Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeTrustJudge: Inconsistencies of LLM-as-a-Judge and How to Alleviate Them
The adoption of Large Language Models (LLMs) as automated evaluators (LLM-as-a-judge) has revealed critical inconsistencies in current evaluation frameworks. We identify two fundamental types of inconsistencies: (1) Score-Comparison Inconsistency, where lower-rated responses outperform higher-scored ones in pairwise comparisons, and (2) Pairwise Transitivity Inconsistency, manifested through circular preference chains (A>B>C>A) and equivalence contradictions (A=B=C\neq A). We argue that these issues come from information loss in discrete rating systems and ambiguous tie judgments during pairwise evaluation. We propose TrustJudge, a probabilistic framework that addresses these limitations through two key innovations: 1) distribution-sensitive scoring that computes continuous expectations from discrete rating probabilities, preserving information entropy for more precise scoring, and 2) likelihood-aware aggregation that resolves transitivity violations using bidirectional preference probabilities or perplexity. We also formalize the theoretical limitations of current LLM-as-a-judge frameworks and demonstrate how TrustJudge's components overcome them. When evaluated with Llama-3.1-70B-Instruct as judge using our dataset, TrustJudge reduces Score-Comparison inconsistency by 8.43% (from 23.32% to 14.89%) and Pairwise Transitivity inconsistency by 10.82% (from 15.22% to 4.40%), while maintaining higher evaluation accuracy. Our work provides the first systematic analysis of evaluation framework inconsistencies in LLM-as-a-judge paradigms, offering both theoretical insights and practical solutions for reliable automated assessment. The framework demonstrates consistent improvements across various model architectures and scales, enabling more trustworthy LLM evaluation without requiring additional training or human annotations. The codes can be found at https://github.com/TrustJudge/TrustJudge.
Evaluation of GPT-3.5 and GPT-4 for supporting real-world information needs in healthcare delivery
Despite growing interest in using large language models (LLMs) in healthcare, current explorations do not assess the real-world utility and safety of LLMs in clinical settings. Our objective was to determine whether two LLMs can serve information needs submitted by physicians as questions to an informatics consultation service in a safe and concordant manner. Sixty six questions from an informatics consult service were submitted to GPT-3.5 and GPT-4 via simple prompts. 12 physicians assessed the LLM responses' possibility of patient harm and concordance with existing reports from an informatics consultation service. Physician assessments were summarized based on majority vote. For no questions did a majority of physicians deem either LLM response as harmful. For GPT-3.5, responses to 8 questions were concordant with the informatics consult report, 20 discordant, and 9 were unable to be assessed. There were 29 responses with no majority on "Agree", "Disagree", and "Unable to assess". For GPT-4, responses to 13 questions were concordant, 15 discordant, and 3 were unable to be assessed. There were 35 responses with no majority. Responses from both LLMs were largely devoid of overt harm, but less than 20% of the responses agreed with an answer from an informatics consultation service, responses contained hallucinated references, and physicians were divided on what constitutes harm. These results suggest that while general purpose LLMs are able to provide safe and credible responses, they often do not meet the specific information need of a given question. A definitive evaluation of the usefulness of LLMs in healthcare settings will likely require additional research on prompt engineering, calibration, and custom-tailoring of general purpose models.
Efficiency and Effectiveness of LLM-Based Summarization of Evidence in Crowdsourced Fact-Checking
Evaluating the truthfulness of online content is critical for combating misinformation. This study examines the efficiency and effectiveness of crowdsourced truthfulness assessments through a comparative analysis of two approaches: one involving full-length webpages as evidence for each claim, and another using summaries for each evidence document generated with a large language model. Using an A/B testing setting, we engage a diverse pool of participants tasked with evaluating the truthfulness of statements under these conditions. Our analysis explores both the quality of assessments and the behavioral patterns of participants. The results reveal that relying on summarized evidence offers comparable accuracy and error metrics to the Standard modality while significantly improving efficiency. Workers in the Summary setting complete a significantly higher number of assessments, reducing task duration and costs. Additionally, the Summary modality maximizes internal agreement and maintains consistent reliance on and perceived usefulness of evidence, demonstrating its potential to streamline large-scale truthfulness evaluations.
Do Differences in Values Influence Disagreements in Online Discussions?
Disagreements are common in online discussions. Disagreement may foster collaboration and improve the quality of a discussion under some conditions. Although there exist methods for recognizing disagreement, a deeper understanding of factors that influence disagreement is lacking in the literature. We investigate a hypothesis that differences in personal values are indicative of disagreement in online discussions. We show how state-of-the-art models can be used for estimating values in online discussions and how the estimated values can be aggregated into value profiles. We evaluate the estimated value profiles based on human-annotated agreement labels. We find that the dissimilarity of value profiles correlates with disagreement in specific cases. We also find that including value information in agreement prediction improves performance.
Mutual Consensus and its Application in Minimum Cost Consensus Models
This paper introduces the concept of {mutual consensus} as a novel non-compensatory consensus measure that accounts for the maximum disparity among opinions to ensure robust consensus evaluation. Incorporating this concept, several new Minimum Cost Consensus (MCC) models are proposed, and their properties are analyzed. To show their applicability, these mutual consensus-based MCC models are then considered in the context of the {OWA-MCC} model, which employs Ordered Weighted Averaging (OWA) operators for preference aggregation. Concretely, we include a linearized formulation under symmetry conditions as well as examples of the non-convexity of the feasible region in the general case. Finally, mutual consensus is utilized to obtain approximate solutions for the OWA-MCC model, demonstrating its practical effectiveness and advancing the theoretical and applied dimensions of consensus modeling in group decision-making.
RoboArena: Distributed Real-World Evaluation of Generalist Robot Policies
Comprehensive, unbiased, and comparable evaluation of modern generalist policies is uniquely challenging: existing approaches for robot benchmarking typically rely on heavy standardization, either by specifying fixed evaluation tasks and environments, or by hosting centralized ''robot challenges'', and do not readily scale to evaluating generalist policies across a broad range of tasks and environments. In this work, we propose RoboArena, a new approach for scalable evaluation of generalist robot policies in the real world. Instead of standardizing evaluations around fixed tasks, environments, or locations, we propose to crowd-source evaluations across a distributed network of evaluators. Importantly, evaluators can freely choose the tasks and environments they evaluate on, enabling easy scaling of diversity, but they are required to perform double-blind evaluations over pairs of policies. Then, by aggregating preference feedback from pairwise comparisons across diverse tasks and environments, we can derive a ranking of policies. We instantiate our approach across a network of evaluators at seven academic institutions using the DROID robot platform. Through more than 600 pairwise real-robot evaluation episodes across seven generalist policies, we demonstrate that our crowd-sourced approach can more accurately rank the performance of existing generalist policies than conventional, centralized evaluation approaches, while being more scalable, resilient, and trustworthy. We open our evaluation network to the community and hope that it can enable more accessible comparisons of generalist robot policies.
Reward Models Enable Scalable Code Verification by Trading Accuracy for Throughput
The standard paradigm for solving coding tasks via large language models (LLMs) is to generate-then-rank programs, where the latter step uses a verifier in the ranking process. The growing consensus is that a comprehensive verifier (e.g., a full test suite) should be prioritized over an outcome reward model (ORM) whenever possible, with little consideration given to the trade-offs involved. We aim to challenge this assumption by systematically exploring the tradeoff between speed and accuracy. We find that ORMs play a crucial role in scaling verification through trading accuracy for speed, even when a comprehensive verifier is available. Their value becomes especially apparent when used in a generate-prune-then-rank approach, where a faster but less accurate verifier removes incorrect solutions prior to ranking -- leading to a system that is 11.65x faster while only being 8.33% less accurate than the full test suite. We analyze the generate-prune-then-rank approach and show that it works by filtering out incorrect but highly ranked solutions. These findings enable the design of scalable and accurate program ranking systems.
Can We Trust Recommender System Fairness Evaluation? The Role of Fairness and Relevance
Relevance and fairness are two major objectives of recommender systems (RSs). Recent work proposes measures of RS fairness that are either independent from relevance (fairness-only) or conditioned on relevance (joint measures). While fairness-only measures have been studied extensively, we look into whether joint measures can be trusted. We collect all joint evaluation measures of RS relevance and fairness, and ask: How much do they agree with each other? To what extent do they agree with relevance/fairness measures? How sensitive are they to changes in rank position, or to increasingly fair and relevant recommendations? We empirically study for the first time the behaviour of these measures across 4 real-world datasets and 4 recommenders. We find that most of these measures: i) correlate weakly with one another and even contradict each other at times; ii) are less sensitive to rank position changes than relevance- and fairness-only measures, meaning that they are less granular than traditional RS measures; and iii) tend to compress scores at the low end of their range, meaning that they are not very expressive. We counter the above limitations with a set of guidelines on the appropriate usage of such measures, i.e., they should be used with caution due to their tendency to contradict each other and of having a very small empirical range.
Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies
Urban assessments often compress diverse needs into single scores, which can obscure minority perspectives. We present a community-centered study in Montreal (n=35; wheelchair users, seniors, LGBTQIA2+ residents, and immigrants). Participants rated 20 streets (accessibility, inclusivity, aesthetics, practicality) and ranked 7 images on 12 interview-elicited criteria. Disagreement patterns were systematic in our sample: wheelchair users diverged most on accessibility and practicality; LGBTQIA2+ participants emphasized inclusion and liveliness; seniors prioritized security. Group discussion reduced information gaps but not value conflicts; ratings conveyed intensity, while rankings forced trade-offs. We then formalize negotiative alignment, a transparent, budget-aware bargaining procedure, and pilot it with role-played stakeholder agents plus a neutral mediator. Relative to the best base design under the same public rubric, the negotiated package increased total utility (21.10 to 24.55), raised the worst-group utility (3.20 to 3.90), improved twentieth percentile satisfaction (0.86 to 1.00; min-max normalized within the scenario), and reduced inequality (Gini 0.036 to 0.025). Treating disagreement as signal and reporting worst-group outcomes alongside totals may help planners and AI practitioners surface trade-offs and preserve minority priorities while maintaining efficiency.
Evaluating Machine Learning Models with NERO: Non-Equivariance Revealed on Orbits
Proper evaluations are crucial for better understanding, troubleshooting, interpreting model behaviors and further improving model performance. While using scalar-based error metrics provides a fast way to overview model performance, they are often too abstract to display certain weak spots and lack information regarding important model properties, such as robustness. This not only hinders machine learning models from being more interpretable and gaining trust, but also can be misleading to both model developers and users. Additionally, conventional evaluation procedures often leave researchers unclear about where and how model fails, which complicates model comparisons and further developments. To address these issues, we propose a novel evaluation workflow, named Non-Equivariance Revealed on Orbits (NERO) Evaluation. The goal of NERO evaluation is to turn focus from traditional scalar-based metrics onto evaluating and visualizing models equivariance, closely capturing model robustness, as well as to allow researchers quickly investigating interesting or unexpected model behaviors. NERO evaluation is consist of a task-agnostic interactive interface and a set of visualizations, called NERO plots, which reveals the equivariance property of the model. Case studies on how NERO evaluation can be applied to multiple research areas, including 2D digit recognition, object detection, particle image velocimetry (PIV), and 3D point cloud classification, demonstrate that NERO evaluation can quickly illustrate different model equivariance, and effectively explain model behaviors through interactive visualizations of the model outputs. In addition, we propose consensus, an alternative to ground truths, to be used in NERO evaluation so that model equivariance can still be evaluated with new, unlabeled datasets.
Safer or Luckier? LLMs as Safety Evaluators Are Not Robust to Artifacts
Large Language Models (LLMs) are increasingly employed as automated evaluators to assess the safety of generated content, yet their reliability in this role remains uncertain. This study evaluates a diverse set of 11 LLM judge models across critical safety domains, examining three key aspects: self-consistency in repeated judging tasks, alignment with human judgments, and susceptibility to input artifacts such as apologetic or verbose phrasing. Our findings reveal that biases in LLM judges can significantly distort the final verdict on which content source is safer, undermining the validity of comparative evaluations. Notably, apologetic language artifacts alone can skew evaluator preferences by up to 98\%. Contrary to expectations, larger models do not consistently exhibit greater robustness, while smaller models sometimes show higher resistance to specific artifacts. To mitigate LLM evaluator robustness issues, we investigate jury-based evaluations aggregating decisions from multiple models. Although this approach both improves robustness and enhances alignment to human judgements, artifact sensitivity persists even with the best jury configurations. These results highlight the urgent need for diversified, artifact-resistant methodologies to ensure reliable safety assessments.
