Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSmule Renaissance Small: Efficient General-Purpose Vocal Restoration
Vocal recordings on consumer devices commonly suffer from multiple concurrent degradations: noise, reverberation, band-limiting, and clipping. We present Smule Renaissance Small (SRS), a compact single-stage model that performs end-to-end vocal restoration directly in the complex STFT domain. By incorporating phase-aware losses, SRS enables large analysis windows for improved frequency resolution while achieving 10.5x real-time inference on iPhone 12 CPU at 48 kHz. On the DNS 5 Challenge blind set, despite no speech training, SRS outperforms a strong GAN baseline and closely matches a computationally expensive flow-matching system. To enable evaluation under realistic multi-degradation scenarios, we introduce the Extreme Degradation Bench (EDB): 87 singing and speech recordings captured under severe acoustic conditions. On EDB, SRS surpasses all open-source baselines on singing and matches commercial systems, while remaining competitive on speech despite no speech-specific training. We release both SRS and EDB under the MIT License.
Exact Coset Sampling for Quantum Lattice Algorithms
We give a simple, fully correct, and assumption-light replacement for the contested "domain-extension" in Step 9 of a recent windowed-QFT lattice algorithm with complex-Gaussian windows~chen2024quantum. The published Step~9 suffers from a periodicity/support mismatch. We present a pair-shift difference construction that coherently cancels all unknown offsets, produces an exact uniform CRT-coset state over Z_{P}, and then uses the QFT to enforce the intended modular linear relation. The unitary is reversible, uses poly(log M_2) gates, and preserves the algorithm's asymptotics. Project Page: https://github.com/yifanzhang-pro/quantum-lattice.
A Two-Dimensional Deep Network for RF-based Drone Detection and Identification Towards Secure Coverage Extension
As drones become increasingly prevalent in human life, they also raises security concerns such as unauthorized access and control, as well as collisions and interference with manned aircraft. Therefore, ensuring the ability to accurately detect and identify between different drones holds significant implications for coverage extension. Assisted by machine learning, radio frequency (RF) detection can recognize the type and flight mode of drones based on the sampled drone signals. In this paper, we first utilize Short-Time Fourier. Transform (STFT) to extract two-dimensional features from the raw signals, which contain both time-domain and frequency-domain information. Then, we employ a Convolutional Neural Network (CNN) built with ResNet structure to achieve multi-class classifications. Our experimental results show that the proposed ResNet-STFT can achieve higher accuracy and faster convergence on the extended dataset. Additionally, it exhibits balanced performance compared to other baselines on the raw dataset.
FISHER: A Foundation Model for Multi-Modal Industrial Signal Comprehensive Representation
With the rapid deployment of SCADA systems, how to effectively analyze industrial signals and detect abnormal states is an urgent need for the industry. Due to the significant heterogeneity of these signals, which we summarize as the M5 problem, previous works only focus on small sub-problems and employ specialized models, failing to utilize the synergies between modalities and the powerful scaling law. However, we argue that the M5 signals can be modeled in a unified manner due to the intrinsic similarity. As a result, we propose FISHER, a Foundation model for multi-modal Industrial Signal compreHEnsive Representation. To support arbitrary sampling rates, FISHER considers the increment of sampling rate as the concatenation of sub-band information. Specifically, FISHER takes the STFT sub-band as the modeling unit and adopts a teacher student SSL framework for pre-training. We also develop the RMIS benchmark, which evaluates the representations of M5 industrial signals on multiple health management tasks. Compared with top SSL models, FISHER showcases versatile and outstanding capabilities with a general performance gain up to 5.03%, along with much more efficient scaling curves. We also investigate the scaling law on downstream tasks and derive potential avenues for future works. FISHER is now open-sourced on https://github.com/jianganbai/FISHER
ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code
Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.
Transform Once: Efficient Operator Learning in Frequency Domain
Spectral analysis provides one of the most effective paradigms for information-preserving dimensionality reduction, as simple descriptions of naturally occurring signals are often obtained via few terms of periodic basis functions. In this work, we study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time: frequency-domain models (FDMs). Existing FDMs are based on complex-valued transforms i.e. Fourier Transforms (FT), and layers that perform computation on the spectrum and input data separately. This design introduces considerable computational overhead: for each layer, a forward and inverse FT. Instead, this work introduces a blueprint for frequency domain learning through a single transform: transform once (T1). To enable efficient, direct learning in the frequency domain we derive a variance-preserving weight initialization scheme and investigate methods for frequency selection in reduced-order FDMs. Our results noticeably streamline the design process of FDMs, pruning redundant transforms, and leading to speedups of 3x to 10x that increase with data resolution and model size. We perform extensive experiments on learning the solution operator of spatio-temporal dynamics, including incompressible Navier-Stokes, turbulent flows around airfoils and high-resolution video of smoke. T1 models improve on the test performance of FDMs while requiring significantly less computation (5 hours instead of 32 for our large-scale experiment), with over 20% reduction in average predictive error across tasks.
Complex-valued neural networks for machine learning on non-stationary physical data
Deep learning has become an area of interest in most scientific areas, including physical sciences. Modern networks apply real-valued transformations on the data. Particularly, convolutions in convolutional neural networks discard phase information entirely. Many deterministic signals, such as seismic data or electrical signals, contain significant information in the phase of the signal. We explore complex-valued deep convolutional networks to leverage non-linear feature maps. Seismic data commonly has a lowcut filter applied, to attenuate noise from ocean waves and similar long wavelength contributions. Discarding the phase information leads to low-frequency aliasing analogous to the Nyquist-Shannon theorem for high frequencies. In non-stationary data, the phase content can stabilize training and improve the generalizability of neural networks. While it has been shown that phase content can be restored in deep neural networks, we show how including phase information in feature maps improves both training and inference from deterministic physical data. Furthermore, we show that the reduction of parameters in a complex network outperforms larger real-valued networks.
nnAudio: An on-the-fly GPU Audio to Spectrogram Conversion Toolbox Using 1D Convolution Neural Networks
Converting time domain waveforms to frequency domain spectrograms is typically considered to be a prepossessing step done before model training. This approach, however, has several drawbacks. First, it takes a lot of hard disk space to store different frequency domain representations. This is especially true during the model development and tuning process, when exploring various types of spectrograms for optimal performance. Second, if another dataset is used, one must process all the audio clips again before the network can be retrained. In this paper, we integrate the time domain to frequency domain conversion as part of the model structure, and propose a neural network based toolbox, nnAudio, which leverages 1D convolutional neural networks to perform time domain to frequency domain conversion during feed-forward. It allows on-the-fly spectrogram generation without the need to store any spectrograms on the disk. This approach also allows back-propagation on the waveforms-to-spectrograms transformation layer, which implies that this transformation process can be made trainable, and hence further optimized by gradient descent. nnAudio reduces the waveforms-to-spectrograms conversion time for 1,770 waveforms (from the MAPS dataset) from 10.64 seconds with librosa to only 0.001 seconds for Short-Time Fourier Transform (STFT), 18.3 seconds to 0.015 seconds for Mel spectrogram, 103.4 seconds to 0.258 for constant-Q transform (CQT), when using GPU on our DGX work station with CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz Tesla v100 32Gb GPUs. (Only 1 GPU is being used for all the experiments.) We also further optimize the existing CQT algorithm, so that the CQT spectrogram can be obtained without aliasing in a much faster computation time (from 0.258 seconds to only 0.001 seconds).
Homomorphisms between multidimensional constant-shape substitutions
We study a class of Z^{d}-substitutive subshifts, including a large family of constant-length substitutions, and homomorphisms between them, i.e., factors modulo isomorphisms of Z^{d}. We prove that any measurable factor map and even any homomorphism associated to a matrix commuting with the expansion matrix, induces a continuous one. We also get strong restrictions on the normalizer group, proving that any endomorphism is invertible, the normalizer group is virtually generated by the shift action and the quotient of the normalizer group by the automorphisms is restricted by the digit tile of the substitution.
Comparison of Time-Frequency Representations for Environmental Sound Classification using Convolutional Neural Networks
Recent successful applications of convolutional neural networks (CNNs) to audio classification and speech recognition have motivated the search for better input representations for more efficient training. Visual displays of an audio signal, through various time-frequency representations such as spectrograms offer a rich representation of the temporal and spectral structure of the original signal. In this letter, we compare various popular signal processing methods to obtain this representation, such as short-time Fourier transform (STFT) with linear and Mel scales, constant-Q transform (CQT) and continuous Wavelet transform (CWT), and assess their impact on the classification performance of two environmental sound datasets using CNNs. This study supports the hypothesis that time-frequency representations are valuable in learning useful features for sound classification. Moreover, the actual transformation used is shown to impact the classification accuracy, with Mel-scaled STFT outperforming the other discussed methods slightly and baseline MFCC features to a large degree. Additionally, we observe that the optimal window size during transformation is dependent on the characteristics of the audio signal and architecturally, 2D convolution yielded better results in most cases compared to 1D.
On the generation of periodic discrete structures with identical two-point correlation
Strategies for the generation of periodic discrete structures with identical two-point correlation are developed. Starting from a pair of root structures, which are not related by translation, phase inversion or axis reflections, child structures of arbitrary resolution (i.e., pixel or voxel numbers) and number of phases (i.e., material phases/species) can be generated by means of trivial embedding based phase extension, application of kernels and/or phase coalescence, such that the generated structures inherit the two-point-correlation equivalence. Proofs of the inheritance property are provided by means of the Discrete Fourier Transform theory. A Python 3 implementation of the results is offered by the authors through the Github repository https://github.com/DataAnalyticsEngineering/EQ2PC in order to make the provided results reproducible and useful for all interested readers. Examples for the generation of structures are demonstrated, together with applications in the homogenization theory of periodic media.
VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters
Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either fine-tune large language models (LLMs) or build large-scale time-series datasets to develop TSF foundation models. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. In this paper, we explore a new road to building a TSF foundation model from rich and high-quality natural images, based on the intrinsic similarities between images and time series. To bridge the gap between the two domains, we reformulate the TSF task as an image reconstruction task, which is further processed by a visual masked autoencoder (MAE) self-supervised pre-trained on the ImageNet dataset. Surprisingly, without further adaptation in the time-series domain, the proposed VisionTS could achieve superior zero-shot forecasting performance compared to existing TSF foundation models. With minimal fine-tuning, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. These findings suggest that visual models could be a free lunch for TSF and highlight the potential for future cross-domain research between computer vision and TSF. Our code is publicly available at https://github.com/Keytoyze/VisionTS.
