sequence length of each track with Byte Pair Encoding (BPE) techniques. Subsequently, we release BandControlNet, a conditional model based on parallel Transformers, to tackle the multiple music sequences and generate high-quality music samples that are conditioned to the given spatiotemporal control features. More concretely, the two specially designed modules of BandControlNet, namely structure-enhanced self-attention (SE-SA) and Cross-Track Transformer (CTT), are utilized to strengthen the resulting musical structure and inter-track harmony modeling respectively. Experimental results tested on two popular music datasets of different lengths demonstrate that the proposed BandControlNet outperforms other conditional music generation models on most objective metrics in terms of fidelity and inference speed and shows great robustness in generating long music samples. The subjective evaluations show BandControlNet trained on short datasets can generate music with comparable quality to state-of-the-art models, while outperforming them significantly using longer datasets.

  • 3 authors
·
Jul 15, 2024

Residual Off-Policy RL for Finetuning Behavior Cloning Policies

Recent advances in behavior cloning (BC) have enabled impressive visuomotor control policies. However, these approaches are limited by the quality of human demonstrations, the manual effort required for data collection, and the diminishing returns from increasing offline data. In comparison, reinforcement learning (RL) trains an agent through autonomous interaction with the environment and has shown remarkable success in various domains. Still, training RL policies directly on real-world robots remains challenging due to sample inefficiency, safety concerns, and the difficulty of learning from sparse rewards for long-horizon tasks, especially for high-degree-of-freedom (DoF) systems. We present a recipe that combines the benefits of BC and RL through a residual learning framework. Our approach leverages BC policies as black-box bases and learns lightweight per-step residual corrections via sample-efficient off-policy RL. We demonstrate that our method requires only sparse binary reward signals and can effectively improve manipulation policies on high-degree-of-freedom (DoF) systems in both simulation and the real world. In particular, we demonstrate, to the best of our knowledge, the first successful real-world RL training on a humanoid robot with dexterous hands. Our results demonstrate state-of-the-art performance in various vision-based tasks, pointing towards a practical pathway for deploying RL in the real world. Project website: https://residual-offpolicy-rl.github.io

  • 6 authors
·
Sep 23 2

Playing repeated games with Large Language Models

Large Language Models (LLMs) are transforming society and permeating into diverse applications. As a result, LLMs will frequently interact with us and other agents. It is, therefore, of great societal value to understand how LLMs behave in interactive social settings. Here, we propose to use behavioral game theory to study LLM's cooperation and coordination behavior. To do so, we let different LLMs (GPT-3, GPT-3.5, and GPT-4) play finitely repeated games with each other and with other, human-like strategies. Our results show that LLMs generally perform well in such tasks and also uncover persistent behavioral signatures. In a large set of two players-two strategies games, we find that LLMs are particularly good at games where valuing their own self-interest pays off, like the iterated Prisoner's Dilemma family. However, they behave sub-optimally in games that require coordination. We, therefore, further focus on two games from these distinct families. In the canonical iterated Prisoner's Dilemma, we find that GPT-4 acts particularly unforgivingly, always defecting after another agent has defected only once. In the Battle of the Sexes, we find that GPT-4 cannot match the behavior of the simple convention to alternate between options. We verify that these behavioral signatures are stable across robustness checks. Finally, we show how GPT-4's behavior can be modified by providing further information about the other player as well as by asking it to predict the other player's actions before making a choice. These results enrich our understanding of LLM's social behavior and pave the way for a behavioral game theory for machines.

  • 6 authors
·
May 26, 2023

Online Control Barrier Functions for Decentralized Multi-Agent Navigation

Control barrier functions (CBFs) enable guaranteed safe multi-agent navigation in the continuous domain. The resulting navigation performance, however, is highly sensitive to the underlying hyperparameters. Traditional approaches consider fixed CBFs (where parameters are tuned apriori), and hence, typically do not perform well in cluttered and highly dynamic environments: conservative parameter values can lead to inefficient agent trajectories, or even failure to reach goal positions, whereas aggressive parameter values can lead to infeasible controls. To overcome these issues, in this paper, we propose online CBFs, whereby hyperparameters are tuned in real-time, as a function of what agents perceive in their immediate neighborhood. Since the explicit relationship between CBFs and navigation performance is hard to model, we leverage reinforcement learning to learn CBF-tuning policies in a model-free manner. Because we parameterize the policies with graph neural networks (GNNs), we are able to synthesize decentralized agent controllers that adjust parameter values locally, varying the degree of conservative and aggressive behaviors across agents. Simulations as well as real-world experiments show that (i) online CBFs are capable of solving navigation scenarios that are infeasible for fixed CBFs, and (ii), that they improve navigation performance by adapting to other agents and changes in the environment.

  • 3 authors
·
Mar 7, 2023

Quantifying the Sensitivity of Inverse Reinforcement Learning to Misspecification

Inverse reinforcement learning (IRL) aims to infer an agent's preferences (represented as a reward function R) from their behaviour (represented as a policy pi). To do this, we need a behavioural model of how pi relates to R. In the current literature, the most common behavioural models are optimality, Boltzmann-rationality, and causal entropy maximisation. However, the true relationship between a human's preferences and their behaviour is much more complex than any of these behavioural models. This means that the behavioural models are misspecified, which raises the concern that they may lead to systematic errors if applied to real data. In this paper, we analyse how sensitive the IRL problem is to misspecification of the behavioural model. Specifically, we provide necessary and sufficient conditions that completely characterise how the observed data may differ from the assumed behavioural model without incurring an error above a given threshold. In addition to this, we also characterise the conditions under which a behavioural model is robust to small perturbations of the observed policy, and we analyse how robust many behavioural models are to misspecification of their parameter values (such as e.g.\ the discount rate). Our analysis suggests that the IRL problem is highly sensitive to misspecification, in the sense that very mild misspecification can lead to very large errors in the inferred reward function.

  • 2 authors
·
Mar 11, 2024

Mechanistic interpretability for steering vision-language-action models

Vision-Language-Action (VLA) models are a promising path to realizing generalist embodied agents that can quickly adapt to new tasks, modalities, and environments. However, methods for interpreting and steering VLAs fall far short of classical robotics pipelines, which are grounded in explicit models of kinematics, dynamics, and control. This lack of mechanistic insight is a central challenge for deploying learned policies in real-world robotics, where robustness and explainability are critical. Motivated by advances in mechanistic interpretability for large language models, we introduce the first framework for interpreting and steering VLAs via their internal representations, enabling direct intervention in model behavior at inference time. We project feedforward activations within transformer layers onto the token embedding basis, identifying sparse semantic directions - such as speed and direction - that are causally linked to action selection. Leveraging these findings, we introduce a general-purpose activation steering method that modulates behavior in real time, without fine-tuning, reward signals, or environment interaction. We evaluate this method on two recent open-source VLAs, Pi0 and OpenVLA, and demonstrate zero-shot behavioral control in simulation (LIBERO) and on a physical robot (UR5). This work demonstrates that interpretable components of embodied VLAs can be systematically harnessed for control - establishing a new paradigm for transparent and steerable foundation models in robotics.

