Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGuided Generation of Cause and Effect
We present a conditional text generation framework that posits sentential expressions of possible causes and effects. This framework depends on two novel resources we develop in the course of this work: a very large-scale collection of English sentences expressing causal patterns CausalBank; and a refinement over previous work on constructing large lexical causal knowledge graphs Cause Effect Graph. Further, we extend prior work in lexically-constrained decoding to support disjunctive positive constraints. Human assessment confirms that our approach gives high-quality and diverse outputs. Finally, we use CausalBank to perform continued training of an encoder supporting a recent state-of-the-art model for causal reasoning, leading to a 3-point improvement on the COPA challenge set, with no change in model architecture.
CausalCite: A Causal Formulation of Paper Citations
Citation count of a paper is a commonly used proxy for evaluating the significance of a paper in the scientific community. Yet citation measures are widely criticized for failing to accurately reflect the true impact of a paper. Thus, we propose CausalCite, a new way to measure the significance of a paper by assessing the causal impact of the paper on its follow-up papers. CausalCite is based on a novel causal inference method, TextMatch, which adapts the traditional matching framework to high-dimensional text embeddings. TextMatch encodes each paper using text embeddings from large language models (LLMs), extracts similar samples by cosine similarity, and synthesizes a counterfactual sample as the weighted average of similar papers according to their similarity values. We demonstrate the effectiveness of CausalCite on various criteria, such as high correlation with paper impact as reported by scientific experts on a previous dataset of 1K papers, (test-of-time) awards for past papers, and its stability across various subfields of AI. We also provide a set of findings that can serve as suggested ways for future researchers to use our metric for a better understanding of the quality of a paper. Our code is available at https://github.com/causalNLP/causal-cite.
Causal Reasoning and Large Language Models: Opening a New Frontier for Causality
The causal capabilities of large language models (LLMs) are a matter of significant debate, with critical implications for the use of LLMs in societally impactful domains such as medicine, science, law, and policy. We conduct a "behavorial" study of LLMs to benchmark their capability in generating causal arguments. Across a wide range of tasks, we find that LLMs can generate text corresponding to correct causal arguments with high probability, surpassing the best-performing existing methods. Algorithms based on GPT-3.5 and 4 outperform existing algorithms on a pairwise causal discovery task (97%, 13 points gain), counterfactual reasoning task (92%, 20 points gain) and event causality (86% accuracy in determining necessary and sufficient causes in vignettes). We perform robustness checks across tasks and show that the capabilities cannot be explained by dataset memorization alone, especially since LLMs generalize to novel datasets that were created after the training cutoff date. That said, LLMs exhibit unpredictable failure modes, and we discuss the kinds of errors that may be improved and what are the fundamental limits of LLM-based answers. Overall, by operating on the text metadata, LLMs bring capabilities so far understood to be restricted to humans, such as using collected knowledge to generate causal graphs or identifying background causal context from natural language. As a result, LLMs may be used by human domain experts to save effort in setting up a causal analysis, one of the biggest impediments to the widespread adoption of causal methods. Given that LLMs ignore the actual data, our results also point to a fruitful research direction of developing algorithms that combine LLMs with existing causal techniques. Code and datasets are available at https://github.com/py-why/pywhy-llm.
CausalVerse: Benchmarking Causal Representation Learning with Configurable High-Fidelity Simulations
Causal Representation Learning (CRL) aims to uncover the data-generating process and identify the underlying causal variables and relations, whose evaluation remains inherently challenging due to the requirement of known ground-truth causal variables and causal structure. Existing evaluations often rely on either simplistic synthetic datasets or downstream performance on real-world tasks, generally suffering a dilemma between realism and evaluative precision. In this paper, we introduce a new benchmark for CRL using high-fidelity simulated visual data that retains both realistic visual complexity and, more importantly, access to ground-truth causal generating processes. The dataset comprises around 200 thousand images and 3 million video frames across 24 sub-scenes in four domains: static image generation, dynamic physical simulations, robotic manipulations, and traffic situation analysis. These scenarios range from static to dynamic settings, simple to complex structures, and single to multi-agent interactions, offering a comprehensive testbed that hopefully bridges the gap between rigorous evaluation and real-world applicability. In addition, we provide flexible access to the underlying causal structures, allowing users to modify or configure them to align with the required assumptions in CRL, such as available domain labels, temporal dependencies, or intervention histories. Leveraging this benchmark, we evaluated representative CRL methods across diverse paradigms and offered empirical insights to assist practitioners and newcomers in choosing or extending appropriate CRL frameworks to properly address specific types of real problems that can benefit from the CRL perspective. Welcome to visit our: Project page:https://causal-verse.github.io/, Dataset:https://huggingface.co/CausalVerse.
Efficient Causal Graph Discovery Using Large Language Models
We propose a novel framework that leverages LLMs for full causal graph discovery. While previous LLM-based methods have used a pairwise query approach, this requires a quadratic number of queries which quickly becomes impractical for larger causal graphs. In contrast, the proposed framework uses a breadth-first search (BFS) approach which allows it to use only a linear number of queries. We also show that the proposed method can easily incorporate observational data when available, to improve performance. In addition to being more time and data-efficient, the proposed framework achieves state-of-the-art results on real-world causal graphs of varying sizes. The results demonstrate the effectiveness and efficiency of the proposed method in discovering causal relationships, showcasing its potential for broad applicability in causal graph discovery tasks across different domains.
Attribution-Scores in Data Management and Explainable Machine Learning
We describe recent research on the use of actual causality in the definition of responsibility scores as explanations for query answers in databases, and for outcomes from classification models in machine learning. In the case of databases, useful connections with database repairs are illustrated and exploited. Repairs are also used to give a quantitative measure of the consistency of a database. For classification models, the responsibility score is properly extended and illustrated. The efficient computation of Shap-score is also analyzed and discussed. The emphasis is placed on work done by the author and collaborators.
CRAB: Assessing the Strength of Causal Relationships Between Real-world Events
Understanding narratives requires reasoning about the cause-and-effect relationships between events mentioned in the text. While existing foundation models yield impressive results in many NLP tasks requiring reasoning, it is unclear whether they understand the complexity of the underlying network of causal relationships of events in narratives. In this work, we present CRAB, a new Causal Reasoning Assessment Benchmark designed to evaluate causal understanding of events in real-world narratives. CRAB contains fine-grained, contextual causality annotations for ~2.7K pairs of real-world events that describe various newsworthy event timelines (e.g., the acquisition of Twitter by Elon Musk). Using CRAB, we measure the performance of several large language models, demonstrating that most systems achieve poor performance on the task. Motivated by classical causal principles, we also analyze the causal structures of groups of events in CRAB, and find that models perform worse on causal reasoning when events are derived from complex causal structures compared to simple linear causal chains. We make our dataset and code available to the research community.
Full Automation of Goal-driven LLM Dialog Threads with And-Or Recursors and Refiner Oracles
We automate deep step-by step reasoning in an LLM dialog thread by recursively exploring alternatives (OR-nodes) and expanding details (AND-nodes) up to a given depth. Starting from a single succinct task-specific initiator we steer the automated dialog thread to stay focussed on the task by synthesizing a prompt that summarizes the depth-first steps taken so far. Our algorithm is derived from a simple recursive descent implementation of a Horn Clause interpreter, except that we accommodate our logic engine to fit the natural language reasoning patterns LLMs have been trained on. Semantic similarity to ground-truth facts or oracle advice from another LLM instance is used to restrict the search space and validate the traces of justification steps returned as answers. At the end, the unique minimal model of a generated Horn Clause program collects the results of the reasoning process. As applications, we sketch implementations of consequence predictions, causal explanations, recommendation systems and topic-focussed exploration of scientific literature.
CLadder: Assessing Causal Reasoning in Language Models
The ability to perform causal reasoning is widely considered a core feature of intelligence. In this work, we investigate whether large language models (LLMs) can coherently reason about causality. Much of the existing work in natural language processing (NLP) focuses on evaluating commonsense causal reasoning in LLMs, thus failing to assess whether a model can perform causal inference in accordance with a set of well-defined formal rules. To address this, we propose a new NLP task, causal inference in natural language, inspired by the "causal inference engine" postulated by Judea Pearl et al. We compose a large dataset, CLadder, with 10K samples: based on a collection of causal graphs and queries (associational, interventional, and counterfactual), we obtain symbolic questions and ground-truth answers, through an oracle causal inference engine. These are then translated into natural language. We evaluate multiple LLMs on our dataset, and we introduce and evaluate a bespoke chain-of-thought prompting strategy, CausalCoT. We show that our task is highly challenging for LLMs, and we conduct an in-depth analysis to gain deeper insights into the causal reasoning abilities of LLMs. Our data is open-sourced at https://huggingface.co/datasets/causalNLP/cladder, and our code can be found at https://github.com/causalNLP/cladder.
Can Large Language Models Infer Causation from Correlation?
Causal inference is one of the hallmarks of human intelligence. While the field of CausalNLP has attracted much interest in the recent years, existing causal inference datasets in NLP primarily rely on discovering causality from empirical knowledge (e.g., commonsense knowledge). In this work, we propose the first benchmark dataset to test the pure causal inference skills of large language models (LLMs). Specifically, we formulate a novel task Corr2Cause, which takes a set of correlational statements and determines the causal relationship between the variables. We curate a large-scale dataset of more than 400K samples, on which we evaluate seventeen existing LLMs. Through our experiments, we identify a key shortcoming of LLMs in terms of their causal inference skills, and show that these models achieve almost close to random performance on the task. This shortcoming is somewhat mitigated when we try to re-purpose LLMs for this skill via finetuning, but we find that these models still fail to generalize -- they can only perform causal inference in in-distribution settings when variable names and textual expressions used in the queries are similar to those in the training set, but fail in out-of-distribution settings generated by perturbing these queries. Corr2Cause is a challenging task for LLMs, and would be helpful in guiding future research on improving LLMs' pure reasoning skills and generalizability. Our data is at https://huggingface.co/datasets/causalnlp/corr2cause. Our code is at https://github.com/causalNLP/corr2cause.
e-CARE: a New Dataset for Exploring Explainable Causal Reasoning
Understanding causality has vital importance for various Natural Language Processing (NLP) applications. Beyond the labeled instances, conceptual explanations of the causality can provide deep understanding of the causal facts to facilitate the causal reasoning process. However, such explanation information still remains absent in existing causal reasoning resources. In this paper, we fill this gap by presenting a human-annotated explainable CAusal REasoning dataset (e-CARE), which contains over 21K causal reasoning questions, together with natural language formed explanations of the causal questions. Experimental results show that generating valid explanations for causal facts still remains especially challenging for the state-of-the-art models, and the explanation information can be helpful for promoting the accuracy and stability of causal reasoning models.
CausalDynamics: A large-scale benchmark for structural discovery of dynamical causal models
Causal discovery for dynamical systems poses a major challenge in fields where active interventions are infeasible. Most methods used to investigate these systems and their associated benchmarks are tailored to deterministic, low-dimensional and weakly nonlinear time-series data. To address these limitations, we present CausalDynamics, a large-scale benchmark and extensible data generation framework to advance the structural discovery of dynamical causal models. Our benchmark consists of true causal graphs derived from thousands of coupled ordinary and stochastic differential equations as well as two idealized climate models. We perform a comprehensive evaluation of state-of-the-art causal discovery algorithms for graph reconstruction on systems with noisy, confounded, and lagged dynamics. CausalDynamics consists of a plug-and-play, build-your-own coupling workflow that enables the construction of a hierarchy of physical systems. We anticipate that our framework will facilitate the development of robust causal discovery algorithms that are broadly applicable across domains while addressing their unique challenges. We provide a user-friendly implementation and documentation on https://kausable.github.io/CausalDynamics.
Language Agents Meet Causality -- Bridging LLMs and Causal World Models
Large Language Models (LLMs) have recently shown great promise in planning and reasoning applications. These tasks demand robust systems, which arguably require a causal understanding of the environment. While LLMs can acquire and reflect common sense causal knowledge from their pretraining data, this information is often incomplete, incorrect, or inapplicable to a specific environment. In contrast, causal representation learning (CRL) focuses on identifying the underlying causal structure within a given environment. We propose a framework that integrates CRLs with LLMs to enable causally-aware reasoning and planning. This framework learns a causal world model, with causal variables linked to natural language expressions. This mapping provides LLMs with a flexible interface to process and generate descriptions of actions and states in text form. Effectively, the causal world model acts as a simulator that the LLM can query and interact with. We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities. Our experiments demonstrate the effectiveness of the approach, with the causally-aware method outperforming LLM-based reasoners, especially for longer planning horizons.
Large-Scale Targeted Cause Discovery with Data-Driven Learning
We propose a novel machine learning approach for inferring causal variables of a target variable from observations. Our focus is on directly inferring a set of causal factors without requiring full causal graph reconstruction, which is computationally challenging in large-scale systems. The identified causal set consists of all potential regulators of the target variable under experimental settings, enabling efficient regulation when intervention costs and feasibility vary across variables. To achieve this, we train a neural network using supervised learning on simulated data to infer causality. By employing a local-inference strategy, our approach scales with linear complexity in the number of variables, efficiently scaling up to thousands of variables. Empirical results demonstrate superior performance in identifying causal relationships within large-scale gene regulatory networks, outperforming existing methods that emphasize full-graph discovery. We validate our model's generalization capability across out-of-distribution graph structures and generating mechanisms, including gene regulatory networks of E. coli and the human K562 cell line. Implementation codes are available at https://github.com/snu-mllab/Targeted-Cause-Discovery.