PHNNs: Lightweight Neural Networks via Parameterized Hypercomplex Convolutions
Hypercomplex neural networks have proven to reduce the overall number of parameters while ensuring valuable performance by leveraging the properties of Clifford algebras. Recently, hypercomplex linear layers have been further improved by involving efficient parameterized Kronecker products. In this paper, we define the parameterization of hypercomplex convolutional layers and introduce the family of parameterized hypercomplex neural networks (PHNNs) that are lightweight and efficient large-scale models. Our method grasps the convolution rules and the filter organization directly from data without requiring a rigidly predefined domain structure to follow. PHNNs are flexible to operate in any user-defined or tuned domain, from 1D to nD regardless of whether the algebra rules are preset. Such a malleability allows processing multidimensional inputs in their natural domain without annexing further dimensions, as done, instead, in quaternion neural networks for 3D inputs like color images. As a result, the proposed family of PHNNs operates with 1/n free parameters as regards its analog in the real domain. We demonstrate the versatility of this approach to multiple domains of application by performing experiments on various image datasets as well as audio datasets in which our method outperforms real and quaternion-valued counterparts. Full code is available at: https://github.com/eleGAN23/HyperNets.
UPL-SFDA: Uncertainty-aware Pseudo Label Guided Source-Free Domain Adaptation for Medical Image Segmentation
Domain Adaptation (DA) is important for deep learning-based medical image segmentation models to deal with testing images from a new target domain. As the source-domain data are usually unavailable when a trained model is deployed at a new center, Source-Free Domain Adaptation (SFDA) is appealing for data and annotation-efficient adaptation to the target domain. However, existing SFDA methods have a limited performance due to lack of sufficient supervision with source-domain images unavailable and target-domain images unlabeled. We propose a novel Uncertainty-aware Pseudo Label guided (UPL) SFDA method for medical image segmentation. Specifically, we propose Target Domain Growing (TDG) to enhance the diversity of predictions in the target domain by duplicating the pre-trained model's prediction head multiple times with perturbations. The different predictions in these duplicated heads are used to obtain pseudo labels for unlabeled target-domain images and their uncertainty to identify reliable pseudo labels. We also propose a Twice Forward pass Supervision (TFS) strategy that uses reliable pseudo labels obtained in one forward pass to supervise predictions in the next forward pass. The adaptation is further regularized by a mean prediction-based entropy minimization term that encourages confident and consistent results in different prediction heads. UPL-SFDA was validated with a multi-site heart MRI segmentation dataset, a cross-modality fetal brain segmentation dataset, and a 3D fetal tissue segmentation dataset. It improved the average Dice by 5.54, 5.01 and 6.89 percentage points for the three tasks compared with the baseline, respectively, and outperformed several state-of-the-art SFDA methods.
A Framework for Fast and Stable Representations of Multiparameter Persistent Homology Decompositions
Topological data analysis (TDA) is an area of data science that focuses on using invariants from algebraic topology to provide multiscale shape descriptors for geometric data sets such as point clouds. One of the most important such descriptors is {\em persistent homology}, which encodes the change in shape as a filtration parameter changes; a typical parameter is the feature scale. For many data sets, it is useful to simultaneously vary multiple filtration parameters, for example feature scale and density. While the theoretical properties of single parameter persistent homology are well understood, less is known about the multiparameter case. In particular, a central question is the problem of representing multiparameter persistent homology by elements of a vector space for integration with standard machine learning algorithms. Existing approaches to this problem either ignore most of the multiparameter information to reduce to the one-parameter case or are heuristic and potentially unstable in the face of noise. In this article, we introduce a new general representation framework that leverages recent results on {\em decompositions} of multiparameter persistent homology. This framework is rich in information, fast to compute, and encompasses previous approaches. Moreover, we establish theoretical stability guarantees under this framework as well as efficient algorithms for practical computation, making this framework an applicable and versatile tool for analyzing geometric and point cloud data. We validate our stability results and algorithms with numerical experiments that demonstrate statistical convergence, prediction accuracy, and fast running times on several real data sets.
DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation
Computer graphics, 3D computer vision and robotics communities have produced multiple approaches to representing 3D geometry for rendering and reconstruction. These provide trade-offs across fidelity, efficiency and compression capabilities. In this work, we introduce DeepSDF, a learned continuous Signed Distance Function (SDF) representation of a class of shapes that enables high quality shape representation, interpolation and completion from partial and noisy 3D input data. DeepSDF, like its classical counterpart, represents a shape's surface by a continuous volumetric field: the magnitude of a point in the field represents the distance to the surface boundary and the sign indicates whether the region is inside (-) or outside (+) of the shape, hence our representation implicitly encodes a shape's boundary as the zero-level-set of the learned function while explicitly representing the classification of space as being part of the shapes interior or not. While classical SDF's both in analytical or discretized voxel form typically represent the surface of a single shape, DeepSDF can represent an entire class of shapes. Furthermore, we show state-of-the-art performance for learned 3D shape representation and completion while reducing the model size by an order of magnitude compared with previous work.
TSCMamba: Mamba Meets Multi-View Learning for Time Series Classification
Time series classification (TSC) on multivariate time series is a critical problem. We propose a novel multi-view approach integrating frequency-domain and time-domain features to provide complementary contexts for TSC. Our method fuses continuous wavelet transform spectral features with temporal convolutional or multilayer perceptron features. We leverage the Mamba state space model for efficient and scalable sequence modeling. We also introduce a novel tango scanning scheme to better model sequence relationships. Experiments on 10 standard benchmark datasets demonstrate our approach achieves an average 6.45% accuracy improvement over state-of-the-art TSC models.
FineRecon: Depth-aware Feed-forward Network for Detailed 3D Reconstruction
Recent works on 3D reconstruction from posed images have demonstrated that direct inference of scene-level 3D geometry without test-time optimization is feasible using deep neural networks, showing remarkable promise and high efficiency. However, the reconstructed geometry, typically represented as a 3D truncated signed distance function (TSDF), is often coarse without fine geometric details. To address this problem, we propose three effective solutions for improving the fidelity of inference-based 3D reconstructions. We first present a resolution-agnostic TSDF supervision strategy to provide the network with a more accurate learning signal during training, avoiding the pitfalls of TSDF interpolation seen in previous work. We then introduce a depth guidance strategy using multi-view depth estimates to enhance the scene representation and recover more accurate surfaces. Finally, we develop a novel architecture for the final layers of the network, conditioning the output TSDF prediction on high-resolution image features in addition to coarse voxel features, enabling sharper reconstruction of fine details. Our method, FineRecon, produces smooth and highly accurate reconstructions, showing significant improvements across multiple depth and 3D reconstruction metrics.
Differentiable Euler Characteristic Transforms for Shape Classification
The Euler Characteristic Transform (ECT) has proven to be a powerful representation, combining geometrical and topological characteristics of shapes and graphs. However, the ECT was hitherto unable to learn task-specific representations. We overcome this issue and develop a novel computational layer that enables learning the ECT in an end-to-end fashion. Our method, the Differentiable Euler Characteristic Transform (DECT), is fast and computationally efficient, while exhibiting performance on a par with more complex models in both graph and point cloud classification tasks. Moreover, we show that this seemingly simple statistic provides the same topological expressivity as more complex topological deep learning layers.
Robustifying State-space Models for Long Sequences via Approximate Diagonalization
State-space models (SSMs) have recently emerged as a framework for learning long-range sequence tasks. An example is the structured state-space sequence (S4) layer, which uses the diagonal-plus-low-rank structure of the HiPPO initialization framework. However, the complicated structure of the S4 layer poses challenges; and, in an effort to address these challenges, models such as S4D and S5 have considered a purely diagonal structure. This choice simplifies the implementation, improves computational efficiency, and allows channel communication. However, diagonalizing the HiPPO framework is itself an ill-posed problem. In this paper, we propose a general solution for this and related ill-posed diagonalization problems in machine learning. We introduce a generic, backward-stable "perturb-then-diagonalize" (PTD) methodology, which is based on the pseudospectral theory of non-normal operators, and which may be interpreted as the approximate diagonalization of the non-normal matrices defining SSMs. Based on this, we introduce the S4-PTD and S5-PTD models. Through theoretical analysis of the transfer functions of different initialization schemes, we demonstrate that the S4-PTD/S5-PTD initialization strongly converges to the HiPPO framework, while the S4D/S5 initialization only achieves weak convergences. As a result, our new models show resilience to Fourier-mode noise-perturbed inputs, a crucial property not achieved by the S4D/S5 models. In addition to improved robustness, our S5-PTD model averages 87.6% accuracy on the Long-Range Arena benchmark, demonstrating that the PTD methodology helps to improve the accuracy of deep learning models.
Immersions of complexes of groups
Given a complex of groups, we construct a new class of complex of groups that records its local data and offer a functorial perspective on the statement that complexes of groups are locally developable. We also construct a new notion of an immersion of complexes of groups and establish that a locally isometric immersion of a complex of groups into a non-positively curved complex of groups is pi_1-injective. Furthermore, the domain complex of groups is developable and the induced map on geometric realizations of developments is an isometric embedding.
Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
Neural networks, especially convolutional neural networks (CNN), are one of the most common tools these days used in computer vision. Most of these networks work with real-valued data using real-valued features. Complex-valued convolutional neural networks (CV-CNN) can preserve the algebraic structure of complex-valued input data and have the potential to learn more complex relationships between the input and the ground-truth. Although some comparisons of CNNs and CV-CNNs for different tasks have been performed in the past, a large-scale investigation comparing different models operating on different tasks has not been conducted. Furthermore, because complex features contain both real and imaginary components, CV-CNNs have double the number of trainable parameters as real-valued CNNs in terms of the actual number of trainable parameters. Whether or not the improvements in performance with CV-CNN observed in the past have been because of the complex features or just because of having double the number of trainable parameters has not yet been explored. This paper presents a comparative study of CNN, CNNx2 (CNN with double the number of trainable parameters as the CNN), and CV-CNN. The experiments were performed using seven models for two different tasks - brain tumour classification and segmentation in brain MRIs. The results have revealed that the CV-CNN models outperformed the CNN and CNNx2 models.
STEREOFOG -- Computational DeFogging via Image-to-Image Translation on a real-world Dataset
Image-to-Image translation (I2I) is a subtype of Machine Learning (ML) that has tremendous potential in applications where two domains of images and the need for translation between the two exist, such as the removal of fog. For example, this could be useful for autonomous vehicles, which currently struggle with adverse weather conditions like fog. However, datasets for I2I tasks are not abundant and typically hard to acquire. Here, we introduce STEREOFOG, a dataset comprised of 10,067 paired fogged and clear images, captured using a custom-built device, with the purpose of exploring I2I's potential in this domain. It is the only real-world dataset of this kind to the best of our knowledge. Furthermore, we apply and optimize the pix2pix I2I ML framework to this dataset. With the final model achieving an average Complex Wavelet-Structural Similarity (CW-SSIM) score of 0.76, we prove the technique's suitability for the problem.