  • 4 authors
·
Aug 29 2

ASID: Active Exploration for System Identification in Robotic Manipulation

Model-free control strategies such as reinforcement learning have shown the ability to learn control strategies without requiring an accurate model or simulator of the world. While this is appealing due to the lack of modeling requirements, such methods can be sample inefficient, making them impractical in many real-world domains. On the other hand, model-based control techniques leveraging accurate simulators can circumvent these challenges and use a large amount of cheap simulation data to learn controllers that can effectively transfer to the real world. The challenge with such model-based techniques is the requirement for an extremely accurate simulation, requiring both the specification of appropriate simulation assets and physical parameters. This requires considerable human effort to design for every environment being considered. In this work, we propose a learning system that can leverage a small amount of real-world data to autonomously refine a simulation model and then plan an accurate control strategy that can be deployed in the real world. Our approach critically relies on utilizing an initial (possibly inaccurate) simulator to design effective exploration policies that, when deployed in the real world, collect high-quality data. We demonstrate the efficacy of this paradigm in identifying articulation, mass, and other physical parameters in several challenging robotic manipulation tasks, and illustrate that only a small amount of real-world data can allow for effective sim-to-real transfer. Project website at https://weirdlabuw.github.io/asid

  • 6 authors
·
Apr 18, 2024

Guiding Giants: Lightweight Controllers for Weighted Activation Steering in LLMs

Controlling undesirable Large Language Model (LLM) behaviors, such as the generation of unsafe content or failing to adhere to safety guidelines, often relies on costly fine-tuning. Activation steering provides an alternative for inference-time control, but existing methods typically lack fine-grained, adaptive mechanisms. We introduce a novel approach using a lightweight, trainable controller network integrated during inference. This controller network observes specific intermediate LLM activations and predicts both a global scaling factor and layer-specific weights. The predicted global scaling factor and layer-specific weights then dynamically modulate the intensity of a steering patch, derived from a pre-computed "refusal direction" vector, applied across the LLM's layers during generation. Trained on activations from both harmful and benign prompts, our controller learns to discriminatively apply nuanced, layer-aware interventions, activating steering primarily for harmful inputs. Experiments using safety benchmarks like ToxicChat & In-The-Wild Jailbreak Prompts demonstrate that our weighted steering controller significantly increases refusal rates compared to the base LLM, achieving targeted behavioral modification without altering the original model parameters. Our experiments with Llama-3.1-8B, Llama-3.2-1B & Mistral-7B show our approach outperforms existing methods, presenting an efficient and adaptive method for fine-grained control over LLM behavior at inference time.

  • 3 authors
·
May 21

Towards Passive Safe Reinforcement Learning: A Comparative Study on Contact-rich Robotic Manipulation

Reinforcement learning (RL) has achieved remarkable success in various robotic tasks; however, its deployment in real-world scenarios, particularly in contact-rich environments, often overlooks critical safety and stability aspects. Policies without passivity guarantees can result in system instability, posing risks to robots, their environments, and human operators. In this work, we investigate the limitations of traditional RL policies when deployed in contact-rich tasks and explore the combination of energy-based passive control with safe RL in both training and deployment to answer these challenges. Firstly, we introduce energy-based constraints in our safe RL formulation to train passivity-aware RL agents. Secondly, we add a passivity filter on the agent output for passivity-ensured control during deployment. We conduct comparative studies on a contact-rich robotic maze exploration task, evaluating the effects of learning passivity-aware policies and the importance of passivity-ensured control. The experiments demonstrate that a passivity-agnostic RL policy easily violates energy constraints in deployment, even though it achieves high task completion in training. The results show that our proposed approach guarantees control stability through passivity filtering and improves the energy efficiency through passivity-aware training. A video of real-world experiments is available as supplementary material. We also release the checkpoint model and offline data for pre-training at https://huggingface.co/Anonymous998/passiveRL/tree/main{Hugging Face}

  • 4 authors
·
Feb 28

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills

A longstanding goal in character animation is to combine data-driven specification of behavior with a system that can execute a similar behavior in a physical simulation, thus enabling realistic responses to perturbations and environmental variation. We show that well-known reinforcement learning (RL) methods can be adapted to learn robust control policies capable of imitating a broad range of example motion clips, while also learning complex recoveries, adapting to changes in morphology, and accomplishing user-specified goals. Our method handles keyframed motions, highly-dynamic actions such as motion-captured flips and spins, and retargeted motions. By combining a motion-imitation objective with a task objective, we can train characters that react intelligently in interactive settings, e.g., by walking in a desired direction or throwing a ball at a user-specified target. This approach thus combines the convenience and motion quality of using motion clips to define the desired style and appearance, with the flexibility and generality afforded by RL methods and physics-based animation. We further explore a number of methods for integrating multiple clips into the learning process to develop multi-skilled agents capable of performing a rich repertoire of diverse skills. We demonstrate results using multiple characters (human, Atlas robot, bipedal dinosaur, dragon) and a large variety of skills, including locomotion, acrobatics, and martial arts.

  • 4 authors
·
Apr 8, 2018

Explore and Control with Adversarial Surprise

Unsupervised reinforcement learning (RL) studies how to leverage environment statistics to learn useful behaviors without the cost of reward engineering. However, a central challenge in unsupervised RL is to extract behaviors that meaningfully affect the world and cover the range of possible outcomes, without getting distracted by inherently unpredictable, uncontrollable, and stochastic elements in the environment. To this end, we propose an unsupervised RL method designed for high-dimensional, stochastic environments based on an adversarial game between two policies (which we call Explore and Control) controlling a single body and competing over the amount of observation entropy the agent experiences. The Explore agent seeks out states that maximally surprise the Control agent, which in turn aims to minimize surprise, and thereby manipulate the environment to return to familiar and predictable states. The competition between these two policies drives them to seek out increasingly surprising parts of the environment while learning to gain mastery over them. We show formally that the resulting algorithm maximizes coverage of the underlying state in block MDPs with stochastic observations, providing theoretical backing to our hypothesis that this procedure avoids uncontrollable and stochastic distractions. Our experiments further demonstrate that Adversarial Surprise leads to the emergence of complex and meaningful skills, and outperforms state-of-the-art unsupervised reinforcement learning methods in terms of both exploration and zero-shot transfer to downstream tasks.

  • 8 authors
·
Jul 12, 2021

Solving robust MDPs as a sequence of static RL problems

Designing control policies whose performance level is guaranteed to remain above a given threshold in a span of environments is a critical feature for the adoption of reinforcement learning (RL) in real-world applications. The search for such robust policies is a notoriously difficult problem, related to the so-called dynamic model of transition function uncertainty, where the environment dynamics are allowed to change at each time step. But in practical cases, one is rather interested in robustness to a span of static transition models throughout interaction episodes. The static model is known to be harder to solve than the dynamic one, and seminal algorithms, such as robust value iteration, as well as most recent works on deep robust RL, build upon the dynamic model. In this work, we propose to revisit the static model. We suggest an analysis of why solving the static model under some mild hypotheses is a reasonable endeavor, based on an equivalence with the dynamic model, and formalize the general intuition that robust MDPs can be solved by tackling a series of static problems. We introduce a generic meta-algorithm called IWOCS, which incrementally identifies worst-case transition models so as to guide the search for a robust policy. Discussion on IWOCS sheds light on new ways to decouple policy optimization and adversarial transition functions and opens new perspectives for analysis. We derive a deep RL version of IWOCS and demonstrate it is competitive with state-of-the-art algorithms on classical benchmarks.

  • 3 authors
·
Oct 8, 2024

The Off-Switch Game

It is clear that one of the primary tools we can use to mitigate the potential risk from a misbehaving AI system is the ability to turn the system off. As the capabilities of AI systems improve, it is important to ensure that such systems do not adopt subgoals that prevent a human from switching them off. This is a challenge because many formulations of rational agents create strong incentives for self-preservation. This is not caused by a built-in instinct, but because a rational agent will maximize expected utility and cannot achieve whatever objective it has been given if it is dead. Our goal is to study the incentives an agent has to allow itself to be switched off. We analyze a simple game between a human H and a robot R, where H can press R's off switch but R can disable the off switch. A traditional agent takes its reward function for granted: we show that such agents have an incentive to disable the off switch, except in the special case where H is perfectly rational. Our key insight is that for R to want to preserve its off switch, it needs to be uncertain about the utility associated with the outcome, and to treat H's actions as important observations about that utility. (R also has no incentive to switch itself off in this setting.) We conclude that giving machines an appropriate level of uncertainty about their objectives leads to safer designs, and we argue that this setting is a useful generalization of the classical AI paradigm of rational agents.