Measuring Causal Effects of Data Statistics on Language Model's `Factual' Predictions
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models. But what exactly in the training data causes a model to make a certain prediction? We seek to answer this question by providing a language for describing how training data influences predictions, through a causal framework. Importantly, our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone. Addressing the problem of extracting factual knowledge from pretrained language models (PLMs), we focus on simple data statistics such as co-occurrence counts and show that these statistics do influence the predictions of PLMs, suggesting that such models rely on shallow heuristics. Our causal framework and our results demonstrate the importance of studying datasets and the benefits of causality for understanding NLP models.
pyvene: A Library for Understanding and Improving PyTorch Models via Interventions
Interventions on model-internal states are fundamental operations in many areas of AI, including model editing, steering, robustness, and interpretability. To facilitate such research, we introduce pyvene, an open-source Python library that supports customizable interventions on a range of different PyTorch modules. pyvene supports complex intervention schemes with an intuitive configuration format, and its interventions can be static or include trainable parameters. We show how pyvene provides a unified and extensible framework for performing interventions on neural models and sharing the intervened upon models with others. We illustrate the power of the library via interpretability analyses using causal abstraction and knowledge localization. We publish our library through Python Package Index (PyPI) and provide code, documentation, and tutorials at https://github.com/stanfordnlp/pyvene.
ROCK: Causal Inference Principles for Reasoning about Commonsense Causality
Commonsense causality reasoning (CCR) aims at identifying plausible causes and effects in natural language descriptions that are deemed reasonable by an average person. Although being of great academic and practical interest, this problem is still shadowed by the lack of a well-posed theoretical framework; existing work usually relies on deep language models wholeheartedly, and is potentially susceptible to confounding co-occurrences. Motivated by classical causal principles, we articulate the central question of CCR and draw parallels between human subjects in observational studies and natural languages to adopt CCR to the potential-outcomes framework, which is the first such attempt for commonsense tasks. We propose a novel framework, ROCK, to Reason O(A)bout Commonsense K(C)ausality, which utilizes temporal signals as incidental supervision, and balances confounding effects using temporal propensities that are analogous to propensity scores. The ROCK implementation is modular and zero-shot, and demonstrates good CCR capabilities.
New metrics and search algorithms for weighted causal DAGs
Recovering causal relationships from data is an important problem. Using observational data, one can typically only recover causal graphs up to a Markov equivalence class and additional assumptions or interventional data are needed for complete recovery. In this work, under some standard assumptions, we study causal graph discovery via adaptive interventions with node-dependent interventional costs. For this setting, we show that no algorithm can achieve an approximation guarantee that is asymptotically better than linear in the number of vertices with respect to the verification number; a well-established benchmark for adaptive search algorithms. Motivated by this negative result, we define a new benchmark that captures the worst-case interventional cost for any search algorithm. Furthermore, with respect to this new benchmark, we provide adaptive search algorithms that achieve logarithmic approximations under various settings: atomic, bounded size interventions and generalized cost objectives.
CausalTime: Realistically Generated Time-series for Benchmarking of Causal Discovery
Time-series causal discovery (TSCD) is a fundamental problem of machine learning. However, existing synthetic datasets cannot properly evaluate or predict the algorithms' performance on real data. This study introduces the CausalTime pipeline to generate time-series that highly resemble the real data and with ground truth causal graphs for quantitative performance evaluation. The pipeline starts from real observations in a specific scenario and produces a matching benchmark dataset. Firstly, we harness deep neural networks along with normalizing flow to accurately capture realistic dynamics. Secondly, we extract hypothesized causal graphs by performing importance analysis on the neural network or leveraging prior knowledge. Thirdly, we derive the ground truth causal graphs by splitting the causal model into causal term, residual term, and noise term. Lastly, using the fitted network and the derived causal graph, we generate corresponding versatile time-series proper for algorithm assessment. In the experiments, we validate the fidelity of the generated data through qualitative and quantitative experiments, followed by a benchmarking of existing TSCD algorithms using these generated datasets. CausalTime offers a feasible solution to evaluating TSCD algorithms in real applications and can be generalized to a wide range of fields. For easy use of the proposed approach, we also provide a user-friendly website, hosted on www.causaltime.cc.
Can Large Language Models Infer Causal Relationships from Real-World Text?
Understanding and inferring causal relationships from texts is a core aspect of human cognition and is essential for advancing large language models (LLMs) towards artificial general intelligence. Existing work primarily focuses on synthetically generated texts which involve simple causal relationships explicitly mentioned in the text. This fails to reflect the complexities of real-world tasks. In this paper, we investigate whether LLMs are capable of inferring causal relationships from real-world texts. We develop a benchmark drawn from real-world academic literature which includes diverse texts with respect to length, complexity of relationships (different levels of explicitness, number of events, and causal relationships), and domains and sub-domains. To the best of our knowledge, our benchmark is the first-ever real-world dataset for this task. Our experiments on state-of-the-art LLMs evaluated on our proposed benchmark demonstrate significant challenges, with the best-performing model achieving an average F1 score of only 0.477. Analysis reveals common pitfalls: difficulty with implicitly stated information, in distinguishing relevant causal factors from surrounding contextual details, and with connecting causally relevant information spread across lengthy textual passages. By systematically characterizing these deficiencies, our benchmark offers targeted insights for further research into advancing LLM causal reasoning.
Causal de Finetti: On the Identification of Invariant Causal Structure in Exchangeable Data
Learning causal structure from observational data often assumes that we observe independent and identically distributed (i.\,i.\,d) data. The traditional approach aims to find a graphical representation that encodes the same set of conditional independence relationships as those present in the observed distribution. It is known that under i.\,i.\,d assumption, even with infinite data, there is a limit to how fine-grained a causal structure we can identify. To overcome this limitation, recent work has explored using data originating from different, related environments to learn richer causal structure. These approaches implicitly rely on the independent causal mechanisms (ICM) principle, which postulates that the mechanism giving rise to an effect given its causes and the mechanism which generates the causes do not inform or influence each other. Thus, components of the causal model can independently change from environment to environment. Despite its wide application in machine learning and causal inference, there is a lack of statistical formalization of the ICM principle and how it enables identification of richer causal structures from grouped data. Here we present new causal de Finetti theorems which offer a first statistical formalization of ICM principle and show how causal structure identification is possible from exchangeable data. Our work provides theoretical justification for a broad range of techniques leveraging multi-environment data to learn causal structure.
Towards Automated Causal Discovery: a case study on 5G telecommunication data
We introduce the concept of Automated Causal Discovery (AutoCD), defined as any system that aims to fully automate the application of causal discovery and causal reasoning methods. AutoCD's goal is to deliver all causal information that an expert human analyst would and answer a user's causal queries. We describe the architecture of such a platform, and illustrate its performance on synthetic data sets. As a case study, we apply it on temporal telecommunication data. The system is general and can be applied to a plethora of causal discovery problems.
COLD: Causal reasOning in cLosed Daily activities
Large Language Models (LLMs) have shown state-of-the-art performance in a variety of tasks, including arithmetic and reasoning; however, to gauge the intellectual capabilities of LLMs, causal reasoning has become a reliable proxy for validating a general understanding of the mechanics and intricacies of the world similar to humans. Previous works in natural language processing (NLP) have either focused on open-ended causal reasoning via causal commonsense reasoning (CCR) or framed a symbolic representation-based question answering for theoretically backed-up analysis via a causal inference engine. The former adds an advantage of real-world grounding but lacks theoretically backed-up analysis/validation, whereas the latter is far from real-world grounding. In this work, we bridge this gap by proposing the COLD (Causal reasOning in cLosed Daily activities) framework, which is built upon human understanding of daily real-world activities to reason about the causal nature of events. We show that the proposed framework facilitates the creation of enormous causal queries (~ 9 million) and comes close to the mini-turing test, simulating causal reasoning to evaluate the understanding of a daily real-world task. We evaluate multiple LLMs on the created causal queries and find that causal reasoning is challenging even for activities trivial to humans. We further explore (the causal reasoning abilities of LLMs) using the backdoor criterion to determine the causal strength between events.
Cause and Effect: Can Large Language Models Truly Understand Causality?
With the rise of Large Language Models(LLMs), it has become crucial to understand their capabilities and limitations in deciphering and explaining the complex web of causal relationships that language entails. Current methods use either explicit or implicit causal reasoning, yet there is a strong need for a unified approach combining both to tackle a wide array of causal relationships more effectively. This research proposes a novel architecture called Context Aware Reasoning Enhancement with Counterfactual Analysis(CARE CA) framework to enhance causal reasoning and explainability. The proposed framework incorporates an explicit causal detection module with ConceptNet and counterfactual statements, as well as implicit causal detection through LLMs. Our framework goes one step further with a layer of counterfactual explanations to accentuate LLMs understanding of causality. The knowledge from ConceptNet enhances the performance of multiple causal reasoning tasks such as causal discovery, causal identification and counterfactual reasoning. The counterfactual sentences add explicit knowledge of the not caused by scenarios. By combining these powerful modules, our model aims to provide a deeper understanding of causal relationships, enabling enhanced interpretability. Evaluation of benchmark datasets shows improved performance across all metrics, such as accuracy, precision, recall, and F1 scores. We also introduce CausalNet, a new dataset accompanied by our code, to facilitate further research in this domain.
CDF-RAG: Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has significantly enhanced large language models (LLMs) in knowledge-intensive tasks by incorporating external knowledge retrieval. However, existing RAG frameworks primarily rely on semantic similarity and correlation-driven retrieval, limiting their ability to distinguish true causal relationships from spurious associations. This results in responses that may be factually grounded but fail to establish cause-and-effect mechanisms, leading to incomplete or misleading insights. To address this issue, we introduce Causal Dynamic Feedback for Adaptive Retrieval-Augmented Generation (CDF-RAG), a framework designed to improve causal consistency, factual accuracy, and explainability in generative reasoning. CDF-RAG iteratively refines queries, retrieves structured causal graphs, and enables multi-hop causal reasoning across interconnected knowledge sources. Additionally, it validates responses against causal pathways, ensuring logically coherent and factually grounded outputs. We evaluate CDF-RAG on four diverse datasets, demonstrating its ability to improve response accuracy and causal correctness over existing RAG-based methods. Our code is publicly available at https://github.com/ elakhatibi/CDF-RAG.
CAMS: An Annotated Corpus for Causal Analysis of Mental Health Issues in Social Media Posts
Research community has witnessed substantial growth in the detection of mental health issues and their associated reasons from analysis of social media. We introduce a new dataset for Causal Analysis of Mental health issues in Social media posts (CAMS). Our contributions for causal analysis are two-fold: causal interpretation and causal categorization. We introduce an annotation schema for this task of causal analysis. We demonstrate the efficacy of our schema on two different datasets: (i) crawling and annotating 3155 Reddit posts and (ii) re-annotating the publicly available SDCNL dataset of 1896 instances for interpretable causal analysis. We further combine these into the CAMS dataset and make this resource publicly available along with associated source code: https://github.com/drmuskangarg/CAMS. We present experimental results of models learned from CAMS dataset and demonstrate that a classic Logistic Regression model outperforms the next best (CNN-LSTM) model by 4.9\% accuracy.
Amortized Inference for Causal Structure Learning
Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
Causal Agent based on Large Language Model
Large language models (LLMs) have achieved significant success across various domains. However, the inherent complexity of causal problems and causal theory poses challenges in accurately describing them in natural language, making it difficult for LLMs to comprehend and use them effectively. Causal methods are not easily conveyed through natural language, which hinders LLMs' ability to apply them accurately. Additionally, causal datasets are typically tabular, while LLMs excel in handling natural language data, creating a structural mismatch that impedes effective reasoning with tabular data. This lack of causal reasoning capability limits the development of LLMs. To address these challenges, we have equipped the LLM with causal tools within an agent framework, named the Causal Agent, enabling it to tackle causal problems. The causal agent comprises tools, memory, and reasoning modules. In the tools module, the causal agent applies causal methods to align tabular data with natural language. In the reasoning module, the causal agent employs the ReAct framework to perform reasoning through multiple iterations with the tools. In the memory module, the causal agent maintains a dictionary instance where the keys are unique names and the values are causal graphs. To verify the causal ability of the causal agent, we established a benchmark consisting of four levels of causal problems: variable level, edge level, causal graph level, and causal effect level. We generated a test dataset of 1.3K using ChatGPT-3.5 for these four levels of issues and tested the causal agent on the datasets. Our methodology demonstrates remarkable efficacy on the four-level causal problems, with accuracy rates all above 80%. For further insights and implementation details, our code is accessible via the GitHub repository https://github.com/Kairong-Han/Causal_Agent.
Causal discovery from conditionally stationary time-series
Causal discovery, i.e., inferring underlying cause-effect relationships from observations of a scene or system, is an inherent mechanism in human cognition, but has been shown to be highly challenging to automate. The majority of approaches in the literature aiming for this task consider constrained scenarios with fully observed variables or data from stationary time-series. In this work we aim for causal discovery in a more general class of scenarios, scenes with non-stationary behavior over time. For our purposes we here regard a scene as a composition objects interacting with each other over time. Non-stationarity is modeled as stationarity conditioned on an underlying variable, a state, which can be of varying dimension, more or less hidden given observations of the scene, and also depend more or less directly on these observations. We propose a probabilistic deep learning approach called State-Dependent Causal Inference (SDCI) for causal discovery in such conditionally stationary time-series data. Results in two different synthetic scenarios show that this method is able to recover the underlying causal dependencies with high accuracy even in cases with hidden states.