Deep Implicit Surface Point Prediction Networks
Deep neural representations of 3D shapes as implicit functions have been shown to produce high fidelity models surpassing the resolution-memory trade-off faced by the explicit representations using meshes and point clouds. However, most such approaches focus on representing closed shapes. Unsigned distance function (UDF) based approaches have been proposed recently as a promising alternative to represent both open and closed shapes. However, since the gradients of UDFs vanish on the surface, it is challenging to estimate local (differential) geometric properties like the normals and tangent planes which are needed for many downstream applications in vision and graphics. There are additional challenges in computing these properties efficiently with a low-memory footprint. This paper presents a novel approach that models such surfaces using a new class of implicit representations called the closest surface-point (CSP) representation. We show that CSP allows us to represent complex surfaces of any topology (open or closed) with high fidelity. It also allows for accurate and efficient computation of local geometric properties. We further demonstrate that it leads to efficient implementation of downstream algorithms like sphere-tracing for rendering the 3D surface as well as to create explicit mesh-based representations. Extensive experimental evaluation on the ShapeNet dataset validate the above contributions with results surpassing the state-of-the-art.
Educating LLMs like Human Students: Structure-aware Injection of Domain Knowledge
This paper presents a pioneering methodology, termed StructTuning, to efficiently transform foundation Large Language Models (LLMs) into domain specialists. It significantly minimizes the training corpus requirement to a mere 0.3% while achieving an impressive 50% of traditional knowledge injection performance. Our method is inspired by the educational processes for human students, particularly how structured domain knowledge from textbooks is absorbed and then applied to tackle real-world challenges through specific exercises. Based on this, we propose a novel two-stage knowledge injection strategy: Structure-aware Continual Pre-Training (SCPT) and Structure-aware Supervised Fine-Tuning (SSFT). In the SCPT phase, we organize the training data into an auto-generated taxonomy of domain knowledge, enabling LLMs to effectively memorize textual segments linked to specific expertise within the taxonomy's architecture. Subsequently, in the SSFT phase, we explicitly prompt models to reveal the underlying knowledge structure in their outputs, leveraging this structured domain insight to address practical problems adeptly. Our ultimate method has undergone extensive evaluations across model architectures and scales, using closed-book question-answering tasks on LongBench and MMedBench datasets. Remarkably, our method matches 50% of the improvement displayed by the state-of-the-art MMedLM2 on MMedBench, but with only 0.3% quantity of the training corpus. This breakthrough showcases the potential to scale up our StructTuning for stronger domain-specific LLMs. Code will be made public soon.
Commutative Width and Depth Scaling in Deep Neural Networks
This paper is the second in the series Commutative Scaling of Width and Depth (WD) about commutativity of infinite width and depth limits in deep neural networks. Our aim is to understand the behaviour of neural functions (functions that depend on a neural network model) as width and depth go to infinity (in some sense), and eventually identify settings under which commutativity holds, i.e. the neural function tends to the same limit no matter how width and depth limits are taken. In this paper, we formally introduce and define the commutativity framework, and discuss its implications on neural network design and scaling. We study commutativity for the neural covariance kernel which reflects how network layers separate data. Our findings extend previous results established in [55] by showing that taking the width and depth to infinity in a deep neural network with skip connections, when branches are suitably scaled to avoid exploding behaviour, result in the same covariance structure no matter how that limit is taken. This has a number of theoretical and practical implications that we discuss in the paper. The proof techniques in this paper are novel and rely on tools that are more accessible to readers who are not familiar with stochastic calculus (used in the proofs of WD(I))).
Logical Languages Accepted by Transformer Encoders with Hard Attention
We contribute to the study of formal languages that can be recognized by transformer encoders. We focus on two self-attention mechanisms: (1) UHAT (Unique Hard Attention Transformers) and (2) AHAT (Average Hard Attention Transformers). UHAT encoders are known to recognize only languages inside the circuit complexity class {sf AC}^0, i.e., accepted by a family of poly-sized and depth-bounded boolean circuits with unbounded fan-ins. On the other hand, AHAT encoders can recognize languages outside {sf AC}^0), but their expressive power still lies within the bigger circuit complexity class {sf TC}^0, i.e., {sf AC}^0-circuits extended by majority gates. We first show a negative result that there is an {sf AC}^0-language that cannot be recognized by an UHAT encoder. On the positive side, we show that UHAT encoders can recognize a rich fragment of {sf AC}^0-languages, namely, all languages definable in first-order logic with arbitrary unary numerical predicates. This logic, includes, for example, all regular languages from {sf AC}^0. We then show that AHAT encoders can recognize all languages of our logic even when we enrich it with counting terms. We apply these results to derive new results on the expressive power of UHAT and AHAT up to permutation of letters (a.k.a. Parikh images).
SToFM: a Multi-scale Foundation Model for Spatial Transcriptomics
Spatial Transcriptomics (ST) technologies provide biologists with rich insights into single-cell biology by preserving spatial context of cells. Building foundational models for ST can significantly enhance the analysis of vast and complex data sources, unlocking new perspectives on the intricacies of biological tissues. However, modeling ST data is inherently challenging due to the need to extract multi-scale information from tissue slices containing vast numbers of cells. This process requires integrating macro-scale tissue morphology, micro-scale cellular microenvironment, and gene-scale gene expression profile. To address this challenge, we propose SToFM, a multi-scale Spatial Transcriptomics Foundation Model. SToFM first performs multi-scale information extraction on each ST slice, to construct a set of ST sub-slices that aggregate macro-, micro- and gene-scale information. Then an SE(2) Transformer is used to obtain high-quality cell representations from the sub-slices. Additionally, we construct SToCorpus-88M, the largest high-resolution spatial transcriptomics corpus for pretraining. SToFM achieves outstanding performance on a variety of downstream tasks, such as tissue region semantic segmentation and cell type annotation, demonstrating its comprehensive understanding of ST data through capturing and integrating multi-scale information.
ComplexDec: A Domain-robust High-fidelity Neural Audio Codec with Complex Spectrum Modeling
Neural audio codecs have been widely adopted in audio-generative tasks because their compact and discrete representations are suitable for both large-language-model-style and regression-based generative models. However, most neural codecs struggle to model out-of-domain audio, resulting in error propagations to downstream generative tasks. In this paper, we first argue that information loss from codec compression degrades out-of-domain robustness. Then, we propose full-band 48~kHz ComplexDec with complex spectral input and output to ease the information loss while adopting the same 24~kbps bitrate as the baseline AuidoDec and ScoreDec. Objective and subjective evaluations demonstrate the out-of-domain robustness of ComplexDec trained using only the 30-hour VCTK corpus.
Struc-Bench: Are Large Language Models Really Good at Generating Complex Structured Data?
Despite the power of Large Language Models (LLMs) like GPT-4, they still struggle with tasks that require generating complex, structured outputs. In this study, we assess the capability of Current LLMs in generating complex structured data and propose a structure-aware fine-tuning approach as a solution to improve this ability. To perform a comprehensive evaluation, we propose Struc-Bench, include five representative LLMs (i.e., GPT-NeoX 20B, GPT-3.5, GPT-4, and Vicuna) and evaluate them on our carefully constructed datasets spanning raw text, HTML, and LaTeX tables. Based on our analysis of current model performance, we identify specific common formatting errors and areas of potential improvement. To address complex formatting requirements, we utilize FormatCoT (Chain-of-Thought) to generate format instructions from target outputs. Our experiments show that our structure-aware fine-tuning method, when applied to LLaMA-7B, significantly improves adherence to natural language constraints, outperforming other evaluated LLMs. Based on these results, we present an ability map of model capabilities from six dimensions (i.e., coverage, formatting, reasoning, comprehension, pragmatics, and hallucination). This map highlights the weaknesses of LLMs in handling complex structured outputs and suggests promising directions for future work. Our code and models can be found at https://github.com/gersteinlab/Struc-Bench.
Beyond Fully-Connected Layers with Quaternions: Parameterization of Hypercomplex Multiplications with 1/n Parameters
Recent works have demonstrated reasonable success of representation learning in hypercomplex space. Specifically, "fully-connected layers with Quaternions" (4D hypercomplex numbers), which replace real-valued matrix multiplications in fully-connected layers with Hamilton products of Quaternions, both enjoy parameter savings with only 1/4 learnable parameters and achieve comparable performance in various applications. However, one key caveat is that hypercomplex space only exists at very few predefined dimensions (4D, 8D, and 16D). This restricts the flexibility of models that leverage hypercomplex multiplications. To this end, we propose parameterizing hypercomplex multiplications, allowing models to learn multiplication rules from data regardless of whether such rules are predefined. As a result, our method not only subsumes the Hamilton product, but also learns to operate on any arbitrary nD hypercomplex space, providing more architectural flexibility using arbitrarily 1/n learnable parameters compared with the fully-connected layer counterpart. Experiments of applications to the LSTM and Transformer models on natural language inference, machine translation, text style transfer, and subject verb agreement demonstrate architectural flexibility and effectiveness of the proposed approach.
MedShift: Implicit Conditional Transport for X-Ray Domain Adaptation
Synthetic medical data offers a scalable solution for training robust models, but significant domain gaps limit its generalizability to real-world clinical settings. This paper addresses the challenge of cross-domain translation between synthetic and real X-ray images of the head, focusing on bridging discrepancies in attenuation behavior, noise characteristics, and soft tissue representation. We propose MedShift, a unified class-conditional generative model based on Flow Matching and Schrodinger Bridges, which enables high-fidelity, unpaired image translation across multiple domains. Unlike prior approaches that require domain-specific training or rely on paired data, MedShift learns a shared domain-agnostic latent space and supports seamless translation between any pair of domains seen during training. We introduce X-DigiSkull, a new dataset comprising aligned synthetic and real skull X-rays under varying radiation doses, to benchmark domain translation models. Experimental results demonstrate that, despite its smaller model size compared to diffusion-based approaches, MedShift offers strong performance and remains flexible at inference time, as it can be tuned to prioritize either perceptual fidelity or structural consistency, making it a scalable and generalizable solution for domain adaptation in medical imaging. The code and dataset are available at https://caetas.github.io/medshift.html
Deep Neural Networks via Complex Network Theory: a Perspective
Deep Neural Networks (DNNs) can be represented as graphs whose links and vertices iteratively process data and solve tasks sub-optimally. Complex Network Theory (CNT), merging statistical physics with graph theory, provides a method for interpreting neural networks by analysing their weights and neuron structures. However, classic works adapt CNT metrics that only permit a topological analysis as they do not account for the effect of the input data. In addition, CNT metrics have been applied to a limited range of architectures, mainly including Fully Connected neural networks. In this work, we extend the existing CNT metrics with measures that sample from the DNNs' training distribution, shifting from a purely topological analysis to one that connects with the interpretability of deep learning. For the novel metrics, in addition to the existing ones, we provide a mathematical formalisation for Fully Connected, AutoEncoder, Convolutional and Recurrent neural networks, of which we vary the activation functions and the number of hidden layers. We show that these metrics differentiate DNNs based on the architecture, the number of hidden layers, and the activation function. Our contribution provides a method rooted in physics for interpreting DNNs that offers insights beyond the traditional input-output relationship and the CNT topological analysis.