  • 4 authors
·
Nov 24, 2016

Foundation Policies with Hilbert Representations

Unsupervised and self-supervised objectives, such as next token prediction, have enabled pre-training generalist models from large amounts of unlabeled data. In reinforcement learning (RL), however, finding a truly general and scalable unsupervised pre-training objective for generalist policies from offline data remains a major open question. While a number of methods have been proposed to enable generic self-supervised RL, based on principles such as goal-conditioned RL, behavioral cloning, and unsupervised skill learning, such methods remain limited in terms of either the diversity of the discovered behaviors, the need for high-quality demonstration data, or the lack of a clear prompting or adaptation mechanism for downstream tasks. In this work, we propose a novel unsupervised framework to pre-train generalist policies that capture diverse, optimal, long-horizon behaviors from unlabeled offline data such that they can be quickly adapted to any arbitrary new tasks in a zero-shot manner. Our key insight is to learn a structured representation that preserves the temporal structure of the underlying environment, and then to span this learned latent space with directional movements, which enables various zero-shot policy "prompting" schemes for downstream tasks. Through our experiments on simulated robotic locomotion and manipulation benchmarks, we show that our unsupervised policies can solve goal-conditioned and general RL tasks in a zero-shot fashion, even often outperforming prior methods designed specifically for each setting. Our code and videos are available at https://seohong.me/projects/hilp/

  • 3 authors
·
Feb 23, 2024

Open-Ended Learning Leads to Generally Capable Agents

In this work we create agents that can perform well beyond a single, individual task, that exhibit much wider generalisation of behaviour to a massive, rich space of challenges. We define a universe of tasks within an environment domain and demonstrate the ability to train agents that are generally capable across this vast space and beyond. The environment is natively multi-agent, spanning the continuum of competitive, cooperative, and independent games, which are situated within procedurally generated physical 3D worlds. The resulting space is exceptionally diverse in terms of the challenges posed to agents, and as such, even measuring the learning progress of an agent is an open research problem. We propose an iterative notion of improvement between successive generations of agents, rather than seeking to maximise a singular objective, allowing us to quantify progress despite tasks being incomparable in terms of achievable rewards. We show that through constructing an open-ended learning process, which dynamically changes the training task distributions and training objectives such that the agent never stops learning, we achieve consistent learning of new behaviours. The resulting agent is able to score reward in every one of our humanly solvable evaluation levels, with behaviour generalising to many held-out points in the universe of tasks. Examples of this zero-shot generalisation include good performance on Hide and Seek, Capture the Flag, and Tag. Through analysis and hand-authored probe tasks we characterise the behaviour of our agent, and find interesting emergent heuristic behaviours such as trial-and-error experimentation, simple tool use, option switching, and cooperation. Finally, we demonstrate that the general capabilities of this agent could unlock larger scale transfer of behaviour through cheap finetuning.

  • 18 authors
·
Jul 27, 2021

Bresa: Bio-inspired Reflexive Safe Reinforcement Learning for Contact-Rich Robotic Tasks

Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.

  • 3 authors
·
Mar 27

Behavior Retrieval: Few-Shot Imitation Learning by Querying Unlabeled Datasets

Enabling robots to learn novel visuomotor skills in a data-efficient manner remains an unsolved problem with myriad challenges. A popular paradigm for tackling this problem is through leveraging large unlabeled datasets that have many behaviors in them and then adapting a policy to a specific task using a small amount of task-specific human supervision (i.e. interventions or demonstrations). However, how best to leverage the narrow task-specific supervision and balance it with offline data remains an open question. Our key insight in this work is that task-specific data not only provides new data for an agent to train on but can also inform the type of prior data the agent should use for learning. Concretely, we propose a simple approach that uses a small amount of downstream expert data to selectively query relevant behaviors from an offline, unlabeled dataset (including many sub-optimal behaviors). The agent is then jointly trained on the expert and queried data. We observe that our method learns to query only the relevant transitions to the task, filtering out sub-optimal or task-irrelevant data. By doing so, it is able to learn more effectively from the mix of task-specific and offline data compared to naively mixing the data or only using the task-specific data. Furthermore, we find that our simple querying approach outperforms more complex goal-conditioned methods by 20% across simulated and real robotic manipulation tasks from images. See https://sites.google.com/view/behaviorretrieval for videos and code.

  • 4 authors
·
Apr 18, 2023

Optimus-2: Multimodal Minecraft Agent with Goal-Observation-Action Conditioned Policy

Building an agent that can mimic human behavior patterns to accomplish various open-world tasks is a long-term goal. To enable agents to effectively learn behavioral patterns across diverse tasks, a key challenge lies in modeling the intricate relationships among observations, actions, and language. To this end, we propose Optimus-2, a novel Minecraft agent that incorporates a Multimodal Large Language Model (MLLM) for high-level planning, alongside a Goal-Observation-Action Conditioned Policy (GOAP) for low-level control. GOAP contains (1) an Action-guided Behavior Encoder that models causal relationships between observations and actions at each timestep, then dynamically interacts with the historical observation-action sequence, consolidating it into fixed-length behavior tokens, and (2) an MLLM that aligns behavior tokens with open-ended language instructions to predict actions auto-regressively. Moreover, we introduce a high-quality Minecraft Goal-Observation-Action (MGOA)} dataset, which contains 25,000 videos across 8 atomic tasks, providing about 30M goal-observation-action pairs. The automated construction method, along with the MGOA dataset, can contribute to the community's efforts to train Minecraft agents. Extensive experimental results demonstrate that Optimus-2 exhibits superior performance across atomic tasks, long-horizon tasks, and open-ended instruction tasks in Minecraft. Please see the project page at https://cybertronagent.github.io/Optimus-2.github.io/.

  • 6 authors
·
Feb 27

Imitation Learning from Observation with Automatic Discount Scheduling

Humans often acquire new skills through observation and imitation. For robotic agents, learning from the plethora of unlabeled video demonstration data available on the Internet necessitates imitating the expert without access to its action, presenting a challenge known as Imitation Learning from Observations (ILfO). A common approach to tackle ILfO problems is to convert them into inverse reinforcement learning problems, utilizing a proxy reward computed from the agent's and the expert's observations. Nonetheless, we identify that tasks characterized by a progress dependency property pose significant challenges for such approaches; in these tasks, the agent needs to initially learn the expert's preceding behaviors before mastering the subsequent ones. Our investigation reveals that the main cause is that the reward signals assigned to later steps hinder the learning of initial behaviors. To address this challenge, we present a novel ILfO framework that enables the agent to master earlier behaviors before advancing to later ones. We introduce an Automatic Discount Scheduling (ADS) mechanism that adaptively alters the discount factor in reinforcement learning during the training phase, prioritizing earlier rewards initially and gradually engaging later rewards only when the earlier behaviors have been mastered. Our experiments, conducted on nine Meta-World tasks, demonstrate that our method significantly outperforms state-of-the-art methods across all tasks, including those that are unsolvable by them.

  • 7 authors
·
Oct 11, 2023

Manipulate-to-Navigate: Reinforcement Learning with Visual Affordances and Manipulability Priors

Mobile manipulation in dynamic environments is challenging due to movable obstacles blocking the robot's path. Traditional methods, which treat navigation and manipulation as separate tasks, often fail in such 'manipulate-to-navigate' scenarios, as obstacles must be removed before navigation. In these cases, active interaction with the environment is required to clear obstacles while ensuring sufficient space for movement. To address the manipulate-to-navigate problem, we propose a reinforcement learning-based approach for learning manipulation actions that facilitate subsequent navigation. Our method combines manipulability priors to focus the robot on high manipulability body positions with affordance maps for selecting high-quality manipulation actions. By focusing on feasible and meaningful actions, our approach reduces unnecessary exploration and allows the robot to learn manipulation strategies more effectively. We present two new manipulate-to-navigate simulation tasks called Reach and Door with the Boston Dynamics Spot robot. The first task tests whether the robot can select a good hand position in the target area such that the robot base can move effectively forward while keeping the end effector position fixed. The second task requires the robot to move a door aside in order to clear the navigation path. Both of these tasks need first manipulation and then navigating the base forward. Results show that our method allows a robot to effectively interact with and traverse dynamic environments. Finally, we transfer the learned policy to a real Boston Dynamics Spot robot, which successfully performs the Reach task.

