new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 7

MAVE: A Product Dataset for Multi-source Attribute Value Extraction

Attribute value extraction refers to the task of identifying values of an attribute of interest from product information. Product attribute values are essential in many e-commerce scenarios, such as customer service robots, product ranking, retrieval and recommendations. While in the real world, the attribute values of a product are usually incomplete and vary over time, which greatly hinders the practical applications. In this paper, we introduce MAVE, a new dataset to better facilitate research on product attribute value extraction. MAVE is composed of a curated set of 2.2 million products from Amazon pages, with 3 million attribute-value annotations across 1257 unique categories. MAVE has four main and unique advantages: First, MAVE is the largest product attribute value extraction dataset by the number of attribute-value examples. Second, MAVE includes multi-source representations from the product, which captures the full product information with high attribute coverage. Third, MAVE represents a more diverse set of attributes and values relative to what previous datasets cover. Lastly, MAVE provides a very challenging zero-shot test set, as we empirically illustrate in the experiments. We further propose a novel approach that effectively extracts the attribute value from the multi-source product information. We conduct extensive experiments with several baselines and show that MAVE is an effective dataset for attribute value extraction task. It is also a very challenging task on zero-shot attribute extraction. Data is available at {\it https://github.com/google-research-datasets/MAVE}.

  • 8 authors
·
Dec 16, 2021

Product Attribute Value Extraction using Large Language Models

E-commerce applications such as faceted product search or product comparison are based on structured product descriptions like attribute/value pairs. The vendors on e-commerce platforms do not provide structured product descriptions but describe offers using titles or descriptions. To process such offers, it is necessary to extract attribute/value pairs from textual product attributes. State-of-the-art attribute/value extraction techniques rely on pre-trained language models (PLMs), such as BERT. Two major drawbacks of these models for attribute/value extraction are that (i) the models require significant amounts of task-specific training data and (ii) the fine-tuned models face challenges in generalizing to attribute values not included in the training data. This paper explores the potential of large language models (LLMs) as a training data-efficient and robust alternative to PLM-based attribute/value extraction methods. We consider hosted LLMs, such as GPT-3.5 and GPT-4, as well as open-source LLMs based on Llama2. We evaluate the models in a zero-shot scenario and in a scenario where task-specific training data is available. In the zero-shot scenario, we compare various prompt designs for representing information about the target attributes of the extraction. In the scenario with training data, we investigate (i) the provision of example attribute values, (ii) the selection of in-context demonstrations, and (iii) the fine-tuning of GPT-3.5. Our experiments show that GPT-4 achieves an average F1-score of 85% on the two evaluation datasets while the best PLM-based techniques perform on average 5% worse using the same amount of training data. GPT-4 achieves a 10% higher F1-score than the best open-source LLM. The fine-tuned GPT-3.5 model reaches a similar performance as GPT-4 while being significantly more cost-efficient.

  • 3 authors
·
Oct 19, 2023

Multi-Label Zero-Shot Product Attribute-Value Extraction

E-commerce platforms should provide detailed product descriptions (attribute values) for effective product search and recommendation. However, attribute value information is typically not available for new products. To predict unseen attribute values, large quantities of labeled training data are needed to train a traditional supervised learning model. Typically, it is difficult, time-consuming, and costly to manually label large quantities of new product profiles. In this paper, we propose a novel method to efficiently and effectively extract unseen attribute values from new products in the absence of labeled data (zero-shot setting). We propose HyperPAVE, a multi-label zero-shot attribute value extraction model that leverages inductive inference in heterogeneous hypergraphs. In particular, our proposed technique constructs heterogeneous hypergraphs to capture complex higher-order relations (i.e. user behavior information) to learn more accurate feature representations for graph nodes. Furthermore, our proposed HyperPAVE model uses an inductive link prediction mechanism to infer future connections between unseen nodes. This enables HyperPAVE to identify new attribute values without the need for labeled training data. We conduct extensive experiments with ablation studies on different categories of the MAVE dataset. The results demonstrate that our proposed HyperPAVE model significantly outperforms existing classification-based, generation-based large language models for attribute value extraction in the zero-shot setting.