Learning Hierarchical Polynomials with Three-Layer Neural Networks
We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form h = g circ p where p : R^d rightarrow R is a degree k polynomial and g: R rightarrow R is a degree q polynomial. This function class generalizes the single-index model, which corresponds to k=1, and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree k polynomials p, a three-layer neural network trained via layerwise gradient descent on the square loss learns the target h up to vanishing test error in mathcal{O}(d^k) samples and polynomial time. This is a strict improvement over kernel methods, which require widetilde Theta(d^{kq}) samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of p being a quadratic. When p is indeed a quadratic, we achieve the information-theoretically optimal sample complexity mathcal{O}(d^2), which is an improvement over prior work~nichani2023provable requiring a sample size of widetildeTheta(d^4). Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature p with mathcal{O}(d^k) samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.
How to Train Your HiPPO: State Space Models with Generalized Orthogonal Basis Projections
Linear time-invariant state space models (SSM) are a classical model from engineering and statistics, that have recently been shown to be very promising in machine learning through the Structured State Space sequence model (S4). A core component of S4 involves initializing the SSM state matrix to a particular matrix called a HiPPO matrix, which was empirically important for S4's ability to handle long sequences. However, the specific matrix that S4 uses was actually derived in previous work for a particular time-varying dynamical system, and the use of this matrix as a time-invariant SSM had no known mathematical interpretation. Consequently, the theoretical mechanism by which S4 models long-range dependencies actually remains unexplained. We derive a more general and intuitive formulation of the HiPPO framework, which provides a simple mathematical interpretation of S4 as a decomposition onto exponentially-warped Legendre polynomials, explaining its ability to capture long dependencies. Our generalization introduces a theoretically rich class of SSMs that also lets us derive more intuitive S4 variants for other bases such as the Fourier basis, and explains other aspects of training S4, such as how to initialize the important timescale parameter. These insights improve S4's performance to 86% on the Long Range Arena benchmark, with 96% on the most difficult Path-X task.
Exact Gradients for Stochastic Spiking Neural Networks Driven by Rough Signals
We introduce a mathematically rigorous framework based on rough path theory to model stochastic spiking neural networks (SSNNs) as stochastic differential equations with event discontinuities (Event SDEs) and driven by c\`adl\`ag rough paths. Our formalism is general enough to allow for potential jumps to be present both in the solution trajectories as well as in the driving noise. We then identify a set of sufficient conditions ensuring the existence of pathwise gradients of solution trajectories and event times with respect to the network's parameters and show how these gradients satisfy a recursive relation. Furthermore, we introduce a general-purpose loss function defined by means of a new class of signature kernels indexed on c\`adl\`ag rough paths and use it to train SSNNs as generative models. We provide an end-to-end autodifferentiable solver for Event SDEs and make its implementation available as part of the diffrax library. Our framework is, to our knowledge, the first enabling gradient-based training of SSNNs with noise affecting both the spike timing and the network's dynamics.
Domain Adaptation for Time Series Under Feature and Label Shifts
Unsupervised domain adaptation (UDA) enables the transfer of models trained on source domains to unlabeled target domains. However, transferring complex time series models presents challenges due to the dynamic temporal structure variations across domains. This leads to feature shifts in the time and frequency representations. Additionally, the label distributions of tasks in the source and target domains can differ significantly, posing difficulties in addressing label shifts and recognizing labels unique to the target domain. Effectively transferring complex time series models remains a formidable problem. We present Raincoat, the first model for both closed-set and universal domain adaptation on complex time series. Raincoat addresses feature and label shifts by considering both temporal and frequency features, aligning them across domains, and correcting for misalignments to facilitate the detection of private labels. Additionally, Raincoat improves transferability by identifying label shifts in target domains. Our experiments with 5 datasets and 13 state-of-the-art UDA methods demonstrate that Raincoat can improve transfer learning performance by up to 16.33% and can handle both closed-set and universal domain adaptation.
State-Free Inference of State-Space Models: The Transfer Function Approach
We approach designing a state-space model for deep learning applications through its dual representation, the transfer function, and uncover a highly efficient sequence parallel inference algorithm that is state-free: unlike other proposed algorithms, state-free inference does not incur any significant memory or computational cost with an increase in state size. We achieve this using properties of the proposed frequency domain transfer function parametrization, which enables direct computation of its corresponding convolutional kernel's spectrum via a single Fast Fourier Transform. Our experimental results across multiple sequence lengths and state sizes illustrates, on average, a 35% training speed improvement over S4 layers -- parametrized in time-domain -- on the Long Range Arena benchmark, while delivering state-of-the-art downstream performances over other attention-free approaches. Moreover, we report improved perplexity in language modeling over a long convolutional Hyena baseline, by simply introducing our transfer function parametrization. Our code is available at https://github.com/ruke1ire/RTF.
Transformer Embeddings of Irregularly Spaced Events and Their Participants
The neural Hawkes process (Mei & Eisner, 2017) is a generative model of irregularly spaced sequences of discrete events. To handle complex domains with many event types, Mei et al. (2020a) further consider a setting in which each event in the sequence updates a deductive database of facts (via domain-specific pattern-matching rules); future events are then conditioned on the database contents. They show how to convert such a symbolic system into a neuro-symbolic continuous-time generative model, in which each database fact and the possible event has a time-varying embedding that is derived from its symbolic provenance. In this paper, we modify both models, replacing their recurrent LSTM-based architectures with flatter attention-based architectures (Vaswani et al., 2017), which are simpler and more parallelizable. This does not appear to hurt our accuracy, which is comparable to or better than that of the original models as well as (where applicable) previous attention-based methods (Zuo et al., 2020; Zhang et al., 2020a).
Cauchy activation function and XNet
We have developed a novel activation function, named the Cauchy Activation Function. This function is derived from the Cauchy Integral Theorem in complex analysis and is specifically tailored for problems requiring high precision. This innovation has led to the creation of a new class of neural networks, which we call (Comple)XNet, or simply XNet. We will demonstrate that XNet is particularly effective for high-dimensional challenges such as image classification and solving Partial Differential Equations (PDEs). Our evaluations show that XNet significantly outperforms established benchmarks like MNIST and CIFAR-10 in computer vision, and offers substantial advantages over Physics-Informed Neural Networks (PINNs) in both low-dimensional and high-dimensional PDE scenarios.
A molecular Ferroelectric thin film of imidazolium perchlorate on Silicon
Molecular ferroelectric materials have attracted widespread attention due to their abundant chemical diversity, structural tunability, low synthesis temperature, and high flexibility. Meanwhile, the integration of molecular ferroelectric materials and Si is still challenging, while the fundamental understanding of the ferroelectric switching process is still lacking. Herein, we have successfully synthesized the imidazole perchlorate (ImClO4) single crystals and a series of high-quality highly-oriented thin films on a Si substrate. A high inverse piezoelectric coefficient (55.7 pm/V) is demonstrated for the thin films. Two types of domain bands can be observed (in the size of a few microns): type-I band tilts ~60{\deg} with respect to the horizontal axis, while the type-II band is perpendicular to the horizontal axis. Most of the domain walls (DWs) are 180{\deg} DWs for the two bands, while some 109{\deg} DWs can also be observed. Interestingly, the DWs in type-I band are curved, charged domain walls; while the 180{\deg} DWs in type-II band are straight, noncharged domain walls. After applying +20 V for 5 s through a PFM tip, the 180{\deg} DWs in type-I band shrink first, then disconnect from the band boundary, forming a needle-like domain with a size of ~100 nm. The needle-like domain will extend toward the band boundary after an inverse bias is applied (-20 V), and expand along the band boundary after touching the boundary. Whereas for the type-II domain band, the 180{\deg} DWs are more mobile than the 109{\deg} domain walls, which displaces ~500 nm after applying +20 V. While such displacement is much shorter after the application of a negative bias for the same duration, starting from the positively poled sample. We hope to spur further interest in the on-chip design of the molecular ferroelectrics based electronic devices.
MoTIF: Learning Motion Trajectories with Local Implicit Neural Functions for Continuous Space-Time Video Super-Resolution
This work addresses continuous space-time video super-resolution (C-STVSR) that aims to up-scale an input video both spatially and temporally by any scaling factors. One key challenge of C-STVSR is to propagate information temporally among the input video frames. To this end, we introduce a space-time local implicit neural function. It has the striking feature of learning forward motion for a continuum of pixels. We motivate the use of forward motion from the perspective of learning individual motion trajectories, as opposed to learning a mixture of motion trajectories with backward motion. To ease motion interpolation, we encode sparsely sampled forward motion extracted from the input video as the contextual input. Along with a reliability-aware splatting and decoding scheme, our framework, termed MoTIF, achieves the state-of-the-art performance on C-STVSR. The source code of MoTIF is available at https://github.com/sichun233746/MoTIF.
On the Power of Decision Trees in Auto-Regressive Language Modeling
Originally proposed for handling time series data, Auto-regressive Decision Trees (ARDTs) have not yet been explored for language modeling. This paper delves into both the theoretical and practical applications of ARDTs in this new context. We theoretically demonstrate that ARDTs can compute complex functions, such as simulating automata, Turing machines, and sparse circuits, by leveraging "chain-of-thought" computations. Our analysis provides bounds on the size, depth, and computational efficiency of ARDTs, highlighting their surprising computational power. Empirically, we train ARDTs on simple language generation tasks, showing that they can learn to generate coherent and grammatically correct text on par with a smaller Transformer model. Additionally, we show that ARDTs can be used on top of transformer representations to solve complex reasoning tasks. This research reveals the unique computational abilities of ARDTs, aiming to broaden the architectural diversity in language model development.