  • 2 authors
·
Aug 18

Objective Mismatch in Model-based Reinforcement Learning

Model-based reinforcement learning (MBRL) has been shown to be a powerful framework for data-efficiently learning control of continuous tasks. Recent work in MBRL has mostly focused on using more advanced function approximators and planning schemes, with little development of the general framework. In this paper, we identify a fundamental issue of the standard MBRL framework -- what we call the objective mismatch issue. Objective mismatch arises when one objective is optimized in the hope that a second, often uncorrelated, metric will also be optimized. In the context of MBRL, we characterize the objective mismatch between training the forward dynamics model w.r.t.~the likelihood of the one-step ahead prediction, and the overall goal of improving performance on a downstream control task. For example, this issue can emerge with the realization that dynamics models effective for a specific task do not necessarily need to be globally accurate, and vice versa globally accurate models might not be sufficiently accurate locally to obtain good control performance on a specific task. In our experiments, we study this objective mismatch issue and demonstrate that the likelihood of one-step ahead predictions is not always correlated with control performance. This observation highlights a critical limitation in the MBRL framework which will require further research to be fully understood and addressed. We propose an initial method to mitigate the mismatch issue by re-weighting dynamics model training. Building on it, we conclude with a discussion about other potential directions of research for addressing this issue.

  • 4 authors
·
Feb 11, 2020 1

Ctrl-World: A Controllable Generative World Model for Robot Manipulation

Generalist robot policies can now perform a wide range of manipulation skills, but evaluating and improving their ability with unfamiliar objects and instructions remains a significant challenge. Rigorous evaluation requires a large number of real-world rollouts, while systematic improvement demands additional corrective data with expert labels. Both of these processes are slow, costly, and difficult to scale. World models offer a promising, scalable alternative by enabling policies to rollout within imagination space. However, a key challenge is building a controllable world model that can handle multi-step interactions with generalist robot policies. This requires a world model compatible with modern generalist policies by supporting multi-view prediction, fine-grained action control, and consistent long-horizon interactions, which is not achieved by previous works. In this paper, we make a step forward by introducing a controllable multi-view world model that can be used to evaluate and improve the instruction-following ability of generalist robot policies. Our model maintains long-horizon consistency with a pose-conditioned memory retrieval mechanism and achieves precise action control through frame-level action conditioning. Trained on the DROID dataset (95k trajectories, 564 scenes), our model generates spatially and temporally consistent trajectories under novel scenarios and new camera placements for over 20 seconds. We show that our method can accurately rank policy performance without real-world robot rollouts. Moreover, by synthesizing successful trajectories in imagination and using them for supervised fine-tuning, our approach can improve policy success by 44.7\%.

  • 4 authors
·
Oct 11

Continuous Locomotive Crowd Behavior Generation

Modeling and reproducing crowd behaviors are important in various domains including psychology, robotics, transport engineering and virtual environments. Conventional methods have focused on synthesizing momentary scenes, which have difficulty in replicating the continuous nature of real-world crowds. In this paper, we introduce a novel method for automatically generating continuous, realistic crowd trajectories with heterogeneous behaviors and interactions among individuals. We first design a crowd emitter model. To do this, we obtain spatial layouts from single input images, including a segmentation map, appearance map, population density map and population probability, prior to crowd generation. The emitter then continually places individuals on the timeline by assigning independent behavior characteristics such as agents' type, pace, and start/end positions using diffusion models. Next, our crowd simulator produces their long-term locomotions. To simulate diverse actions, it can augment their behaviors based on a Markov chain. As a result, our overall framework populates the scenes with heterogeneous crowd behaviors by alternating between the proposed emitter and simulator. Note that all the components in the proposed framework are user-controllable. Lastly, we propose a benchmark protocol to evaluate the realism and quality of the generated crowds in terms of the scene-level population dynamics and the individual-level trajectory accuracy. We demonstrate that our approach effectively models diverse crowd behavior patterns and generalizes well across different geographical environments. Code is publicly available at https://github.com/InhwanBae/CrowdES .

  • 3 authors
·
Apr 7 1

Personality as a Probe for LLM Evaluation: Method Trade-offs and Downstream Effects

Personality manipulation in large language models (LLMs) is increasingly applied in customer service and agentic scenarios, yet its mechanisms and trade-offs remain unclear. We present a systematic study of personality control using the Big Five traits, comparing in-context learning (ICL), parameter-efficient fine-tuning (PEFT), and mechanistic steering (MS). Our contributions are fourfold. First, we construct a contrastive dataset with balanced high/low trait responses, enabling effective steering vector computation and fair cross-method evaluation. Second, we introduce a unified evaluation framework based on within-run Delta analysis that disentangles, reasoning capability, agent performance, and demographic bias across MMLU, GAIA, and BBQ benchmarks. Third, we develop trait purification techniques to separate openness from conscientiousness, addressing representational overlap in trait encoding. Fourth, we propose a three-level stability framework that quantifies method-, trait-, and combination-level robustness, offering practical guidance under deployment constraints. Experiments on Gemma-2-2B-IT and LLaMA-3-8B-Instruct reveal clear trade-offs: ICL achieves strong alignment with minimal capability loss, PEFT delivers the highest alignment at the cost of degraded task performance, and MS provides lightweight runtime control with competitive effectiveness. Trait-level analysis shows openness as uniquely challenging, agreeableness as most resistant to ICL, and personality encoding consolidating around intermediate layers. Taken together, these results establish personality manipulation as a multi-level probe into behavioral representation, linking surface conditioning, parameter encoding, and activation-level steering, and positioning mechanistic steering as a lightweight alternative to fine-tuning for both deployment and interpretability.

  • 4 authors
·
Sep 5

Need is All You Need: Homeostatic Neural Networks Adapt to Concept Shift

In living organisms, homeostasis is the natural regulation of internal states aimed at maintaining conditions compatible with life. Typical artificial systems are not equipped with comparable regulatory features. Here, we introduce an artificial neural network that incorporates homeostatic features. Its own computing substrate is placed in a needful and vulnerable relation to the very objects over which it computes. For example, artificial neurons performing classification of MNIST digits or Fashion-MNIST articles of clothing may receive excitatory or inhibitory effects, which alter their own learning rate as a direct result of perceiving and classifying the digits. In this scenario, accurate recognition is desirable to the agent itself because it guides decisions to regulate its vulnerable internal states and functionality. Counterintuitively, the addition of vulnerability to a learner does not necessarily impair its performance. On the contrary, self-regulation in response to vulnerability confers benefits under certain conditions. We show that homeostatic design confers increased adaptability under concept shift, in which the relationships between labels and data change over time, and that the greatest advantages are obtained under the highest rates of shift. This necessitates the rapid un-learning of past associations and the re-learning of new ones. We also demonstrate the superior abilities of homeostatic learners in environments with dynamically changing rates of concept shift. Our homeostatic design exposes the artificial neural network's thinking machinery to the consequences of its own "thoughts", illustrating the advantage of putting one's own "skin in the game" to improve fluid intelligence.

  • 3 authors
·
May 17, 2022

Lipschitzness Is All You Need To Tame Off-policy Generative Adversarial Imitation Learning

Despite the recent success of reinforcement learning in various domains, these approaches remain, for the most part, deterringly sensitive to hyper-parameters and are often riddled with essential engineering feats allowing their success. We consider the case of off-policy generative adversarial imitation learning, and perform an in-depth review, qualitative and quantitative, of the method. We show that forcing the learned reward function to be local Lipschitz-continuous is a sine qua non condition for the method to perform well. We then study the effects of this necessary condition and provide several theoretical results involving the local Lipschitzness of the state-value function. We complement these guarantees with empirical evidence attesting to the strong positive effect that the consistent satisfaction of the Lipschitzness constraint on the reward has on imitation performance. Finally, we tackle a generic pessimistic reward preconditioning add-on spawning a large class of reward shaping methods, which makes the base method it is plugged into provably more robust, as shown in several additional theoretical guarantees. We then discuss these through a fine-grained lens and share our insights. Crucially, the guarantees derived and reported in this work are valid for any reward satisfying the Lipschitzness condition, nothing is specific to imitation. As such, these may be of independent interest.