Causal Inference by String Diagram Surgery
Extracting causal relationships from observed correlations is a growing area in probabilistic reasoning, originating with the seminal work of Pearl and others from the early 1990s. This paper develops a new, categorically oriented view based on a clear distinction between syntax (string diagrams) and semantics (stochastic matrices), connected via interpretations as structure-preserving functors. A key notion in the identification of causal effects is that of an intervention, whereby a variable is forcefully set to a particular value independent of any prior propensities. We represent the effect of such an intervention as an endofunctor which performs `string diagram surgery' within the syntactic category of string diagrams. This diagram surgery in turn yields a new, interventional distribution via the interpretation functor. While in general there is no way to compute interventional distributions purely from observed data, we show that this is possible in certain special cases using a calculational tool called comb disintegration. We demonstrate the use of this technique on a well-known toy example, where we predict the causal effect of smoking on cancer in the presence of a confounding common cause. After developing this specific example, we show this technique provides simple sufficient conditions for computing interventions which apply to a wide variety of situations considered in the causal inference literature.
The Magic of IF: Investigating Causal Reasoning Abilities in Large Language Models of Code
Causal reasoning, the ability to identify cause-and-effect relationship, is crucial in human thinking. Although large language models (LLMs) succeed in many NLP tasks, it is still challenging for them to conduct complex causal reasoning like abductive reasoning and counterfactual reasoning. Given the fact that programming code may express causal relations more often and explicitly with conditional statements like ``if``, we want to explore whether Code-LLMs acquire better causal reasoning abilities. Our experiments show that compared to text-only LLMs, Code-LLMs with code prompts are significantly better in causal reasoning. We further intervene on the prompts from different aspects, and discover that the programming structure is crucial in code prompt design, while Code-LLMs are robust towards format perturbations.
Teaching Transformers Causal Reasoning through Axiomatic Training
For text-based AI systems to interact in the real world, causal reasoning is an essential skill. Since interventional data is costly to generate, we study to what extent an agent can learn causal reasoning from passive data. Specifically, we consider an axiomatic training setup where an agent learns from multiple demonstrations of a causal axiom (or rule), rather than incorporating the axiom as an inductive bias or inferring it from data values. A key question is whether the agent would learn to generalize from the axiom demonstrations to new scenarios. For example, if a transformer model is trained on demonstrations of the causal transitivity axiom over small graphs, would it generalize to applying the transitivity axiom over large graphs? Our results, based on a novel axiomatic training scheme, indicate that such generalization is possible. We consider the task of inferring whether a variable causes another variable, given a causal graph structure. We find that a 67 million parameter transformer model, when trained on linear causal chains (along with some noisy variations) can generalize well to new kinds of graphs, including longer causal chains, causal chains with reversed order, and graphs with branching; even when it is not explicitly trained for such settings. Our model performs at par (or even better) than many larger language models such as GPT-4, Gemini Pro, and Phi-3. Overall, our axiomatic training framework provides a new paradigm of learning causal reasoning from passive data that can be used to learn arbitrary axioms, as long as sufficient demonstrations can be generated.
DSC-IITISM at FinCausal 2021: Combining POS tagging with Attention-based Contextual Representations for Identifying Causal Relationships in Financial Documents
Causality detection draws plenty of attention in the field of Natural Language Processing and linguistics research. It has essential applications in information retrieval, event prediction, question answering, financial analysis, and market research. In this study, we explore several methods to identify and extract cause-effect pairs in financial documents using transformers. For this purpose, we propose an approach that combines POS tagging with the BIO scheme, which can be integrated with modern transformer models to address this challenge of identifying causality in a given text. Our best methodology achieves an F1-Score of 0.9551, and an Exact Match Score of 0.8777 on the blind test in the FinCausal-2021 Shared Task at the FinCausal 2021 Workshop.
A Dynamical View of the Question of Why
We address causal reasoning in multivariate time series data generated by stochastic processes. Existing approaches are largely restricted to static settings, ignoring the continuity and emission of variations across time. In contrast, we propose a learning paradigm that directly establishes causation between events in the course of time. We present two key lemmas to compute causal contributions and frame them as reinforcement learning problems. Our approach offers formal and computational tools for uncovering and quantifying causal relationships in diffusion processes, subsuming various important settings such as discrete-time Markov decision processes. Finally, in fairly intricate experiments and through sheer learning, our framework reveals and quantifies causal links, which otherwise seem inexplicable.
Distilling Causal Effect from Miscellaneous Other-Class for Continual Named Entity Recognition
Continual Learning for Named Entity Recognition (CL-NER) aims to learn a growing number of entity types over time from a stream of data. However, simply learning Other-Class in the same way as new entity types amplifies the catastrophic forgetting and leads to a substantial performance drop. The main cause behind this is that Other-Class samples usually contain old entity types, and the old knowledge in these Other-Class samples is not preserved properly. Thanks to the causal inference, we identify that the forgetting is caused by the missing causal effect from the old data. To this end, we propose a unified causal framework to retrieve the causality from both new entity types and Other-Class. Furthermore, we apply curriculum learning to mitigate the impact of label noise and introduce a self-adaptive weight for balancing the causal effects between new entity types and Other-Class. Experimental results on three benchmark datasets show that our method outperforms the state-of-the-art method by a large margin. Moreover, our method can be combined with the existing state-of-the-art methods to improve the performance in CL-NER
This before That: Causal Precedence in the Biomedical Domain
Causal precedence between biochemical interactions is crucial in the biomedical domain, because it transforms collections of individual interactions, e.g., bindings and phosphorylations, into the causal mechanisms needed to inform meaningful search and inference. Here, we analyze causal precedence in the biomedical domain as distinct from open-domain, temporal precedence. First, we describe a novel, hand-annotated text corpus of causal precedence in the biomedical domain. Second, we use this corpus to investigate a battery of models of precedence, covering rule-based, feature-based, and latent representation models. The highest-performing individual model achieved a micro F1 of 43 points, approaching the best performers on the simpler temporal-only precedence tasks. Feature-based and latent representation models each outperform the rule-based models, but their performance is complementary to one another. We apply a sieve-based architecture to capitalize on this lack of overlap, achieving a micro F1 score of 46 points.
Perplexity Trap: PLM-Based Retrievers Overrate Low Perplexity Documents
Previous studies have found that PLM-based retrieval models exhibit a preference for LLM-generated content, assigning higher relevance scores to these documents even when their semantic quality is comparable to human-written ones. This phenomenon, known as source bias, threatens the sustainable development of the information access ecosystem. However, the underlying causes of source bias remain unexplored. In this paper, we explain the process of information retrieval with a causal graph and discover that PLM-based retrievers learn perplexity features for relevance estimation, causing source bias by ranking the documents with low perplexity higher. Theoretical analysis further reveals that the phenomenon stems from the positive correlation between the gradients of the loss functions in language modeling task and retrieval task. Based on the analysis, a causal-inspired inference-time debiasing method is proposed, called Causal Diagnosis and Correction (CDC). CDC first diagnoses the bias effect of the perplexity and then separates the bias effect from the overall estimated relevance score. Experimental results across three domains demonstrate the superior debiasing effectiveness of CDC, emphasizing the validity of our proposed explanatory framework. Source codes are available at https://github.com/WhyDwelledOnAi/Perplexity-Trap.
Conditions and Assumptions for Constraint-based Causal Structure Learning
We formalize constraint-based structure learning of the "true" causal graph from observed data when unobserved variables are also existent. We provide conditions for a "natural" family of constraint-based structure-learning algorithms that output graphs that are Markov equivalent to the causal graph. Under the faithfulness assumption, this natural family contains all exact structure-learning algorithms. We also provide a set of assumptions, under which any natural structure-learning algorithm outputs Markov equivalent graphs to the causal graph. These assumptions can be thought of as a relaxation of faithfulness, and most of them can be directly tested from (the underlying distribution) of the data, particularly when one focuses on structural causal models. We specialize the definitions and results for structural causal models.
Structured Thinking Matters: Improving LLMs Generalization in Causal Inference Tasks
Despite remarkable advances in the field, LLMs remain unreliable in distinguishing causation from correlation. Recent results from the Corr2Cause dataset benchmark reveal that state-of-the-art LLMs -- such as GPT-4 (F1 score: 29.08) -- only marginally outperform random baselines (Random Uniform, F1 score: 20.38), indicating limited capacity of generalization. To tackle this limitation, we propose a novel structured approach: rather than directly answering causal queries, we provide the model with the capability to structure its thinking by guiding the model to build a structured knowledge graph, systematically encoding the provided correlational premises, to answer the causal queries. This intermediate representation significantly enhances the model's causal capabilities. Experiments on the test subset of the Corr2Cause dataset benchmark with Qwen3-32B model (reasoning model) show substantial gains over standard direct prompting methods, improving F1 scores from 32.71 to 48.26 (over 47.5% relative increase), along with notable improvements in precision and recall. These results underscore the effectiveness of providing the model with the capability to structure its thinking and highlight its promising potential for broader generalization across diverse causal inference tasks.
IDIAPers @ Causal News Corpus 2022: Extracting Cause-Effect-Signal Triplets via Pre-trained Autoregressive Language Model
In this paper, we describe our shared task submissions for Subtask 2 in CASE-2022, Event Causality Identification with Casual News Corpus. The challenge focused on the automatic detection of all cause-effect-signal spans present in the sentence from news-media. We detect cause-effect-signal spans in a sentence using T5 -- a pre-trained autoregressive language model. We iteratively identify all cause-effect-signal span triplets, always conditioning the prediction of the next triplet on the previously predicted ones. To predict the triplet itself, we consider different causal relationships such as causerightarroweffectrightarrowsignal. Each triplet component is generated via a language model conditioned on the sentence, the previous parts of the current triplet, and previously predicted triplets. Despite training on an extremely small dataset of 160 samples, our approach achieved competitive performance, being placed second in the competition. Furthermore, we show that assuming either causerightarroweffect or effectrightarrowcause order achieves similar results.
Hierarchical Graph Neural Networks for Causal Discovery and Root Cause Localization
In this paper, we propose REASON, a novel framework that enables the automatic discovery of both intra-level (i.e., within-network) and inter-level (i.e., across-network) causal relationships for root cause localization. REASON consists of Topological Causal Discovery and Individual Causal Discovery. The Topological Causal Discovery component aims to model the fault propagation in order to trace back to the root causes. To achieve this, we propose novel hierarchical graph neural networks to construct interdependent causal networks by modeling both intra-level and inter-level non-linear causal relations. Based on the learned interdependent causal networks, we then leverage random walks with restarts to model the network propagation of a system fault. The Individual Causal Discovery component focuses on capturing abrupt change patterns of a single system entity. This component examines the temporal patterns of each entity's metric data (i.e., time series), and estimates its likelihood of being a root cause based on the Extreme Value theory. Combining the topological and individual causal scores, the top K system entities are identified as root causes. Extensive experiments on three real-world datasets with case studies demonstrate the effectiveness and superiority of the proposed framework.
Advancing Event Causality Identification via Heuristic Semantic Dependency Inquiry Network
Event Causality Identification (ECI) focuses on extracting causal relations between events in texts. Existing methods for ECI primarily rely on causal features and external knowledge. However, these approaches fall short in two dimensions: (1) causal features between events in a text often lack explicit clues, and (2) external knowledge may introduce bias, while specific problems require tailored analyses. To address these issues, we propose SemDI - a simple and effective Semantic Dependency Inquiry Network for ECI. SemDI captures semantic dependencies within the context using a unified encoder. Then, it utilizes a Cloze Analyzer to generate a fill-in token based on comprehensive context understanding. Finally, this fill-in token is used to inquire about the causal relation between two events. Extensive experiments demonstrate the effectiveness of SemDI, surpassing state-of-the-art methods on three widely used benchmarks. Code is available at https://github.com/hrlics/SemDI.
From Temporal to Contemporaneous Iterative Causal Discovery in the Presence of Latent Confounders
We present a constraint-based algorithm for learning causal structures from observational time-series data, in the presence of latent confounders. We assume a discrete-time, stationary structural vector autoregressive process, with both temporal and contemporaneous causal relations. One may ask if temporal and contemporaneous relations should be treated differently. The presented algorithm gradually refines a causal graph by learning long-term temporal relations before short-term ones, where contemporaneous relations are learned last. This ordering of causal relations to be learnt leads to a reduction in the required number of statistical tests. We validate this reduction empirically and demonstrate that it leads to higher accuracy for synthetic data and more plausible causal graphs for real-world data compared to state-of-the-art algorithms.
Causal Interventions on Causal Paths: Mapping GPT-2's Reasoning From Syntax to Semantics
While interpretability research has shed light on some internal algorithms utilized by transformer-based LLMs, reasoning in natural language, with its deep contextuality and ambiguity, defies easy categorization. As a result, formulating clear and motivating questions for circuit analysis that rely on well-defined in-domain and out-of-domain examples required for causal interventions is challenging. Although significant work has investigated circuits for specific tasks, such as indirect object identification (IOI), deciphering natural language reasoning through circuits remains difficult due to its inherent complexity. In this work, we take initial steps to characterize causal reasoning in LLMs by analyzing clear-cut cause-and-effect sentences like "I opened an umbrella because it started raining," where causal interventions may be possible through carefully crafted scenarios using GPT-2 small. Our findings indicate that causal syntax is localized within the first 2-3 layers, while certain heads in later layers exhibit heightened sensitivity to nonsensical variations of causal sentences. This suggests that models may infer reasoning by (1) detecting syntactic cues and (2) isolating distinct heads in the final layers that focus on semantic relationships.
