new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 26

Hot-Swap MarkBoard: An Efficient Black-box Watermarking Approach for Large-scale Model Distribution

Recently, Deep Learning (DL) models have been increasingly deployed on end-user devices as On-Device AI, offering improved efficiency and privacy. However, this deployment trend poses more serious Intellectual Property (IP) risks, as models are distributed on numerous local devices, making them vulnerable to theft and redistribution. Most existing ownership protection solutions (e.g., backdoor-based watermarking) are designed for cloud-based AI-as-a-Service (AIaaS) and are not directly applicable to large-scale distribution scenarios, where each user-specific model instance must carry a unique watermark. These methods typically embed a fixed watermark, and modifying the embedded watermark requires retraining the model. To address these challenges, we propose Hot-Swap MarkBoard, an efficient watermarking method. It encodes user-specific n-bit binary signatures by independently embedding multiple watermarks into a multi-branch Low-Rank Adaptation (LoRA) module, enabling efficient watermark customization without retraining through branch swapping. A parameter obfuscation mechanism further entangles the watermark weights with those of the base model, preventing removal without degrading model performance. The method supports black-box verification and is compatible with various model architectures and DL tasks, including classification, image generation, and text generation. Extensive experiments across three types of tasks and six backbone models demonstrate our method's superior efficiency and adaptability compared to existing approaches, achieving 100\% verification accuracy.

  • 10 authors
·
Jul 28

Sustainable Cloud Services for Verbal Interaction with Embodied Agents

This article presents the design and the implementation of a cloud system for knowledge-based autonomous interaction devised for Social Robots and other conversational agents. The system is particularly convenient for low-cost robots and devices: it can be used as a stand-alone dialogue system or as an integration to provide "background" dialogue capabilities to any preexisting Natural Language Processing ability that the robot may already have as part of its basic skills. By connecting to the cloud, developers are provided with a sustainable solution to manage verbal interaction through a network connection, with about 3,000 topics of conversation ready for "chit-chatting" and a library of pre-cooked plans that only needs to be grounded into the robot's physical capabilities. The system is structured as a set of REST API endpoints so that it can be easily expanded by adding new APIs to improve the capabilities of the clients connected to the cloud. Another key feature of the system is that it has been designed to make the development of its clients straightforward: in this way, multiple robots and devices can be easily endowed with the capability of autonomously interacting with the user, understanding when to perform specific actions, and exploiting all the information provided by cloud services. The article outlines and discusses the results of the experiments performed to assess the system's performance in terms of response time, paving the way for its use both for research and market solutions. Links to repositories with clients for ROS and popular robots such as Pepper and NAO are available on request.

  • 3 authors
·
Mar 4, 2022

Detection of Compromised Functions in a Serverless Cloud Environment

Serverless computing is an emerging cloud paradigm with serverless functions at its core. While serverless environments enable software developers to focus on developing applications without the need to actively manage the underlying runtime infrastructure, they open the door to a wide variety of security threats that can be challenging to mitigate with existing methods. Existing security solutions do not apply to all serverless architectures, since they require significant modifications to the serverless infrastructure or rely on third-party services for the collection of more detailed data. In this paper, we present an extendable serverless security threat detection model that leverages cloud providers' native monitoring tools to detect anomalous behavior in serverless applications. Our model aims to detect compromised serverless functions by identifying post-exploitation abnormal behavior related to different types of attacks on serverless functions, and therefore, it is a last line of defense. Our approach is not tied to any specific serverless application, is agnostic to the type of threats, and is adaptable through model adjustments. To evaluate our model's performance, we developed a serverless cybersecurity testbed in an AWS cloud environment, which includes two different serverless applications and simulates a variety of attack scenarios that cover the main security threats faced by serverless functions. Our evaluation demonstrates our model's ability to detect all implemented attacks while maintaining a negligible false alarm rate.

  • 5 authors
·
Aug 5, 2024