  • 2 authors
·
Feb 13, 2024

QUEACO: Borrowing Treasures from Weakly-labeled Behavior Data for Query Attribute Value Extraction

We study the problem of query attribute value extraction, which aims to identify named entities from user queries as diverse surface form attribute values and afterward transform them into formally canonical forms. Such a problem consists of two phases: {named entity recognition (NER)} and {attribute value normalization (AVN)}. However, existing works only focus on the NER phase but neglect equally important AVN. To bridge this gap, this paper proposes a unified query attribute value extraction system in e-commerce search named QUEACO, which involves both two phases. Moreover, by leveraging large-scale weakly-labeled behavior data, we further improve the extraction performance with less supervision cost. Specifically, for the NER phase, QUEACO adopts a novel teacher-student network, where a teacher network that is trained on the strongly-labeled data generates pseudo-labels to refine the weakly-labeled data for training a student network. Meanwhile, the teacher network can be dynamically adapted by the feedback of the student's performance on strongly-labeled data to maximally denoise the noisy supervisions from the weak labels. For the AVN phase, we also leverage the weakly-labeled query-to-attribute behavior data to normalize surface form attribute values from queries into canonical forms from products. Extensive experiments on a real-world large-scale E-commerce dataset demonstrate the effectiveness of QUEACO.

  • 10 authors
·
Aug 18, 2021

Landmarks and Regions: A Robust Approach to Data Extraction

We propose a new approach to extracting data items or field values from semi-structured documents. Examples of such problems include extracting passenger name, departure time and departure airport from a travel itinerary, or extracting price of an item from a purchase receipt. Traditional approaches to data extraction use machine learning or program synthesis to process the whole document to extract the desired fields. Such approaches are not robust to format changes in the document, and the extraction process typically fails even if changes are made to parts of the document that are unrelated to the desired fields of interest. We propose a new approach to data extraction based on the concepts of landmarks and regions. Humans routinely use landmarks in manual processing of documents to zoom in and focus their attention on small regions of interest in the document. Inspired by this human intuition, we use the notion of landmarks in program synthesis to automatically synthesize extraction programs that first extract a small region of interest, and then automatically extract the desired value from the region in a subsequent step. We have implemented our landmark-based extraction approach in a tool LRSyn, and show extensive evaluation on documents in HTML as well as scanned images of invoices and receipts. Our results show that our approach is robust to various types of format changes that routinely happen in real-world settings.

  • 7 authors
·
Apr 11, 2022

MARS: Paying more attention to visual attributes for text-based person search

Text-based person search (TBPS) is a problem that gained significant interest within the research community. The task is that of retrieving one or more images of a specific individual based on a textual description. The multi-modal nature of the task requires learning representations that bridge text and image data within a shared latent space. Existing TBPS systems face two major challenges. One is defined as inter-identity noise that is due to the inherent vagueness and imprecision of text descriptions and it indicates how descriptions of visual attributes can be generally associated to different people; the other is the intra-identity variations, which are all those nuisances e.g. pose, illumination, that can alter the visual appearance of the same textual attributes for a given subject. To address these issues, this paper presents a novel TBPS architecture named MARS (Mae-Attribute-Relation-Sensitive), which enhances current state-of-the-art models by introducing two key components: a Visual Reconstruction Loss and an Attribute Loss. The former employs a Masked AutoEncoder trained to reconstruct randomly masked image patches with the aid of the textual description. In doing so the model is encouraged to learn more expressive representations and textual-visual relations in the latent space. The Attribute Loss, instead, balances the contribution of different types of attributes, defined as adjective-noun chunks of text. This loss ensures that every attribute is taken into consideration in the person retrieval process. Extensive experiments on three commonly used datasets, namely CUHK-PEDES, ICFG-PEDES, and RSTPReid, report performance improvements, with significant gains in the mean Average Precision (mAP) metric w.r.t. the current state of the art.