DAPrompt: Deterministic Assumption Prompt Learning for Event Causality Identification
Event Causality Identification (ECI) aims at determining whether there is a causal relation between two event mentions. Conventional prompt learning designs a prompt template to first predict an answer word and then maps it to the final decision. Unlike conventional prompts, we argue that predicting an answer word may not be a necessary prerequisite for the ECI task. Instead, we can first make a deterministic assumption on the existence of causal relation between two events and then evaluate its rationality to either accept or reject the assumption. The design motivation is to try the most utilization of the encyclopedia-like knowledge embedded in a pre-trained language model. In light of such considerations, we propose a deterministic assumption prompt learning model, called DAPrompt, for the ECI task. In particular, we design a simple deterministic assumption template concatenating with the input event pair, which includes two masks as predicted events' tokens. We use the probabilities of predicted events to evaluate the assumption rationality for the final event causality decision. Experiments on the EventStoryLine corpus and Causal-TimeBank corpus validate our design objective in terms of significant performance improvements over the state-of-the-art algorithms.
The Odyssey of Commonsense Causality: From Foundational Benchmarks to Cutting-Edge Reasoning
Understanding commonsense causality is a unique mark of intelligence for humans. It helps people understand the principles of the real world better and benefits the decision-making process related to causation. For instance, commonsense causality is crucial in judging whether a defendant's action causes the plaintiff's loss in determining legal liability. Despite its significance, a systematic exploration of this topic is notably lacking. Our comprehensive survey bridges this gap by focusing on taxonomies, benchmarks, acquisition methods, qualitative reasoning, and quantitative measurements in commonsense causality, synthesizing insights from over 200 representative articles. Our work aims to provide a systematic overview, update scholars on recent advancements, provide a pragmatic guide for beginners, and highlight promising future research directions in this vital field.
Differentiable Causal Discovery Under Latent Interventions
Recent work has shown promising results in causal discovery by leveraging interventional data with gradient-based methods, even when the intervened variables are unknown. However, previous work assumes that the correspondence between samples and interventions is known, which is often unrealistic. We envision a scenario with an extensive dataset sampled from multiple intervention distributions and one observation distribution, but where we do not know which distribution originated each sample and how the intervention affected the system, i.e., interventions are entirely latent. We propose a method based on neural networks and variational inference that addresses this scenario by framing it as learning a shared causal graph among an infinite mixture (under a Dirichlet process prior) of intervention structural causal models. Experiments with synthetic and real data show that our approach and its semi-supervised variant are able to discover causal relations in this challenging scenario.
CARE: Causality Reasoning for Empathetic Responses by Conditional Graph Generation
Recent approaches to empathetic response generation incorporate emotion causalities to enhance comprehension of both the user's feelings and experiences. However, these approaches suffer from two critical issues. First, they only consider causalities between the user's emotion and the user's experiences, and ignore those between the user's experiences. Second, they neglect interdependence among causalities and reason them independently. To solve the above problems, we expect to reason all plausible causalities interdependently and simultaneously, given the user's emotion, dialogue history, and future dialogue content. Then, we infuse these causalities into response generation for empathetic responses. Specifically, we design a new model, i.e., the Conditional Variational Graph Auto-Encoder (CVGAE), for the causality reasoning, and adopt a multi-source attention mechanism in the decoder for the causality infusion. We name the whole framework as CARE, abbreviated for CAusality Reasoning for Empathetic conversation. Experimental results indicate that our method achieves state-of-the-art performance.
HeadlineCause: A Dataset of News Headlines for Detecting Causalities
Detecting implicit causal relations in texts is a task that requires both common sense and world knowledge. Existing datasets are focused either on commonsense causal reasoning or explicit causal relations. In this work, we present HeadlineCause, a dataset for detecting implicit causal relations between pairs of news headlines. The dataset includes over 5000 headline pairs from English news and over 9000 headline pairs from Russian news labeled through crowdsourcing. The pairs vary from totally unrelated or belonging to the same general topic to the ones including causation and refutation relations. We also present a set of models and experiments that demonstrates the dataset validity, including a multilingual XLM-RoBERTa based model for causality detection and a GPT-2 based model for possible effects prediction.
Root Cause Analysis In Microservice Using Neural Granger Causal Discovery
In recent years, microservices have gained widespread adoption in IT operations due to their scalability, maintenance, and flexibility. However, it becomes challenging for site reliability engineers (SREs) to pinpoint the root cause due to the complex relationships in microservices when facing system malfunctions. Previous research employed structured learning methods (e.g., PC-algorithm) to establish causal relationships and derive root causes from causal graphs. Nevertheless, they ignored the temporal order of time series data and failed to leverage the rich information inherent in the temporal relationships. For instance, in cases where there is a sudden spike in CPU utilization, it can lead to an increase in latency for other microservices. However, in this scenario, the anomaly in CPU utilization occurs before the latency increase, rather than simultaneously. As a result, the PC-algorithm fails to capture such characteristics. To address these challenges, we propose RUN, a novel approach for root cause analysis using neural Granger causal discovery with contrastive learning. RUN enhances the backbone encoder by integrating contextual information from time series, and leverages a time series forecasting model to conduct neural Granger causal discovery. In addition, RUN incorporates Pagerank with a personalization vector to efficiently recommend the top-k root causes. Extensive experiments conducted on the synthetic and real-world microservice-based datasets demonstrate that RUN noticeably outperforms the state-of-the-art root cause analysis methods. Moreover, we provide an analysis scenario for the sock-shop case to showcase the practicality and efficacy of RUN in microservice-based applications. Our code is publicly available at https://github.com/zmlin1998/RUN.
iReason: Multimodal Commonsense Reasoning using Videos and Natural Language with Interpretability
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.
Causal-Copilot: An Autonomous Causal Analysis Agent
Causal analysis plays a foundational role in scientific discovery and reliable decision-making, yet it remains largely inaccessible to domain experts due to its conceptual and algorithmic complexity. This disconnect between causal methodology and practical usability presents a dual challenge: domain experts are unable to leverage recent advances in causal learning, while causal researchers lack broad, real-world deployment to test and refine their methods. To address this, we introduce Causal-Copilot, an autonomous agent that operationalizes expert-level causal analysis within a large language model framework. Causal-Copilot automates the full pipeline of causal analysis for both tabular and time-series data -- including causal discovery, causal inference, algorithm selection, hyperparameter optimization, result interpretation, and generation of actionable insights. It supports interactive refinement through natural language, lowering the barrier for non-specialists while preserving methodological rigor. By integrating over 20 state-of-the-art causal analysis techniques, our system fosters a virtuous cycle -- expanding access to advanced causal methods for domain experts while generating rich, real-world applications that inform and advance causal theory. Empirical evaluations demonstrate that Causal-Copilot achieves superior performance compared to existing baselines, offering a reliable, scalable, and extensible solution that bridges the gap between theoretical sophistication and real-world applicability in causal analysis. A live interactive demo of Causal-Copilot is available at https://causalcopilot.com/.
Is More Data All You Need? A Causal Exploration
Curating a large scale medical imaging dataset for machine learning applications is both time consuming and expensive. Balancing the workload between model development, data collection and annotations is difficult for machine learning practitioners, especially under time constraints. Causal analysis is often used in medicine and economics to gain insights about the effects of actions and policies. In this paper we explore the effect of dataset interventions on the output of image classification models. Through a causal approach we investigate the effects of the quantity and type of data we need to incorporate in a dataset to achieve better performance for specific subtasks. The main goal of this paper is to highlight the potential of causal analysis as a tool for resource optimization for developing medical imaging ML applications. We explore this concept with a synthetic dataset and an exemplary use-case for Diabetic Retinopathy image analysis.
Aligning Language Models with Observational Data: Opportunities and Risks from a Causal Perspective
Large language models are being widely used across industries to generate content that contributes directly to key performance metrics, such as conversion rates. Pretrained models, however, often fall short when it comes to aligning with human preferences or optimizing for business objectives. As a result, fine-tuning with good-quality labeled data is essential to guide models to generate content that achieves better results. Controlled experiments, like A/B tests, can provide such data, but they are often expensive and come with significant engineering and logistical challenges. Meanwhile, companies have access to a vast amount of historical (observational) data that remains underutilized. In this work, we study the challenges and opportunities of fine-tuning LLMs using observational data. We show that while observational outcomes can provide valuable supervision, directly fine-tuning models on such data can lead them to learn spurious correlations. We present empirical evidence of this issue using various real-world datasets and propose DeconfoundLM, a method that explicitly removes the effect of known confounders from reward signals. Using simulation experiments, we demonstrate that DeconfoundLM improves the recovery of causal relationships and mitigates failure modes found in fine-tuning methods that ignore or naively incorporate confounding variables. Our findings highlight that while observational data presents risks, with the right causal corrections, it can be a powerful source of signal for LLM alignment. Please refer to the project page for code and related resources.
Causal Evaluation of Language Models
Causal reasoning is viewed as crucial for achieving human-level machine intelligence. Recent advances in language models have expanded the horizons of artificial intelligence across various domains, sparking inquiries into their potential for causal reasoning. In this work, we introduce Causal evaluation of Language Models (CaLM), which, to the best of our knowledge, is the first comprehensive benchmark for evaluating the causal reasoning capabilities of language models. First, we propose the CaLM framework, which establishes a foundational taxonomy consisting of four modules: causal target (i.e., what to evaluate), adaptation (i.e., how to obtain the results), metric (i.e., how to measure the results), and error (i.e., how to analyze the bad results). This taxonomy defines a broad evaluation design space while systematically selecting criteria and priorities. Second, we compose the CaLM dataset, comprising 126,334 data samples, to provide curated sets of causal targets, adaptations, metrics, and errors, offering extensive coverage for diverse research pursuits. Third, we conduct an extensive evaluation of 28 leading language models on a core set of 92 causal targets, 9 adaptations, 7 metrics, and 12 error types. Fourth, we perform detailed analyses of the evaluation results across various dimensions (e.g., adaptation, scale). Fifth, we present 50 high-level empirical findings across 9 dimensions (e.g., model), providing valuable guidance for future language model development. Finally, we develop a multifaceted platform, including a website, leaderboards, datasets, and toolkits, to support scalable and adaptable assessments. We envision CaLM as an ever-evolving benchmark for the community, systematically updated with new causal targets, adaptations, models, metrics, and error types to reflect ongoing research advancements. Project website is at https://opencausalab.github.io/CaLM.
Bootstrap aggregation and confidence measures to improve time series causal discovery
Learning causal graphs from multivariate time series is a ubiquitous challenge in all application domains dealing with time-dependent systems, such as in Earth sciences, biology, or engineering, to name a few. Recent developments for this causal discovery learning task have shown considerable skill, notably the specific time-series adaptations of the popular conditional independence-based learning framework. However, uncertainty estimation is challenging for conditional independence-based methods. Here, we introduce a novel bootstrap approach designed for time series causal discovery that preserves the temporal dependencies and lag structure. It can be combined with a range of time series causal discovery methods and provides a measure of confidence for the links of the time series graphs. Furthermore, next to confidence estimation, an aggregation, also called bagging, of the bootstrapped graphs by majority voting results in bagged causal discovery methods. In this work, we combine this approach with the state-of-the-art conditional-independence-based algorithm PCMCI+. With extensive numerical experiments we empirically demonstrate that, in addition to providing confidence measures for links, Bagged-PCMCI+ improves in precision and recall as compared to its base algorithm PCMCI+, at the cost of higher computational demands. These statistical performance improvements are especially pronounced in the more challenging settings (short time sample size, large number of variables, high autocorrelation). Our bootstrap approach can also be combined with other time series causal discovery algorithms and can be of considerable use in many real-world applications.
The Non-Linear Representation Dilemma: Is Causal Abstraction Enough for Mechanistic Interpretability?
The concept of causal abstraction got recently popularised to demystify the opaque decision-making processes of machine learning models; in short, a neural network can be abstracted as a higher-level algorithm if there exists a function which allows us to map between them. Notably, most interpretability papers implement these maps as linear functions, motivated by the linear representation hypothesis: the idea that features are encoded linearly in a model's representations. However, this linearity constraint is not required by the definition of causal abstraction. In this work, we critically examine the concept of causal abstraction by considering arbitrarily powerful alignment maps. In particular, we prove that under reasonable assumptions, any neural network can be mapped to any algorithm, rendering this unrestricted notion of causal abstraction trivial and uninformative. We complement these theoretical findings with empirical evidence, demonstrating that it is possible to perfectly map models to algorithms even when these models are incapable of solving the actual task; e.g., on an experiment using randomly initialised language models, our alignment maps reach 100% interchange-intervention accuracy on the indirect object identification task. This raises the non-linear representation dilemma: if we lift the linearity constraint imposed to alignment maps in causal abstraction analyses, we are left with no principled way to balance the inherent trade-off between these maps' complexity and accuracy. Together, these results suggest an answer to our title's question: causal abstraction is not enough for mechanistic interpretability, as it becomes vacuous without assumptions about how models encode information. Studying the connection between this information-encoding assumption and causal abstraction should lead to exciting future work.
Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes
It is commonplace to encounter heterogeneous or nonstationary data, of which the underlying generating process changes across domains or over time. Such a distribution shift feature presents both challenges and opportunities for causal discovery. In this paper, we develop a framework for causal discovery from such data, called Constraint-based causal Discovery from heterogeneous/NOnstationary Data (CD-NOD), to find causal skeleton and directions and estimate the properties of mechanism changes. First, we propose an enhanced constraint-based procedure to detect variables whose local mechanisms change and recover the skeleton of the causal structure over observed variables. Second, we present a method to determine causal orientations by making use of independent changes in the data distribution implied by the underlying causal model, benefiting from information carried by changing distributions. After learning the causal structure, next, we investigate how to efficiently estimate the "driving force" of the nonstationarity of a causal mechanism. That is, we aim to extract from data a low-dimensional representation of changes. The proposed methods are nonparametric, with no hard restrictions on data distributions and causal mechanisms, and do not rely on window segmentation. Furthermore, we find that data heterogeneity benefits causal structure identification even with particular types of confounders. Finally, we show the connection between heterogeneity/nonstationarity and soft intervention in causal discovery. Experimental results on various synthetic and real-world data sets (task-fMRI and stock market data) are presented to demonstrate the efficacy of the proposed methods.