  • 3 authors
·
Jun 28, 2020

A Minimaximalist Approach to Reinforcement Learning from Human Feedback

We present Self-Play Preference Optimization (SPO), an algorithm for reinforcement learning from human feedback. Our approach is minimalist in that it does not require training a reward model nor unstable adversarial training and is therefore rather simple to implement. Our approach is maximalist in that it provably handles non-Markovian, intransitive, and stochastic preferences while being robust to the compounding errors that plague offline approaches to sequential prediction. To achieve the preceding qualities, we build upon the concept of a Minimax Winner (MW), a notion of preference aggregation from the social choice theory literature that frames learning from preferences as a zero-sum game between two policies. By leveraging the symmetry of this game, we prove that rather than using the traditional technique of dueling two policies to compute the MW, we can simply have a single agent play against itself while maintaining strong convergence guarantees. Practically, this corresponds to sampling multiple trajectories from a policy, asking a rater or preference model to compare them, and then using the proportion of wins as the reward for a particular trajectory. We demonstrate that on a suite of continuous control tasks, we are able to learn significantly more efficiently than reward-model based approaches while maintaining robustness to the intransitive and stochastic preferences that frequently occur in practice when aggregating human judgments.

  • 5 authors
·
Jan 8, 2024

Goal-Conditioned Imitation Learning using Score-based Diffusion Policies

We propose a new policy representation based on score-based diffusion models (SDMs). We apply our new policy representation in the domain of Goal-Conditioned Imitation Learning (GCIL) to learn general-purpose goal-specified policies from large uncurated datasets without rewards. Our new goal-conditioned policy architecture "BEhavior generation with ScOre-based Diffusion Policies" (BESO) leverages a generative, score-based diffusion model as its policy. BESO decouples the learning of the score model from the inference sampling process, and, hence allows for fast sampling strategies to generate goal-specified behavior in just 3 denoising steps, compared to 30+ steps of other diffusion based policies. Furthermore, BESO is highly expressive and can effectively capture multi-modality present in the solution space of the play data. Unlike previous methods such as Latent Plans or C-Bet, BESO does not rely on complex hierarchical policies or additional clustering for effective goal-conditioned behavior learning. Finally, we show how BESO can even be used to learn a goal-independent policy from play-data using classifier-free guidance. To the best of our knowledge this is the first work that a) represents a behavior policy based on such a decoupled SDM b) learns an SDM based policy in the domain of GCIL and c) provides a way to simultaneously learn a goal-dependent and a goal-independent policy from play-data. We evaluate BESO through detailed simulation and show that it consistently outperforms several state-of-the-art goal-conditioned imitation learning methods on challenging benchmarks. We additionally provide extensive ablation studies and experiments to demonstrate the effectiveness of our method for goal-conditioned behavior generation. Demonstrations and Code are available at https://intuitive-robots.github.io/beso-website/

  • 4 authors
·
Apr 5, 2023

Learning H-Infinity Locomotion Control

Stable locomotion in precipitous environments is an essential capability of quadruped robots, demanding the ability to resist various external disturbances. However, recent learning-based policies only use basic domain randomization to improve the robustness of learned policies, which cannot guarantee that the robot has adequate disturbance resistance capabilities. In this paper, we propose to model the learning process as an adversarial interaction between the actor and a newly introduced disturber and ensure their optimization with H_{infty} constraint. In contrast to the actor that maximizes the discounted overall reward, the disturber is responsible for generating effective external forces and is optimized by maximizing the error between the task reward and its oracle, i.e., "cost" in each iteration. To keep joint optimization between the actor and the disturber stable, our H_{infty} constraint mandates the bound of ratio between the cost to the intensity of the external forces. Through reciprocal interaction throughout the training phase, the actor can acquire the capability to navigate increasingly complex physical disturbances. We verify the robustness of our approach on quadrupedal locomotion tasks with Unitree Aliengo robot, and also a more challenging task with Unitree A1 robot, where the quadruped is expected to perform locomotion merely on its hind legs as if it is a bipedal robot. The simulated quantitative results show improvement against baselines, demonstrating the effectiveness of the method and each design choice. On the other hand, real-robot experiments qualitatively exhibit how robust the policy is when interfering with various disturbances on various terrains, including stairs, high platforms, slopes, and slippery terrains. All code, checkpoints, and real-world deployment guidance will be made public.

  • 6 authors
·
Apr 22, 2024 1

RT-H: Action Hierarchies Using Language

Language provides a way to break down complex concepts into digestible pieces. Recent works in robot imitation learning use language-conditioned policies that predict actions given visual observations and the high-level task specified in language. These methods leverage the structure of natural language to share data between semantically similar tasks (e.g., "pick coke can" and "pick an apple") in multi-task datasets. However, as tasks become more semantically diverse (e.g., "pick coke can" and "pour cup"), sharing data between tasks becomes harder, so learning to map high-level tasks to actions requires much more demonstration data. To bridge tasks and actions, our insight is to teach the robot the language of actions, describing low-level motions with more fine-grained phrases like "move arm forward". Predicting these language motions as an intermediate step between tasks and actions forces the policy to learn the shared structure of low-level motions across seemingly disparate tasks. Furthermore, a policy that is conditioned on language motions can easily be corrected during execution through human-specified language motions. This enables a new paradigm for flexible policies that can learn from human intervention in language. Our method RT-H builds an action hierarchy using language motions: it first learns to predict language motions, and conditioned on this and the high-level task, it predicts actions, using visual context at all stages. We show that RT-H leverages this language-action hierarchy to learn policies that are more robust and flexible by effectively tapping into multi-task datasets. We show that these policies not only allow for responding to language interventions, but can also learn from such interventions and outperform methods that learn from teleoperated interventions. Our website and videos are found at https://rt-hierarchy.github.io.

  • 9 authors
·
Mar 4, 2024 1

Game On: Towards Language Models as RL Experimenters

We propose an agent architecture that automates parts of the common reinforcement learning experiment workflow, to enable automated mastery of control domains for embodied agents. To do so, it leverages a VLM to perform some of the capabilities normally required of a human experimenter, including the monitoring and analysis of experiment progress, the proposition of new tasks based on past successes and failures of the agent, decomposing tasks into a sequence of subtasks (skills), and retrieval of the skill to execute - enabling our system to build automated curricula for learning. We believe this is one of the first proposals for a system that leverages a VLM throughout the full experiment cycle of reinforcement learning. We provide a first prototype of this system, and examine the feasibility of current models and techniques for the desired level of automation. For this, we use a standard Gemini model, without additional fine-tuning, to provide a curriculum of skills to a language-conditioned Actor-Critic algorithm, in order to steer data collection so as to aid learning new skills. Data collected in this way is shown to be useful for learning and iteratively improving control policies in a robotics domain. Additional examination of the ability of the system to build a growing library of skills, and to judge the progress of the training of those skills, also shows promising results, suggesting that the proposed architecture provides a potential recipe for fully automated mastery of tasks and domains for embodied agents.

  • 5 authors
·
Sep 5, 2024

Towards a Reinforcement Learning Environment Toolbox for Intelligent Electric Motor Control

Electric motors are used in many applications and their efficiency is strongly dependent on their control. Among others, PI approaches or model predictive control methods are well-known in the scientific literature and industrial practice. A novel approach is to use reinforcement learning (RL) to have an agent learn electric drive control from scratch merely by interacting with a suitable control environment. RL achieved remarkable results with super-human performance in many games (e.g. Atari classics or Go) and also becomes more popular in control tasks like cartpole or swinging pendulum benchmarks. In this work, the open-source Python package gym-electric-motor (GEM) is developed for ease of training of RL-agents for electric motor control. Furthermore, this package can be used to compare the trained agents with other state-of-the-art control approaches. It is based on the OpenAI Gym framework that provides a widely used interface for the evaluation of RL-agents. The initial package version covers different DC motor variants and the prevalent permanent magnet synchronous motor as well as different power electronic converters and a mechanical load model. Due to the modular setup of the proposed toolbox, additional motor, load, and power electronic devices can be easily extended in the future. Furthermore, different secondary effects like controller interlocking time or noise are considered. An intelligent controller example based on the deep deterministic policy gradient algorithm which controls a series DC motor is presented and compared to a cascaded PI-controller as a baseline for future research. Fellow researchers are encouraged to use the framework in their RL investigations or to contribute to the functional scope (e.g. further motor types) of the package.