  • 5 authors
·
Jul 5, 2024

AttrSeg: Open-Vocabulary Semantic Segmentation via Attribute Decomposition-Aggregation

Open-vocabulary semantic segmentation is a challenging task that requires segmenting novel object categories at inference time. Recent studies have explored vision-language pre-training to handle this task, but suffer from unrealistic assumptions in practical scenarios, i.e., low-quality textual category names. For example, this paradigm assumes that new textual categories will be accurately and completely provided, and exist in lexicons during pre-training. However, exceptions often happen when encountering ambiguity for brief or incomplete names, new words that are not present in the pre-trained lexicons, and difficult-to-describe categories for users. To address these issues, this work proposes a novel attribute decomposition-aggregation framework, AttrSeg, inspired by human cognition in understanding new concepts. Specifically, in the decomposition stage, we decouple class names into diverse attribute descriptions to complement semantic contexts from multiple perspectives. Two attribute construction strategies are designed: using large language models for common categories, and involving manually labeling for human-invented categories. In the aggregation stage, we group diverse attributes into an integrated global description, to form a discriminative classifier that distinguishes the target object from others. One hierarchical aggregation architecture is further proposed to achieve multi-level aggregations, leveraging the meticulously designed clustering module. The final results are obtained by computing the similarity between aggregated attributes and images embeddings. To evaluate the effectiveness, we annotate three types of datasets with attribute descriptions, and conduct extensive experiments and ablation studies. The results show the superior performance of attribute decomposition-aggregation.

  • 6 authors
·
Aug 31, 2023

Unveiling Document Structures with YOLOv5 Layout Detection

The current digital environment is characterized by the widespread presence of data, particularly unstructured data, which poses many issues in sectors including finance, healthcare, and education. Conventional techniques for data extraction encounter difficulties in dealing with the inherent variety and complexity of unstructured data, hence requiring the adoption of more efficient methodologies. This research investigates the utilization of YOLOv5, a cutting-edge computer vision model, for the purpose of rapidly identifying document layouts and extracting unstructured data. The present study establishes a conceptual framework for delineating the notion of "objects" as they pertain to documents, incorporating various elements such as paragraphs, tables, photos, and other constituent parts. The main objective is to create an autonomous system that can effectively recognize document layouts and extract unstructured data, hence improving the effectiveness of data extraction. In the conducted examination, the YOLOv5 model exhibits notable effectiveness in the task of document layout identification, attaining a high accuracy rate along with a precision value of 0.91, a recall value of 0.971, an F1-score of 0.939, and an area under the receiver operating characteristic curve (AUC-ROC) of 0.975. The remarkable performance of this system optimizes the process of extracting textual and tabular data from document images. Its prospective applications are not limited to document analysis but can encompass unstructured data from diverse sources, such as audio data. This study lays the foundation for future investigations into the wider applicability of YOLOv5 in managing various types of unstructured data, offering potential for novel applications across multiple domains.

  • 3 authors
·
Sep 29, 2023

DOM-LM: Learning Generalizable Representations for HTML Documents

HTML documents are an important medium for disseminating information on the Web for human consumption. An HTML document presents information in multiple text formats including unstructured text, structured key-value pairs, and tables. Effective representation of these documents is essential for machine understanding to enable a wide range of applications, such as Question Answering, Web Search, and Personalization. Existing work has either represented these documents using visual features extracted by rendering them in a browser, which is typically computationally expensive, or has simply treated them as plain text documents, thereby failing to capture useful information presented in their HTML structure. We argue that the text and HTML structure together convey important semantics of the content and therefore warrant a special treatment for their representation learning. In this paper, we introduce a novel representation learning approach for web pages, dubbed DOM-LM, which addresses the limitations of existing approaches by encoding both text and DOM tree structure with a transformer-based encoder and learning generalizable representations for HTML documents via self-supervised pre-training. We evaluate DOM-LM on a variety of webpage understanding tasks, including Attribute Extraction, Open Information Extraction, and Question Answering. Our extensive experiments show that DOM-LM consistently outperforms all baselines designed for these tasks. In particular, DOM-LM demonstrates better generalization performance both in few-shot and zero-shot settings, making it attractive for making it suitable for real-world application settings with limited labeled data.