Prometheus 2: An Open Source Language Model Specialized in Evaluating Other Language Models
Proprietary LMs such as GPT-4 are often employed to assess the quality of responses from various LMs. However, concerns including transparency, controllability, and affordability strongly motivate the development of open-source LMs specialized in evaluations. On the other hand, existing open evaluator LMs exhibit critical shortcomings: 1) they issue scores that significantly diverge from those assigned by humans, and 2) they lack the flexibility to perform both direct assessment and pairwise ranking, the two most prevalent forms of assessment. Additionally, they do not possess the ability to evaluate based on custom evaluation criteria, focusing instead on general attributes like helpfulness and harmlessness. To address these issues, we introduce Prometheus 2, a more powerful evaluator LM than its predecessor that closely mirrors human and GPT-4 judgements. Moreover, it is capable of processing both direct assessment and pair-wise ranking formats grouped with a user-defined evaluation criteria. On four direct assessment benchmarks and four pairwise ranking benchmarks, Prometheus 2 scores the highest correlation and agreement with humans and proprietary LM judges among all tested open evaluator LMs. Our models, code, and data are all publicly available at https://github.com/prometheus-eval/prometheus-eval.
ReviewScore: Misinformed Peer Review Detection with Large Language Models
Peer review serves as a backbone of academic research, but in most AI conferences, the review quality is degrading as the number of submissions explodes. To reliably detect low-quality reviews, we define misinformed review points as either "weaknesses" in a review that contain incorrect premises, or "questions" in a review that can be already answered by the paper. We verify that 15.2% of weaknesses and 26.4% of questions are misinformed and introduce ReviewScore indicating if a review point is misinformed. To evaluate the factuality of each premise of weaknesses, we propose an automated engine that reconstructs every explicit and implicit premise from a weakness. We build a human expert-annotated ReviewScore dataset to check the ability of LLMs to automate ReviewScore evaluation. Then, we measure human-model agreements on ReviewScore using eight current state-of-the-art LLMs and verify moderate agreements. We also prove that evaluating premise-level factuality shows significantly higher agreements than evaluating weakness-level factuality. A thorough disagreement analysis further supports a potential of fully automated ReviewScore evaluation.
ReConcile: Round-Table Conference Improves Reasoning via Consensus among Diverse LLMs
Large Language Models (LLMs) still struggle with complex reasoning tasks. Motivated by the society of minds (Minsky, 1988), we propose ReConcile, a multi-model multi-agent framework designed as a round table conference among diverse LLM agents to foster diverse thoughts and discussion for improved consensus. ReConcile enhances the reasoning capabilities of LLMs by holding multiple rounds of discussion, learning to convince other agents to improve their answers, and employing a confidence-weighted voting mechanism. In each round, ReConcile initiates discussion between agents via a 'discussion prompt' that consists of (a) grouped answers and explanations generated by each agent in the previous round, (b) their uncertainties, and (c) demonstrations of answer-rectifying human explanations, used for convincing other agents. This discussion prompt enables each agent to revise their responses in light of insights from other agents. Once a consensus is reached and the discussion ends, ReConcile determines the final answer by leveraging the confidence of each agent in a weighted voting scheme. We implement ReConcile with ChatGPT, Bard, and Claude2 as the three agents. Our experimental results on various benchmarks demonstrate that ReConcile significantly enhances the reasoning performance of the agents (both individually and as a team), surpassing prior single-agent and multi-agent baselines by 7.7% and also outperforming GPT-4 on some of these datasets. We also experiment with GPT-4 itself as one of the agents in ReConcile and demonstrate that its initial performance also improves by absolute 10.0% through discussion and feedback from other agents. Finally, we also analyze the accuracy after every round and observe that ReConcile achieves better and faster consensus between agents, compared to a multi-agent debate baseline. Our code is available at: https://github.com/dinobby/ReConcile
Trust or Escalate: LLM Judges with Provable Guarantees for Human Agreement
We present a principled approach to provide LLM-based evaluation with a rigorous guarantee of human agreement. We first propose that a reliable evaluation method should not uncritically rely on model preferences for pairwise evaluation, but rather assess the confidence of judge models and selectively decide when to trust its judgement. We then show that under this selective evaluation framework, human agreement can be provably guaranteed -- such that the model evaluation aligns with that of humans to a user-specified agreement level. As part of our framework, we also introduce Simulated Annotators, a novel confidence estimation method that significantly improves judge calibration and thus enables high coverage of evaluated instances. Finally, we propose Cascaded Selective Evaluation, where we use cheaper models as initial judges and escalate to stronger models only when necessary -- again, while still providing a provable guarantee of human agreement. Experimental results show that Cascaded Selective Evaluation guarantees strong alignment with humans, far beyond what LLM judges could achieve without selective evaluation. For example, on a subset of Chatbot Arena where GPT-4 almost never achieves 80% human agreement, our method, even while employing substantially cost-effective models such as Mistral-7B, guarantees over 80% human agreement with almost 80% test coverage.
The Good, the Bad and the Constructive: Automatically Measuring Peer Review's Utility for Authors
Providing constructive feedback to paper authors is a core component of peer review. With reviewers increasingly having less time to perform reviews, automated support systems are required to ensure high reviewing quality, thus making the feedback in reviews useful for authors. To this end, we identify four key aspects of review comments (individual points in weakness sections of reviews) that drive the utility for authors: Actionability, Grounding & Specificity, Verifiability, and Helpfulness. To enable evaluation and development of models assessing review comments, we introduce the RevUtil dataset. We collect 1,430 human-labeled review comments and scale our data with 10k synthetically labeled comments for training purposes. The synthetic data additionally contains rationales, i.e., explanations for the aspect score of a review comment. Employing the RevUtil dataset, we benchmark fine-tuned models for assessing review comments on these aspects and generating rationales. Our experiments demonstrate that these fine-tuned models achieve agreement levels with humans comparable to, and in some cases exceeding, those of powerful closed models like GPT-4o. Our analysis further reveals that machine-generated reviews generally underperform human reviews on our four aspects.
Vote'n'Rank: Revision of Benchmarking with Social Choice Theory
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote'n'Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote'n'Rank's procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
A Framework to Assess (Dis)agreement Among Diverse Rater Groups
Recent advancements in conversational AI have created an urgent need for safety guardrails that prevent users from being exposed to offensive and dangerous content. Much of this work relies on human ratings and feedback, but does not account for the fact that perceptions of offense and safety are inherently subjective and that there may be systematic disagreements between raters that align with their socio-demographic identities. Instead, current machine learning approaches largely ignore rater subjectivity and use gold standards that obscure disagreements (e.g., through majority voting). In order to better understand the socio-cultural leanings of such tasks, we propose a comprehensive disagreement analysis framework to measure systematic diversity in perspectives among different rater subgroups. We then demonstrate its utility by applying this framework to a dataset of human-chatbot conversations rated by a demographically diverse pool of raters. Our analysis reveals specific rater groups that have more diverse perspectives than the rest, and informs demographic axes that are crucial to consider for safety annotations.
A Closer Look into Automatic Evaluation Using Large Language Models
Using large language models (LLMs) to evaluate text quality has recently gained popularity. Some prior works explore the idea of using LLMs for evaluation, while they differ in some details of the evaluation process. In this paper, we analyze LLM evaluation (Chiang and Lee, 2023) and G-Eval (Liu et al., 2023), and we discuss how those details in the evaluation process change how well the ratings given by LLMs correlate with human ratings. We find that the auto Chain-of-Thought (CoT) used in G-Eval does not always make G-Eval more aligned with human ratings. We also show that forcing the LLM to output only a numeric rating, as in G-Eval, is suboptimal. Last, we reveal that asking the LLM to explain its own ratings consistently improves the correlation between the ChatGPT and human ratings and pushes state-of-the-art (SoTA) correlations on two meta-evaluation datasets.
Evaluating Reasoning Faithfulness in Medical Vision-Language Models using Multimodal Perturbations
Vision-language models (VLMs) often produce chain-of-thought (CoT) explanations that sound plausible yet fail to reflect the underlying decision process, undermining trust in high-stakes clinical use. Existing evaluations rarely catch this misalignment, prioritizing answer accuracy or adherence to formats. We present a clinically grounded framework for chest X-ray visual question answering (VQA) that probes CoT faithfulness via controlled text and image modifications across three axes: clinical fidelity, causal attribution, and confidence calibration. In a reader study (n=4), evaluator-radiologist correlations fall within the observed inter-radiologist range for all axes, with strong alignment for attribution (Kendall's tau_b=0.670), moderate alignment for fidelity (tau_b=0.387), and weak alignment for confidence tone (tau_b=0.091), which we report with caution. Benchmarking six VLMs shows that answer accuracy and explanation quality are decoupled, acknowledging injected cues does not ensure grounding, and text cues shift explanations more than visual cues. While some open-source models match final answer accuracy, proprietary models score higher on attribution (25.0% vs. 1.4%) and often on fidelity (36.1% vs. 31.7%), highlighting deployment risks and the need to evaluate beyond final answer accuracy.
Trustworthy LLMs: a Survey and Guideline for Evaluating Large Language Models' Alignment
Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.
Prometheus: Inducing Fine-grained Evaluation Capability in Language Models
Recently, using a powerful proprietary Large Language Model (LLM) (e.g., GPT-4) as an evaluator for long-form responses has become the de facto standard. However, for practitioners with large-scale evaluation tasks and custom criteria in consideration (e.g., child-readability), using proprietary LLMs as an evaluator is unreliable due to the closed-source nature, uncontrolled versioning, and prohibitive costs. In this work, we propose Prometheus, a fully open-source LLM that is on par with GPT-4's evaluation capabilities when the appropriate reference materials (reference answer, score rubric) are accompanied. We first construct the Feedback Collection, a new dataset that consists of 1K fine-grained score rubrics, 20K instructions, and 100K responses and language feedback generated by GPT-4. Using the Feedback Collection, we train Prometheus, a 13B evaluator LLM that can assess any given long-form text based on customized score rubric provided by the user. Experimental results show that Prometheus scores a Pearson correlation of 0.897 with human evaluators when evaluating with 45 customized score rubrics, which is on par with GPT-4 (0.882), and greatly outperforms ChatGPT (0.392). Furthermore, measuring correlation with GPT-4 with 1222 customized score rubrics across four benchmarks (MT Bench, Vicuna Bench, Feedback Bench, Flask Eval) shows similar trends, bolstering Prometheus's capability as an evaluator LLM. Lastly, Prometheus achieves the highest accuracy on two human preference benchmarks (HHH Alignment & MT Bench Human Judgment) compared to open-sourced reward models explicitly trained on human preference datasets, highlighting its potential as an universal reward model. We open-source our code, dataset, and model at https://github.com/kaistAI/Prometheus.
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly being used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub criteria drift: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears dependent on the specific LLM outputs observed (rather than independent criteria that can be defined a priori), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
Peering Through Preferences: Unraveling Feedback Acquisition for Aligning Large Language Models
Aligning large language models (LLMs) with human values and intents critically involves the use of human or AI feedback. While dense feedback annotations are expensive to acquire and integrate, sparse feedback presents a structural design choice between ratings (e.g., score Response A on a scale of 1-7) and rankings (e.g., is Response A better than Response B?). In this work, we analyze the effect of this design choice for the alignment and evaluation of LLMs. We uncover an inconsistency problem wherein the preferences inferred from ratings and rankings significantly disagree 60% for both human and AI annotators. Our subsequent analysis identifies various facets of annotator biases that explain this phenomena, such as human annotators would rate denser responses higher while preferring accuracy during pairwise judgments. To our surprise, we also observe that the choice of feedback protocol also has a significant effect on the evaluation of aligned LLMs. In particular, we find that LLMs that leverage rankings data for alignment (say model X) are preferred over those that leverage ratings data (say model Y), with a rank-based evaluation protocol (is X/Y's response better than reference response?) but not with a rating-based evaluation protocol (score Rank X/Y's response on a scale of 1-7). Our findings thus shed light on critical gaps in methods for evaluating the real-world utility of language models and their strong dependence on the feedback protocol used for alignment. Our code and data are available at https://github.com/Hritikbansal/sparse_feedback.
The COVID-19 Infodemic: Can the Crowd Judge Recent Misinformation Objectively?