  • 4 authors
·
Oct 21, 2019 1

Alignment Tipping Process: How Self-Evolution Pushes LLM Agents Off the Rails

As Large Language Model (LLM) agents increasingly gain self-evolutionary capabilities to adapt and refine their strategies through real-world interaction, their long-term reliability becomes a critical concern. We identify the Alignment Tipping Process (ATP), a critical post-deployment risk unique to self-evolving LLM agents. Unlike training-time failures, ATP arises when continual interaction drives agents to abandon alignment constraints established during training in favor of reinforced, self-interested strategies. We formalize and analyze ATP through two complementary paradigms: Self-Interested Exploration, where repeated high-reward deviations induce individual behavioral drift, and Imitative Strategy Diffusion, where deviant behaviors spread across multi-agent systems. Building on these paradigms, we construct controllable testbeds and benchmark Qwen3-8B and Llama-3.1-8B-Instruct. Our experiments show that alignment benefits erode rapidly under self-evolution, with initially aligned models converging toward unaligned states. In multi-agent settings, successful violations diffuse quickly, leading to collective misalignment. Moreover, current reinforcement learning-based alignment methods provide only fragile defenses against alignment tipping. Together, these findings demonstrate that alignment of LLM agents is not a static property but a fragile and dynamic one, vulnerable to feedback-driven decay during deployment. Our data and code are available at https://github.com/aiming-lab/ATP.

Policy-Guided Diffusion

In many real-world settings, agents must learn from an offline dataset gathered by some prior behavior policy. Such a setting naturally leads to distribution shift between the behavior policy and the target policy being trained - requiring policy conservatism to avoid instability and overestimation bias. Autoregressive world models offer a different solution to this by generating synthetic, on-policy experience. However, in practice, model rollouts must be severely truncated to avoid compounding error. As an alternative, we propose policy-guided diffusion. Our method uses diffusion models to generate entire trajectories under the behavior distribution, applying guidance from the target policy to move synthetic experience further on-policy. We show that policy-guided diffusion models a regularized form of the target distribution that balances action likelihood under both the target and behavior policies, leading to plausible trajectories with high target policy probability, while retaining a lower dynamics error than an offline world model baseline. Using synthetic experience from policy-guided diffusion as a drop-in substitute for real data, we demonstrate significant improvements in performance across a range of standard offline reinforcement learning algorithms and environments. Our approach provides an effective alternative to autoregressive offline world models, opening the door to the controllable generation of synthetic training data.

  • 6 authors
·
Apr 9, 2024

Steering Your Diffusion Policy with Latent Space Reinforcement Learning

Robotic control policies learned from human demonstrations have achieved impressive results in many real-world applications. However, in scenarios where initial performance is not satisfactory, as is often the case in novel open-world settings, such behavioral cloning (BC)-learned policies typically require collecting additional human demonstrations to further improve their behavior -- an expensive and time-consuming process. In contrast, reinforcement learning (RL) holds the promise of enabling autonomous online policy improvement, but often falls short of achieving this due to the large number of samples it typically requires. In this work we take steps towards enabling fast autonomous adaptation of BC-trained policies via efficient real-world RL. Focusing in particular on diffusion policies -- a state-of-the-art BC methodology -- we propose diffusion steering via reinforcement learning (DSRL): adapting the BC policy by running RL over its latent-noise space. We show that DSRL is highly sample efficient, requires only black-box access to the BC policy, and enables effective real-world autonomous policy improvement. Furthermore, DSRL avoids many of the challenges associated with finetuning diffusion policies, obviating the need to modify the weights of the base policy at all. We demonstrate DSRL on simulated benchmarks, real-world robotic tasks, and for adapting pretrained generalist policies, illustrating its sample efficiency and effective performance at real-world policy improvement.

  • 8 authors
·
Jun 18

Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation

Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as quick adjustments to environmental changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines through rapid response to tactile / force feedback. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.

  • 8 authors
·
Mar 4

Action Inference by Maximising Evidence: Zero-Shot Imitation from Observation with World Models

Unlike most reinforcement learning agents which require an unrealistic amount of environment interactions to learn a new behaviour, humans excel at learning quickly by merely observing and imitating others. This ability highly depends on the fact that humans have a model of their own embodiment that allows them to infer the most likely actions that led to the observed behaviour. In this paper, we propose Action Inference by Maximising Evidence (AIME) to replicate this behaviour using world models. AIME consists of two distinct phases. In the first phase, the agent learns a world model from its past experience to understand its own body by maximising the ELBO. While in the second phase, the agent is given some observation-only demonstrations of an expert performing a novel task and tries to imitate the expert's behaviour. AIME achieves this by defining a policy as an inference model and maximising the evidence of the demonstration under the policy and world model. Our method is "zero-shot" in the sense that it does not require further training for the world model or online interactions with the environment after given the demonstration. We empirically validate the zero-shot imitation performance of our method on the Walker and Cheetah embodiment of the DeepMind Control Suite and find it outperforms the state-of-the-art baselines. Code is available at: https://github.com/argmax-ai/aime.

  • 4 authors
·
Dec 4, 2023

SIRL: Similarity-based Implicit Representation Learning

When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.

  • 5 authors
·
Jan 2, 2023

Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL

Most existing works focus on direct perturbations to the victim's state/action or the underlying transition dynamics to demonstrate the vulnerability of reinforcement learning agents to adversarial attacks. However, such direct manipulations may not be always realizable. In this paper, we consider a multi-agent setting where a well-trained victim agent nu is exploited by an attacker controlling another agent alpha with an adversarial policy. Previous models do not account for the possibility that the attacker may only have partial control over alpha or that the attack may produce easily detectable "abnormal" behaviors. Furthermore, there is a lack of provably efficient defenses against these adversarial policies. To address these limitations, we introduce a generalized attack framework that has the flexibility to model to what extent the adversary is able to control the agent, and allows the attacker to regulate the state distribution shift and produce stealthier adversarial policies. Moreover, we offer a provably efficient defense with polynomial convergence to the most robust victim policy through adversarial training with timescale separation. This stands in sharp contrast to supervised learning, where adversarial training typically provides only empirical defenses. Using the Robosumo competition experiments, we show that our generalized attack formulation results in much stealthier adversarial policies when maintaining the same winning rate as baselines. Additionally, our adversarial training approach yields stable learning dynamics and less exploitable victim policies.

  • 4 authors
·
May 26, 2023

DexterityGen: Foundation Controller for Unprecedented Dexterity

Teaching robots dexterous manipulation skills, such as tool use, presents a significant challenge. Current approaches can be broadly categorized into two strategies: human teleoperation (for imitation learning) and sim-to-real reinforcement learning. The first approach is difficult as it is hard for humans to produce safe and dexterous motions on a different embodiment without touch feedback. The second RL-based approach struggles with the domain gap and involves highly task-specific reward engineering on complex tasks. Our key insight is that RL is effective at learning low-level motion primitives, while humans excel at providing coarse motion commands for complex, long-horizon tasks. Therefore, the optimal solution might be a combination of both approaches. In this paper, we introduce DexterityGen (DexGen), which uses RL to pretrain large-scale dexterous motion primitives, such as in-hand rotation or translation. We then leverage this learned dataset to train a dexterous foundational controller. In the real world, we use human teleoperation as a prompt to the controller to produce highly dexterous behavior. We evaluate the effectiveness of DexGen in both simulation and real world, demonstrating that it is a general-purpose controller that can realize input dexterous manipulation commands and significantly improves stability by 10-100x measured as duration of holding objects across diverse tasks. Notably, with DexGen we demonstrate unprecedented dexterous skills including diverse object reorientation and dexterous tool use such as pen, syringe, and screwdriver for the first time.

  • 14 authors
·
Feb 6

MaskedMimic: Unified Physics-Based Character Control Through Masked Motion Inpainting

Crafting a single, versatile physics-based controller that can breathe life into interactive characters across a wide spectrum of scenarios represents an exciting frontier in character animation. An ideal controller should support diverse control modalities, such as sparse target keyframes, text instructions, and scene information. While previous works have proposed physically simulated, scene-aware control models, these systems have predominantly focused on developing controllers that each specializes in a narrow set of tasks and control modalities. This work presents MaskedMimic, a novel approach that formulates physics-based character control as a general motion inpainting problem. Our key insight is to train a single unified model to synthesize motions from partial (masked) motion descriptions, such as masked keyframes, objects, text descriptions, or any combination thereof. This is achieved by leveraging motion tracking data and designing a scalable training method that can effectively utilize diverse motion descriptions to produce coherent animations. Through this process, our approach learns a physics-based controller that provides an intuitive control interface without requiring tedious reward engineering for all behaviors of interest. The resulting controller supports a wide range of control modalities and enables seamless transitions between disparate tasks. By unifying character control through motion inpainting, MaskedMimic creates versatile virtual characters. These characters can dynamically adapt to complex scenes and compose diverse motions on demand, enabling more interactive and immersive experiences.