D-PAD: Deep-Shallow Multi-Frequency Patterns Disentangling for Time Series Forecasting
In time series forecasting, effectively disentangling intricate temporal patterns is crucial. While recent works endeavor to combine decomposition techniques with deep learning, multiple frequencies may still be mixed in the decomposed components, e.g., trend and seasonal. Furthermore, frequency domain analysis methods, e.g., Fourier and wavelet transforms, have limitations in resolution in the time domain and adaptability. In this paper, we propose D-PAD, a deep-shallow multi-frequency patterns disentangling neural network for time series forecasting. Specifically, a multi-component decomposing (MCD) block is introduced to decompose the series into components with different frequency ranges, corresponding to the "shallow" aspect. A decomposition-reconstruction-decomposition (D-R-D) module is proposed to progressively extract the information of frequencies mixed in the components, corresponding to the "deep" aspect. After that, an interaction and fusion (IF) module is used to further analyze the components. Extensive experiments on seven real-world datasets demonstrate that D-PAD achieves the state-of-the-art performance, outperforming the best baseline by an average of 9.48% and 7.15% in MSE and MAE, respectively.
Train Till You Drop: Towards Stable and Robust Source-free Unsupervised 3D Domain Adaptation
We tackle the challenging problem of source-free unsupervised domain adaptation (SFUDA) for 3D semantic segmentation. It amounts to performing domain adaptation on an unlabeled target domain without any access to source data; the available information is a model trained to achieve good performance on the source domain. A common issue with existing SFUDA approaches is that performance degrades after some training time, which is a by product of an under-constrained and ill-posed problem. We discuss two strategies to alleviate this issue. First, we propose a sensible way to regularize the learning problem. Second, we introduce a novel criterion based on agreement with a reference model. It is used (1) to stop the training when appropriate and (2) as validator to select hyperparameters without any knowledge on the target domain. Our contributions are easy to implement and readily amenable for all SFUDA methods, ensuring stable improvements over all baselines. We validate our findings on various 3D lidar settings, achieving state-of-the-art performance. The project repository (with code) is: github.com/valeoai/TTYD.
Upcycling Models under Domain and Category Shift
Deep neural networks (DNNs) often perform poorly in the presence of domain shift and category shift. How to upcycle DNNs and adapt them to the target task remains an important open problem. Unsupervised Domain Adaptation (UDA), especially recently proposed Source-free Domain Adaptation (SFDA), has become a promising technology to address this issue. Nevertheless, existing SFDA methods require that the source domain and target domain share the same label space, consequently being only applicable to the vanilla closed-set setting. In this paper, we take one step further and explore the Source-free Universal Domain Adaptation (SF-UniDA). The goal is to identify "known" data samples under both domain and category shift, and reject those "unknown" data samples (not present in source classes), with only the knowledge from standard pre-trained source model. To this end, we introduce an innovative global and local clustering learning technique (GLC). Specifically, we design a novel, adaptive one-vs-all global clustering algorithm to achieve the distinction across different target classes and introduce a local k-NN clustering strategy to alleviate negative transfer. We examine the superiority of our GLC on multiple benchmarks with different category shift scenarios, including partial-set, open-set, and open-partial-set DA. Remarkably, in the most challenging open-partial-set DA scenario, GLC outperforms UMAD by 14.8\% on the VisDA benchmark. The code is available at https://github.com/ispc-lab/GLC.
Proximal Supervised Fine-Tuning
Supervised fine-tuning (SFT) of foundation models often leads to poor generalization, where prior capabilities deteriorate after tuning on new tasks or domains. Inspired by trust-region policy optimization (TRPO) and proximal policy optimization (PPO) in reinforcement learning (RL), we propose Proximal SFT (PSFT). This fine-tuning objective incorporates the benefits of trust-region, effectively constraining policy drift during SFT while maintaining competitive tuning. By viewing SFT as a special case of policy gradient methods with constant positive advantages, we derive PSFT that stabilizes optimization and leads to generalization, while leaving room for further optimization in subsequent post-training stages. Experiments across mathematical and human-value domains show that PSFT matches SFT in-domain, outperforms it in out-of-domain generalization, remains stable under prolonged training without causing entropy collapse, and provides a stronger foundation for the subsequent optimization.
iSTFTNet: Fast and Lightweight Mel-Spectrogram Vocoder Incorporating Inverse Short-Time Fourier Transform
In recent text-to-speech synthesis and voice conversion systems, a mel-spectrogram is commonly applied as an intermediate representation, and the necessity for a mel-spectrogram vocoder is increasing. A mel-spectrogram vocoder must solve three inverse problems: recovery of the original-scale magnitude spectrogram, phase reconstruction, and frequency-to-time conversion. A typical convolutional mel-spectrogram vocoder solves these problems jointly and implicitly using a convolutional neural network, including temporal upsampling layers, when directly calculating a raw waveform. Such an approach allows skipping redundant processes during waveform synthesis (e.g., the direct reconstruction of high-dimensional original-scale spectrograms). By contrast, the approach solves all problems in a black box and cannot effectively employ the time-frequency structures existing in a mel-spectrogram. We thus propose iSTFTNet, which replaces some output-side layers of the mel-spectrogram vocoder with the inverse short-time Fourier transform (iSTFT) after sufficiently reducing the frequency dimension using upsampling layers, reducing the computational cost from black-box modeling and avoiding redundant estimations of high-dimensional spectrograms. During our experiments, we applied our ideas to three HiFi-GAN variants and made the models faster and more lightweight with a reasonable speech quality. Audio samples are available at https://www.kecl.ntt.co.jp/people/kaneko.takuhiro/projects/istftnet/.
Invariant subspaces for finite index shifts in Hardy spaces and the invariant subspace problem for finite defect operators
Let mathbb H be the finite direct sums of H^2(mathbb D). In this paper, we give a characterization of the closed subspaces of mathbb H which are invariant under the shift, thus obtaining a concrete Beurling-type theorem for the finite index shift. This characterization presents any such a subspace as the finite intersection, up to an inner function, of pre-images of a closed shift-invariant subspace of H^2(mathbb D) under ``determinantal operators'' from mathbb H to H^2(mathbb D), that is, continuous linear operators which intertwine the shifts and appear as determinants of matrices with entries given by bounded holomorphic functions. With simple algebraic manipulations we provide a direct proof that every invariant closed subspace of codimension at least two sits into a non-trivial closed invariant subspace. As a consequence every bounded linear operator with finite defect has a nontrivial closed invariant subspace.
End-to-End Complex-Valued Multidilated Convolutional Neural Network for Joint Acoustic Echo Cancellation and Noise Suppression
Echo and noise suppression is an integral part of a full-duplex communication system. Many recent acoustic echo cancellation (AEC) systems rely on a separate adaptive filtering module for linear echo suppression and a neural module for residual echo suppression. However, not only do adaptive filtering modules require convergence and remain susceptible to changes in acoustic environments, but this two-stage framework also often introduces unnecessary delays to the AEC system when neural modules are already capable of both linear and nonlinear echo suppression. In this paper, we exploit the offset-compensating ability of complex time-frequency masks and propose an end-to-end complex-valued neural network architecture. The building block of the proposed model is a pseudocomplex extension based on the densely-connected multidilated DenseNet (D3Net) building block, resulting in a very small network of only 354K parameters. The architecture utilized the multi-resolution nature of the D3Net building blocks to eliminate the need for pooling, allowing the network to extract features using large receptive fields without any loss of output resolution. We also propose a dual-mask technique for joint echo and noise suppression with simultaneous speech enhancement. Evaluation on both synthetic and real test sets demonstrated promising results across multiple energy-based metrics and perceptual proxies.
Accelerating Toeplitz Neural Network with Constant-time Inference Complexity
Toeplitz Neural Networks (TNNs) have exhibited outstanding performance in various sequence modeling tasks. They outperform commonly used Transformer-based models while benefiting from log-linear space-time complexities. On the other hand, State Space Models (SSMs) achieve lower performance than TNNs in language modeling but offer the advantage of constant inference complexity. In this paper, we aim to combine the strengths of TNNs and SSMs by converting TNNs to SSMs during inference, thereby enabling TNNs to achieve the same constant inference complexities as SSMs. To accomplish this, we formulate the conversion process as an optimization problem and provide a closed-form solution. We demonstrate how to transform the target equation into a Vandermonde linear system problem, which can be efficiently solved using the Discrete Fourier Transform (DFT). Notably, our method requires no training and maintains numerical stability. It can be also applied to any LongConv-based model. To assess its effectiveness, we conduct extensive experiments on language modeling tasks across various settings. Additionally, we compare our method to other gradient-descent solutions, highlighting the superior numerical stability of our approach. The source code is available at https://github.com/OpenNLPLab/ETSC-Exact-Toeplitz-to-SSM-Conversion.
Generative Speech Foundation Model Pretraining for High-Quality Speech Extraction and Restoration
This paper proposes a generative pretraining foundation model for high-quality speech restoration tasks. By directly operating on complex-valued short-time Fourier transform coefficients, our model does not rely on any vocoders for time-domain signal reconstruction. As a result, our model simplifies the synthesis process and removes the quality upper-bound introduced by any mel-spectrogram vocoder compared to prior work SpeechFlow. The proposed method is evaluated on multiple speech restoration tasks, including speech denoising, bandwidth extension, codec artifact removal, and target speaker extraction. In all scenarios, finetuning our pretrained model results in superior performance over strong baselines. Notably, in the target speaker extraction task, our model outperforms existing systems, including those leveraging SSL-pretrained encoders like WavLM. The code and the pretrained checkpoints are publicly available in the NVIDIA NeMo framework.
Chimera: Effectively Modeling Multivariate Time Series with 2-Dimensional State Space Models
Modeling multivariate time series is a well-established problem with a wide range of applications from healthcare to financial markets. Traditional State Space Models (SSMs) are classical approaches for univariate time series modeling due to their simplicity and expressive power to represent linear dependencies. They, however, have fundamentally limited expressive power to capture non-linear dependencies, are slow in practice, and fail to model the inter-variate information flow. Despite recent attempts to improve the expressive power of SSMs by using deep structured SSMs, the existing methods are either limited to univariate time series, fail to model complex patterns (e.g., seasonal patterns), fail to dynamically model the dependencies of variate and time dimensions, and/or are input-independent. We present Chimera that uses two input-dependent 2-D SSM heads with different discretization processes to learn long-term progression and seasonal patterns. To improve the efficiency of complex 2D recurrence, we present a fast training using a new 2-dimensional parallel selective scan. We further present and discuss 2-dimensional Mamba and Mamba-2 as the spacial cases of our 2D SSM. Our experimental evaluation shows the superior performance of Chimera on extensive and diverse benchmarks, including ECG and speech time series classification, long-term and short-term time series forecasting, and time series anomaly detection.