Financial Document Causality Detection Shared Task (FinCausal 2020)
We present the FinCausal 2020 Shared Task on Causality Detection in Financial Documents and the associated FinCausal dataset, and discuss the participating systems and results. Two sub-tasks are proposed: a binary classification task (Task 1) and a relation extraction task (Task 2). A total of 16 teams submitted runs across the two Tasks and 13 of them contributed with a system description paper. This workshop is associated to the Joint Workshop on Financial Narrative Processing and MultiLing Financial Summarisation (FNP-FNS 2020), held at The 28th International Conference on Computational Linguistics (COLING'2020), Barcelona, Spain on September 12, 2020.
Causal Direction of Data Collection Matters: Implications of Causal and Anticausal Learning for NLP
The principle of independent causal mechanisms (ICM) states that generative processes of real world data consist of independent modules which do not influence or inform each other. While this idea has led to fruitful developments in the field of causal inference, it is not widely-known in the NLP community. In this work, we argue that the causal direction of the data collection process bears nontrivial implications that can explain a number of published NLP findings, such as differences in semi-supervised learning (SSL) and domain adaptation (DA) performance across different settings. We categorize common NLP tasks according to their causal direction and empirically assay the validity of the ICM principle for text data using minimum description length. We conduct an extensive meta-analysis of over 100 published SSL and 30 DA studies, and find that the results are consistent with our expectations based on causal insights. This work presents the first attempt to analyze the ICM principle in NLP, and provides constructive suggestions for future modeling choices. Code available at https://github.com/zhijing-jin/icm4nlp
Causal Fairness under Unobserved Confounding: A Neural Sensitivity Framework
Fairness for machine learning predictions is widely required in practice for legal, ethical, and societal reasons. Existing work typically focuses on settings without unobserved confounding, even though unobserved confounding can lead to severe violations of causal fairness and, thus, unfair predictions. In this work, we analyze the sensitivity of causal fairness to unobserved confounding. Our contributions are three-fold. First, we derive bounds for causal fairness metrics under different sources of unobserved confounding. This enables practitioners to examine the sensitivity of their machine learning models to unobserved confounding in fairness-critical applications. Second, we propose a novel neural framework for learning fair predictions, which allows us to offer worst-case guarantees of the extent to which causal fairness can be violated due to unobserved confounding. Third, we demonstrate the effectiveness of our framework in a series of experiments, including a real-world case study about predicting prison sentences. To the best of our knowledge, ours is the first work to study causal fairness under unobserved confounding. To this end, our work is of direct practical value as a refutation strategy to ensure the fairness of predictions in high-stakes applications.
Causal Proxy Models for Concept-Based Model Explanations
Explainability methods for NLP systems encounter a version of the fundamental problem of causal inference: for a given ground-truth input text, we never truly observe the counterfactual texts necessary for isolating the causal effects of model representations on outputs. In response, many explainability methods make no use of counterfactual texts, assuming they will be unavailable. In this paper, we show that robust causal explainability methods can be created using approximate counterfactuals, which can be written by humans to approximate a specific counterfactual or simply sampled using metadata-guided heuristics. The core of our proposal is the Causal Proxy Model (CPM). A CPM explains a black-box model N because it is trained to have the same actual input/output behavior as N while creating neural representations that can be intervened upon to simulate the counterfactual input/output behavior of N. Furthermore, we show that the best CPM for N performs comparably to N in making factual predictions, which means that the CPM can simply replace N, leading to more explainable deployed models. Our code is available at https://github.com/frankaging/Causal-Proxy-Model.
Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in generative AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate the design of CCR tasks for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. Additionally, CCR errors increased with the complexity of causal paths for all models except o1.
Causal Abstraction for Faithful Model Interpretation
A faithful and interpretable explanation of an AI model's behavior and internal structure is a high-level explanation that is human-intelligible but also consistent with the known, but often opaque low-level causal details of the model. We argue that the theory of causal abstraction provides the mathematical foundations for the desired kinds of model explanations. In causal abstraction analysis, we use interventions on model-internal states to rigorously assess whether an interpretable high-level causal model is a faithful description of an AI model. Our contributions in this area are: (1) We generalize causal abstraction to cyclic causal structures and typed high-level variables. (2) We show how multi-source interchange interventions can be used to conduct causal abstraction analyses. (3) We define a notion of approximate causal abstraction that allows us to assess the degree to which a high-level causal model is a causal abstraction of a lower-level one. (4) We prove constructive causal abstraction can be decomposed into three operations we refer to as marginalization, variable-merge, and value-merge. (5) We formalize the XAI methods of LIME, causal effect estimation, causal mediation analysis, iterated nullspace projection, and circuit-based explanations as special cases of causal abstraction analysis.
Task-specific experimental design for treatment effect estimation
Understanding causality should be a core requirement of any attempt to build real impact through AI. Due to the inherent unobservability of counterfactuals, large randomised trials (RCTs) are the standard for causal inference. But large experiments are generically expensive, and randomisation carries its own costs, e.g. when suboptimal decisions are trialed. Recent work has proposed more sample-efficient alternatives to RCTs, but these are not adaptable to the downstream application for which the causal effect is sought. In this work, we develop a task-specific approach to experimental design and derive sampling strategies customised to particular downstream applications. Across a range of important tasks, real-world datasets, and sample sizes, our method outperforms other benchmarks, e.g. requiring an order-of-magnitude less data to match RCT performance on targeted marketing tasks.
Finding Alignments Between Interpretable Causal Variables and Distributed Neural Representations
Causal abstraction is a promising theoretical framework for explainable artificial intelligence that defines when an interpretable high-level causal model is a faithful simplification of a low-level deep learning system. However, existing causal abstraction methods have two major limitations: they require a brute-force search over alignments between the high-level model and the low-level one, and they presuppose that variables in the high-level model will align with disjoint sets of neurons in the low-level one. In this paper, we present distributed alignment search (DAS), which overcomes these limitations. In DAS, we find the alignment between high-level and low-level models using gradient descent rather than conducting a brute-force search, and we allow individual neurons to play multiple distinct roles by analyzing representations in non-standard bases-distributed representations. Our experiments show that DAS can discover internal structure that prior approaches miss. Overall, DAS removes previous obstacles to conducting causal abstraction analyses and allows us to find conceptual structure in trained neural nets.
Identifiable Latent Polynomial Causal Models Through the Lens of Change
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data. One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability. A recent breakthrough explores identifiability by leveraging the change of causal influences among latent causal variables across multiple environments liu2022identifying. However, this progress rests on the assumption that the causal relationships among latent causal variables adhere strictly to linear Gaussian models. In this paper, we extend the scope of latent causal models to involve nonlinear causal relationships, represented by polynomial models, and general noise distributions conforming to the exponential family. Additionally, we investigate the necessity of imposing changes on all causal parameters and present partial identifiability results when part of them remains unchanged. Further, we propose a novel empirical estimation method, grounded in our theoretical finding, that enables learning consistent latent causal representations. Our experimental results, obtained from both synthetic and real-world data, validate our theoretical contributions concerning identifiability and consistency.
CausalARC: Abstract Reasoning with Causal World Models
Reasoning requires adaptation to novel problem settings under limited data and distribution shift. This work introduces CausalARC: an experimental testbed for AI reasoning in low-data and out-of-distribution regimes, modeled after the Abstraction and Reasoning Corpus (ARC). Each CausalARC reasoning task is sampled from a fully specified causal world model, formally expressed as a structural causal model. Principled data augmentations provide observational, interventional, and counterfactual feedback about the world model in the form of few-shot, in-context learning demonstrations. As a proof-of-concept, we illustrate the use of CausalARC for four language model evaluation settings: (1) abstract reasoning with test-time training, (2) counterfactual reasoning with in-context learning, (3) program synthesis, and (4) causal discovery with logical reasoning.
On the Relationship Between Explanation and Prediction: A Causal View
Being able to provide explanations for a model's decision has become a central requirement for the development, deployment, and adoption of machine learning models. However, we are yet to understand what explanation methods can and cannot do. How do upstream factors such as data, model prediction, hyperparameters, and random initialization influence downstream explanations? While previous work raised concerns that explanations (E) may have little relationship with the prediction (Y), there is a lack of conclusive study to quantify this relationship. Our work borrows tools from causal inference to systematically assay this relationship. More specifically, we study the relationship between E and Y by measuring the treatment effect when intervening on their causal ancestors, i.e., on hyperparameters and inputs used to generate saliency-based Es or Ys. Our results suggest that the relationships between E and Y is far from ideal. In fact, the gap between 'ideal' case only increase in higher-performing models -- models that are likely to be deployed. Our work is a promising first step towards providing a quantitative measure of the relationship between E and Y, which could also inform the future development of methods for E with a quantitative metric.
AC-Reason: Towards Theory-Guided Actual Causality Reasoning with Large Language Models
Actual causality (AC), a fundamental aspect of causal reasoning (CR), is responsible for attribution and responsibility assignment in real-world scenarios. However, existing LLM-based methods lack grounding in formal AC theory, resulting in limited interpretability. Therefore, we propose AC-Reason, a semi-formal reasoning framework that identifies causally relevant events within an AC scenario, infers the values of their formal causal factors (e.g., sufficiency, necessity, and normality), and answers AC queries via a theory-guided algorithm with explanations. While AC-Reason does not explicitly construct a causal graph, it operates over variables in the underlying causal structure to support principled reasoning. To enable comprehensive evaluation, we introduce AC-Bench, a new benchmark built upon and substantially extending Big-Bench Hard Causal Judgment (BBH-CJ). AC-Bench comprises ~1K carefully annotated samples, each with detailed reasoning steps and focuses solely on actual causation. The case study shows that synthesized samples in AC-Bench present greater challenges for LLMs. Extensive experiments on BBH-CJ and AC-Bench show that AC-Reason consistently improves LLM performance over baselines. On BBH-CJ, all tested LLMs surpass the average human rater accuracy of 69.60%, with GPT-4 + AC-Reason achieving 75.04%. On AC-Bench, GPT-4 + AC-Reason again achieves the highest accuracy of 71.82%. AC-Bench further enables fine-grained analysis of reasoning faithfulness, revealing that only Qwen-2.5-72B-Instruct, Claude-3.5-Sonnet, and GPT-4o exhibit faithful reasoning, whereas GPT-4 tends to exploit shortcuts. Finally, our ablation study proves that integrating AC theory into LLMs is highly effective, with the proposed algorithm contributing the most significant performance gains.
KisMATH: Do LLMs Have Knowledge of Implicit Structures in Mathematical Reasoning?
Chain-of-thought traces have been shown to improve performance of large language models in a plethora of reasoning tasks, yet there is no consensus on the mechanism through which this performance boost is achieved. To shed more light on this, we introduce Causal CoT Graphs (CCGs), which are directed acyclic graphs automatically extracted from reasoning traces that model fine-grained causal dependencies in the language model output. A collection of 1671 mathematical reasoning problems from MATH500, GSM8K and AIME, and their associated CCGs are compiled into our dataset -- KisMATH. Our detailed empirical analysis with 15 open-weight LLMs shows that (i) reasoning nodes in the CCG are mediators for the final answer, a condition necessary for reasoning; and (ii) LLMs emphasise reasoning paths given by the CCG, indicating that models internally realise structures akin to our graphs. KisMATH enables controlled, graph-aligned interventions and opens up avenues for further investigation into the role of chain-of-thought in LLM reasoning.
Active causal structure learning with advice
We introduce the problem of active causal structure learning with advice. In the typical well-studied setting, the learning algorithm is given the essential graph for the observational distribution and is asked to recover the underlying causal directed acyclic graph (DAG) G^* while minimizing the number of interventions made. In our setting, we are additionally given side information about G^* as advice, e.g. a DAG G purported to be G^*. We ask whether the learning algorithm can benefit from the advice when it is close to being correct, while still having worst-case guarantees even when the advice is arbitrarily bad. Our work is in the same space as the growing body of research on algorithms with predictions. When the advice is a DAG G, we design an adaptive search algorithm to recover G^* whose intervention cost is at most O(max{1, log psi}) times the cost for verifying G^*; here, psi is a distance measure between G and G^* that is upper bounded by the number of variables n, and is exactly 0 when G=G^*. Our approximation factor matches the state-of-the-art for the advice-less setting.
The Relativity of Causal Knowledge
Recent advances in artificial intelligence reveal the limits of purely predictive systems and call for a shift toward causal and collaborative reasoning. Drawing inspiration from the revolution of Grothendieck in mathematics, we introduce the relativity of causal knowledge, which posits structural causal models (SCMs) are inherently imperfect, subjective representations embedded within networks of relationships. By leveraging category theory, we arrange SCMs into a functor category and show that their observational and interventional probability measures naturally form convex structures. This result allows us to encode non-intervened SCMs with convex spaces of probability measures. Next, using sheaf theory, we construct the network sheaf and cosheaf of causal knowledge. These structures enable the transfer of causal knowledge across the network while incorporating interventional consistency and the perspective of the subjects, ultimately leading to the formal, mathematical definition of relative causal knowledge.