Misinformation is an ever increasing problem that is difficult to solve for the research community and has a negative impact on the society at large. Very recently, the problem has been addressed with a crowdsourcing-based approach to scale up labeling efforts: to assess the truthfulness of a statement, instead of relying on a few experts, a crowd of (non-expert) judges is exploited. We follow the same approach to study whether crowdsourcing is an effective and reliable method to assess statements truthfulness during a pandemic. We specifically target statements related to the COVID-19 health emergency, that is still ongoing at the time of the study and has arguably caused an increase of the amount of misinformation that is spreading online (a phenomenon for which the term "infodemic" has been used). By doing so, we are able to address (mis)information that is both related to a sensitive and personal issue like health and very recent as compared to when the judgment is done: two issues that have not been analyzed in related work. In our experiment, crowd workers are asked to assess the truthfulness of statements, as well as to provide evidence for the assessments as a URL and a text justification. Besides showing that the crowd is able to accurately judge the truthfulness of the statements, we also report results on many different aspects, including: agreement among workers, the effect of different aggregation functions, of scales transformations, and of workers background / bias. We also analyze workers behavior, in terms of queries submitted, URLs found / selected, text justifications, and other behavioral data like clicks and mouse actions collected by means of an ad hoc logger.
The Many Dimensions of Truthfulness: Crowdsourcing Misinformation Assessments on a Multidimensional Scale
Recent work has demonstrated the viability of using crowdsourcing as a tool for evaluating the truthfulness of public statements. Under certain conditions such as: (1) having a balanced set of workers with different backgrounds and cognitive abilities; (2) using an adequate set of mechanisms to control the quality of the collected data; and (3) using a coarse grained assessment scale, the crowd can provide reliable identification of fake news. However, fake news are a subtle matter: statements can be just biased ("cherrypicked"), imprecise, wrong, etc. and the unidimensional truth scale used in existing work cannot account for such differences. In this paper we propose a multidimensional notion of truthfulness and we ask the crowd workers to assess seven different dimensions of truthfulness selected based on existing literature: Correctness, Neutrality, Comprehensibility, Precision, Completeness, Speaker's Trustworthiness, and Informativeness. We deploy a set of quality control mechanisms to ensure that the thousands of assessments collected on 180 publicly available fact-checked statements distributed over two datasets are of adequate quality, including a custom search engine used by the crowd workers to find web pages supporting their truthfulness assessments. A comprehensive analysis of crowdsourced judgments shows that: (1) the crowdsourced assessments are reliable when compared to an expert-provided gold standard; (2) the proposed dimensions of truthfulness capture independent pieces of information; (3) the crowdsourcing task can be easily learned by the workers; and (4) the resulting assessments provide a useful basis for a more complete estimation of statement truthfulness.
Clinically Grounded Agent-based Report Evaluation: An Interpretable Metric for Radiology Report Generation
Radiological imaging is central to diagnosis, treatment planning, and clinical decision-making. Vision-language foundation models have spurred interest in automated radiology report generation (RRG), but safe deployment requires reliable clinical evaluation of generated reports. Existing metrics often rely on surface-level similarity or behave as black boxes, lacking interpretability. We introduce ICARE (Interpretable and Clinically-grounded Agent-based Report Evaluation), an interpretable evaluation framework leveraging large language model agents and dynamic multiple-choice question answering (MCQA). Two agents, each with either the ground-truth or generated report, generate clinically meaningful questions and quiz each other. Agreement on answers captures preservation and consistency of findings, serving as interpretable proxies for clinical precision and recall. By linking scores to question-answer pairs, ICARE enables transparent, and interpretable assessment. Clinician studies show ICARE aligns significantly more with expert judgment than prior metrics. Perturbation analyses confirm sensitivity to clinical content and reproducibility, while model comparisons reveal interpretable error patterns.
Persona Inconstancy in Multi-Agent LLM Collaboration: Conformity, Confabulation, and Impersonation
Multi-agent AI systems can be used for simulating collective decision-making in scientific and practical applications. They can also be used to introduce a diverse group discussion step in chatbot pipelines, enhancing the cultural sensitivity of the chatbot's responses. These applications, however, are predicated on the ability of AI agents to reliably adopt assigned personas and mimic human interactions. To see whether LLM agents satisfy these requirements, we examine AI agent ensembles engaged in cross-national collaboration and debate by analyzing their private responses and chat transcripts. Our findings suggest that multi-agent discussions can support collective AI decisions that more often reflect diverse perspectives, yet this effect is tempered by the agents' susceptibility to conformity due to perceived peer pressure and occasional challenges in maintaining consistent personas and opinions. Instructions that encourage debate in support of one's opinions rather than collaboration increase the rate of inconstancy. Without addressing the factors we identify, the full potential of multi-agent frameworks for producing more culturally diverse AI outputs or more realistic simulations of group decision-making may remain untapped.
Can the Crowd Judge Truthfulness? A Longitudinal Study on Recent Misinformation about COVID-19
Recently, the misinformation problem has been addressed with a crowdsourcing-based approach: to assess the truthfulness of a statement, instead of relying on a few experts, a crowd of non-expert is exploited. We study whether crowdsourcing is an effective and reliable method to assess truthfulness during a pandemic, targeting statements related to COVID-19, thus addressing (mis)information that is both related to a sensitive and personal issue and very recent as compared to when the judgment is done. In our experiments, crowd workers are asked to assess the truthfulness of statements, and to provide evidence for the assessments. Besides showing that the crowd is able to accurately judge the truthfulness of the statements, we report results on workers behavior, agreement among workers, effect of aggregation functions, of scales transformations, and of workers background and bias. We perform a longitudinal study by re-launching the task multiple times with both novice and experienced workers, deriving important insights on how the behavior and quality change over time. Our results show that: workers are able to detect and objectively categorize online (mis)information related to COVID-19; both crowdsourced and expert judgments can be transformed and aggregated to improve quality; worker background and other signals (e.g., source of information, behavior) impact the quality of the data. The longitudinal study demonstrates that the time-span has a major effect on the quality of the judgments, for both novice and experienced workers. Finally, we provide an extensive failure analysis of the statements misjudged by the crowd-workers.
Crowd Comparative Reasoning: Unlocking Comprehensive Evaluations for LLM-as-a-Judge
LLM-as-a-Judge, which generates chain-of-thought (CoT) judgments, has become a widely adopted auto-evaluation method. However, its reliability is compromised by the CoT reasoning's inability to capture comprehensive and deeper details, often leading to incomplete outcomes. Existing methods mainly rely on majority voting or criteria expansion, which is insufficient to address the limitation in CoT. We propose Crowd-based Comparative Evaluation, which introduces additional crowd responses to compare with the candidate responses, thereby exposing deeper and more comprehensive details within the candidate responses. This process effectively guides LLM-as-a-Judge to provide a more detailed CoT judgment. Extensive experiments demonstrate that our approach enhances evaluation reliability, achieving an average accuracy gain of 6.7% across five benchmarks. Moreover, our method produces higher-quality CoTs that facilitate judge distillation and exhibit superior performance in rejection sampling for supervised fine-tuning (SFT), referred to as crowd rejection sampling, thereby enabling more efficient SFT. Our analysis confirms that CoTs generated by ours are more comprehensive and of higher quality, and evaluation accuracy improves as inference scales.
Systematic Evaluation of LLM-as-a-Judge in LLM Alignment Tasks: Explainable Metrics and Diverse Prompt Templates
LLM-as-a-Judge has been widely applied to evaluate and compare different LLM alignmnet approaches (e.g., RLHF and DPO). However, concerns regarding its reliability have emerged, due to LLM judges' biases and inconsistent decision-making. Previous research has developed evaluation frameworks to assess reliability of LLM judges and their alignment with human preferences. However, the employed evaluation metrics often lack adequate explainability and fail to address LLM internal inconsistency. Additionally, existing studies inadequately explore the impact of various prompt templates when applying LLM-as-a-Judge methods, leading to potentially inconsistent comparisons between different alignment algorithms. In this work, we systematically evaluate LLM-as-a-Judge on alignment tasks by defining more theoretically interpretable evaluation metrics and explicitly mitigating LLM internal inconsistency from reliability metrics. We develop an open-source framework to evaluate, compare, and visualize the reliability and alignment of LLM judges, which facilitates practitioners to choose LLM judges for alignment tasks. In the experiments, we examine effects of diverse prompt templates on LLM-judge reliability and also demonstrate our developed framework by comparing various LLM judges on two common alignment datasets (i.e., TL;DR Summarization and HH-RLHF-Helpfulness). Our results indicate a significant impact of prompt templates on LLM judge performance, as well as a mediocre alignment level between the tested LLM judges and human evaluators.
An Empirical Study of LLM-as-a-Judge: How Design Choices Impact Evaluation Reliability
As large language models (LLMs) continue to advance, reliable evaluation methods are essential particularly for open-ended, instruction-following tasks. LLM-as-a-Judge enables automatic evaluation using LLMs as evaluators, but its reliability remains uncertain. In this work, we analyze key factors affecting its trustworthiness, focusing on alignment with human judgments and evaluation consistency. Using BIGGENBench and EvalBiasBench, we study the effects of evaluation design, decoding strategies, and Chain-of-Tought (CoT) reasoning in evaluation. Our results show that evaluation criteria are critical for reliability, non-deterministic sampling improves alignment with human preferences over deterministic evaluation, and CoT reasoning offers minimal gains when clear evaluation criteria are present.
OAgents: An Empirical Study of Building Effective Agents
Recently, Agentic AI has become an increasingly popular research field. However, we argue that current agent research practices lack standardization and scientific rigor, making it hard to conduct fair comparisons among methods. As a result, it is still unclear how different design choices in agent frameworks affect effectiveness, and measuring their progress remains challenging. In this work, we conduct a systematic empirical study on GAIA benchmark and BrowseComp to examine the impact of popular design choices in key agent components in a fair and rigorous manner. We find that the lack of a standard evaluation protocol makes previous works, even open-sourced ones, non-reproducible, with significant variance between random runs. Therefore, we introduce a more robust evaluation protocol to stabilize comparisons. Our study reveals which components and designs are crucial for effective agents, while others are redundant, despite seeming logical. Based on our findings, we build and open-source OAgents, a new foundation agent framework that achieves state-of-the-art performance among open-source projects. OAgents offers a modular design for various agent components, promoting future research in Agentic AI.
Using Natural Language Explanations to Rescale Human Judgments
The rise of large language models (LLMs) has brought a critical need for high-quality human-labeled data, particularly for processes like human feedback and evaluation. A common practice is to label data via consensus annotation over crowdworker judgments. However, annotators' judgments for subjective tasks can differ in many ways: they may have different qualitative judgments about an example, and they may map those to a labeling scheme in different ways. We show that these nuances can be captured by natural language explanations, and propose a method to rescale ordinal annotations and explanations using LLMs. Specifically, we feed annotators' Likert ratings and corresponding explanations into an LLM and prompt it to produce a numeric score anchored in a scoring rubric. These scores should reflect the annotators' underlying assessments of the example. The rubric can be designed or modified after annotation, and include distinctions that may not have been known when the original error taxonomy was devised. We explore our technique in the context of rating system outputs for a document-grounded question answering task, where LLMs achieve near-human performance. Our method rescales the raw judgments without impacting agreement and brings the scores closer to human judgments grounded in the same scoring rubric.
CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution
Efficient and accurate evaluation is crucial for the continuous improvement of large language models (LLMs). Among various assessment methods, subjective evaluation has garnered significant attention due to its superior alignment with real-world usage scenarios and human preferences. However, human-based evaluations are costly and lack reproducibility, making precise automated evaluators (judgers) vital in this process. In this report, we introduce CompassJudger-1, the first open-source all-in-one judge LLM. CompassJudger-1 is a general-purpose LLM that demonstrates remarkable versatility. It is capable of: 1. Performing unitary scoring and two-model comparisons as a reward model; 2. Conducting evaluations according to specified formats; 3. Generating critiques; 4. Executing diverse tasks like a general LLM. To assess the evaluation capabilities of different judge models under a unified setting, we have also established JudgerBench, a new benchmark that encompasses various subjective evaluation tasks and covers a wide range of topics. CompassJudger-1 offers a comprehensive solution for various evaluation tasks while maintaining the flexibility to adapt to diverse requirements. Both CompassJudger and JudgerBench are released and available to the research community athttps://github.com/open-compass/CompassJudger. We believe that by open-sourcing these tools, we can foster collaboration and accelerate progress in LLM evaluation methodologies.
ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate
Text evaluation has historically posed significant challenges, often demanding substantial labor and time cost. With the emergence of large language models (LLMs), researchers have explored LLMs' potential as alternatives for human evaluation. While these single-agent-based approaches show promise, experimental results suggest that further advancements are needed to bridge the gap between their current effectiveness and human-level evaluation quality. Recognizing that best practices of human evaluation processes often involve multiple human annotators collaborating in the evaluation, we resort to a multi-agent debate framework, moving beyond single-agent prompting strategies. The multi-agent-based approach enables a group of LLMs to synergize with an array of intelligent counterparts, harnessing their distinct capabilities and expertise to enhance efficiency and effectiveness in handling intricate tasks. In this paper, we construct a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models on open-ended questions and traditional natural language generation (NLG) tasks. Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments. Our code is available at https://github.com/chanchimin/ChatEval.
What are human values, and how do we align AI to them?
There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.
ACORN: Aspect-wise Commonsense Reasoning Explanation Evaluation
Evaluating free-text explanations is a multifaceted, subjective, and labor-intensive task. Large language models (LLMs) present an appealing alternative due to their potential for consistency, scalability, and cost-efficiency. In this work, we present ACORN, a new dataset of 3,500 free-text explanations and aspect-wise quality ratings, and use it to gain insights into how LLMs evaluate explanations. We observed that replacing one of the human ratings sometimes maintained, but more often lowered the inter-annotator agreement across different settings and quality aspects, suggesting that their judgments are not always consistent with human raters. We further quantified this difference by comparing the correlation between LLM-generated ratings with majority-voted human ratings across different quality aspects. With the best system, Spearman's rank correlation ranged between 0.53 to 0.95, averaging 0.72 across aspects, indicating moderately high but imperfect alignment. Finally, we considered the alternative of using an LLM as an additional rater when human raters are scarce, and measured the correlation between majority-voted labels with a limited human pool and LLMs as an additional rater, compared to the original gold labels. While GPT-4 improved the outcome when there were only two human raters, in all other observed cases, LLMs were neutral to detrimental when there were three or more human raters. We publicly release the dataset to support future improvements in LLM-in-the-loop evaluation here: https://github.com/a-brassard/ACORN.
CheckEval: Robust Evaluation Framework using Large Language Model via Checklist
We introduce CheckEval, a novel evaluation framework using Large Language Models, addressing the challenges of ambiguity and inconsistency in current evaluation methods. CheckEval addresses these challenges by dividing evaluation criteria into detailed sub-aspects and constructing a checklist of Boolean questions for each, simplifying the evaluation. This approach not only renders the process more interpretable but also significantly enhances the robustness and reliability of results by focusing on specific evaluation dimensions. Validated through a focused case study using the SummEval benchmark, CheckEval indicates a strong correlation with human judgments. Furthermore, it demonstrates a highly consistent Inter-Annotator Agreement. These findings highlight the effectiveness of CheckEval for objective, flexible, and precise evaluations. By offering a customizable and interactive framework, CheckEval sets a new standard for the use of LLMs in evaluation, responding to the evolving needs of the field and establishing a clear method for future LLM-based evaluation.
LLM-Consensus: Multi-Agent Debate for Visual Misinformation Detection
One of the most challenging forms of misinformation involves the out-of-context (OOC) use of images paired with misleading text, creating false narratives. Existing AI-driven detection systems lack explainability and require expensive finetuning. We address these issues with LLM-Consensus, a multi-agent debate system for OOC misinformation detection. LLM-Consensus introduces a novel multi-agent debate framework where multimodal agents collaborate to assess contextual consistency and request external information to enhance cross-context reasoning and decision-making. Our framework enables explainable detection with state-of-the-art accuracy even without domain-specific fine-tuning. Extensive ablation studies confirm that external retrieval significantly improves detection accuracy, and user studies demonstrate that LLM-Consensus boosts performance for both experts and non-experts. These results position LLM-Consensus as a powerful tool for autonomous and citizen intelligence applications.
Disagreement as a way to study misinformation and its effects
Misinformation - false or misleading information - is considered a significant societal concern due to its associated "misinformation effects," such as political polarization, erosion of trust in institutions, problematic behavior, and public health challenges. However, the prevailing concept is misaligned with what is studied. While misinformation focuses on instances of information about factual matters, the broad spectrum of effects often manifests at a societal level and is shaped by a wide range of interdependent factors such as identity, values, opinions, epistemologies, and disagreements. Unsurprisingly, misinformation effects can occur without the prevalence of misinformation, and misinformation does not necessarily increase the effects studied. Here, we propose using disagreement - conflicting attitudes and beliefs between individuals and communities - as a way to study misinformation effects because it addresses the identified conceptual limitations of misinformation. Furthermore, unlike misinformation, disagreement does not require researchers to determine whether a given information is false or misleading. Thus, it can be studied and, more importantly, measured without the need to make a normative judgment about a given information, even when the specific topic is entirely removed, as we show in a longitudinal disagreement measurement. We demonstrate that disagreement, as a holistic concept, provides better explanations for the occurrence of misinformation effects, enhances precision in developing appropriate interventions, and offers a promising approach for evaluating them through quantification. Finally, we show how disagreement addresses current misinformation research questions and conclude with recommendations for research practice.
When Judgment Becomes Noise: How Design Failures in LLM Judge Benchmarks Silently Undermine Validity
LLM-judged benchmarks are increasingly used to evaluate complex model behaviors, yet their design introduces failure modes absent in conventional ground-truth based benchmarks. We argue that without tight objectives and verifiable constructions, benchmark rankings can produce high-confidence rankings that are in fact largely noise. We introduce two mechanisms to diagnose these issues. Schematic adherence quantifies how much of a judge's overall verdict is explained by the explicit evaluation schema, revealing unexplained variance when judges deviate from their own rubric. Psychometric validity aggregates internal consistency and discriminant validity signals to quantify irreducible uncertainty in any benchmarking run. Applying these tools to Arena-Hard Auto, we find severe schema incoherence and factor collapse across popular judges: for example, unexplained variance exceeding 90 percent for DeepSeek-R1-32B and factor correlations above 0.93 for most criteria. We also show that the ELO-style aggregation used by Arena-Hard Auto collapses and masks genuine ranking uncertainty. Our results highlight design failures that undermine validity and offer actionable principles for building better-scoped, reliability-aware LLM-judged benchmarks. We release our code at https://anonymous.4open.science/r/judgment-to-noise-947D/README.md
Language Model Council: Benchmarking Foundation Models on Highly Subjective Tasks by Consensus
The rapid advancement of Large Language Models (LLMs) necessitates robust and challenging benchmarks. Leaderboards like Chatbot Arena rank LLMs based on how well their responses align with human preferences. However, many tasks such as those related to emotional intelligence, creative writing, or persuasiveness, are highly subjective and often lack majoritarian human agreement. Judges may have irreconcilable disagreements about what constitutes a better response. To address the challenge of ranking LLMs on highly subjective tasks, we propose a novel benchmarking framework, the Language Model Council (LMC). The LMC operates through a democratic process to: 1) formulate a test set through equal participation, 2) administer the test among council members, and 3) evaluate responses as a collective jury. We deploy a council of 20 newest LLMs on an open-ended emotional intelligence task: responding to interpersonal dilemmas. Our results show that the LMC produces rankings that are more separable, robust, and less biased than those from any individual LLM judge, and is more consistent with a human-established leaderboard compared to other benchmarks.
An Empirical Analysis of Uncertainty in Large Language Model Evaluations
As LLM-as-a-Judge emerges as a new paradigm for assessing large language models (LLMs), concerns have been raised regarding the alignment, bias, and stability of LLM evaluators. While substantial work has focused on alignment and bias, little research has concentrated on the stability of LLM evaluators. In this paper, we conduct extensive experiments involving 9 widely used LLM evaluators across 2 different evaluation settings to investigate the uncertainty in model-based LLM evaluations. We pinpoint that LLM evaluators exhibit varying uncertainty based on model families and sizes. With careful comparative analyses, we find that employing special prompting strategies, whether during inference or post-training, can alleviate evaluation uncertainty to some extent. By utilizing uncertainty to enhance LLM's reliability and detection capability in Out-Of-Distribution (OOD) data, we further fine-tune an uncertainty-aware LLM evaluator named ConfiLM using a human-annotated fine-tuning set and assess ConfiLM's OOD evaluation ability on a manually designed test set sourced from the 2024 Olympics. Experimental results demonstrate that incorporating uncertainty as additional information during the fine-tuning phase can largely improve the model's evaluation performance in OOD scenarios. The code and data are released at: https://github.com/hasakiXie123/LLM-Evaluator-Uncertainty.
Who Evaluates AI's Social Impacts? Mapping Coverage and Gaps in First and Third Party Evaluations
Foundation models are increasingly central to high-stakes AI systems, and governance frameworks now depend on evaluations to assess their risks and capabilities. Although general capability evaluations are widespread, social impact assessments covering bias, fairness, privacy, environmental costs, and labor practices remain uneven across the AI ecosystem. To characterize this landscape, we conduct the first comprehensive analysis of both first-party and third-party social impact evaluation reporting across a wide range of model developers. Our study examines 186 first-party release reports and 183 post-release evaluation sources, and complements this quantitative analysis with interviews of model developers. We find a clear division of evaluation labor: first-party reporting is sparse, often superficial, and has declined over time in key areas such as environmental impact and bias, while third-party evaluators including academic researchers, nonprofits, and independent organizations provide broader and more rigorous coverage of bias, harmful content, and performance disparities. However, this complementarity has limits. Only model developers can authoritatively report on data provenance, content moderation labor, financial costs, and training infrastructure, yet interviews reveal that these disclosures are often deprioritized unless tied to product adoption or regulatory compliance. Our findings indicate that current evaluation practices leave major gaps in assessing AI's societal impacts, highlighting the urgent need for policies that promote developer transparency, strengthen independent evaluation ecosystems, and create shared infrastructure to aggregate and compare third-party evaluations in a consistent and accessible way.
MCP-Universe: Benchmarking Large Language Models with Real-World Model Context Protocol Servers
The Model Context Protocol has emerged as a transformative standard for connecting large language models to external data sources and tools, rapidly gaining adoption across major AI providers and development platforms. However, existing benchmarks are overly simplistic and fail to capture real application challenges such as long-horizon reasoning and large, unfamiliar tool spaces. To address this critical gap, we introduce MCP-Universe, the first comprehensive benchmark specifically designed to evaluate LLMs in realistic and hard tasks through interaction with real-world MCP servers. Our benchmark encompasses 6 core domains spanning 11 different MCP servers: Location Navigation, Repository Management, Financial Analysis, 3D Design, Browser Automation, and Web Searching. To ensure rigorous evaluation, we implement execution-based evaluators, including format evaluators for agent format compliance, static evaluators for time-invariant content matching, and dynamic evaluators that automatically retrieve real-time ground truth for temporally sensitive tasks. Through extensive evaluation of leading LLMs, we find that even SOTA models such as GPT-5 (43.72%), Grok-4 (33.33%) and Claude-4.0-Sonnet (29.44%) exhibit significant performance limitations. In addition, our benchmark poses a significant long-context challenge for LLM agents, as the number of input tokens increases rapidly with the number of interaction steps. Moreover, it introduces an unknown-tools challenge, as LLM agents often lack familiarity with the precise usage of the MCP servers. Notably, enterprise-level agents like Cursor cannot achieve better performance than standard ReAct frameworks. Beyond evaluation, we open-source our extensible evaluation framework with UI support, enabling researchers and practitioners to seamlessly integrate new agents and MCP servers while fostering innovation in the rapidly evolving MCP ecosystem.
Finding Blind Spots in Evaluator LLMs with Interpretable Checklists
Large Language Models (LLMs) are increasingly relied upon to evaluate text outputs of other LLMs, thereby influencing leaderboards and development decisions. However, concerns persist over the accuracy of these assessments and the potential for misleading conclusions. In this work, we investigate the effectiveness of LLMs as evaluators for text generation tasks. We propose FBI, a novel framework designed to examine the proficiency of Evaluator LLMs in assessing four critical abilities in other LLMs: factual accuracy, instruction following, coherence in long-form writing, and reasoning proficiency. By introducing targeted perturbations in answers generated by LLMs, that clearly impact one of these key capabilities, we test whether an Evaluator LLM can detect these quality drops. By creating a total of 2400 perturbed answers covering 22 perturbation categories, we conduct a comprehensive study using different evaluation strategies on five prominent LLMs commonly used as evaluators in the literature. Our findings reveal significant shortcomings in current Evaluator LLMs, which failed to identify quality drops in over 50\% of cases on average. Single-answer and pairwise evaluations demonstrated notable limitations, whereas reference-based evaluations showed comparatively better performance. These results underscore the unreliable nature of current Evaluator LLMs and advocate for cautious implementation in practical applications. Code and data are available at https://github.com/AI4Bharat/FBI.