CrossSDF: 3D Reconstruction of Thin Structures From Cross-Sections
Reconstructing complex structures from planar cross-sections is a challenging problem, with wide-reaching applications in medical imaging, manufacturing, and topography. Out-of-the-box point cloud reconstruction methods can often fail due to the data sparsity between slicing planes, while current bespoke methods struggle to reconstruct thin geometric structures and preserve topological continuity. This is important for medical applications where thin vessel structures are present in CT and MRI scans. This paper introduces CrossSDF, a novel approach for extracting a 3D signed distance field from 2D signed distances generated from planar contours. Our approach makes the training of neural SDFs contour-aware by using losses designed for the case where geometry is known within 2D slices. Our results demonstrate a significant improvement over existing methods, effectively reconstructing thin structures and producing accurate 3D models without the interpolation artifacts or over-smoothing of prior approaches.
A Unified Framework for Forward and Inverse Problems in Subsurface Imaging using Latent Space Translations
In subsurface imaging, learning the mapping from velocity maps to seismic waveforms (forward problem) and waveforms to velocity (inverse problem) is important for several applications. While traditional techniques for solving forward and inverse problems are computationally prohibitive, there is a growing interest in leveraging recent advances in deep learning to learn the mapping between velocity maps and seismic waveform images directly from data. Despite the variety of architectures explored in previous works, several open questions still remain unanswered such as the effect of latent space sizes, the importance of manifold learning, the complexity of translation models, and the value of jointly solving forward and inverse problems. We propose a unified framework to systematically characterize prior research in this area termed the Generalized Forward-Inverse (GFI) framework, building on the assumption of manifolds and latent space translations. We show that GFI encompasses previous works in deep learning for subsurface imaging, which can be viewed as specific instantiations of GFI. We also propose two new model architectures within the framework of GFI: Latent U-Net and Invertible X-Net, leveraging the power of U-Nets for domain translation and the ability of IU-Nets to simultaneously learn forward and inverse translations, respectively. We show that our proposed models achieve state-of-the-art (SOTA) performance for forward and inverse problems on a wide range of synthetic datasets, and also investigate their zero-shot effectiveness on two real-world-like datasets. Our code is available at https://github.com/KGML-lab/Generalized-Forward-Inverse-Framework-for-DL4SI
TeLoGraF: Temporal Logic Planning via Graph-encoded Flow Matching
Learning to solve complex tasks with signal temporal logic (STL) specifications is crucial to many real-world applications. However, most previous works only consider fixed or parametrized STL specifications due to the lack of a diverse STL dataset and encoders to effectively extract temporal logic information for downstream tasks. In this paper, we propose TeLoGraF, Temporal Logic Graph-encoded Flow, which utilizes Graph Neural Networks (GNN) encoder and flow-matching to learn solutions for general STL specifications. We identify four commonly used STL templates and collect a total of 200K specifications with paired demonstrations. We conduct extensive experiments in five simulation environments ranging from simple dynamical models in the 2D space to high-dimensional 7DoF Franka Panda robot arm and Ant quadruped navigation. Results show that our method outperforms other baselines in the STL satisfaction rate. Compared to classical STL planning algorithms, our approach is 10-100X faster in inference and can work on any system dynamics. Besides, we show our graph-encoding method's capability to solve complex STLs and robustness to out-distribution STL specifications. Code is available at https://github.com/mengyuest/TeLoGraF
From Latent Graph to Latent Topology Inference: Differentiable Cell Complex Module
Latent Graph Inference (LGI) relaxed the reliance of Graph Neural Networks (GNNs) on a given graph topology by dynamically learning it. However, most of LGI methods assume to have a (noisy, incomplete, improvable, ...) input graph to rewire and can solely learn regular graph topologies. In the wake of the success of Topological Deep Learning (TDL), we study Latent Topology Inference (LTI) for learning higher-order cell complexes (with sparse and not regular topology) describing multi-way interactions between data points. To this aim, we introduce the Differentiable Cell Complex Module (DCM), a novel learnable function that computes cell probabilities in the complex to improve the downstream task. We show how to integrate DCM with cell complex message passing networks layers and train it in a end-to-end fashion, thanks to a two-step inference procedure that avoids an exhaustive search across all possible cells in the input, thus maintaining scalability. Our model is tested on several homophilic and heterophilic graph datasets and it is shown to outperform other state-of-the-art techniques, offering significant improvements especially in cases where an input graph is not provided.
Differentiable Causal Computations via Delayed Trace
We investigate causal computations taking sequences of inputs to sequences of outputs where the nth output depends on the first n inputs only. We model these in category theory via a construction taking a Cartesian category C to another category St(C) with a novel trace-like operation called "delayed trace", which misses yanking and dinaturality axioms of the usual trace. The delayed trace operation provides a feedback mechanism in St(C) with an implicit guardedness guarantee. When C is equipped with a Cartesian differential operator, we construct a differential operator for St(C) using an abstract version of backpropagation through time, a technique from machine learning based on unrolling of functions. This obtains a swath of properties for backpropagation through time, including a chain rule and Schwartz theorem. Our differential operator is also able to compute the derivative of a stateful network without requiring the network to be unrolled.
Stacked tensorial neural networks for reduced-order modeling of a parametric partial differential equation
Tensorial neural networks (TNNs) combine the successes of multilinear algebra with those of deep learning to enable extremely efficient reduced-order models of high-dimensional problems. Here, I describe a deep neural network architecture that fuses multiple TNNs into a larger network, intended to solve a broader class of problems than a single TNN. I evaluate this architecture, referred to as a "stacked tensorial neural network" (STNN), on a parametric PDE with three independent variables and three parameters. The three parameters correspond to one PDE coefficient and two quantities describing the domain geometry. The STNN provides an accurate reduced-order description of the solution manifold over a wide range of parameters. There is also evidence of meaningful generalization to parameter values outside its training data. Finally, while the STNN architecture is relatively simple and problem agnostic, it can be regularized to incorporate problem-specific features like symmetries and physical modeling assumptions.
Sigma-Delta and Distributed Noise-Shaping Quantization Methods for Random Fourier Features
We propose the use of low bit-depth Sigma-Delta and distributed noise-shaping methods for quantizing the Random Fourier features (RFFs) associated with shift-invariant kernels. We prove that our quantized RFFs -- even in the case of 1-bit quantization -- allow a high accuracy approximation of the underlying kernels, and the approximation error decays at least polynomially fast as the dimension of the RFFs increases. We also show that the quantized RFFs can be further compressed, yielding an excellent trade-off between memory use and accuracy. Namely, the approximation error now decays exponentially as a function of the bits used. Moreover, we empirically show by testing the performance of our methods on several machine learning tasks that our method compares favorably to other state of the art quantization methods in this context.
Is Mamba Effective for Time Series Forecasting?
In the realm of time series forecasting (TSF), it is imperative for models to adeptly discern and distill hidden patterns within historical time series data to forecast future states. Transformer-based models exhibit formidable efficacy in TSF, primarily attributed to their advantage in apprehending these patterns. However, the quadratic complexity of the Transformer leads to low computational efficiency and high costs, which somewhat hinders the deployment of the TSF model in real-world scenarios. Recently, Mamba, a selective state space model, has gained traction due to its ability to process dependencies in sequences while maintaining near-linear complexity. For TSF tasks, these characteristics enable Mamba to comprehend hidden patterns as the Transformer and reduce computational overhead compared to the Transformer. Therefore, we propose a Mamba-based model named Simple-Mamba (S-Mamba) for TSF. Specifically, we tokenize the time points of each variate autonomously via a linear layer. A bidirectional Mamba layer is utilized to extract inter-variate correlations and a Feed-Forward Network is set to learn temporal dependencies. Finally, the generation of forecast outcomes through a linear mapping layer. Experiments on thirteen public datasets prove that S-Mamba maintains low computational overhead and achieves leading performance. Furthermore, we conduct extensive experiments to explore Mamba's potential in TSF tasks. Our code is available at https://github.com/wzhwzhwzh0921/S-D-Mamba.
Deep Neuromorphic Networks with Superconducting Single Flux Quanta
Conventional semiconductor-based integrated circuits are gradually approaching fundamental scaling limits. Many prospective solutions have recently emerged to supplement or replace both the technology on which basic devices are built and the architecture of data processing. Neuromorphic circuits are a promising approach to computing where techniques used by the brain to achieve high efficiency are exploited. Many existing neuromorphic circuits rely on unconventional and useful properties of novel technologies to better mimic the operation of the brain. One such technology is single flux quantum (SFQ) logic -- a cryogenic superconductive technology in which the data are represented by quanta of magnetic flux (fluxons) produced and processed by Josephson junctions embedded within inductive loops. The movement of a fluxon within a circuit produces a quantized voltage pulse (SFQ pulse), resembling a neuronal spiking event. These circuits routinely operate at clock frequencies of tens to hundreds of gigahertz, making SFQ a natural technology for processing high frequency pulse trains. Prior proposals for SFQ neural networks often require energy-expensive fluxon conversions, involve heterogeneous technologies, or exclusively focus on device level behavior. In this paper, a design methodology for deep single flux quantum neuromorphic networks is presented. Synaptic and neuronal circuits based on SFQ technology are presented and characterized. Based on these primitives, a deep neuromorphic XOR network is evaluated as a case study, both at the architectural and circuit levels, achieving wide classification margins. The proposed methodology does not employ unconventional superconductive devices or semiconductor transistors. The resulting networks are tunable by an external current, making this proposed system an effective approach for scalable cryogenic neuromorphic computing.
Holistic Geometric Feature Learning for Structured Reconstruction
The inference of topological principles is a key problem in structured reconstruction. We observe that wrongly predicted topological relationships are often incurred by the lack of holistic geometry clues in low-level features. Inspired by the fact that massive signals can be compactly described with frequency analysis, we experimentally explore the efficiency and tendency of learning structure geometry in the frequency domain. Accordingly, we propose a frequency-domain feature learning strategy (F-Learn) to fuse scattered geometric fragments holistically for topology-intact structure reasoning. Benefiting from the parsimonious design, the F-Learn strategy can be easily deployed into a deep reconstructor with a lightweight model modification. Experiments demonstrate that the F-Learn strategy can effectively introduce structure awareness into geometric primitive detection and topology inference, bringing significant performance improvement to final structured reconstruction. Code and pre-trained models are available at https://github.com/Geo-Tell/F-Learn.