MACFE: A Meta-learning and Causality Based Feature Engineering Framework
Feature engineering has become one of the most important steps to improve model prediction performance, and to produce quality datasets. However, this process requires non-trivial domain-knowledge which involves a time-consuming process. Thereby, automating such process has become an active area of research and of interest in industrial applications. In this paper, a novel method, called Meta-learning and Causality Based Feature Engineering (MACFE), is proposed; our method is based on the use of meta-learning, feature distribution encoding, and causality feature selection. In MACFE, meta-learning is used to find the best transformations, then the search is accelerated by pre-selecting "original" features given their causal relevance. Experimental evaluations on popular classification datasets show that MACFE can improve the prediction performance across eight classifiers, outperforms the current state-of-the-art methods in average by at least 6.54%, and obtains an improvement of 2.71% over the best previous works.
CAT: Causal Attention Tuning For Injecting Fine-grained Causal Knowledge into Large Language Models
Large Language Models (LLMs) have achieved remarkable success across various domains. However, a fundamental question remains: Can LLMs effectively utilize causal knowledge for prediction and generation? Through empirical studies, we find that LLMs trained directly on large-scale data often capture spurious correlations rather than true causal relationships, leading to suboptimal performance, especially in out-of-distribution (OOD) scenarios. To address this challenge, we propose Causal Attention Tuning (CAT), a novel approach that injects fine-grained causal knowledge into the attention mechanism. We propose an automated pipeline that leverages human priors to automatically generate token-level causal signals and introduce the Re-Attention mechanism to guide training, helping the model focus on causal structures while mitigating noise and biases in attention scores. Experimental results on our proposed Spurious Token Game (STG) benchmark and multiple downstream tasks demonstrate that our approach effectively leverages causal knowledge for prediction and remains robust in OOD scenarios. Implementation details can be found at https://github.com/Kairong-Han/CAT.
FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.
Counterfactual Analysis in Dynamic Latent State Models
We provide an optimization-based framework to perform counterfactual analysis in a dynamic model with hidden states. Our framework is grounded in the ``abduction, action, and prediction'' approach to answer counterfactual queries and handles two key challenges where (1) the states are hidden and (2) the model is dynamic. Recognizing the lack of knowledge on the underlying causal mechanism and the possibility of infinitely many such mechanisms, we optimize over this space and compute upper and lower bounds on the counterfactual quantity of interest. Our work brings together ideas from causality, state-space models, simulation, and optimization, and we apply it on a breast cancer case study. To the best of our knowledge, we are the first to compute lower and upper bounds on a counterfactual query in a dynamic latent-state model.
CausaLM: Causal Model Explanation Through Counterfactual Language Models
Understanding predictions made by deep neural networks is notoriously difficult, but also crucial to their dissemination. As all machine learning based methods, they are as good as their training data, and can also capture unwanted biases. While there are tools that can help understand whether such biases exist, they do not distinguish between correlation and causation, and might be ill-suited for text-based models and for reasoning about high level language concepts. A key problem of estimating the causal effect of a concept of interest on a given model is that this estimation requires the generation of counterfactual examples, which is challenging with existing generation technology. To bridge that gap, we propose CausaLM, a framework for producing causal model explanations using counterfactual language representation models. Our approach is based on fine-tuning of deep contextualized embedding models with auxiliary adversarial tasks derived from the causal graph of the problem. Concretely, we show that by carefully choosing auxiliary adversarial pre-training tasks, language representation models such as BERT can effectively learn a counterfactual representation for a given concept of interest, and be used to estimate its true causal effect on model performance. A byproduct of our method is a language representation model that is unaffected by the tested concept, which can be useful in mitigating unwanted bias ingrained in the data.
On Measuring Intrinsic Causal Attributions in Deep Neural Networks
Quantifying the causal influence of input features within neural networks has become a topic of increasing interest. Existing approaches typically assess direct, indirect, and total causal effects. This work treats NNs as structural causal models (SCMs) and extends our focus to include intrinsic causal contributions (ICC). We propose an identifiable generative post-hoc framework for quantifying ICC. We also draw a relationship between ICC and Sobol' indices. Our experiments on synthetic and real-world datasets demonstrate that ICC generates more intuitive and reliable explanations compared to existing global explanation techniques.
Causal Bandits with Unknown Graph Structure
In causal bandit problems, the action set consists of interventions on variables of a causal graph. Several researchers have recently studied such bandit problems and pointed out their practical applications. However, all existing works rely on a restrictive and impractical assumption that the learner is given full knowledge of the causal graph structure upfront. In this paper, we develop novel causal bandit algorithms without knowing the causal graph. Our algorithms work well for causal trees, causal forests and a general class of causal graphs. The regret guarantees of our algorithms greatly improve upon those of standard multi-armed bandit (MAB) algorithms under mild conditions. Lastly, we prove our mild conditions are necessary: without them one cannot do better than standard MAB algorithms.
Multi-modal Causal Structure Learning and Root Cause Analysis
Effective root cause analysis (RCA) is vital for swiftly restoring services, minimizing losses, and ensuring the smooth operation and management of complex systems. Previous data-driven RCA methods, particularly those employing causal discovery techniques, have primarily focused on constructing dependency or causal graphs for backtracking the root causes. However, these methods often fall short as they rely solely on data from a single modality, thereby resulting in suboptimal solutions. In this work, we propose Mulan, a unified multi-modal causal structure learning method for root cause localization. We leverage a log-tailored language model to facilitate log representation learning, converting log sequences into time-series data. To explore intricate relationships across different modalities, we propose a contrastive learning-based approach to extract modality-invariant and modality-specific representations within a shared latent space. Additionally, we introduce a novel key performance indicator-aware attention mechanism for assessing modality reliability and co-learning a final causal graph. Finally, we employ random walk with restart to simulate system fault propagation and identify potential root causes. Extensive experiments on three real-world datasets validate the effectiveness of our proposed framework.
A Library for Representing Python Programs as Graphs for Machine Learning
Graph representations of programs are commonly a central element of machine learning for code research. We introduce an open source Python library python_graphs that applies static analysis to construct graph representations of Python programs suitable for training machine learning models. Our library admits the construction of control-flow graphs, data-flow graphs, and composite ``program graphs'' that combine control-flow, data-flow, syntactic, and lexical information about a program. We present the capabilities and limitations of the library, perform a case study applying the library to millions of competitive programming submissions, and showcase the library's utility for machine learning research.
What Characterizes Effective Reasoning? Revisiting Length, Review, and Structure of CoT
Large reasoning models (LRMs) spend substantial test-time compute on long chain-of-thought (CoT) traces, but what *characterizes* an effective CoT remains unclear. While prior work reports gains from lengthening CoTs and increasing review (revisiting earlier steps) via appended *wait* tokens, recent studies suggest that shorter thinking can outperform longer traces. We therefore conduct a systematic evaluation across ten LRMs on math and scientific reasoning. Contrary to the "longer-is-better" narrative, we find that both naive CoT lengthening and increased review are associated with *lower* accuracy. As CoT unfolds step by step, token-level metrics can conflate verbosity with process quality. We introduce a graph view of CoT to extract structure and identify a single statistic-the *Failed-Step Fraction (FSF)*, the fraction of steps in abandoned branches-that consistently outpredicts length and review ratio for correctness across models. To probe causality, we design two interventions. First, we rank candidate CoTs by each metric at test time, where FSF yields the largest pass@1 gains; second, we edit CoTs to remove failed branches, which significantly improves accuracy, indicating that failed branches bias subsequent reasoning. Taken together, these results characterize effective CoTs as those that *fail less* and support *structure-aware* test-time scaling over indiscriminately generating long CoT.
Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models
Answering counterfactual queries has many important applications such as knowledge discovery and explainability, but is challenging when causal variables are unobserved and we only see a projection onto an observation space, for instance, image pixels. One approach is to recover the latent Structural Causal Model (SCM), but this typically needs unrealistic assumptions, such as linearity of the causal mechanisms. Another approach is to use na\"ive ML approximations, such as generative models, to generate counterfactual samples; however, these lack guarantees of accuracy. In this work, we strive to strike a balance between practicality and theoretical guarantees by focusing on a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, by only assuming invertibility, sparse domain interventions and access to observational data from different domains, we aim to improve domain counterfactual estimation both theoretically and practically with less restrictive assumptions. We define domain counterfactually equivalent models and prove necessary and sufficient properties for equivalent models that provide a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG. This surprising result suggests that a model design that only allows intervention in the last k latent variables may improve model estimation for counterfactuals. We then test this model design on extensive simulated and image-based experiments which show the sparse canonical model indeed improves counterfactual estimation over baseline non-sparse models.
Causal Reasoning of Entities and Events in Procedural Texts
Entities and events are crucial to natural language reasoning and common in procedural texts. Existing work has focused either exclusively on entity state tracking (e.g., whether a pan is hot) or on event reasoning (e.g., whether one would burn themselves by touching the pan), while these two tasks are often causally related. We propose CREPE, the first benchmark on causal reasoning of event plausibility and entity states. We show that most language models, including GPT-3, perform close to chance at .35 F1, lagging far behind human at .87 F1. We boost model performance to .59 F1 by creatively representing events as programming languages while prompting language models pretrained on code. By injecting the causal relations between entities and events as intermediate reasoning steps in our representation, we further boost the performance to .67 F1. Our findings indicate not only the challenge that CREPE brings for language models, but also the efficacy of code-like prompting combined with chain-of-thought prompting for multihop event reasoning.
CausalPFN: Amortized Causal Effect Estimation via In-Context Learning
Causal effect estimation from observational data is fundamental across various applications. However, selecting an appropriate estimator from dozens of specialized methods demands substantial manual effort and domain expertise. We present CausalPFN, a single transformer that amortizes this workflow: trained once on a large library of simulated data-generating processes that satisfy ignorability, it infers causal effects for new observational datasets out-of-the-box. CausalPFN combines ideas from Bayesian causal inference with the large-scale training protocol of prior-fitted networks (PFNs), learning to map raw observations directly to causal effects without any task-specific adjustment. Our approach achieves superior average performance on heterogeneous and average treatment effect estimation benchmarks (IHDP, Lalonde, ACIC). Moreover, it shows competitive performance for real-world policy making on uplift modeling tasks. CausalPFN provides calibrated uncertainty estimates to support reliable decision-making based on Bayesian principles. This ready-to-use model does not require any further training or tuning and takes a step toward automated causal inference (https://github.com/vdblm/CausalPFN).
Graph-of-Causal Evolution: Challenging Chain-of-Model for Reasoning
In view of the problem that each subchain in the chain-of-model (CoM) relies only on the information of the previous subchain and may lose long-range dependencies due to the causal mask blocking the global context flow between multi-level subchains, this work proposes a graph of causal evolution (GoCE). Its core principle is to map the implicit token representation into a differentiable and sparse causal adjacency matrix, then permeate causal constraints through each layer of calculation using causal-masked attention and causal-MoE. By combining intervention consistency loss test and self-evolution gate, the dynamic balance between causal structure learning and adaptive updating of transformer architecture is realized. The researcher built experimental environments in sandboxes built with Claude Sonnet 4, o4-mini-high, and DeepSeek R1 respectively with the transformer variant architecture introduced in GoCE. It is evaluated on publicly available datasets including CLUTRR, CLADDER, EX-FEVER, and CausalQA and compared with the baseline LLMs. The finding proves that GoCE strengthens the transformer's ability to capture long-range causal dependencies, while the ability to self-evolve is improved. It not only surpasses the design of CoM in terms of design principles, but also provides experience for future research on causal learning and continuous adaptive improvement.
CounterBench: A Benchmark for Counterfactuals Reasoning in Large Language Models
Counterfactual reasoning is widely recognized as one of the most challenging and intricate aspects of causality in artificial intelligence. In this paper, we evaluate the performance of large language models (LLMs) in counterfactual reasoning. In contrast to previous studies that primarily focus on commonsense causal reasoning, where LLMs often rely on prior knowledge for inference, we specifically assess their ability to perform counterfactual inference using a set of formal rules. To support this evaluation, we introduce a new benchmark dataset, CounterBench, comprising 1K counterfactual reasoning questions. The dataset is designed with varying levels of difficulty, diverse causal graph structures, distinct types of counterfactual questions, and multiple nonsensical name variants. Our experiments demonstrate that counterfactual reasoning poses a significant challenge for LLMs, with most models performing at levels comparable to random guessing. To enhance LLM's counterfactual reasoning ability, we propose a novel reasoning paradigm, CoIn, which guides LLMs through iterative reasoning and backtracking to systematically explore counterfactual solutions. Experimental results show that our method significantly improves LLM performance on counterfactual reasoning tasks and consistently enhances performance across different LLMs.Our dataset is available at https://huggingface.co/datasets/CounterBench/CounterBench.
Federated Causal Discovery from Heterogeneous Data
Conventional causal discovery methods rely on centralized data, which is inconsistent with the decentralized nature of data in many real-world situations. This discrepancy has motivated the development of federated causal discovery (FCD) approaches. However, existing FCD methods may be limited by their potentially restrictive assumptions of identifiable functional causal models or homogeneous data distributions, narrowing their applicability in diverse scenarios. In this paper, we propose a novel FCD method attempting to accommodate arbitrary causal models and heterogeneous data. We first utilize a surrogate variable corresponding to the client index to account for the data heterogeneity across different clients. We then develop a federated conditional independence test (FCIT) for causal skeleton discovery and establish a federated independent change principle (FICP) to determine causal directions. These approaches involve constructing summary statistics as a proxy of the raw data to protect data privacy. Owing to the nonparametric properties, FCIT and FICP make no assumption about particular functional forms, thereby facilitating the handling of arbitrary causal models. We conduct extensive experiments on synthetic and real datasets to show the efficacy of our method. The code is available at https://github.com/lokali/FedCDH.git.