  • 5 authors
·
Jan 25, 2022

BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction

Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset

  • 4 authors
·
Mar 25 2

GENIE: Generative Note Information Extraction model for structuring EHR data

Electronic Health Records (EHRs) hold immense potential for advancing healthcare, offering rich, longitudinal data that combines structured information with valuable insights from unstructured clinical notes. However, the unstructured nature of clinical text poses significant challenges for secondary applications. Traditional methods for structuring EHR free-text data, such as rule-based systems and multi-stage pipelines, are often limited by their time-consuming configurations and inability to adapt across clinical notes from diverse healthcare settings. Few systems provide a comprehensive attribute extraction for terminologies. While giant large language models (LLMs) like GPT-4 and LLaMA 405B excel at structuring tasks, they are slow, costly, and impractical for large-scale use. To overcome these limitations, we introduce GENIE, a Generative Note Information Extraction system that leverages LLMs to streamline the structuring of unstructured clinical text into usable data with standardized format. GENIE processes entire paragraphs in a single pass, extracting entities, assertion statuses, locations, modifiers, values, and purposes with high accuracy. Its unified, end-to-end approach simplifies workflows, reduces errors, and eliminates the need for extensive manual intervention. Using a robust data preparation pipeline and fine-tuned small scale LLMs, GENIE achieves competitive performance across multiple information extraction tasks, outperforming traditional tools like cTAKES and MetaMap and can handle extra attributes to be extracted. GENIE strongly enhances real-world applicability and scalability in healthcare systems. By open-sourcing the model and test data, we aim to encourage collaboration and drive further advancements in EHR structurization.

  • 9 authors
·
Jan 30

POINTS-Reader: Distillation-Free Adaptation of Vision-Language Models for Document Conversion

High-quality labeled data is essential for training accurate document conversion models, particularly in domains with complex formats such as tables, formulas, and multi-column text. However, manual annotation is both costly and time-consuming, while automatic labeling using existing models often lacks accuracy in handling such challenging scenarios. Consequently, training student models by distilling outputs from teacher models can significantly limit their performance in real-world applications. In this paper, we propose a fully automated, distillation-free framework comprising two stages for constructing high-quality document extraction datasets and models capable of handling diverse document formats and layouts. In the first stage, we introduce a method for generating large-scale, diverse synthetic data, which enables a model to extract key elements in a unified format with strong initial performance. In the second stage, we present a self-improvement approach that further adapts the model, initially trained on synthetic data, to real-world documents. Specifically, we first use the fine-tuned model to annotate real documents, then apply a suite of filtering strategies to verify annotation quality, and finally retrain the model on the verified dataset. By iteratively repeating this process, we progressively enhance both the model's conversion capabilities and the quality of the generated data. We train a public POINTS-1.5 model to obtain POINTS-Reader, which surpasses many existing public and proprietary models of comparable or larger size. Our model is available at https://github.com/Tencent/POINTS-Reader.

Retrieval-Augmented Code Generation for Universal Information Extraction

Information Extraction (IE) aims to extract structural knowledge (e.g., entities, relations, events) from natural language texts, which brings challenges to existing methods due to task-specific schemas and complex text expressions. Code, as a typical kind of formalized language, is capable of describing structural knowledge under various schemas in a universal way. On the other hand, Large Language Models (LLMs) trained on both codes and texts have demonstrated powerful capabilities of transforming texts into codes, which provides a feasible solution to IE tasks. Therefore, in this paper, we propose a universal retrieval-augmented code generation framework based on LLMs, called Code4UIE, for IE tasks. Specifically, Code4UIE adopts Python classes to define task-specific schemas of various structural knowledge in a universal way. By so doing, extracting knowledge under these schemas can be transformed into generating codes that instantiate the predefined Python classes with the information in texts. To generate these codes more precisely, Code4UIE adopts the in-context learning mechanism to instruct LLMs with examples. In order to obtain appropriate examples for different tasks, Code4UIE explores several example retrieval strategies, which can retrieve examples semantically similar to the given texts. Extensive experiments on five representative IE tasks across nine datasets demonstrate the effectiveness of the Code4UIE framework.