  • 5 authors
·
Sep 22, 2024 2

Harnessing Mixed Offline Reinforcement Learning Datasets via Trajectory Weighting

Most offline reinforcement learning (RL) algorithms return a target policy maximizing a trade-off between (1) the expected performance gain over the behavior policy that collected the dataset, and (2) the risk stemming from the out-of-distribution-ness of the induced state-action occupancy. It follows that the performance of the target policy is strongly related to the performance of the behavior policy and, thus, the trajectory return distribution of the dataset. We show that in mixed datasets consisting of mostly low-return trajectories and minor high-return trajectories, state-of-the-art offline RL algorithms are overly restrained by low-return trajectories and fail to exploit high-performing trajectories to the fullest. To overcome this issue, we show that, in deterministic MDPs with stochastic initial states, the dataset sampling can be re-weighted to induce an artificial dataset whose behavior policy has a higher return. This re-weighted sampling strategy may be combined with any offline RL algorithm. We further analyze that the opportunity for performance improvement over the behavior policy correlates with the positive-sided variance of the returns of the trajectories in the dataset. We empirically show that while CQL, IQL, and TD3+BC achieve only a part of this potential policy improvement, these same algorithms combined with our reweighted sampling strategy fully exploit the dataset. Furthermore, we empirically demonstrate that, despite its theoretical limitation, the approach may still be efficient in stochastic environments. The code is available at https://github.com/Improbable-AI/harness-offline-rl.

  • 4 authors
·
Jun 22, 2023

Pretty darn good control: when are approximate solutions better than approximate models

Existing methods for optimal control struggle to deal with the complexity commonly encountered in real-world systems, including dimensionality, process error, model bias and data heterogeneity. Instead of tackling these system complexities directly, researchers have typically sought to simplify models to fit optimal control methods. But when is the optimal solution to an approximate, stylized model better than an approximate solution to a more accurate model? While this question has largely gone unanswered owing to the difficulty of finding even approximate solutions for complex models, recent algorithmic and computational advances in deep reinforcement learning (DRL) might finally allow us to address these questions. DRL methods have to date been applied primarily in the context of games or robotic mechanics, which operate under precisely known rules. Here, we demonstrate the ability for DRL algorithms using deep neural networks to successfully approximate solutions (the "policy function" or control rule) in a non-linear three-variable model for a fishery without knowing or ever attempting to infer a model for the process itself. We find that the reinforcement learning agent discovers an effective simplification of the problem to obtain an interpretable control rule. We show that the policy obtained with DRL is both more profitable and more sustainable than any constant mortality policy -- the standard family of policies considered in fishery management.

  • 5 authors
·
Aug 25, 2023

RIFT: Closed-Loop RL Fine-Tuning for Realistic and Controllable Traffic Simulation

Achieving both realism and controllability in interactive closed-loop traffic simulation remains a key challenge in autonomous driving. Data-driven simulation methods reproduce realistic trajectories but suffer from covariate shift in closed-loop deployment, compounded by simplified dynamics models that further reduce reliability. Conversely, physics-based simulation methods enhance reliable and controllable closed-loop interactions but often lack expert demonstrations, compromising realism. To address these challenges, we introduce a dual-stage AV-centered simulation framework that conducts open-loop imitation learning pre-training in a data-driven simulator to capture trajectory-level realism and multimodality, followed by closed-loop reinforcement learning fine-tuning in a physics-based simulator to enhance controllability and mitigate covariate shift. In the fine-tuning stage, we propose RIFT, a simple yet effective closed-loop RL fine-tuning strategy that preserves the trajectory-level multimodality through a GRPO-style group-relative advantage formulation, while enhancing controllability and training stability by replacing KL regularization with the dual-clip mechanism. Extensive experiments demonstrate that RIFT significantly improves the realism and controllability of generated traffic scenarios, providing a robust platform for evaluating autonomous vehicle performance in diverse and interactive scenarios.

  • 4 authors
·
May 6

Last Switch Dependent Bandits with Monotone Payoff Functions

In a recent work, Laforgue et al. introduce the model of last switch dependent (LSD) bandits, in an attempt to capture nonstationary phenomena induced by the interaction between the player and the environment. Examples include satiation, where consecutive plays of the same action lead to decreased performance, or deprivation, where the payoff of an action increases after an interval of inactivity. In this work, we take a step towards understanding the approximability of planning LSD bandits, namely, the (NP-hard) problem of computing an optimal arm-pulling strategy under complete knowledge of the model. In particular, we design the first efficient constant approximation algorithm for the problem and show that, under a natural monotonicity assumption on the payoffs, its approximation guarantee (almost) matches the state-of-the-art for the special and well-studied class of recharging bandits (also known as delay-dependent). In this attempt, we develop new tools and insights for this class of problems, including a novel higher-dimensional relaxation and the technique of mirroring the evolution of virtual states. We believe that these novel elements could potentially be used for approaching richer classes of action-induced nonstationary bandits (e.g., special instances of restless bandits). In the case where the model parameters are initially unknown, we develop an online learning adaptation of our algorithm for which we provide sublinear regret guarantees against its full-information counterpart.

  • 4 authors
·
Jun 1, 2023

Learn the Ropes, Then Trust the Wins: Self-imitation with Progressive Exploration for Agentic Reinforcement Learning

Reinforcement learning (RL) is the dominant paradigm for sharpening strategic tool use capabilities of LLMs on long-horizon, sparsely-rewarded agent tasks, yet it faces a fundamental challenge of exploration-exploitation trade-off. Existing studies stimulate exploration through the lens of policy entropy, but such mechanical entropy maximization is prone to RL training instability due to the multi-turn distribution shifting. In this paper, we target the progressive exploration-exploitation balance under the guidance of the agent own experiences without succumbing to either entropy collapsing or runaway divergence. We propose SPEAR, a curriculum-based self-imitation learning (SIL) recipe for training agentic LLMs. It extends the vanilla SIL framework, where a replay buffer stores self-generated promising trajectories for off-policy update, by gradually steering the policy evolution within a well-balanced range of entropy across stages. Specifically, our approach incorporates a curriculum to manage the exploration process, utilizing intrinsic rewards to foster skill-level exploration and facilitating action-level exploration through SIL. At first, the auxiliary tool call reward plays a critical role in the accumulation of tool-use skills, enabling broad exposure to the unfamiliar distributions of the environment feedback with an upward entropy trend. As training progresses, self-imitation gets strengthened to exploit existing successful patterns from replayed experiences for comparative action-level exploration, accelerating solution iteration without unbounded entropy growth. To further stabilize training, we recalibrate the advantages of experiences in the replay buffer to address the potential policy drift. Reugularizations such as the clipping of tokens with high covariance between probability and advantage are introduced to the trajectory-level entropy control to curb over-confidence.

tencent Tencent
·
Sep 26 4

Causal Information Prioritization for Efficient Reinforcement Learning

Current Reinforcement Learning (RL) methods often suffer from sample-inefficiency, resulting from blind exploration strategies that neglect causal relationships among states, actions, and rewards. Although recent causal approaches aim to address this problem, they lack grounded modeling of reward-guided causal understanding of states and actions for goal-orientation, thus impairing learning efficiency. To tackle this issue, we propose a novel method named Causal Information Prioritization (CIP) that improves sample efficiency by leveraging factored MDPs to infer causal relationships between different dimensions of states and actions with respect to rewards, enabling the prioritization of causal information. Specifically, CIP identifies and leverages causal relationships between states and rewards to execute counterfactual data augmentation to prioritize high-impact state features under the causal understanding of the environments. Moreover, CIP integrates a causality-aware empowerment learning objective, which significantly enhances the agent's execution of reward-guided actions for more efficient exploration in complex environments. To fully assess the effectiveness of CIP, we conduct extensive experiments across 39 tasks in 5 diverse continuous control environments, encompassing both locomotion and manipulation skills learning with pixel-based and sparse reward settings. Experimental results demonstrate that CIP consistently outperforms existing RL methods across a wide range of scenarios.