Explaining Text Classifiers with Counterfactual Representations
One well motivated explanation method for classifiers leverages counterfactuals which are hypothetical events identical to real observations in all aspects except for one categorical feature. Constructing such counterfactual poses specific challenges for texts, however, as some attribute values may not necessarily align with plausible real-world events. In this paper we propose a simple method for generating counterfactuals by intervening in the space of text representations which bypasses this limitation. We argue that our interventions are minimally disruptive and that they are theoretically sound as they align with counterfactuals as defined in Pearl's causal inference framework. To validate our method, we first conduct experiments on a synthetic dataset of counterfactuals, allowing for a direct comparison between classifier predictions based on ground truth counterfactuals (obtained through explicit text interventions) and our counterfactuals, derived through interventions in the representation space. Second, we study a real world scenario where our counterfactuals can be leveraged both for explaining a classifier and for bias mitigation.
GLUCOSE: GeneraLized and COntextualized Story Explanations
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. To construct GLUCOSE, we drew on cognitive psychology to identify ten dimensions of causal explanation, focusing on events, states, motivations, and emotions. Each GLUCOSE entry includes a story-specific causal statement paired with an inference rule generalized from the statement. This paper details two concrete contributions. First, we present our platform for effectively crowdsourcing GLUCOSE data at scale, which uses semi-structured templates to elicit causal explanations. Using this platform, we collected a total of ~670K specific statements and general rules that capture implicit commonsense knowledge about everyday situations. Second, we show that existing knowledge resources and pretrained language models do not include or readily predict GLUCOSE's rich inferential content. However, when state-of-the-art neural models are trained on this knowledge, they can start to make commonsense inferences on unseen stories that match humans' mental models.
Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors
Interpretability research now offers a variety of techniques for identifying abstract internal mechanisms in neural networks. Can such techniques be used to predict how models will behave on out-of-distribution examples? In this work, we provide a positive answer to this question. Through a diverse set of language modeling tasks--including symbol manipulation, knowledge retrieval, and instruction following--we show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior. Specifically, we propose two methods that leverage causal mechanisms to predict the correctness of model outputs: counterfactual simulation (checking whether key causal variables are realized) and value probing (using the values of those variables to make predictions). Both achieve high AUC-ROC in distribution and outperform methods that rely on causal-agnostic features in out-of-distribution settings, where predicting model behaviors is more crucial. Our work thus highlights a novel and significant application for internal causal analysis of language models.
Generative causal explanations of black-box classifiers
We develop a method for generating causal post-hoc explanations of black-box classifiers based on a learned low-dimensional representation of the data. The explanation is causal in the sense that changing learned latent factors produces a change in the classifier output statistics. To construct these explanations, we design a learning framework that leverages a generative model and information-theoretic measures of causal influence. Our objective function encourages both the generative model to faithfully represent the data distribution and the latent factors to have a large causal influence on the classifier output. Our method learns both global and local explanations, is compatible with any classifier that admits class probabilities and a gradient, and does not require labeled attributes or knowledge of causal structure. Using carefully controlled test cases, we provide intuition that illuminates the function of our objective. We then demonstrate the practical utility of our method on image recognition tasks.
LibCity: A Unified Library Towards Efficient and Comprehensive Urban Spatial-Temporal Prediction
As deep learning technology advances and more urban spatial-temporal data accumulates, an increasing number of deep learning models are being proposed to solve urban spatial-temporal prediction problems. However, there are limitations in the existing field, including open-source data being in various formats and difficult to use, few papers making their code and data openly available, and open-source models often using different frameworks and platforms, making comparisons challenging. A standardized framework is urgently needed to implement and evaluate these methods. To address these issues, we propose LibCity, an open-source library that offers researchers a credible experimental tool and a convenient development framework. In this library, we have reproduced 65 spatial-temporal prediction models and collected 55 spatial-temporal datasets, allowing researchers to conduct comprehensive experiments conveniently. By enabling fair model comparisons, designing a unified data storage format, and simplifying the process of developing new models, LibCity is poised to make significant contributions to the spatial-temporal prediction field.
Differentiable Causal Discovery For Latent Hierarchical Causal Models
Discovering causal structures with latent variables from observational data is a fundamental challenge in causal discovery. Existing methods often rely on constraint-based, iterative discrete searches, limiting their scalability to large numbers of variables. Moreover, these methods frequently assume linearity or invertibility, restricting their applicability to real-world scenarios. We present new theoretical results on the identifiability of nonlinear latent hierarchical causal models, relaxing previous assumptions in literature about the deterministic nature of latent variables and exogenous noise. Building on these insights, we develop a novel differentiable causal discovery algorithm that efficiently estimates the structure of such models. To the best of our knowledge, this is the first work to propose a differentiable causal discovery method for nonlinear latent hierarchical models. Our approach outperforms existing methods in both accuracy and scalability. We demonstrate its practical utility by learning interpretable hierarchical latent structures from high-dimensional image data and demonstrate its effectiveness on downstream tasks.
Returning The Favour: When Regression Benefits From Probabilistic Causal Knowledge
A directed acyclic graph (DAG) provides valuable prior knowledge that is often discarded in regression tasks in machine learning. We show that the independences arising from the presence of collider structures in DAGs provide meaningful inductive biases, which constrain the regression hypothesis space and improve predictive performance. We introduce collider regression, a framework to incorporate probabilistic causal knowledge from a collider in a regression problem. When the hypothesis space is a reproducing kernel Hilbert space, we prove a strictly positive generalisation benefit under mild assumptions and provide closed-form estimators of the empirical risk minimiser. Experiments on synthetic and climate model data demonstrate performance gains of the proposed methodology.
Counterfactual Generation from Language Models
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to intervene on these models. To understand the impact of interventions precisely, it is useful to examine counterfactuals -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as Generalized Structural-equation. Models using the Gumbel-max trick. This allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
Causal Inference in the Presence of Latent Variables and Selection Bias
We show that there is a general, informative and reliable procedure for discovering causal relations when, for all the investigator knows, both latent variables and selection bias may be at work. Given information about conditional independence and dependence relations between measured variables, even when latent variables and selection bias may be present, there are sufficient conditions for reliably concluding that there is a causal path from one variable to another, and sufficient conditions for reliably concluding when no such causal path exists.
TimeSeriesExam: A time series understanding exam
Large Language Models (LLMs) have recently demonstrated a remarkable ability to model time series data. These capabilities can be partly explained if LLMs understand basic time series concepts. However, our knowledge of what these models understand about time series data remains relatively limited. To address this gap, we introduce TimeSeriesExam, a configurable and scalable multiple-choice question exam designed to assess LLMs across five core time series understanding categories: pattern recognition, noise understanding, similarity analysis, anomaly detection, and causality analysis. TimeSeriesExam comprises of over 700 questions, procedurally generated using 104 carefully curated templates and iteratively refined to balance difficulty and their ability to discriminate good from bad models. We test 7 state-of-the-art LLMs on the TimeSeriesExam and provide the first comprehensive evaluation of their time series understanding abilities. Our results suggest that closed-source models such as GPT-4 and Gemini understand simple time series concepts significantly better than their open-source counterparts, while all models struggle with complex concepts such as causality analysis. We believe that the ability to programatically generate questions is fundamental to assessing and improving LLM's ability to understand and reason about time series data.
DAG-aware Transformer for Causal Effect Estimation
Causal inference is a critical task across fields such as healthcare, economics, and the social sciences. While recent advances in machine learning, especially those based on the deep-learning architectures, have shown potential in estimating causal effects, existing approaches often fall short in handling complex causal structures and lack adaptability across various causal scenarios. In this paper, we present a novel transformer-based method for causal inference that overcomes these challenges. The core innovation of our model lies in its integration of causal Directed Acyclic Graphs (DAGs) directly into the attention mechanism, enabling it to accurately model the underlying causal structure. This allows for flexible estimation of both average treatment effects (ATE) and conditional average treatment effects (CATE). Extensive experiments on both synthetic and real-world datasets demonstrate that our approach surpasses existing methods in estimating causal effects across a wide range of scenarios. The flexibility and robustness of our model make it a valuable tool for researchers and practitioners tackling complex causal inference problems.
Reimagining Urban Science: Scaling Causal Inference with Large Language Models
Urban causal research is essential for understanding the complex dynamics of cities and informing evidence-based policies. However, it is challenged by the inefficiency and bias of hypothesis generation, barriers to multimodal data complexity, and the methodological fragility of causal experimentation. Recent advances in large language models (LLMs) present an opportunity to rethink how urban causal analysis is conducted. This Perspective examines current urban causal research by analyzing taxonomies that categorize research topics, data sources, and methodological approaches to identify structural gaps. We then introduce an LLM-driven conceptual framework, AutoUrbanCI, composed of four distinct modular agents responsible for hypothesis generation, data engineering, experiment design and execution, and results interpretation with policy recommendations. We propose evaluation criteria for rigor and transparency and reflect on implications for human-AI collaboration, equity, and accountability. We call for a new research agenda that embraces AI-augmented workflows not as replacements for human expertise but as tools to broaden participation, improve reproducibility, and unlock more inclusive forms of urban causal reasoning.
High Fidelity Image Counterfactuals with Probabilistic Causal Models
We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.
Causal-CoG: A Causal-Effect Look at Context Generation for Boosting Multi-modal Language Models
While Multi-modal Language Models (MLMs) demonstrate impressive multimodal ability, they still struggle on providing factual and precise responses for tasks like visual question answering (VQA). In this paper, we address this challenge from the perspective of contextual information. We propose Causal Context Generation, Causal-CoG, which is a prompting strategy that engages contextual information to enhance precise VQA during inference. Specifically, we prompt MLMs to generate contexts, i.e, text description of an image, and engage the generated contexts for question answering. Moreover, we investigate the advantage of contexts on VQA from a causality perspective, introducing causality filtering to select samples for which contextual information is helpful. To show the effectiveness of Causal-CoG, we run extensive experiments on 10 multimodal benchmarks and show consistent improvements, e.g., +6.30% on POPE, +13.69% on Vizwiz and +6.43% on VQAv2 compared to direct decoding, surpassing existing methods. We hope Casual-CoG inspires explorations of context knowledge in multimodal models, and serves as a plug-and-play strategy for MLM decoding.
MALTS: Matching After Learning to Stretch
We introduce a flexible framework that produces high-quality almost-exact matches for causal inference. Most prior work in matching uses ad-hoc distance metrics, often leading to poor quality matches, particularly when there are irrelevant covariates. In this work, we learn an interpretable distance metric for matching, which leads to substantially higher quality matches. The learned distance metric stretches the covariate space according to each covariate's contribution to outcome prediction: this stretching means that mismatches on important covariates carry a larger penalty than mismatches on irrelevant covariates. Our ability to learn flexible distance metrics leads to matches that are interpretable and useful for the estimation of conditional average treatment effects.
CausalGym: Benchmarking causal interpretability methods on linguistic tasks
Language models (LMs) have proven to be powerful tools for psycholinguistic research, but most prior work has focused on purely behavioural measures (e.g., surprisal comparisons). At the same time, research in model interpretability has begun to illuminate the abstract causal mechanisms shaping LM behavior. To help bring these strands of research closer together, we introduce CausalGym. We adapt and expand the SyntaxGym suite of tasks to benchmark the ability of interpretability methods to causally affect model behaviour. To illustrate how CausalGym can be used, we study the pythia models (14M--6.9B) and assess the causal efficacy of a wide range of interpretability methods, including linear probing and distributed alignment search (DAS). We find that DAS outperforms the other methods, and so we use it to study the learning trajectory of two difficult linguistic phenomena in pythia-1b: negative polarity item licensing and filler--gap dependencies. Our analysis shows that the mechanism implementing both of these tasks is learned in discrete stages, not gradually.
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
A major barrier to deploying current machine learning models lies in their non-reliability to dataset shifts. To resolve this problem, most existing studies attempted to transfer stable information to unseen environments. Particularly, independent causal mechanisms-based methods proposed to remove mutable causal mechanisms via the do-operator. Compared to previous methods, the obtained stable predictors are more effective in identifying stable information. However, a key question remains: which subset of this whole stable information should the model transfer, in order to achieve optimal generalization ability? To answer this question, we present a comprehensive minimax analysis from a causal perspective. Specifically, we first provide a graphical condition for the whole stable set to be optimal. When this condition fails, we surprisingly find with an example that this whole stable set, although can fully exploit stable information, is not the optimal one to transfer. To identify the optimal subset under this case, we propose to estimate the worst-case risk with a novel optimization scheme over the intervention functions on mutable causal mechanisms. We then propose an efficient algorithm to search for the subset with minimal worst-case risk, based on a newly defined equivalence relation between stable subsets. Compared to the exponential cost of exhaustively searching over all subsets, our searching strategy enjoys a polynomial complexity. The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
FAST: Improving Controllability for Text Generation with Feedback Aware Self-Training
Controllable text generation systems often leverage control codes to direct various properties of the output like style and length. Inspired by recent work on causal inference for NLP, this paper reveals a previously overlooked flaw in these control code-based conditional text generation algorithms. Spurious correlations in the training data can lead models to incorrectly rely on parts of the input other than the control code for attribute selection, significantly undermining downstream generation quality and controllability. We demonstrate the severity of this issue with a series of case studies and then propose two simple techniques to reduce these correlations in training sets. The first technique is based on resampling the data according to an example's propensity towards each linguistic attribute (IPS). The second produces multiple counterfactual versions of each example and then uses an additional feedback mechanism to remove noisy examples (feedback aware self-training, FAST). We evaluate on 3 tasks -- news headline, meta review, and search ads generation -- and demonstrate that FAST can significantly improve the controllability and language quality of generated outputs when compared to state-of-the-art controllable text generation approaches.