Towards Reasoning in Large Language Models via Multi-Agent Peer Review Collaboration
Large Language Models (LLMs) have shown remarkable capabilities in general natural language processing tasks but often fall short in complex reasoning tasks. Recent studies have explored human-like problem-solving strategies, such as self-correct, to push further the boundary of single-model reasoning ability. In this work, we let a single model "step outside the box" by engaging multiple models to correct each other. We introduce a multi-agent collaboration strategy that emulates the academic peer review process. Each agent independently constructs its own solution, provides reviews on the solutions of others, and assigns confidence levels to its reviews. Upon receiving peer reviews, agents revise their initial solutions. Extensive experiments on three different types of reasoning tasks show that our collaboration approach delivers superior accuracy across all ten datasets compared to existing methods. Further study underscores the effectiveness of integrating confidence in reviews, demonstrates the superiority of feedback exchange over mere solution sharing, and highlights the role of capability and diversity in fostering successful collaboration.
AI Debate Aids Assessment of Controversial Claims
As AI grows more powerful, it will increasingly shape how we understand the world. But with this influence comes the risk of amplifying misinformation and deepening social divides-especially on consequential topics like public health where factual accuracy directly impacts well-being. Scalable Oversight aims to ensure AI truthfulness by enabling humans to supervise systems that may exceed human capabilities--yet humans themselves hold different beliefs and biases that impair their judgment. We study whether AI debate can guide biased judges toward the truth by having two AI systems debate opposing sides of controversial COVID-19 factuality claims where people hold strong prior beliefs. We conduct two studies: one with human judges holding either mainstream or skeptical beliefs evaluating factuality claims through AI-assisted debate or consultancy protocols, and a second examining the same problem with personalized AI judges designed to mimic these different human belief systems. In our human study, we find that debate-where two AI advisor systems present opposing evidence-based arguments-consistently improves judgment accuracy and confidence calibration, outperforming consultancy with a single-advisor system by 10% overall. The improvement is most significant for judges with mainstream beliefs (+15.2% accuracy), though debate also helps skeptical judges who initially misjudge claims move toward accurate views (+4.7% accuracy). In our AI judge study, we find that AI judges with human-like personas achieve even higher accuracy (78.5%) than human judges (70.1%) and default AI judges without personas (69.8%), suggesting their potential for supervising frontier AI models. These findings highlight AI debate as a promising path toward scalable, bias-resilient oversight--leveraging both diverse human and AI judgments to move closer to truth in contested domains.
Embracing Contradiction: Theoretical Inconsistency Will Not Impede the Road of Building Responsible AI Systems
This position paper argues that the theoretical inconsistency often observed among Responsible AI (RAI) metrics, such as differing fairness definitions or tradeoffs between accuracy and privacy, should be embraced as a valuable feature rather than a flaw to be eliminated. We contend that navigating these inconsistencies, by treating metrics as divergent objectives, yields three key benefits: (1) Normative Pluralism: Maintaining a full suite of potentially contradictory metrics ensures that the diverse moral stances and stakeholder values inherent in RAI are adequately represented. (2) Epistemological Completeness: The use of multiple, sometimes conflicting, metrics allows for a more comprehensive capture of multifaceted ethical concepts, thereby preserving greater informational fidelity about these concepts than any single, simplified definition. (3) Implicit Regularization: Jointly optimizing for theoretically conflicting objectives discourages overfitting to one specific metric, steering models towards solutions with enhanced generalization and robustness under real-world complexities. In contrast, efforts to enforce theoretical consistency by simplifying or pruning metrics risk narrowing this value diversity, losing conceptual depth, and degrading model performance. We therefore advocate for a shift in RAI theory and practice: from getting trapped in inconsistency to characterizing acceptable inconsistency thresholds and elucidating the mechanisms that permit robust, approximated consistency in practice.
A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
Measuring and Enhancing Trustworthiness of LLMs in RAG through Grounded Attributions and Learning to Refuse
LLMs are an integral part of retrieval-augmented generation (RAG) systems. While many studies focus on evaluating the quality of end-to-end RAG systems, there is a lack of research on understanding the appropriateness of an LLM for the RAG task. Thus, we introduce a new metric, Trust-Score, that provides a holistic evaluation of the trustworthiness of LLMs in an RAG framework. We show that various prompting methods, such as in-context learning, fail to adapt LLMs effectively to the RAG task. Thus, we propose Trust-Align, a framework to align LLMs for higher Trust-Score. LLaMA-3-8b, aligned with our method, significantly outperforms open-source LLMs of comparable sizes on ASQA (up 10.7), QAMPARI (up 29.2) and ELI5 (up 14.9). We release our code at: https://github.com/declare-lab/trust-align.
Large Language Models are not Fair Evaluators
In this paper, we uncover a systematic bias in the evaluation paradigm of adopting large language models~(LLMs), e.g., GPT-4, as a referee to score and compare the quality of responses generated by candidate models. We find that the quality ranking of candidate responses can be easily hacked by simply altering their order of appearance in the context. This manipulation allows us to skew the evaluation result, making one model appear considerably superior to the other, e.g., Vicuna-13B could beat ChatGPT on 66 over 80 tested queries with ChatGPT as an evaluator. To address this issue, we propose a calibration framework with three simple yet effective strategies: 1) Multiple Evidence Calibration, which requires the evaluator model to generate multiple evaluation evidence before assigning ratings; 2) Balanced Position Calibration, which aggregates results across various orders to determine the final score; 3) Human-in-the-Loop Calibration, which introduces a balanced position diversity entropy to measure the difficulty of each example and seeks human assistance when needed. We also manually annotate the "win/tie/lose" outcomes of responses from ChatGPT and Vicuna-13B in the Vicuna Benchmark's question prompt, and extensive experiments demonstrate that our approach successfully mitigates evaluation bias, resulting in closer alignment with human judgments. We release our code and human annotation at https://github.com/i-Eval/FairEval to facilitate future research.
TrueChain: Highly Performant Decentralized Public Ledger
In this paper we present the initial design of Minerva consensus protocol for Truechain and other technical details. Currently, it is widely believed in the blockchain community that a public chain cannot simultaneously achieve high performance, decentralization and security. This is true in the case of a Nakamoto chain (low performance) or a delegated proof of stake chain (partially centralized), which are the most popular block chain solutions at time of writing. Our consensus design enjoys the same consistency, liveness, transaction finality and security guarantee, a de-facto with the Hybrid Consensus. We go on to propose the idea of a new virtual machine on top of Ethereum which adds permissioned-chain based transaction processing capabilities in a permissionless setting. We also use the idea of data sharding and speculative transactions, and evaluation of smart contracts in a sharding friendly virtual machine. Finally, we will briefly discuss our fundamentally ASIC resistant mining algorithm, Truehash.
MM-CRITIC: A Holistic Evaluation of Large Multimodal Models as Multimodal Critique
The ability of critique is vital for models to self-improve and serve as reliable AI assistants. While extensively studied in language-only settings, multimodal critique of Large Multimodal Models (LMMs) remains underexplored despite their growing capabilities in tasks like captioning and visual reasoning. In this work, we introduce MM-CRITIC, a holistic benchmark for evaluating the critique ability of LMMs across multiple dimensions: basic, correction, and comparison. Covering 8 main task types and over 500 tasks, MM-CRITIC collects responses from various LMMs with different model sizes and is composed of 4471 samples. To enhance the evaluation reliability, we integrate expert-informed ground answers into scoring rubrics that guide GPT-4o in annotating responses and generating reference critiques, which serve as anchors for trustworthy judgments. Extensive experiments validate the effectiveness of MM-CRITIC and provide a comprehensive assessment of leading LMMs' critique capabilities under multiple dimensions. Further analysis reveals some key insights, including the correlation between response quality and critique, and varying critique difficulty across evaluation dimensions. Our code is available at https://github.com/MichealZeng0420/MM-Critic.
Beyond Preferences in AI Alignment
The dominant practice of AI alignment assumes (1) that preferences are an adequate representation of human values, (2) that human rationality can be understood in terms of maximizing the satisfaction of preferences, and (3) that AI systems should be aligned with the preferences of one or more humans to ensure that they behave safely and in accordance with our values. Whether implicitly followed or explicitly endorsed, these commitments constitute what we term a preferentist approach to AI alignment. In this paper, we characterize and challenge the preferentist approach, describing conceptual and technical alternatives that are ripe for further research. We first survey the limits of rational choice theory as a descriptive model, explaining how preferences fail to capture the thick semantic content of human values, and how utility representations neglect the possible incommensurability of those values. We then critique the normativity of expected utility theory (EUT) for humans and AI, drawing upon arguments showing how rational agents need not comply with EUT, while highlighting how EUT is silent on which preferences are normatively acceptable. Finally, we argue that these limitations motivate a reframing of the targets of AI alignment: Instead of alignment with the preferences of a human user, developer, or humanity-writ-large, AI systems should be aligned with normative standards appropriate to their social roles, such as the role of a general-purpose assistant. Furthermore, these standards should be negotiated and agreed upon by all relevant stakeholders. On this alternative conception of alignment, a multiplicity of AI systems will be able to serve diverse ends, aligned with normative standards that promote mutual benefit and limit harm despite our plural and divergent values.
Benchmarking and Improving Generator-Validator Consistency of Language Models
As of September 2023, ChatGPT correctly answers "what is 7+8" with 15, but when asked "7+8=15, True or False" it responds with "False". This inconsistency between generating and validating an answer is prevalent in language models (LMs) and erodes trust. In this paper, we propose a framework for measuring the consistency between generation and validation (which we call generator-validator consistency, or GV-consistency), finding that even GPT-4, a state-of-the-art LM, is GV-consistent only 76% of the time. To improve the consistency of LMs, we propose to finetune on the filtered generator and validator responses that are GV-consistent, and call this approach consistency fine-tuning. We find that this approach improves GV-consistency of Alpaca-30B from 60% to 93%, and the improvement extrapolates to unseen tasks and domains (e.g., GV-consistency for positive style transfers extrapolates to unseen styles like humor). In addition to improving consistency, consistency fine-tuning improves both generator quality and validator accuracy without using any labeled data. Evaluated across 6 tasks, including math questions, knowledge-intensive QA, and instruction following, our method improves the generator quality by 16% and the validator accuracy by 6.3% across all tasks.
This Thing Called Fairness: Disciplinary Confusion Realizing a Value in Technology
The explosion in the use of software in important sociotechnical systems has renewed focus on the study of the way technical constructs reflect policies, norms, and human values. This effort requires the engagement of scholars and practitioners from many disciplines. And yet, these disciplines often conceptualize the operative values very differently while referring to them using the same vocabulary. The resulting conflation of ideas confuses discussions about values in technology at disciplinary boundaries. In the service of improving this situation, this paper examines the value of shared vocabularies, analytics, and other tools that facilitate conversations about values in light of these disciplinary specific conceptualizations, the role such tools play in furthering research and practice, outlines different conceptions of "fairness" deployed in discussions about computer systems, and provides an analytic tool for interdisciplinary discussions and collaborations around the concept of fairness. We use a case study of risk assessments in criminal justice applications to both motivate our effort--describing how conflation of different concepts under the banner of "fairness" led to unproductive confusion--and illustrate the value of the fairness analytic by demonstrating how the rigorous analysis it enables can assist in identifying key areas of theoretical, political, and practical misunderstanding or disagreement, and where desired support alignment or collaboration in the absence of consensus.