  • 11 authors
·
Nov 6, 2023

Retrieval-Augmented Generation-based Relation Extraction

Information Extraction (IE) is a transformative process that converts unstructured text data into a structured format by employing entity and relation extraction (RE) methodologies. The identification of the relation between a pair of entities plays a crucial role within this framework. Despite the existence of various techniques for relation extraction, their efficacy heavily relies on access to labeled data and substantial computational resources. In addressing these challenges, Large Language Models (LLMs) emerge as promising solutions; however, they might return hallucinating responses due to their own training data. To overcome these limitations, Retrieved-Augmented Generation-based Relation Extraction (RAG4RE) in this work is proposed, offering a pathway to enhance the performance of relation extraction tasks. This work evaluated the effectiveness of our RAG4RE approach utilizing different LLMs. Through the utilization of established benchmarks, such as TACRED, TACREV, Re-TACRED, and SemEval RE datasets, our aim is to comprehensively evaluate the efficacy of our RAG4RE approach. In particularly, we leverage prominent LLMs including Flan T5, Llama2, and Mistral in our investigation. The results of our study demonstrate that our RAG4RE approach surpasses performance of traditional RE approaches based solely on LLMs, particularly evident in the TACRED dataset and its variations. Furthermore, our approach exhibits remarkable performance compared to previous RE methodologies across both TACRED and TACREV datasets, underscoring its efficacy and potential for advancing RE tasks in natural language processing.

  • 2 authors
·
Apr 20, 2024

Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers

Tracking how data is mentioned and used in research papers provides critical insights for improving data discoverability, quality, and production. However, manually identifying and classifying dataset mentions across vast academic literature is resource-intensive and not scalable. This paper presents a machine learning framework that automates dataset mention detection across research domains by leveraging large language models (LLMs), synthetic data, and a two-stage fine-tuning process. We employ zero-shot extraction from research papers, an LLM-as-a-Judge for quality assessment, and a reasoning agent for refinement to generate a weakly supervised synthetic dataset. The Phi-3.5-mini instruct model is pre-fine-tuned on this dataset, followed by fine-tuning on a manually annotated subset. At inference, a ModernBERT-based classifier efficiently filters dataset mentions, reducing computational overhead while maintaining high recall. Evaluated on a held-out manually annotated sample, our fine-tuned model outperforms NuExtract-v1.5 and GLiNER-large-v2.1 in dataset extraction accuracy. Our results highlight how LLM-generated synthetic data can effectively address training data scarcity, improving generalization in low-resource settings. This framework offers a pathway toward scalable monitoring of dataset usage, enhancing transparency, and supporting researchers, funders, and policymakers in identifying data gaps and strengthening data accessibility for informed decision-making.

  • 3 authors
·
Feb 14

MADS: Multi-Attribute Document Supervision for Zero-Shot Image Classification

Zero-shot learning (ZSL) aims to train a model on seen classes and recognize unseen classes by knowledge transfer through shared auxiliary information. Recent studies reveal that documents from encyclopedias provide helpful auxiliary information. However, existing methods align noisy documents, entangled in visual and non-visual descriptions, with image regions, yet solely depend on implicit learning. These models fail to filter non-visual noise reliably and incorrectly align non-visual words to image regions, which is harmful to knowledge transfer. In this work, we propose a novel multi-attribute document supervision framework to remove noises at both document collection and model learning stages. With the help of large language models, we introduce a novel prompt algorithm that automatically removes non-visual descriptions and enriches less-described documents in multiple attribute views. Our proposed model, MADS, extracts multi-view transferable knowledge with information decoupling and semantic interactions for semantic alignment at local and global levels. Besides, we introduce a model-agnostic focus loss to explicitly enhance attention to visually discriminative information during training, also improving existing methods without additional parameters. With comparable computation costs, MADS consistently outperforms the SOTA by 7.2% and 8.2% on average in three benchmarks for document-based ZSL and GZSL settings, respectively. Moreover, we qualitatively offer interpretable predictions from multiple attribute views.