Wavelet Scattering Transform for Bioacustics: Application to Watkins Marine Mammal Sound Database
Marine mammal communication is a complex field, hindered by the diversity of vocalizations and environmental factors. The Watkins Marine Mammal Sound Database (WMMD) is an extensive labeled dataset used in machine learning applications. However, the methods for data preparation, preprocessing, and classification found in the literature are quite disparate. This study first focuses on a brief review of the state-of-the-art benchmarks on the dataset, with an emphasis on clarifying data preparation and preprocessing methods. Subsequently, we propose the application of the Wavelet Scattering Transform (WST) in place of standard methods based on the Short-Time Fourier Transform (STFT). The study also tackles a classification task using an ad-hoc deep architecture with residual layers. We outperform the existing classification architecture by 6% in accuracy using WST and 8% using Mel spectrogram preprocessing, effectively reducing by half the number of misclassified samples, and reaching a top accuracy of 96%.
Improving Domain Generalization with Domain Relations
Distribution shift presents a significant challenge in machine learning, where models often underperform during the test stage when faced with a different distribution than the one they were trained on. This paper focuses on domain shifts, which occur when the model is applied to new domains that are different from the ones it was trained on, and propose a new approach called D^3G. Unlike previous methods that aim to learn a single model that is domain invariant, D^3G leverages domain similarities based on domain metadata to learn domain-specific models. Concretely, D^3G learns a set of training-domain-specific functions during the training stage and reweights them based on domain relations during the test stage. These domain relations can be directly obtained and learned from domain metadata. Under mild assumptions, we theoretically prove that using domain relations to reweight training-domain-specific functions achieves stronger out-of-domain generalization compared to the conventional averaging approach. Empirically, we evaluate the effectiveness of D^3G using real-world datasets for tasks such as temperature regression, land use classification, and molecule-protein binding affinity prediction. Our results show that D^3G consistently outperforms state-of-the-art methods.
Painlevé Kernels and Surface Defects at Strong Coupling
It is well established that the spectral analysis of canonically quantized four-dimensional Seiberg-Witten curves can be systematically studied via the Nekrasov-Shatashvili functions. In this paper, we explore another aspect of the relation between N=2 supersymmetric gauge theories in four dimensions and operator theory. Specifically, we study an example of an integral operator associated with Painlev\'e equations and whose spectral traces are related to correlation functions of the 2d Ising model. This operator does not correspond to a canonically quantized Seiberg-Witten curve, but its kernel can nevertheless be interpreted as the density matrix of an ideal Fermi gas. Adopting the approach of Tracy and Widom, we provide an explicit expression for its eigenfunctions via an O(2) matrix model. We then show that these eigenfunctions are computed by surface defects in SU(2) super Yang-Mills in the self-dual phase of the Omega-background. Our result also yields a strong coupling expression for such defects which resums the instanton expansion. Even though we focus on one concrete example, we expect these results to hold for a larger class of operators arising in the context of isomonodromic deformation equations.
Polynomial Width is Sufficient for Set Representation with High-dimensional Features
Set representation has become ubiquitous in deep learning for modeling the inductive bias of neural networks that are insensitive to the input order. DeepSets is the most widely used neural network architecture for set representation. It involves embedding each set element into a latent space with dimension L, followed by a sum pooling to obtain a whole-set embedding, and finally mapping the whole-set embedding to the output. In this work, we investigate the impact of the dimension L on the expressive power of DeepSets. Previous analyses either oversimplified high-dimensional features to be one-dimensional features or were limited to analytic activations, thereby diverging from practical use or resulting in L that grows exponentially with the set size N and feature dimension D. To investigate the minimal value of L that achieves sufficient expressive power, we present two set-element embedding layers: (a) linear + power activation (LP) and (b) linear + exponential activations (LE). We demonstrate that L being poly(N, D) is sufficient for set representation using both embedding layers. We also provide a lower bound of L for the LP embedding layer. Furthermore, we extend our results to permutation-equivariant set functions and the complex field.
Dual-Signal Transformation LSTM Network for Real-Time Noise Suppression
This paper introduces a dual-signal transformation LSTM network (DTLN) for real-time speech enhancement as part of the Deep Noise Suppression Challenge (DNS-Challenge). This approach combines a short-time Fourier transform (STFT) and a learned analysis and synthesis basis in a stacked-network approach with less than one million parameters. The model was trained on 500 h of noisy speech provided by the challenge organizers. The network is capable of real-time processing (one frame in, one frame out) and reaches competitive results. Combining these two types of signal transformations enables the DTLN to robustly extract information from magnitude spectra and incorporate phase information from the learned feature basis. The method shows state-of-the-art performance and outperforms the DNS-Challenge baseline by 0.24 points absolute in terms of the mean opinion score (MOS).
Model Comparisons: XNet Outperforms KAN
In the fields of computational mathematics and artificial intelligence, the need for precise data modeling is crucial, especially for predictive machine learning tasks. This paper explores further XNet, a novel algorithm that employs the complex-valued Cauchy integral formula, offering a superior network architecture that surpasses traditional Multi-Layer Perceptrons (MLPs) and Kolmogorov-Arnold Networks (KANs). XNet significant improves speed and accuracy across various tasks in both low and high-dimensional spaces, redefining the scope of data-driven model development and providing substantial improvements over established time series models like LSTMs.
Haldane Bundles: A Dataset for Learning to Predict the Chern Number of Line Bundles on the Torus
Characteristic classes, which are abstract topological invariants associated with vector bundles, have become an important notion in modern physics with surprising real-world consequences. As a representative example, the incredible properties of topological insulators, which are insulators in their bulk but conductors on their surface, can be completely characterized by a specific characteristic class associated with their electronic band structure, the first Chern class. Given their importance to next generation computing and the computational challenge of calculating them using first-principles approaches, there is a need to develop machine learning approaches to predict the characteristic classes associated with a material system. To aid in this program we introduce the {Haldane bundle dataset}, which consists of synthetically generated complex line bundles on the 2-torus. We envision this dataset, which is not as challenging as noisy and sparsely measured real-world datasets but (as we show) still difficult for off-the-shelf architectures, to be a testing ground for architectures that incorporate the rich topological and geometric priors underlying characteristic classes.
FS-RWKV: Leveraging Frequency Spatial-Aware RWKV for 3T-to-7T MRI Translation
Ultra-high-field 7T MRI offers enhanced spatial resolution and tissue contrast that enables the detection of subtle pathological changes in neurological disorders. However, the limited availability of 7T scanners restricts widespread clinical adoption due to substantial infrastructure costs and technical demands. Computational approaches for synthesizing 7T-quality images from accessible 3T acquisitions present a viable solution to this accessibility challenge. Existing CNN approaches suffer from limited spatial coverage, while Transformer models demand excessive computational overhead. RWKV architectures offer an efficient alternative for global feature modeling in medical image synthesis, combining linear computational complexity with strong long-range dependency capture. Building on this foundation, we propose Frequency Spatial-RWKV (FS-RWKV), an RWKV-based framework for 3T-to-7T MRI translation. To better address the challenges of anatomical detail preservation and global tissue contrast recovery, FS-RWKV incorporates two key modules: (1) Frequency-Spatial Omnidirectional Shift (FSO-Shift), which performs discrete wavelet decomposition followed by omnidirectional spatial shifting on the low-frequency branch to enhance global contextual representation while preserving high-frequency anatomical details; and (2) Structural Fidelity Enhancement Block (SFEB), a module that adaptively reinforces anatomical structure through frequency-aware feature fusion. Comprehensive experiments on UNC and BNU datasets demonstrate that FS-RWKV consistently outperforms existing CNN-, Transformer-, GAN-, and RWKV-based baselines across both T1w and T2w modalities, achieving superior anatomical fidelity and perceptual quality.
ComplexFuncBench: Exploring Multi-Step and Constrained Function Calling under Long-Context Scenario
Enhancing large language models (LLMs) with real-time APIs can help generate more accurate and up-to-date responses. However, evaluating the function calling abilities of LLMs in real-world scenarios remains under-explored due to the complexity of data collection and evaluation. In this work, we introduce ComplexFuncBench, a benchmark for complex function calling across five real-world scenarios. Compared to existing benchmarks, ComplexFuncBench encompasses multi-step and constrained function calling, which requires long-parameter filing, parameter value reasoning, and 128k long context. Additionally, we propose an automatic framework, ComplexEval, for quantitatively evaluating complex function calling tasks. Through comprehensive experiments, we demonstrate the deficiencies of state-of-the-art LLMs in function calling and suggest future directions for optimizing these capabilities. The data and code are available at https://github.com/THUDM/ComplexFuncBench.
MPTSNet: Integrating Multiscale Periodic Local Patterns and Global Dependencies for Multivariate Time Series Classification
Multivariate Time Series Classification (MTSC) is crucial in extensive practical applications, such as environmental monitoring, medical EEG analysis, and action recognition. Real-world time series datasets typically exhibit complex dynamics. To capture this complexity, RNN-based, CNN-based, Transformer-based, and hybrid models have been proposed. Unfortunately, current deep learning-based methods often neglect the simultaneous construction of local features and global dependencies at different time scales, lacking sufficient feature extraction capabilities to achieve satisfactory classification accuracy. To address these challenges, we propose a novel Multiscale Periodic Time Series Network (MPTSNet), which integrates multiscale local patterns and global correlations to fully exploit the inherent information in time series. Recognizing the multi-periodicity and complex variable correlations in time series, we use the Fourier transform to extract primary periods, enabling us to decompose data into multiscale periodic segments. Leveraging the inherent strengths of CNN and attention mechanism, we introduce the PeriodicBlock, which adaptively captures local patterns and global dependencies while offering enhanced interpretability through attention integration across different periodic scales. The experiments on UEA benchmark datasets demonstrate that the proposed MPTSNet outperforms 21 existing advanced baselines in the MTSC tasks.
Polynomial, trigonometric, and tropical activations
Which functions can be used as activations in deep neural networks? This article explores families of functions based on orthonormal bases, including the Hermite polynomial basis and the Fourier trigonometric basis, as well as a basis resulting from the tropicalization of a polynomial basis. Our study shows that, through simple variance-preserving initialization and without additional clamping mechanisms, these activations can successfully be used to train deep models, such as GPT-2 for next-token prediction on OpenWebText and ConvNeXt for image classification on ImageNet. Our work addresses the issue of exploding and vanishing activations and gradients, particularly prevalent with polynomial activations, and opens the door for improving the efficiency of large-scale learning tasks. Furthermore, our approach provides insight into the structure of neural networks, revealing that networks with polynomial activations can be interpreted as multivariate polynomial mappings. Finally, using Hermite interpolation, we show that our activations can closely approximate classical ones in pre-trained models by matching both the function and its derivative, making them especially useful for fine-tuning tasks. These activations are available in the torchortho library, which can be accessed via: https://github.com/K-H-Ismail/torchortho.