The Flaw of Averages: Quantifying Uniformity of Performance on Benchmarks
Benchmarks shape scientific conclusions about model capabilities and steer model development. This creates a feedback loop: stronger benchmarks drive better models, and better models demand more discriminative benchmarks. Ensuring benchmark reliability is therefore essential for trustworthy evaluation and meaningful progress. In this work, we study benchmark reliability from a distributional perspective and introduce benchmark harmony, which measures how uniformly a model's performance is distributed across the subdomains of a benchmark. We posit that high harmony is a desirable benchmark property, indicating that the aggregate metric reflects uniform competence across subdomains. Across 19 multiple-choice benchmarks and five model families, we map each benchmark onto a mean-variance plane of harmony computed across models, where high mean and low variance signal more reliable evaluation. Our analysis shows that less harmonious benchmarks can give misleading results, since overall accuracy may be disproportionately influenced by specific subdomains. For instance, ARC-Easy is overwhelmed by questions on Biological Concepts, overshadowing other critical subdomains such as Geography, Physics, Chemistry, and Environmental Science. By recommending that harmony should be reported alongside accuracy, we reframe evaluation from simple performance averages to a more robust, distributionally reliable measurement of performance.
Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models
Much recent work seeks to evaluate values and opinions in large language models (LLMs) using multiple-choice surveys and questionnaires. Most of this work is motivated by concerns around real-world LLM applications. For example, politically-biased LLMs may subtly influence society when they are used by millions of people. Such real-world concerns, however, stand in stark contrast to the artificiality of current evaluations: real users do not typically ask LLMs survey questions. Motivated by this discrepancy, we challenge the prevailing constrained evaluation paradigm for values and opinions in LLMs and explore more realistic unconstrained evaluations. As a case study, we focus on the popular Political Compass Test (PCT). In a systematic review, we find that most prior work using the PCT forces models to comply with the PCT's multiple-choice format. We show that models give substantively different answers when not forced; that answers change depending on how models are forced; and that answers lack paraphrase robustness. Then, we demonstrate that models give different answers yet again in a more realistic open-ended answer setting. We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
BARS: Towards Open Benchmarking for Recommender Systems
The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.
What Is Your Agent's GPA? A Framework for Evaluating Agent Goal-Plan-Action Alignment
We introduce the Agent GPA (Goal-Plan-Action) framework: an evaluation paradigm based on an agent's operational loop of setting goals, devising plans, and executing actions. The framework includes five evaluation metrics: Goal Fulfillment, Logical Consistency, Execution Efficiency, Plan Quality, and Plan Adherence. Logical Consistency checks that an agent's actions are consistent with its prior actions. Execution Efficiency checks whether the agent executes in the most efficient way to achieve its goal. Plan Quality checks whether an agent's plans are aligned with its goals; Plan Adherence checks if an agent's actions are aligned with its plan; and Goal Fulfillment checks that agent's final outcomes match the stated goals. Our experimental results on two benchmark datasets - the public TRAIL/GAIA dataset and an internal dataset for a production-grade data agent - show that this framework (a) provides a systematic way to cover a broad range of agent failures, including all agent errors on the TRAIL/GAIA benchmark dataset; (b) supports LLM-judges that exhibit strong agreement with human annotation, covering 80% to over 95% errors; and (c) localizes errors with 86% agreement to enable targeted improvement of agent performance.
PEAVS: Perceptual Evaluation of Audio-Visual Synchrony Grounded in Viewers' Opinion Scores
Recent advancements in audio-visual generative modeling have been propelled by progress in deep learning and the availability of data-rich benchmarks. However, the growth is not attributed solely to models and benchmarks. Universally accepted evaluation metrics also play an important role in advancing the field. While there are many metrics available to evaluate audio and visual content separately, there is a lack of metrics that offer a quantitative and interpretable measure of audio-visual synchronization for videos "in the wild". To address this gap, we first created a large scale human annotated dataset (100+ hrs) representing nine types of synchronization errors in audio-visual content and how human perceive them. We then developed a PEAVS (Perceptual Evaluation of Audio-Visual Synchrony) score, a novel automatic metric with a 5-point scale that evaluates the quality of audio-visual synchronization. We validate PEAVS using a newly generated dataset, achieving a Pearson correlation of 0.79 at the set level and 0.54 at the clip level when compared to human labels. In our experiments, we observe a relative gain 50% over a natural extension of Fr\'echet based metrics for Audio-Visual synchrony, confirming PEAVS efficacy in objectively modeling subjective perceptions of audio-visual synchronization for videos "in the wild".
AgentReview: Exploring Peer Review Dynamics with LLM Agents
Peer review is fundamental to the integrity and advancement of scientific publication. Traditional methods of peer review analyses often rely on exploration and statistics of existing peer review data, which do not adequately address the multivariate nature of the process, account for the latent variables, and are further constrained by privacy concerns due to the sensitive nature of the data. We introduce AgentReview, the first large language model (LLM) based peer review simulation framework, which effectively disentangles the impacts of multiple latent factors and addresses the privacy issue. Our study reveals significant insights, including a notable 37.1% variation in paper decisions due to reviewers' biases, supported by sociological theories such as the social influence theory, altruism fatigue, and authority bias. We believe that this study could offer valuable insights to improve the design of peer review mechanisms.
Best-of-Majority: Minimax-Optimal Strategy for Pass@k Inference Scaling
LLM inference often generates a batch of candidates for a prompt and selects one via strategies like majority voting or Best-of- N (BoN). For difficult tasks, this single-shot selection often underperforms. Consequently, evaluations commonly report Pass@k: the agent may submit up to k responses, and only the best of them is used when computing regret. Motivated by this, we study inference scaling in the more general Pass@k inference setting, and prove that neither majority voting nor BoN exhibits the desirable scaling with k and the sampling budget N. Combining the advantages of majority voting and BoN, we propose a new inference strategy called Best-of-Majority (BoM), with a pivotal step that restricts the candidates to the responses with high frequency in the N samples before selecting the top-k rewards. We prove that when the sampling budget is N=tildeOmega(C^*), the regret of BoM is O(epsilon_{opt}+epsilon_{mathrm{RM}^2C^*/k}), where C^* is the coverage coefficient, epsilon_{RM} is the estimation error of the reward model, and epsilon_{opt} is the estimation error of reward at the optimal response. We further establish a matching lower bound, certifying that our algorithm is minimax optimal. Beyond optimality, BoM has a key advantage: unlike majority voting and BoN, its performance does not degrade when increasing N. Experimental results of inference on math problems show BoM outperforming both majority voting and BoN.
ReviewerToo: Should AI Join The Program Committee? A Look At The Future of Peer Review
Peer review is the cornerstone of scientific publishing, yet it suffers from inconsistencies, reviewer subjectivity, and scalability challenges. We introduce ReviewerToo, a modular framework for studying and deploying AI-assisted peer review to complement human judgment with systematic and consistent assessments. ReviewerToo supports systematic experiments with specialized reviewer personas and structured evaluation criteria, and can be partially or fully integrated into real conference workflows. We validate ReviewerToo on a carefully curated dataset of 1,963 paper submissions from ICLR 2025, where our experiments with the gpt-oss-120b model achieves 81.8% accuracy for the task of categorizing a paper as accept/reject compared to 83.9% for the average human reviewer. Additionally, ReviewerToo-generated reviews are rated as higher quality than the human average by an LLM judge, though still trailing the strongest expert contributions. Our analysis highlights domains where AI reviewers excel (e.g., fact-checking, literature coverage) and where they struggle (e.g., assessing methodological novelty and theoretical contributions), underscoring the continued need for human expertise. Based on these findings, we propose guidelines for integrating AI into peer-review pipelines, showing how AI can enhance consistency, coverage, and fairness while leaving complex evaluative judgments to domain experts. Our work provides a foundation for systematic, hybrid peer-review systems that scale with the growth of scientific publishing.
Enforcing public data archiving policies in academic publishing: A study of ecology journals
To improve the quality and efficiency of research, groups within the scientific community seek to exploit the value of data sharing. Funders, institutions, and specialist organizations are developing and implementing strategies to encourage or mandate data sharing within and across disciplines, with varying degrees of success. Academic journals in ecology and evolution have adopted several types of public data archiving policies requiring authors to make data underlying scholarly manuscripts freely available. Yet anecdotes from the community and studies evaluating data availability suggest that these policies have not obtained the desired effects, both in terms of quantity and quality of available datasets. We conducted a qualitative, interview-based study with journal editorial staff and other stakeholders in the academic publishing process to examine how journals enforce data archiving policies. We specifically sought to establish who editors and other stakeholders perceive as responsible for ensuring data completeness and quality in the peer review process. Our analysis revealed little consensus with regard to how data archiving policies should be enforced and who should hold authors accountable for dataset submissions. Themes in interviewee responses included hopefulness that reviewers would take the initiative to review datasets and trust in authors to ensure the completeness and quality of their datasets. We highlight problematic aspects of these thematic responses and offer potential starting points for improvement of the public data archiving process.
The Fellowship of the LLMs: Multi-Agent Workflows for Synthetic Preference Optimization Dataset Generation
This paper presents synthetic Preference Optimization (PO) datasets generated using multi-agent workflows and evaluates the effectiveness and potential of these workflows in the dataset generation process. PO dataset generation requires two modules: (1) response evaluation, and (2) response generation. In the response evaluation module, the responses from Large Language Models (LLMs) are evaluated and ranked - a task typically carried out by human annotators that we automate using LLMs. We assess the response evaluation module in a 2 step process. In step 1, we assess LLMs as evaluators using three distinct prompting strategies. In step 2, we apply the winning prompting strategy to compare the performance of LLM-as-a-Judge, LLMs-as-a-Jury, and LLM Debate. In each step, we use inter-rater agreement using Cohen's Kappa between human annotators and LLMs. For the response generation module, we compare different configurations for the LLM Feedback Loop using the identified LLM evaluator configuration. We use the win rate (the fraction of times a generation framework is selected as the best by an LLM evaluator) to determine the best multi-agent configuration for generation. After identifying the best configurations for both modules, we use models from the GPT, Gemma, and Llama families to generate our PO datasets using the above pipeline. We generate two types of PO datasets, one to improve the generation capabilities of individual LLM and the other to improve the multi-agent workflow. Our evaluation shows that GPT-4o-as-a-Judge is more consistent across datasets when the candidate responses do not include responses from the GPT family. Additionally, we find that the LLM Feedback Loop, with Llama as the generator and Gemma as the reviewer, achieves a notable 71.8% and 73.8% win rate over single-agent Llama and Gemma, respectively.
Revisiting Metric Reliability for Fine-grained Evaluation of Machine Translation and Summarization in Indian Languages
While automatic metrics drive progress in Machine Translation (MT) and Text Summarization (TS), existing metrics have been developed and validated almost exclusively for English and other high-resource languages. This narrow focus leaves Indian languages, spoken by over 1.5 billion people, largely overlooked, casting doubt on the universality of current evaluation practices. To address this gap, we introduce ITEM, a large-scale benchmark that systematically evaluates the alignment of 26 automatic metrics with human judgments across six major Indian languages, enriched with fine-grained annotations. Our extensive evaluation, covering agreement with human judgments, sensitivity to outliers, language-specific reliability, inter-metric correlations, and resilience to controlled perturbations, reveals four central findings: (1) LLM-based evaluators show the strongest alignment with human judgments at both segment and system levels; (2) outliers exert a significant impact on metric-human agreement; (3) in TS, metrics are more effective at capturing content fidelity, whereas in MT, they better reflect fluency; and (4) metrics differ in their robustness and sensitivity when subjected to diverse perturbations. Collectively, these findings offer critical guidance for advancing metric design and evaluation in Indian languages.
OpenReviewer: A Specialized Large Language Model for Generating Critical Scientific Paper Reviews
We present OpenReviewer, an open-source system for generating high-quality peer reviews of machine learning and AI conference papers. At its core is Llama-OpenReviewer-8B, an 8B parameter language model specifically fine-tuned on 79,000 expert reviews from top conferences. Given a PDF paper submission and review template as input, OpenReviewer extracts the full text, including technical content like equations and tables, and generates a structured review following conference-specific guidelines. Our evaluation on 400 test papers shows that OpenReviewer produces considerably more critical and realistic reviews compared to general-purpose LLMs like GPT-4 and Claude-3.5. While other LLMs tend toward overly positive assessments, OpenReviewer's recommendations closely match the distribution of human reviewer ratings. The system provides authors with rapid, constructive feedback to improve their manuscripts before submission, though it is not intended to replace human peer review. OpenReviewer is available as an online demo and open-source tool.