  • 6 authors
·
Mar 9

Noise-Aware Training of Layout-Aware Language Models

A visually rich document (VRD) utilizes visual features along with linguistic cues to disseminate information. Training a custom extractor that identifies named entities from a document requires a large number of instances of the target document type annotated at textual and visual modalities. This is an expensive bottleneck in enterprise scenarios, where we want to train custom extractors for thousands of different document types in a scalable way. Pre-training an extractor model on unlabeled instances of the target document type, followed by a fine-tuning step on human-labeled instances does not work in these scenarios, as it surpasses the maximum allowable training time allocated for the extractor. We address this scenario by proposing a Noise-Aware Training method or NAT in this paper. Instead of acquiring expensive human-labeled documents, NAT utilizes weakly labeled documents to train an extractor in a scalable way. To avoid degradation in the model's quality due to noisy, weakly labeled samples, NAT estimates the confidence of each training sample and incorporates it as uncertainty measure during training. We train multiple state-of-the-art extractor models using NAT. Experiments on a number of publicly available and in-house datasets show that NAT-trained models are not only robust in performance -- it outperforms a transfer-learning baseline by up to 6% in terms of macro-F1 score, but it is also more label-efficient -- it reduces the amount of human-effort required to obtain comparable performance by up to 73%.

  • 8 authors
·
Mar 30, 2024 1

Exploiting Contextual Target Attributes for Target Sentiment Classification

Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task. In this paper, we present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes. Specifically, we design the domain- and target-constrained cloze test, which can leverage the PTLMs' strong language modeling ability to generate the given target's attributes pertaining to the review context. The attributes contain the background and property information of the target, which can help to enrich the semantics of the review context and the target. To exploit the attributes for tackling TSC, we first construct a heterogeneous information graph by treating the attributes as nodes and combining them with (1) the syntax graph automatically produced by the off-the-shelf dependency parser and (2) the semantics graph of the review context, which is derived from the self-attention mechanism. Then we propose a heterogeneous information gated graph convolutional network to model the interactions among the attribute information, the syntactic information, and the contextual information. The experimental results on three benchmark datasets demonstrate the superiority of our model, which achieves new state-of-the-art performance.

  • 2 authors
·
Dec 21, 2023

Zero-shot information extraction from radiological reports using ChatGPT

Electronic health records contain an enormous amount of valuable information, but many are recorded in free text. Information extraction is the strategy to transform the sequence of characters into structured data, which can be employed for secondary analysis. However, the traditional information extraction components, such as named entity recognition and relation extraction, require annotated data to optimize the model parameters, which has become one of the major bottlenecks in building information extraction systems. With the large language models achieving good performances on various downstream NLP tasks without parameter tuning, it becomes possible to use large language models for zero-shot information extraction. In this study, we aim to explore whether the most popular large language model, ChatGPT, can extract useful information from the radiological reports. We first design the prompt template for the interested information in the CT reports. Then, we generate the prompts by combining the prompt template with the CT reports as the inputs of ChatGPT to obtain the responses. A post-processing module is developed to transform the responses into structured extraction results. We conducted the experiments with 847 CT reports collected from Peking University Cancer Hospital. The experimental results indicate that ChatGPT can achieve competitive performances for some extraction tasks compared with the baseline information extraction system, but some limitations need to be further improved.

  • 5 authors
·
Sep 4, 2023

KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction

In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over 30,000 types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around 1.5B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by 49.8% F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to 12.5% and 21.9%, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to 7.5% under the supervised setting.

  • 17 authors
·
Mar 12, 2024

Extracting alignment data in open models

In this work, we show that it is possible to extract significant amounts of alignment training data from a post-trained model -- useful to steer the model to improve certain capabilities such as long-context reasoning, safety, instruction following, and maths. While the majority of related work on memorisation has focused on measuring success of training data extraction through string matching, we argue that embedding models are better suited for our specific goals. Distances measured through a high quality embedding model can identify semantic similarities between strings that a different metric such as edit distance will struggle to capture. In fact, in our investigation, approximate string matching would have severely undercounted (by a conservative estimate of 10times) the amount of data that can be extracted due to trivial artifacts that deflate the metric. Interestingly, we find that models readily regurgitate training data that was used in post-training phases such as SFT or RL. We show that this data can be then used to train a base model, recovering a meaningful amount of the original performance. We believe our work exposes a possibly overlooked risk towards extracting alignment data. Finally, our work opens up an interesting discussion on the downstream effects of distillation practices: since models seem to be regurgitating aspects of their training set, distillation can therefore be thought of as indirectly training on the model's original dataset.

google Google
·
Oct 21 3

Knowing What, How and Why: A Near Complete Solution for Aspect-based Sentiment Analysis

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from "Waiters are very friendly and the pasta is simply average" could be ('Waiters', positive, 'friendly'). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.