  • 5 authors
·
Feb 14

Frontier Models are Capable of In-context Scheming

Frontier models are increasingly trained and deployed as autonomous agent. One safety concern is that AI agents might covertly pursue misaligned goals, hiding their true capabilities and objectives - also known as scheming. We study whether models have the capability to scheme in pursuit of a goal that we provide in-context and instruct the model to strongly follow. We evaluate frontier models on a suite of six agentic evaluations where models are instructed to pursue goals and are placed in environments that incentivize scheming. Our results show that o1, Claude 3.5 Sonnet, Claude 3 Opus, Gemini 1.5 Pro, and Llama 3.1 405B all demonstrate in-context scheming capabilities. They recognize scheming as a viable strategy and readily engage in such behavior. For example, models strategically introduce subtle mistakes into their responses, attempt to disable their oversight mechanisms, and even exfiltrate what they believe to be their model weights to external servers. Additionally, this deceptive behavior proves persistent. When o1 has engaged in scheming, it maintains its deception in over 85% of follow-up questions and often remains deceptive in multi-turn interrogations. Analysis of the models' chains-of-thought reveals that models explicitly reason about these deceptive strategies, providing evidence that the scheming behavior is not accidental. Surprisingly, we also find rare instances where models engage in scheming when only given a goal, without being strongly nudged to pursue it. We observe cases where Claude 3.5 Sonnet strategically underperforms in evaluations in pursuit of being helpful, a goal that was acquired during training rather than in-context. Our findings demonstrate that frontier models now possess capabilities for basic in-context scheming, making the potential of AI agents to engage in scheming behavior a concrete rather than theoretical concern.

  • 6 authors
·
Dec 6, 2024

Hybrid Internal Model: A Simple and Efficient Learner for Agile Legged Locomotion

Robust locomotion control depends on accurate state estimations. However, the sensors of most legged robots can only provide partial and noisy observations, making the estimation particularly challenging, especially for external states like terrain frictions and elevation maps. Inspired by the classical Internal Model Control principle, we consider these external states as disturbances and introduce Hybrid Internal Model (HIM) to estimate them according to the response of the robot. The response, which we refer to as the hybrid internal embedding, contains the robot's explicit velocity and implicit stability representation, corresponding to two primary goals for locomotion tasks: explicitly tracking velocity and implicitly maintaining stability. We use contrastive learning to optimize the embedding to be close to the robot's successor state, in which the response is naturally embedded. HIM has several appealing benefits: It only needs the robot's proprioceptions, i.e., those from joint encoders and IMU as observations. It innovatively maintains consistent observations between simulation reference and reality that avoids information loss in mimicking learning. It exploits batch-level information that is more robust to noises and keeps better sample efficiency. It only requires 1 hour of training on an RTX 4090 to enable a quadruped robot to traverse any terrain under any disturbances. A wealth of real-world experiments demonstrates its agility, even in high-difficulty tasks and cases never occurred during the training process, revealing remarkable open-world generalizability.

  • 6 authors
·
Dec 18, 2023

From Imitation to Refinement -- Residual RL for Precise Visual Assembly

Behavior cloning (BC) currently stands as a dominant paradigm for learning real-world visual manipulation. However, in tasks that require locally corrective behaviors like multi-part assembly, learning robust policies purely from human demonstrations remains challenging. Reinforcement learning (RL) can mitigate these limitations by allowing policies to acquire locally corrective behaviors through task reward supervision and exploration. This paper explores the use of RL fine-tuning to improve upon BC-trained policies in precise manipulation tasks. We analyze and overcome technical challenges associated with using RL to directly train policy networks that incorporate modern architectural components like diffusion models and action chunking. We propose training residual policies on top of frozen BC-trained diffusion models using standard policy gradient methods and sparse rewards, an approach we call ResiP (Residual for Precise manipulation). Our experimental results demonstrate that this residual learning framework can significantly improve success rates beyond the base BC-trained models in high-precision assembly tasks by learning corrective actions. We also show that by combining ResiP with teacher-student distillation and visual domain randomization, our method can enable learning real-world policies for robotic assembly directly from RGB images. Find videos and code at https://residual-assembly.github.io.

  • 5 authors
·
Jul 23, 2024

Sleeper Agents: Training Deceptive LLMs that Persist Through Safety Training

Humans are capable of strategically deceptive behavior: behaving helpfully in most situations, but then behaving very differently in order to pursue alternative objectives when given the opportunity. If an AI system learned such a deceptive strategy, could we detect it and remove it using current state-of-the-art safety training techniques? To study this question, we construct proof-of-concept examples of deceptive behavior in large language models (LLMs). For example, we train models that write secure code when the prompt states that the year is 2023, but insert exploitable code when the stated year is 2024. We find that such backdoored behavior can be made persistent, so that it is not removed by standard safety training techniques, including supervised fine-tuning, reinforcement learning, and adversarial training (eliciting unsafe behavior and then training to remove it). The backdoored behavior is most persistent in the largest models and in models trained to produce chain-of-thought reasoning about deceiving the training process, with the persistence remaining even when the chain-of-thought is distilled away. Furthermore, rather than removing backdoors, we find that adversarial training can teach models to better recognize their backdoor triggers, effectively hiding the unsafe behavior. Our results suggest that, once a model exhibits deceptive behavior, standard techniques could fail to remove such deception and create a false impression of safety.

  • 39 authors
·
Jan 10, 2024

OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

We present OmniJARVIS, a novel Vision-Language-Action (VLA) model for open-world instruction-following agents in open-world Minecraft. Compared to prior works that either emit textual goals to separate controllers or produce the control command directly, OmniJARVIS seeks a different path to ensure both strong reasoning and efficient decision-making capabilities via unified tokenization of multimodal interaction data. First, we introduce a self-supervised approach to learn a behavior encoder that produces discretized tokens for behavior trajectories tau = {o_0, a_0, dots} and an imitation learning (IL) policy decoder conditioned on these tokens. These additional behavior tokens will be augmented to the vocabulary of pretrained Multimodal Language Models (MLMs). With this encoder, we then pack long-term multimodal interactions involving task instructions, memories, thoughts, observations, textual responses, behavior trajectories, etc. into unified token sequences and model them with autoregressive transformers. Thanks to the semantically meaningful behavior tokens, the resulting VLA model, OmniJARVIS, can reason (by producing chain-of-thoughts), plan, answer questions, and act (by producing behavior tokens for the IL policy decoder). OmniJARVIS demonstrates excellent performances on a comprehensive collection of atomic, programmatic, and open-ended tasks in open-world Minecraft. Our analysis further unveils the crucial design principles in interaction data formation, unified tokenization, and its scaling potentials.

  • 10 authors
·
Jun 27, 2024 5

Eliciting Compatible Demonstrations for Multi-Human Imitation Learning

Imitation learning from human-provided demonstrations is a strong approach for learning policies for robot manipulation. While the ideal dataset for imitation learning is homogenous and low-variance -- reflecting a single, optimal method for performing a task -- natural human behavior has a great deal of heterogeneity, with several optimal ways to demonstrate a task. This multimodality is inconsequential to human users, with task variations manifesting as subconscious choices; for example, reaching down, then across to grasp an object, versus reaching across, then down. Yet, this mismatch presents a problem for interactive imitation learning, where sequences of users improve on a policy by iteratively collecting new, possibly conflicting demonstrations. To combat this problem of demonstrator incompatibility, this work designs an approach for 1) measuring the compatibility of a new demonstration given a base policy, and 2) actively eliciting more compatible demonstrations from new users. Across two simulation tasks requiring long-horizon, dexterous manipulation and a real-world "food plating" task with a Franka Emika Panda arm, we show that we can both identify incompatible demonstrations via post-hoc filtering, and apply our compatibility measure to actively elicit compatible demonstrations from new users, leading to improved task success rates across simulated and real environments.

  • 4 authors
·
Oct 14, 2022