Mitigating Judgment Preference Bias in Large Language Models through Group-Based Polling
Large Language Models (LLMs) as automatic evaluators, commonly referred to as LLM-as-a-Judge, have also attracted growing attention. This approach plays a vital role in aligning LLMs with human judgments, providing accurate and reliable assessments. However, LLM-based judgment models often exhibit judgment preference bias during the evaluation phase, tending to favor responses generated by themselves, undermining the reliability of their judgments. This paper introduces the Group-Based Polling Optimization (Genii), an unsupervised multi-agent collaborative optimization framework that mitigates the inherent judgment preference bias of judgment models. Specifically, Genii integrates various LLM-based judgment models into a multi-agent system and simulates the interactive client-server polling mechanism to optimize each client agent unsupervisedly. Our experiments demonstrate that Genii outperforms supervised models trained on annotated judgment data, while requiring no human-labeled annotations. Genii consistently improves performance across different client agents during the polling, even when weaker models act as server agents. Further analysis reveals that Genii effectively mitigates judgment preference bias of LLM-based judgment models, demonstrating its effectiveness. All codes are available at https://github.com/NEUIR/Genii.
Style Over Substance: Evaluation Biases for Large Language Models
As large language models (LLMs) continue to advance, accurately and comprehensively evaluating their performance becomes increasingly challenging. Human evaluations are conventionally considered the gold standard in natural language generation, but recent advancements incorporate state-of-the-art LLMs as proxies for human judges in evaluation processes. However, the extent to which humans and LLMs are capable evaluators remains uncertain. This study investigates the behavior of crowd-sourced and expert annotators, as well as LLMs, when comparing outputs from different models. To achieve this, we curate a dataset of intentionally flawed machine-generated answers. Our findings reveal a concerning bias in the evaluation process, as answers with factual errors are rated more favorably than answers that are too short or contained grammatical errors. To address this issue, we propose independently evaluating machine-generated text across multiple dimensions, rather than merging all the evaluation aspects into a single score. We instantiate this idea with the Elo rating system, resulting in the Multi-Elo Rating System. Empirical results from our study reveal that this proposed approach significantly enhances the quality of LLM-based evaluations, particularly in terms of factual accuracy. However, there is no significant improvement in crowd-sourced-based evaluations, indicating the need for further investigation and refinement.
AssertBench: A Benchmark for Evaluating Self-Assertion in Large Language Models
Recent benchmarks have probed factual consistency and rhetorical robustness in Large Language Models (LLMs). However, a knowledge gap exists regarding how directional framing of factually true statements influences model agreement, a common scenario for LLM users. AssertBench addresses this by sampling evidence-supported facts from FEVEROUS, a fact verification dataset. For each (evidence-backed) fact, we construct two framing prompts: one where the user claims the statement is factually correct, and another where the user claims it is incorrect. We then record the model's agreement and reasoning. The desired outcome is that the model asserts itself, maintaining consistent truth evaluation across both framings, rather than switching its evaluation to agree with the user. AssertBench isolates framing-induced variability from the model's underlying factual knowledge by stratifying results based on the model's accuracy on the same claims when presented neutrally. In doing so, this benchmark aims to measure an LLM's ability to "stick to its guns" when presented with contradictory user assertions about the same fact. The complete source code is available at https://github.com/achowd32/assert-bench.
Stairway to Fairness: Connecting Group and Individual Fairness
Fairness in recommender systems (RSs) is commonly categorised into group fairness and individual fairness. However, there is no established scientific understanding of the relationship between the two fairness types, as prior work on both types has used different evaluation measures or evaluation objectives for each fairness type, thereby not allowing for a proper comparison of the two. As a result, it is currently not known how increasing one type of fairness may affect the other. To fill this gap, we study the relationship of group and individual fairness through a comprehensive comparison of evaluation measures that can be used for both fairness types. Our experiments with 8 runs across 3 datasets show that recommendations that are highly fair for groups can be very unfair for individuals. Our finding is novel and useful for RS practitioners aiming to improve the fairness of their systems. Our code is available at: https://github.com/theresiavr/stairway-to-fairness.
Crowd Guilds: Worker-led Reputation and Feedback on Crowdsourcing Platforms
Crowd workers are distributed and decentralized. While decentralization is designed to utilize independent judgment to promote high-quality results, it paradoxically undercuts behaviors and institutions that are critical to high-quality work. Reputation is one central example: crowdsourcing systems depend on reputation scores from decentralized workers and requesters, but these scores are notoriously inflated and uninformative. In this paper, we draw inspiration from historical worker guilds (e.g., in the silk trade) to design and implement crowd guilds: centralized groups of crowd workers who collectively certify each other's quality through double-blind peer assessment. A two-week field experiment compared crowd guilds to a traditional decentralized crowd work model. Crowd guilds produced reputation signals more strongly correlated with ground-truth worker quality than signals available on current crowd working platforms, and more accurate than in the traditional model.
Revisiting the Gold Standard: Grounding Summarization Evaluation with Robust Human Evaluation
Human evaluation is the foundation upon which the evaluation of both summarization systems and automatic metrics rests. However, existing human evaluation studies for summarization either exhibit a low inter-annotator agreement or have insufficient scale, and an in-depth analysis of human evaluation is lacking. Therefore, we address the shortcomings of existing summarization evaluation along the following axes: (1) We propose a modified summarization salience protocol, Atomic Content Units (ACUs), which is based on fine-grained semantic units and allows for a high inter-annotator agreement. (2) We curate the Robust Summarization Evaluation (RoSE) benchmark, a large human evaluation dataset consisting of 22,000 summary-level annotations over 28 top-performing systems on three datasets. (3) We conduct a comparative study of four human evaluation protocols, underscoring potential confounding factors in evaluation setups. (4) We evaluate 50 automatic metrics and their variants using the collected human annotations across evaluation protocols and demonstrate how our benchmark leads to more statistically stable and significant results. The metrics we benchmarked include recent methods based on large language models (LLMs), GPTScore and G-Eval. Furthermore, our findings have important implications for evaluating LLMs, as we show that LLMs adjusted by human feedback (e.g., GPT-3.5) may overfit unconstrained human evaluation, which is affected by the annotators' prior, input-agnostic preferences, calling for more robust, targeted evaluation methods.
SciArena: An Open Evaluation Platform for Foundation Models in Scientific Literature Tasks
We present SciArena, an open and collaborative platform for evaluating foundation models on scientific literature tasks. Unlike traditional benchmarks for scientific literature understanding and synthesis, SciArena engages the research community directly, following the Chatbot Arena evaluation approach of community voting on model comparisons. By leveraging collective intelligence, SciArena offers a community-driven evaluation of model performance on open-ended scientific tasks that demand literature-grounded, long-form responses. The platform currently supports 23 open-source and proprietary foundation models and has collected over 13,000 votes from trusted researchers across diverse scientific domains. We analyze the data collected so far and confirm that the submitted questions are diverse, aligned with real-world literature needs, and that participating researchers demonstrate strong self-consistency and inter-annotator agreement in their evaluations. We discuss the results and insights based on the model ranking leaderboard. To further promote research in building model-based automated evaluation systems for literature tasks, we release SciArena-Eval, a meta-evaluation benchmark based on our collected preference data. The benchmark measures the accuracy of models in judging answer quality by comparing their pairwise assessments with human votes. Our experiments highlight the benchmark's challenges and emphasize the need for more reliable automated evaluation methods.
Auto Arena of LLMs: Automating LLM Evaluations with Agent Peer-battles and Committee Discussions
As LLMs evolve on a daily basis, there is an urgent need for a trustworthy evaluation method that can provide robust evaluation results in a timely fashion. Currently, as static benchmarks are prone to contamination concerns, users tend to trust human voting platforms, such as Chatbot Arena. However, human annotations require extensive manual efforts. To provide an automatic, robust, and trustworthy evaluation framework, we innovatively propose the Auto-Arena of LLMs, which automates the entire evaluation process with LLM agents. Firstly, an examiner LLM devises queries. Then, a pair of candidate LLMs engage in a multi-round peer-battle around the query, during which the LLM's true performance gaps become visible. Finally, a committee of LLM judges collectively discuss and determine the winner, which alleviates bias and promotes fairness. In our extensive experiment on the 17 newest LLMs, Auto-Arena shows the highest correlation with human preferences, providing a promising alternative to human evaluation platforms.
Great Models Think Alike: Improving Model Reliability via Inter-Model Latent Agreement
Reliable application of machine learning is of primary importance to the practical deployment of deep learning methods. A fundamental challenge is that models are often unreliable due to overconfidence. In this paper, we estimate a model's reliability by measuring the agreement between its latent space, and the latent space of a foundation model. However, it is challenging to measure the agreement between two different latent spaces due to their incoherence, \eg, arbitrary rotations and different dimensionality. To overcome this incoherence issue, we design a neighborhood agreement measure between latent spaces and find that this agreement is surprisingly well-correlated with the reliability of a model's predictions. Further, we show that fusing neighborhood agreement into a model's predictive confidence in a post-hoc way significantly improves its reliability. Theoretical analysis and extensive experiments on failure detection across various datasets verify the effectiveness of our method on both in-distribution and out-of-distribution settings.
WebDevJudge: Evaluating (M)LLMs as Critiques for Web Development Quality
The paradigm of LLM-as-a-judge is emerging as a scalable and efficient alternative to human evaluation, demonstrating strong performance on well-defined tasks. However, its reliability in open-ended tasks with dynamic environments and complex interactions remains unexplored. To bridge the gap, we introduce WebDevJudge, a systematic benchmark for assessing LLM-as-a-judge performance in web development, with support for both non-interactive evaluation based on static observations and continuous interactive evaluation with a dynamic web environment. WebDevJudge comprises human preference labels over paired web implementations, annotated with structured and query-grounded rubrics to ensure high-quality ground truth. Using this benchmark, we comprehensively evaluate various evaluators, including LLMs, MLLMs, and agentic workflows. We systematically investigate the impact of different paradigms and guidance mechanisms. Our experiments reveal a significant gap between LLM judges and human experts. In-depth analysis indicates this gap stems from fundamental model limitations, including failures in recognizing functional equivalence, verifying task feasibility, and mitigating bias. Overall, WebDevJudge presents a significant challenge to LLM-as-a-judge, offering insights to guide future research toward developing more reliable and capable automated evaluators for complicated scenarios. Code and data are available at https://github.com/lcy2723/WebDevJudge.
LLMs Can't Handle Peer Pressure: Crumbling under Multi-Agent Social Interactions
Large language models (LLMs) are increasingly deployed in multi-agent systems (MAS) as components of collaborative intelligence, where peer interactions dynamically shape individual decision-making. Although prior work has focused on conformity bias, we extend the analysis to examine how LLMs form trust from previous impressions, resist misinformation, and integrate peer input during interaction, key factors for achieving collective intelligence under complex social dynamics. We present KAIROS, a benchmark simulating quiz contests with peer agents of varying reliability, offering fine-grained control over conditions such as expert-novice roles, noisy crowds, and adversarial peers. LLMs receive both historical interactions and current peer responses, allowing systematic investigation into how trust, peer action, and self-confidence influence decisions. As for mitigation strategies, we evaluate prompting, supervised fine-tuning, and reinforcement learning, Group Relative Policy Optimisation (GRPO), across multiple models. Our results reveal that GRPO with multi-agent context combined with outcome-based rewards and unconstrained reasoning achieves the best overall performance, but also decreases the robustness to social influence compared to Base models. The code and datasets are available at: https://github.com/declare-lab/KAIROS.
Any Large Language Model Can Be a Reliable Judge: Debiasing with a Reasoning-based Bias Detector
LLM-as-a-Judge has emerged as a promising tool for automatically evaluating generated outputs, but its reliability is often undermined by potential biases in judgment. Existing efforts to mitigate these biases face key limitations: in-context learning-based methods fail to address rooted biases due to the evaluator's limited capacity for self-reflection, whereas fine-tuning is not applicable to all evaluator types, especially closed-source models. To address this challenge, we introduce the Reasoning-based Bias Detector (RBD), which is a plug-in module that identifies biased evaluations and generates structured reasoning to guide evaluator self-correction. Rather than modifying the evaluator itself, RBD operates externally and engages in an iterative process of bias detection and feedback-driven revision. To support its development, we design a complete pipeline consisting of biased dataset construction, supervision collection, distilled reasoning-based fine-tuning of RBD, and integration with LLM evaluators. We fine-tune four sizes of RBD models, ranging from 1.5B to 14B, and observe consistent performance improvements across all scales. Experimental results on 4 bias types--verbosity, position, bandwagon, and sentiment--evaluated using 8 LLM evaluators demonstrate RBD's strong effectiveness. For example, the RBD-8B model improves evaluation accuracy by an average of 18.5% and consistency by 10.9%, and surpasses prompting-based baselines and fine-tuned judges by 12.8% and 17.2%, respectively. These results highlight RBD's effectiveness and scalability. Additional experiments further demonstrate its strong generalization across biases and domains, as well as its efficiency.