Causally Fair Node Classification on Non-IID Graph Data
Fair machine learning seeks to identify and mitigate biases in predictions against unfavorable populations characterized by demographic attributes, such as race and gender. Recently, a few works have extended fairness to graph data, such as social networks, but most of them neglect the causal relationships among data instances. This paper addresses the prevalent challenge in fairness-aware ML algorithms, which typically assume Independent and Identically Distributed (IID) data. We tackle the overlooked domain of non-IID, graph-based settings where data instances are interconnected, influencing the outcomes of fairness interventions. We base our research on the Network Structural Causal Model (NSCM) framework and posit two main assumptions: Decomposability and Graph Independence, which enable the computation of interventional distributions in non-IID settings using the do-calculus. Based on that, we develop the Message Passing Variational Autoencoder for Causal Inference (MPVA) to compute interventional distributions and facilitate causally fair node classification through estimated interventional distributions. Empirical evaluations on semi-synthetic and real-world datasets demonstrate that MPVA outperforms conventional methods by effectively approximating interventional distributions and mitigating bias. The implications of our findings underscore the potential of causality-based fairness in complex ML applications, setting the stage for further research into relaxing the initial assumptions to enhance model fairness.
Interventional Causal Representation Learning
Causal representation learning seeks to extract high-level latent factors from low-level sensory data. Most existing methods rely on observational data and structural assumptions (e.g., conditional independence) to identify the latent factors. However, interventional data is prevalent across applications. Can interventional data facilitate causal representation learning? We explore this question in this paper. The key observation is that interventional data often carries geometric signatures of the latent factors' support (i.e. what values each latent can possibly take). For example, when the latent factors are causally connected, interventions can break the dependency between the intervened latents' support and their ancestors'. Leveraging this fact, we prove that the latent causal factors can be identified up to permutation and scaling given data from perfect do interventions. Moreover, we can achieve block affine identification, namely the estimated latent factors are only entangled with a few other latents if we have access to data from imperfect interventions. These results highlight the unique power of interventional data in causal representation learning; they can enable provable identification of latent factors without any assumptions about their distributions or dependency structure.
Debiasing Multimodal Models via Causal Information Minimization
Most existing debiasing methods for multimodal models, including causal intervention and inference methods, utilize approximate heuristics to represent the biases, such as shallow features from early stages of training or unimodal features for multimodal tasks like VQA, etc., which may not be accurate. In this paper, we study bias arising from confounders in a causal graph for multimodal data and examine a novel approach that leverages causally-motivated information minimization to learn the confounder representations. Robust predictive features contain diverse information that helps a model generalize to out-of-distribution data. Hence, minimizing the information content of features obtained from a pretrained biased model helps learn the simplest predictive features that capture the underlying data distribution. We treat these features as confounder representations and use them via methods motivated by causal theory to remove bias from models. We find that the learned confounder representations indeed capture dataset biases, and the proposed debiasing methods improve out-of-distribution (OOD) performance on multiple multimodal datasets without sacrificing in-distribution performance. Additionally, we introduce a novel metric to quantify the sufficiency of spurious features in models' predictions that further demonstrates the effectiveness of our proposed methods. Our code is available at: https://github.com/Vaidehi99/CausalInfoMin
Causalainer: Causal Explainer for Automatic Video Summarization
The goal of video summarization is to automatically shorten videos such that it conveys the overall story without losing relevant information. In many application scenarios, improper video summarization can have a large impact. For example in forensics, the quality of the generated video summary will affect an investigator's judgment while in journalism it might yield undesired bias. Because of this, modeling explainability is a key concern. One of the best ways to address the explainability challenge is to uncover the causal relations that steer the process and lead to the result. Current machine learning-based video summarization algorithms learn optimal parameters but do not uncover causal relationships. Hence, they suffer from a relative lack of explainability. In this work, a Causal Explainer, dubbed Causalainer, is proposed to address this issue. Multiple meaningful random variables and their joint distributions are introduced to characterize the behaviors of key components in the problem of video summarization. In addition, helper distributions are introduced to enhance the effectiveness of model training. In visual-textual input scenarios, the extra input can decrease the model performance. A causal semantics extractor is designed to tackle this issue by effectively distilling the mutual information from the visual and textual inputs. Experimental results on commonly used benchmarks demonstrate that the proposed method achieves state-of-the-art performance while being more explainable.
Causal Inference for Banking Finance and Insurance A Survey
Causal Inference plays an significant role in explaining the decisions taken by statistical models and artificial intelligence models. Of late, this field started attracting the attention of researchers and practitioners alike. This paper presents a comprehensive survey of 37 papers published during 1992-2023 and concerning the application of causal inference to banking, finance, and insurance. The papers are categorized according to the following families of domains: (i) Banking, (ii) Finance and its subdomains such as corporate finance, governance finance including financial risk and financial policy, financial economics, and Behavioral finance, and (iii) Insurance. Further, the paper covers the primary ingredients of causal inference namely, statistical methods such as Bayesian Causal Network, Granger Causality and jargon used thereof such as counterfactuals. The review also recommends some important directions for future research. In conclusion, we observed that the application of causal inference in the banking and insurance sectors is still in its infancy, and thus more research is possible to turn it into a viable method.
Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning
Faithful evaluation of language model capabilities is crucial for deriving actionable insights that can inform model development. However, rigorous causal evaluations in this domain face significant methodological challenges, including complex confounding effects and prohibitive computational costs associated with extensive retraining. To tackle these challenges, we propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors. Crucially, these latent factors are identified as causally interrelated after appropriately controlling for the base model as a common confounder. Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks from the Open LLM Leaderboard, we identify a concise three-node linear causal structure that reliably explains the observed performance variations. Further interpretation of this causal structure provides substantial scientific insights beyond simple numerical rankings: specifically, we reveal a clear causal direction starting from general problem-solving capabilities, advancing through instruction-following proficiency, and culminating in mathematical reasoning ability. Our results underscore the essential role of carefully controlling base model variations during evaluation, a step critical to accurately uncovering the underlying causal relationships among latent model capabilities.
A Versatile Causal Discovery Framework to Allow Causally-Related Hidden Variables
Most existing causal discovery methods rely on the assumption of no latent confounders, limiting their applicability in solving real-life problems. In this paper, we introduce a novel, versatile framework for causal discovery that accommodates the presence of causally-related hidden variables almost everywhere in the causal network (for instance, they can be effects of observed variables), based on rank information of covariance matrix over observed variables. We start by investigating the efficacy of rank in comparison to conditional independence and, theoretically, establish necessary and sufficient conditions for the identifiability of certain latent structural patterns. Furthermore, we develop a Rank-based Latent Causal Discovery algorithm, RLCD, that can efficiently locate hidden variables, determine their cardinalities, and discover the entire causal structure over both measured and hidden ones. We also show that, under certain graphical conditions, RLCD correctly identifies the Markov Equivalence Class of the whole latent causal graph asymptotically. Experimental results on both synthetic and real-world personality data sets demonstrate the efficacy of the proposed approach in finite-sample cases.
Counterfactual Token Generation in Large Language Models
"Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models.
Interpreting Language Models Through Concept Descriptions: A Survey
Understanding the decision-making processes of neural networks is a central goal of mechanistic interpretability. In the context of Large Language Models (LLMs), this involves uncovering the underlying mechanisms and identifying the roles of individual model components such as neurons and attention heads, as well as model abstractions such as the learned sparse features extracted by Sparse Autoencoders (SAEs). A rapidly growing line of work tackles this challenge by using powerful generator models to produce open-vocabulary, natural language concept descriptions for these components. In this paper, we provide the first survey of the emerging field of concept descriptions for model components and abstractions. We chart the key methods for generating these descriptions, the evolving landscape of automated and human metrics for evaluating them, and the datasets that underpin this research. Our synthesis reveals a growing demand for more rigorous, causal evaluation. By outlining the state of the art and identifying key challenges, this survey provides a roadmap for future research toward making models more transparent.
Interpretability at Scale: Identifying Causal Mechanisms in Alpaca
Obtaining human-interpretable explanations of large, general-purpose language models is an urgent goal for AI safety. However, it is just as important that our interpretability methods are faithful to the causal dynamics underlying model behavior and able to robustly generalize to unseen inputs. Distributed Alignment Search (DAS) is a powerful gradient descent method grounded in a theory of causal abstraction that uncovered perfect alignments between interpretable symbolic algorithms and small deep learning models fine-tuned for specific tasks. In the present paper, we scale DAS significantly by replacing the remaining brute-force search steps with learned parameters -- an approach we call DAS. This enables us to efficiently search for interpretable causal structure in large language models while they follow instructions. We apply DAS to the Alpaca model (7B parameters), which, off the shelf, solves a simple numerical reasoning problem. With DAS, we discover that Alpaca does this by implementing a causal model with two interpretable boolean variables. Furthermore, we find that the alignment of neural representations with these variables is robust to changes in inputs and instructions. These findings mark a first step toward deeply understanding the inner-workings of our largest and most widely deployed language models.
Incorporating Legal Structure in Retrieval-Augmented Generation: A Case Study on Copyright Fair Use
This paper presents a domain-specific implementation of Retrieval-Augmented Generation (RAG) tailored to the Fair Use Doctrine in U.S. copyright law. Motivated by the increasing prevalence of DMCA takedowns and the lack of accessible legal support for content creators, we propose a structured approach that combines semantic search with legal knowledge graphs and court citation networks to improve retrieval quality and reasoning reliability. Our prototype models legal precedents at the statutory factor level (e.g., purpose, nature, amount, market effect) and incorporates citation-weighted graph representations to prioritize doctrinally authoritative sources. We use Chain-of-Thought reasoning and interleaved retrieval steps to better emulate legal reasoning. Preliminary testing suggests this method improves doctrinal relevance in the retrieval process, laying groundwork for future evaluation and deployment of LLM-based legal assistance tools.
Accurate Use of Label Dependency in Multi-Label Text Classification Through the Lens of Causality
Multi-Label Text Classification (MLTC) aims to assign the most relevant labels to each given text. Existing methods demonstrate that label dependency can help to improve the model's performance. However, the introduction of label dependency may cause the model to suffer from unwanted prediction bias. In this study, we attribute the bias to the model's misuse of label dependency, i.e., the model tends to utilize the correlation shortcut in label dependency rather than fusing text information and label dependency for prediction. Motivated by causal inference, we propose a CounterFactual Text Classifier (CFTC) to eliminate the correlation bias, and make causality-based predictions. Specifically, our CFTC first adopts the predict-then-modify backbone to extract precise label information embedded in label dependency, then blocks the correlation shortcut through the counterfactual de-bias technique with the help of the human causal graph. Experimental results on three datasets demonstrate that our CFTC significantly outperforms the baselines and effectively eliminates the correlation bias in datasets.
Neural Algorithmic Reasoning with Causal Regularisation
Recent work on neural algorithmic reasoning has investigated the reasoning capabilities of neural networks, effectively demonstrating they can learn to execute classical algorithms on unseen data coming from the train distribution. However, the performance of existing neural reasoners significantly degrades on out-of-distribution (OOD) test data, where inputs have larger sizes. In this work, we make an important observation: there are many different inputs for which an algorithm will perform certain intermediate computations identically. This insight allows us to develop data augmentation procedures that, given an algorithm's intermediate trajectory, produce inputs for which the target algorithm would have exactly the same next trajectory step. Then, we employ a causal framework to design a corresponding self-supervised objective, and we prove that it improves the OOD generalisation capabilities of the reasoner. We evaluate our method on the CLRS algorithmic reasoning benchmark, where we show up to 3times improvements on the OOD test data.
STUDY: Socially Aware Temporally Casual Decoder Recommender Systems
With the overwhelming amount of data available both on and offline today, recommender systems have become much needed to help users find items tailored to their interests. When social network information exists there are methods that utilize this information to make better recommendations, however the methods are often clunky with complex architectures and training procedures. Furthermore many of the existing methods utilize graph neural networks which are notoriously difficult to train. To address this, we propose Socially-aware Temporally caUsal Decoder recommender sYstems (STUDY). STUDY does joint inference over groups of users who are adjacent in the social network graph using a single forward pass of a modified transformer decoder network. We test our method in a school-based educational content setting, using classroom structure to define social networks. Our method outperforms both social and sequential methods while maintaining the design simplicity of a single homogeneous network that models all interactions in the data. We also carry out ablation studies to understand the drivers of our performance gains and find that our model depends on leveraging a social network structure that effectively models the similarities in user behavior.
Impact of News on the Commodity Market: Dataset and Results
Over the last few years, machine learning based methods have been applied to extract information from news flow in the financial domain. However, this information has mostly been in the form of the financial sentiments contained in the news headlines, primarily for the stock prices. In our current work, we propose that various other dimensions of information can be extracted from news headlines, which will be of interest to investors, policy-makers and other practitioners. We propose a framework that extracts information such as past movements and expected directionality in prices, asset comparison and other general information that the news is referring to. We apply this framework to the commodity "Gold" and train the machine learning models using a dataset of 11,412 human-annotated news headlines (released with this study), collected from the period 2000-2019. We experiment to validate the causal effect of news flow on gold prices and observe that the information produced from our framework significantly impacts the future gold price.
