1 LANDeRMT: Detecting and Routing Language-Aware Neurons for Selectively Finetuning LLMs to Machine Translation Recent advancements in large language models (LLMs) have shown promising results in multilingual translation even with limited bilingual supervision. The major challenges are catastrophic forgetting and parameter interference for finetuning LLMs when provided parallel training data. To address these challenges, we propose LANDeRMT, a Language-Aware Neuron Detecting and Routing framework that selectively finetunes LLMs to Machine Translation with diverse translation training data. In LANDeRMT, we evaluate the awareness of neurons to MT tasks and categorize them into language-general and language-specific neurons. This categorization enables selective parameter updates during finetuning, mitigating parameter interference and catastrophic forgetting issues. For the detected neurons, we further propose a conditional awareness-based routing mechanism to dynamically adjust language-general and language-specific capacity within LLMs, guided by translation signals. Experimental results demonstrate that the proposed LANDeRMT is very effective in learning translation knowledge, significantly improving translation quality over various strong baselines for multiple language pairs. 4 authors · Sep 28, 2024
87 Hala Technical Report: Building Arabic-Centric Instruction & Translation Models at Scale We present Hala, a family of Arabic-centric instruction and translation models built with our translate-and-tune pipeline. We first compress a strong ARleftrightarrowEN teacher to FP8 (yielding sim2times higher throughput with no quality loss) and use it to create high-fidelity bilingual supervision. A lightweight language model LFM2-1.2B is then fine-tuned on this data and used to translate high-quality English instruction sets into Arabic, producing a million-scale corpus tailored to instruction following. We train Hala models at 350M, 700M, 1.2B, and 9B parameters, and apply slerp merging to balance Arabic specialization with base-model strengths. On Arabic-centric benchmarks, Hala achieves state-of-the-art results within both the "nano" (leq2B) and "small" (7-9B) categories, outperforming their bases. We release models, data, evaluation, and recipes to accelerate research in Arabic NLP. 3 authors · Sep 17 3
9 FG-CLIP 2: A Bilingual Fine-grained Vision-Language Alignment Model Fine-grained vision-language understanding requires precise alignment between visual content and linguistic descriptions, a capability that remains limited in current models, particularly in non-English settings. While models like CLIP perform well on global alignment, they often struggle to capture fine-grained details in object attributes, spatial relations, and linguistic expressions, with limited support for bilingual comprehension. To address these challenges, we introduce FG-CLIP 2, a bilingual vision-language model designed to advance fine-grained alignment for both English and Chinese. Our approach leverages rich fine-grained supervision, including region-text matching and long-caption modeling, alongside multiple discriminative objectives. We further introduce the Textual Intra-modal Contrastive (TIC) loss to better distinguish semantically similar captions. Trained on a carefully curated mixture of large-scale English and Chinese data, FG-CLIP 2 achieves powerful bilingual performance. To enable rigorous evaluation, we present a new benchmark for Chinese multimodal understanding, featuring long-caption retrieval and bounding box classification. Extensive experiments on 29 datasets across 8 tasks show that FG-CLIP 2 outperforms existing methods, achieving state-of-the-art results in both languages. We release the model, code, and benchmark to facilitate future research on bilingual fine-grained alignment. 8 authors · Oct 12 2
- An Empirical study of Unsupervised Neural Machine Translation: analyzing NMT output, model's behavior and sentences' contribution Unsupervised Neural Machine Translation (UNMT) focuses on improving NMT results under the assumption there is no human translated parallel data, yet little work has been done so far in highlighting its advantages compared to supervised methods and analyzing its output in aspects other than translation accuracy. We focus on three very diverse languages, French, Gujarati, and Kazakh, and train bilingual NMT models, to and from English, with various levels of supervision, in high- and low- resource setups, measure quality of the NMT output and compare the generated sequences' word order and semantic similarity to source and reference sentences. We also use Layer-wise Relevance Propagation to evaluate the source and target sentences' contribution to the result, expanding the findings of previous works to the UNMT paradigm. 2 authors · Dec 19, 2023