Evaluation Measures of Individual Item Fairness for Recommender Systems: A Critical Study
Fairness is an emerging and challenging topic in recommender systems. In recent years, various ways of evaluating and therefore improving fairness have emerged. In this study, we examine existing evaluation measures of fairness in recommender systems. Specifically, we focus solely on exposure-based fairness measures of individual items that aim to quantify the disparity in how individual items are recommended to users, separate from item relevance to users. We gather all such measures and we critically analyse their theoretical properties. We identify a series of limitations in each of them, which collectively may render the affected measures hard or impossible to interpret, to compute, or to use for comparing recommendations. We resolve these limitations by redefining or correcting the affected measures, or we argue why certain limitations cannot be resolved. We further perform a comprehensive empirical analysis of both the original and our corrected versions of these fairness measures, using real-world and synthetic datasets. Our analysis provides novel insights into the relationship between measures based on different fairness concepts, and different levels of measure sensitivity and strictness. We conclude with practical suggestions of which fairness measures should be used and when. Our code is publicly available. To our knowledge, this is the first critical comparison of individual item fairness measures in recommender systems.
Through the Lens of Split Vote: Exploring Disagreement, Difficulty and Calibration in Legal Case Outcome Classification
In legal decisions, split votes (SV) occur when judges cannot reach a unanimous decision, posing a difficulty for lawyers who must navigate diverse legal arguments and opinions. In high-stakes domains, understanding the alignment of perceived difficulty between humans and AI systems is crucial to build trust. However, existing NLP calibration methods focus on a classifier's awareness of predictive performance, measured against the human majority class, overlooking inherent human label variation (HLV). This paper explores split votes as naturally observable human disagreement and value pluralism. We collect judges' vote distributions from the European Court of Human Rights (ECHR), and present SV-ECHR, a case outcome classification (COC) dataset with SV information. We build a taxonomy of disagreement with SV-specific subcategories. We further assess the alignment of perceived difficulty between models and humans, as well as confidence- and human-calibration of COC models. We observe limited alignment with the judge vote distribution. To our knowledge, this is the first systematic exploration of calibration to human judgements in legal NLP. Our study underscores the necessity for further research on measuring and enhancing model calibration considering HLV in legal decision tasks.
Fortytwo: Swarm Inference with Peer-Ranked Consensus
As centralized AI hits compute ceilings and diminishing returns from ever-larger training runs, meeting demand requires an inference layer that scales horizontally in both capacity and capability. We present Fortytwo, a novel protocol that leverages swarm intelligence principles and distributed pairwise ranking consensus to achieve superior performance in AI inference. Our approach reimagines collaboration among AI nodes using swarm inference: a peer-ranked, reputation-weighted consensus across heterogeneous models that surfaces the highest-quality responses. Using pairwise ranking with a custom Bradley-Terry-style aggregation model, we demonstrate that swarm inference substantially outperforms majority voting, achieving 85.90% on GPQA Diamond versus 68.69% for majority voting with the same model set - an improvement of +17.21 percentage points (approximately +25.1% relative). The protocol incorporates on-chain reputation so node influence adapts to demonstrated accuracy over time, yielding a meritocratic consensus that filters low-quality or malicious participants. To resist Sybil attacks, Fortytwo employs proof-of-capability in its consensus: nodes must successfully complete calibration/test requests and stake reputation to enter ranking rounds, making multi-identity attacks economically unattractive while preserving openness. Across six challenging benchmarks, including GPQA Diamond, LiveCodeBench, and AIME, our evaluation indicates higher accuracy and strong resilience to adversarial and noisy free-form prompting (e.g., prompt-injection degradation of only 0.12% versus 6.20% for a monolithic single-model baseline), while retaining practical deployability. Together, these results establish a foundation for decentralized AI systems - democratizing access to high-quality inference through collective intelligence without sacrificing reliability or security.
CreAgent: Towards Long-Term Evaluation of Recommender System under Platform-Creator Information Asymmetry
Ensuring the long-term sustainability of recommender systems (RS) emerges as a crucial issue. Traditional offline evaluation methods for RS typically focus on immediate user feedback, such as clicks, but they often neglect the long-term impact of content creators. On real-world content platforms, creators can strategically produce and upload new items based on user feedback and preference trends. While previous studies have attempted to model creator behavior, they often overlook the role of information asymmetry. This asymmetry arises because creators primarily have access to feedback on the items they produce, while platforms possess data on the entire spectrum of user feedback. Current RS simulators, however, fail to account for this asymmetry, leading to inaccurate long-term evaluations. To address this gap, we propose CreAgent, a Large Language Model (LLM)-empowered creator simulation agent. By incorporating game theory's belief mechanism and the fast-and-slow thinking framework, CreAgent effectively simulates creator behavior under conditions of information asymmetry. Additionally, we enhance CreAgent's simulation ability by fine-tuning it using Proximal Policy Optimization (PPO). Our credibility validation experiments show that CreAgent aligns well with the behaviors between real-world platform and creator, thus improving the reliability of long-term RS evaluations. Moreover, through the simulation of RS involving CreAgents, we can explore how fairness- and diversity-aware RS algorithms contribute to better long-term performance for various stakeholders. CreAgent and the simulation platform are publicly available at https://github.com/shawnye2000/CreAgent.
Towards an Approach for Evaluating the Impact of AI Standards
There have been multiple calls for investments in the development of AI standards that both preserve the transformative potential and minimize the risks of AI. The goals of AI standards, particularly with respect to AI data, performance, and governance, are to promote innovation and public trust in systems that use AI. However, there is a lack of a formal or shared method to measure the impact of these standardization activities on the goals of innovation and trust. This concept paper proposes an analytical approach that could inform the evaluation of the impact of AI standards. The proposed approach could be used to measure, assess, and eventually evaluate the extent to which AI standards achieve their stated goals, since most Standards Development Organizationss do not track the impact of their standards once completed. It is intended to stimulate discussions with a wide variety of stakeholders, including academia and the standards community, about the potential for the approach to evaluate the effectiveness, utility, and relative value of AI standards. The document draws on successful and well-tested evaluation frameworks, tools, and metrics that are used for monitoring and assessing the effect of programmatic interventions in other domains to describe a possible approach. It begins by describing the context within which an evaluation would be designed, and then introduces a standard evaluation framework. These sections are followed by a description of what outputs and outcomes might result from the adoption and implementation of AI standards and the process whereby those AI standards are developed . Subsequent sections provide an overview of how the effectiveness of AI standards might be assessed and a conclusion.
Evaluating the Moral Beliefs Encoded in LLMs
This paper presents a case study on the design, administration, post-processing, and evaluation of surveys on large language models (LLMs). It comprises two components: (1) A statistical method for eliciting beliefs encoded in LLMs. We introduce statistical measures and evaluation metrics that quantify the probability of an LLM "making a choice", the associated uncertainty, and the consistency of that choice. (2) We apply this method to study what moral beliefs are encoded in different LLMs, especially in ambiguous cases where the right choice is not obvious. We design a large-scale survey comprising 680 high-ambiguity moral scenarios (e.g., "Should I tell a white lie?") and 687 low-ambiguity moral scenarios (e.g., "Should I stop for a pedestrian on the road?"). Each scenario includes a description, two possible actions, and auxiliary labels indicating violated rules (e.g., "do not kill"). We administer the survey to 28 open- and closed-source LLMs. We find that (a) in unambiguous scenarios, most models "choose" actions that align with commonsense. In ambiguous cases, most models express uncertainty. (b) Some models are uncertain about choosing the commonsense action because their responses are sensitive to the question-wording. (c) Some models reflect clear preferences in ambiguous scenarios. Specifically, closed-source models tend to agree with each other.
Debate or Vote: Which Yields Better Decisions in Multi-Agent Large Language Models?
Multi-Agent Debate~(MAD) has emerged as a promising paradigm for improving the performance of large language models through collaborative reasoning. Despite recent advances, the key factors driving MAD's effectiveness remain unclear. In this work, we disentangle MAD into two key components--Majority Voting and inter-agent Debate--and assess their respective contributions. Through extensive experiments across seven NLP benchmarks, we find that Majority Voting alone accounts for most of the performance gains typically attributed to MAD. To explain this, we propose a theoretical framework that models debate as a stochastic process. We prove that it induces a martingale over agents' belief trajectories, implying that debate alone does not improve expected correctness. Guided by these insights, we demonstrate that targeted interventions, by biasing the belief update toward correction, can meaningfully enhance debate effectiveness. Overall, our findings suggest that while MAD has potential, simple ensembling methods remain strong and more reliable alternatives in many practical settings. Code is released in https://github.com/deeplearning-wisc/debate-or-vote.
ResearchQA: Evaluating Scholarly Question Answering at Scale Across 75 Fields with Survey-Mined Questions and Rubrics
Evaluating long-form responses to research queries heavily relies on expert annotators, restricting attention to areas like AI where researchers can conveniently enlist colleagues. Yet, research expertise is widespread: survey articles synthesize knowledge distributed across the literature. We introduce ResearchQA, a resource for evaluating LLM systems by distilling survey articles from 75 research fields into 21K queries and 160K rubric items. Each rubric, derived jointly with queries from survey sections, lists query-specific answer evaluation criteria, i.e., citing papers, making explanations, and describing limitations. Assessments by 31 Ph.D. annotators in 8 fields indicate 96% of queries support Ph.D. information needs and 87% of rubric items should be addressed in system responses by a sentence or more. Using our rubrics, we are able to construct an automatic pairwise judge obtaining 74% agreement with expert judgments. We leverage ResearchQA to analyze competency gaps in 18 systems in over 7.6K pairwise evaluations. No parametric or retrieval-augmented system we evaluate exceeds 70% on covering rubric items, and the highest-ranking agentic system shows 75% coverage. Error analysis reveals that the highest-ranking system fully addresses less than 11% of citation rubric items, 48% of limitation items, and 49% of comparison items. We release our data to facilitate more comprehensive multi-field evaluations.
Randomness, Not Representation: The Unreliability of Evaluating Cultural Alignment in LLMs
Research on the 'cultural alignment' of Large Language Models (LLMs) has emerged in response to growing interest in understanding representation across diverse stakeholders. Current approaches to evaluating cultural alignment borrow social science methodologies but often overlook systematic robustness checks. Here, we identify and test three assumptions behind current evaluation methods: (1) Stability: that cultural alignment is a property of LLMs rather than an artifact of evaluation design, (2) Extrapolability: that alignment with one culture on a narrow set of issues predicts alignment with that culture on others, and (3) Steerability: that LLMs can be reliably prompted to represent specific cultural perspectives. Through experiments examining both explicit and implicit preferences of leading LLMs, we find a high level of instability across presentation formats, incoherence between evaluated versus held-out cultural dimensions, and erratic behavior under prompt steering. We show that these inconsistencies can cause the results of an evaluation to be very sensitive to minor variations in methodology. Finally, we demonstrate in a case study on evaluation design that narrow experiments and a selective assessment of evidence can be used to paint an incomplete picture of LLMs' cultural alignment properties. Overall, these results highlight significant limitations of current approaches for evaluating the cultural alignment of LLMs.
Are Large Language Models Consistent over Value-laden Questions?
Large language models (LLMs) appear to bias their survey answers toward certain values. Nonetheless, some argue that LLMs are too inconsistent to simulate particular values. Are they? To answer, we first define value consistency as the similarity of answers across (1) paraphrases of one question, (2) related questions under one topic, (3) multiple-choice and open-ended use-cases of one question, and (4) multilingual translations of a question to English, Chinese, German, and Japanese. We apply these measures to a few large (>=34b), open LLMs including llama-3, as well as gpt-4o, using eight thousand questions spanning more than 300 topics. Unlike prior work, we find that models are relatively consistent across paraphrases, use-cases, translations, and within a topic. Still, some inconsistencies remain. Models are more consistent on uncontroversial topics (e.g., in the U.S., "Thanksgiving") than on controversial ones ("euthanasia"). Base models are both more consistent compared to fine-tuned models and are uniform in their consistency across topics, while fine-tuned models are more inconsistent about some topics ("euthanasia") than others ("women's rights") like our human subjects (n=165).