  • 6 authors
·
Nov 4, 2019

Design of Negative Sampling Strategies for Distantly Supervised Skill Extraction

Skills play a central role in the job market and many human resources (HR) processes. In the wake of other digital experiences, today's online job market has candidates expecting to see the right opportunities based on their skill set. Similarly, enterprises increasingly need to use data to guarantee that the skills within their workforce remain future-proof. However, structured information about skills is often missing, and processes building on self- or manager-assessment have shown to struggle with issues around adoption, completeness, and freshness of the resulting data. Extracting skills is a highly challenging task, given the many thousands of possible skill labels mentioned either explicitly or merely described implicitly and the lack of finely annotated training corpora. Previous work on skill extraction overly simplifies the task to an explicit entity detection task or builds on manually annotated training data that would be infeasible if applied to a complete vocabulary of skills. We propose an end-to-end system for skill extraction, based on distant supervision through literal matching. We propose and evaluate several negative sampling strategies, tuned on a small validation dataset, to improve the generalization of skill extraction towards implicitly mentioned skills, despite the lack of such implicit skills in the distantly supervised data. We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements, and combining three different strategies in one model further increases the performance, up to 8 percentage points in RP@5. We introduce a manually annotated evaluation benchmark for skill extraction based on the ESCO taxonomy, on which we validate our models. We release the benchmark dataset for research purposes to stimulate further research on the task.

  • 5 authors
·
Sep 13, 2022

Enhanced Aspect-Based Sentiment Analysis Models with Progressive Self-supervised Attention Learning

In aspect-based sentiment analysis (ABSA), many neural models are equipped with an attention mechanism to quantify the contribution of each context word to sentiment prediction. However, such a mechanism suffers from one drawback: only a few frequent words with sentiment polarities are tended to be taken into consideration for final sentiment decision while abundant infrequent sentiment words are ignored by models. To deal with this issue, we propose a progressive self-supervised attention learning approach for attentional ABSA models. In this approach, we iteratively perform sentiment prediction on all training instances, and continually learn useful attention supervision information in the meantime. During training, at each iteration, context words with the highest impact on sentiment prediction, identified based on their attention weights or gradients, are extracted as words with active/misleading influence on the correct/incorrect prediction for each instance. Words extracted in this way are masked for subsequent iterations. To exploit these extracted words for refining ABSA models, we augment the conventional training objective with a regularization term that encourages ABSA models to not only take full advantage of the extracted active context words but also decrease the weights of those misleading words. We integrate the proposed approach into three state-of-the-art neural ABSA models. Experiment results and in-depth analyses show that our approach yields better attention results and significantly enhances the performance of all three models. We release the source code and trained models at https://github.com/DeepLearnXMU/PSSAttention.

  • 9 authors
·
Mar 4, 2021

Leveraging Large Language Models for Mobile App Review Feature Extraction

Mobile app review analysis presents unique challenges due to the low quality, subjective bias, and noisy content of user-generated documents. Extracting features from these reviews is essential for tasks such as feature prioritization and sentiment analysis, but it remains a challenging task. Meanwhile, encoder-only models based on the Transformer architecture have shown promising results for classification and information extraction tasks for multiple software engineering processes. This study explores the hypothesis that encoder-only large language models can enhance feature extraction from mobile app reviews. By leveraging crowdsourced annotations from an industrial context, we redefine feature extraction as a supervised token classification task. Our approach includes extending the pre-training of these models with a large corpus of user reviews to improve contextual understanding and employing instance selection techniques to optimize model fine-tuning. Empirical evaluations demonstrate that this method improves the precision and recall of extracted features and enhances performance efficiency. Key contributions include a novel approach to feature extraction, annotated datasets, extended pre-trained models, and an instance selection mechanism for cost-effective fine-tuning. This research provides practical methods and empirical evidence in applying large language models to natural language processing tasks within mobile app reviews, offering improved performance in feature extraction.