Generalized Convolution and Efficient Language Recognition
Convolution is a broadly useful operation with applications including signal processing, machine learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this operation is understood and implemented in more specialized forms, hiding commonalities and limiting usefulness. This paper formulates convolution in the common algebraic framework of semirings and semimodules and populates that framework with various representation types. One of those types is the grand abstract template and itself generalizes to the free semimodule monad. Other representations serve varied uses and performance trade-offs, with implementations calculated from simple and regular specifications. Of particular interest is Brzozowski's method for regular expression matching. Uncovering the method's essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership (such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data structure then provides an elegant and efficient alternative to syntax. Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with a variety of representations, and handles multivariate polynomials and power series with ease. Image convolution also falls out as a special case.
TutteNet: Injective 3D Deformations by Composition of 2D Mesh Deformations
This work proposes a novel representation of injective deformations of 3D space, which overcomes existing limitations of injective methods: inaccuracy, lack of robustness, and incompatibility with general learning and optimization frameworks. The core idea is to reduce the problem to a deep composition of multiple 2D mesh-based piecewise-linear maps. Namely, we build differentiable layers that produce mesh deformations through Tutte's embedding (guaranteed to be injective in 2D), and compose these layers over different planes to create complex 3D injective deformations of the 3D volume. We show our method provides the ability to efficiently and accurately optimize and learn complex deformations, outperforming other injective approaches. As a main application, we produce complex and artifact-free NeRF and SDF deformations.
SFHarmony: Source Free Domain Adaptation for Distributed Neuroimaging Analysis
To represent the biological variability of clinical neuroimaging populations, it is vital to be able to combine data across scanners and studies. However, different MRI scanners produce images with different characteristics, resulting in a domain shift known as the `harmonisation problem'. Additionally, neuroimaging data is inherently personal in nature, leading to data privacy concerns when sharing the data. To overcome these barriers, we propose an Unsupervised Source-Free Domain Adaptation (SFDA) method, SFHarmony. Through modelling the imaging features as a Gaussian Mixture Model and minimising an adapted Bhattacharyya distance between the source and target features, we can create a model that performs well for the target data whilst having a shared feature representation across the data domains, without needing access to the source data for adaptation or target labels. We demonstrate the performance of our method on simulated and real domain shifts, showing that the approach is applicable to classification, segmentation and regression tasks, requiring no changes to the algorithm. Our method outperforms existing SFDA approaches across a range of realistic data scenarios, demonstrating the potential utility of our approach for MRI harmonisation and general SFDA problems. Our code is available at https://github.com/nkdinsdale/SFHarmony.
Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium φ^3 QFT
Our aim is to contribute to quantum field theory (QFT) formalisms useful for descriptions of short time phenomena, dominant especially in heavy ion collisions. We formulate out-of-equilibrium QFT within the finite-time-path formalism (FTP) and renormalization theory (RT). The potential conflict of FTP and RT is investigated in g phi^3 QFT, by using the retarded/advanced (R/A) basis of Green functions and dimensional renormalization (DR). For example, vertices immediately after (in time) divergent self-energy loops do not conserve energy, as integrals diverge. We "repair" them, while keeping d<4, to obtain energy conservation at those vertices. Already in the S-matrix theory, the renormalized, finite part of Feynman self-energy Sigma_{F}(p_0) does not vanish when |p_0|rightarrowinfty and cannot be split to retarded and advanced parts. In the Glaser--Epstein approach, the causality is repaired in the composite object G_F(p_0)Sigma_{F}(p_0). In the FTP approach, after repairing the vertices, the corresponding composite objects are G_R(p_0)Sigma_{R}(p_0) and Sigma_{A}(p_0)G_A(p_0). In the limit drightarrow 4, one obtains causal QFT. The tadpole contribution splits into diverging and finite parts. The diverging, constant component is eliminated by the renormalization condition langle 0|phi|0rangle =0 of the S-matrix theory. The finite, oscillating energy-nonconserving tadpole contributions vanish in the limit trightarrow infty .
A Low-complexity Structured Neural Network to Realize States of Dynamical Systems
Data-driven learning is rapidly evolving and places a new perspective on realizing state-space dynamical systems. However, dynamical systems derived from nonlinear ordinary differential equations (ODEs) suffer from limitations in computational efficiency. Thus, this paper stems from data-driven learning to advance states of dynamical systems utilizing a structured neural network (StNN). The proposed learning technique also seeks to identify an optimal, low-complexity operator to solve dynamical systems, the so-called Hankel operator, derived from time-delay measurements. Thus, we utilize the StNN based on the Hankel operator to solve dynamical systems as an alternative to existing data-driven techniques. We show that the proposed StNN reduces the number of parameters and computational complexity compared with the conventional neural networks and also with the classical data-driven techniques, such as Sparse Identification of Nonlinear Dynamics (SINDy) and Hankel Alternative view of Koopman (HAVOK), which is commonly known as delay-Dynamic Mode Decomposition(DMD) or Hankel-DMD. More specifically, we present numerical simulations to solve dynamical systems utilizing the StNN based on the Hankel operator beginning from the fundamental Lotka-Volterra model, where we compare the StNN with the LEarning Across Dynamical Systems (LEADS), and extend our analysis to highly nonlinear and chaotic Lorenz systems, comparing the StNN with conventional neural networks, SINDy, and HAVOK. Hence, we show that the proposed StNN paves the way for realizing state-space dynamical systems with a low-complexity learning algorithm, enabling prediction and understanding of future states.
Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization
Domain generalization (DG) aims to avoid the performance degradation of the model when the distribution shift between the limited training data and unseen test data occurs. Recently, foundation models with enormous parameters have been pre-trained with huge datasets, demonstrating strong generalization ability and showing promising direction for solving the DG problem. However, fully Fine-Tuning (FT) the foundation models results in unsatisfactory out-of-distribution accuracy due to the destroyed pre-trained generalized features. Recently, Parameter-Efficient Fine-Tuning (PEFT) alleviates the above problem by fine-tuning a small portion of the model parameters while keeping the rest frozen, which achieves better generalization performance compared to FT. Nevertheless, PEFT still suffers from the issue of overfitting to the training domains. To address the above issue, we propose Parameter-Efficient Group with Orthogonal regularization (PEGO) for vision transformers, which effectively preserves the generalization ability of the pre-trained network and learns more diverse knowledge compared with conventional PEFT. Specifically, we inject a group of trainable Low-Rank Adaptation (LoRA) modules into the pre-trained model and propose an orthogonal regularization loss to enhance the generalization ability of the model. Our framework achieves SOTA performance on five DG benchmarks, while only requiring training a small number of parameters without adding additional testing cost.
360Zhinao Technical Report
We present 360Zhinao models with 7B parameter size and context lengths spanning 4K, 32K and 360K, all available at https://github.com/Qihoo360/360zhinao. For rapid development in pretraining, we establish a stable and sensitive ablation environment to evaluate and compare experiment runs with minimal model size. Under such guidance, we perfect our data cleaning and composition strategies to pretrain 360Zhinao-7B-Base on 3.4T tokens. We also mainly emphasize data during alignment, where we strive to balance quantity and quality with filtering and reformatting. With tailored data, 360Zhinao-7B's context window is easily extended to 32K and 360K. RMs and RLHF are trained following SFT and credibly applied to specific tasks. All together these contributions lead to 360Zhinao-7B's competitive performance among models of similar size.
On Limitations of the Transformer Architecture
What are the root causes of hallucinations in large language models (LLMs)? We use Communication Complexity to prove that the Transformer layer is incapable of composing functions (e.g., identify a grandparent of a person in a genealogy) if the domains of the functions are large enough; we show through examples that this inability is already empirically present when the domains are quite small. We also point out that several mathematical tasks that are at the core of the so-called compositional tasks thought to be hard for LLMs are unlikely to be solvable by Transformers, for large enough instances and assuming that certain well accepted conjectures in the field of Computational Complexity are true.
Locally resolvable BIBDs and generalized quadrangles with ovoids
In this note we establish a 1-to-1 correspondence between the class of generalized quadrangles with ovoids and the class of balanced incomplete block designs that posses a non-triangular local resolution system and have the appropriate parameters. We present a non-triangular local resolution system for a difference family BIBD construction of Sprott.
Towards Neural Scaling Laws for Time Series Foundation Models
Scaling laws offer valuable insights into the design of time series foundation models (TSFMs). However, previous research has largely focused on the scaling laws of TSFMs for in-distribution (ID) data, leaving their out-of-distribution (OOD) scaling behavior and the influence of model architectures less explored. In this work, we examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data. These models are trained and evaluated across varying parameter counts, compute budgets, and dataset sizes. Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings. We further compare the scaling properties across different architectures, incorporating two state-of-the-art TSFMs as case studies, showing that model architecture plays a significant role in scaling. The encoder-only Transformers demonstrate better scalability than the decoder-only Transformers, while the architectural enhancements in the two advanced TSFMs primarily improve ID performance but reduce OOD scalability. While scaling up TSFMs is expected to drive performance breakthroughs, the lack of a comprehensive understanding of TSFM scaling laws has hindered the development of a robust framework to guide model scaling. We fill this gap in this work by synthesizing our findings and providing practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
A neural network for forward and inverse nonlinear Fourier transforms for fiber optic communication
We propose a neural network for both forward and inverse continuous nonlinear Fourier transforms, NFT and INFT respectively. We demonstrate the network's capability to perform NFT and INFT for a random mix of NFDM-QAM signals. The network transformations (NFT and INFT) exhibit true characteristics of these transformations; they are significantly different for low and high-power input pulses. The network shows adequate accuracy with an RMSE of 5e-3 for forward and 3e-2 for inverse transforms. We further show that the trained network can be used to perform general nonlinear Fourier transforms on arbitrary pulses beyond the training pulse types.
Universal Behavior of Entanglement Entropies in Interface CFTs from General Holographic Spacetimes
In previous work universal behavior was conjectured for the behavior of the logarithmic terms in the entanglement entropy of intervals in 1+1 dimensional interface conformal field theories (ICFTs). These putative universal terms were exhibited both in free field theories as well as a large class of holographic models. In this work we demonstrate that this same behavior in fact is realized in any holographic ICFT, significantly strengthening the case for the conjecture.