  • 5 authors
·
Aug 2, 2024

Parsed Categoric Encodings with Automunge

The Automunge open source python library platform for tabular data pre-processing automates feature engineering data transformations of numerical encoding and missing data infill to received tidy data on bases fit to properties of columns in a designated train set for consistent and efficient application to subsequent data pipelines such as for inference, where transformations may be applied to distinct columns in "family tree" sets with generations and branches of derivations. Included in the library of transformations are methods to extract structure from bounded categorical string sets by way of automated string parsing, in which comparisons between entries in the set of unique values are parsed to identify character subset overlaps which may be encoded by appended columns of boolean overlap detection activations or by replacing string entries with identified overlap partitions. Further string parsing options, which may also be applied to unbounded categoric sets, include extraction of numeric substring partitions from entries or search functions to identify presence of specified substring partitions. The aggregation of these methods into "family tree" sets of transformations are demonstrated for use to automatically extract structure from categoric string compositions in relation to the set of entries in a column, such as may be applied to prepare categoric string set encodings for machine learning without human intervention.

  • 1 authors
·
Feb 18, 2022

Fashionformer: A simple, Effective and Unified Baseline for Human Fashion Segmentation and Recognition

Human fashion understanding is one crucial computer vision task since it has comprehensive information for real-world applications. This focus on joint human fashion segmentation and attribute recognition. Contrary to the previous works that separately model each task as a multi-head prediction problem, our insight is to bridge these two tasks with one unified model via vision transformer modeling to benefit each task. In particular, we introduce the object query for segmentation and the attribute query for attribute prediction. Both queries and their corresponding features can be linked via mask prediction. Then we adopt a two-stream query learning framework to learn the decoupled query representations.We design a novel Multi-Layer Rendering module for attribute stream to explore more fine-grained features. The decoder design shares the same spirit as DETR. Thus we name the proposed method Fahsionformer. Extensive experiments on three human fashion datasets illustrate the effectiveness of our approach. In particular, our method with the same backbone achieve relative 10\% improvements than previous works in case of a joint metric (AP^{text{mask}_{IoU+F_1}) for both segmentation and attribute recognition}. To the best of our knowledge, we are the first unified end-to-end vision transformer framework for human fashion analysis. We hope this simple yet effective method can serve as a new flexible baseline for fashion analysis. Code is available at https://github.com/xushilin1/FashionFormer.

  • 6 authors
·
Apr 10, 2022

Leveraging Large Language Models for Web Scraping

Large Language Models (LLMs) demonstrate remarkable capabilities in replicating human tasks and boosting productivity. However, their direct application for data extraction presents limitations due to a prioritisation of fluency over factual accuracy and a restricted ability to manipulate specific information. Therefore to overcome these limitations, this research leverages the knowledge representation power of pre-trained LLMs and the targeted information access enabled by RAG models, this research investigates a general-purpose accurate data scraping recipe for RAG models designed for language generation. To capture knowledge in a more modular and interpretable way, we use pre trained language models with a latent knowledge retriever, which allows the model to retrieve and attend over documents from a large corpus. We utilised RAG model architecture and did an in-depth analysis of their capabilities under three tasks: (i) Semantic Classification of HTML elements, (ii) Chunking HTML text for effective understanding, and (iii) comparing results from different LLMs and ranking algorithms. While previous work has developed dedicated architectures and training procedures for HTML understanding and extraction, we show that LLMs pre-trained on standard natural language with an addition of effective chunking, searching and ranking algorithms, can prove to be efficient data scraping tool to extract complex data from unstructured text. Future research directions include addressing the challenges of provenance tracking and dynamic knowledge updates within the proposed RAG-based data extraction framework. By overcoming these limitations, this approach holds the potential to revolutionise data extraction from vast repositories of textual information.

  • 2 authors
·
Jun 12, 2024

ViLLA: Fine-Grained Vision-Language Representation Learning from Real-World Data

Vision-language models (VLMs), such as CLIP and ALIGN, are generally trained on datasets consisting of image-caption pairs obtained from the web. However, real-world multimodal datasets, such as healthcare data, are significantly more complex: each image (e.g. X-ray) is often paired with text (e.g. physician report) that describes many distinct attributes occurring in fine-grained regions of the image. We refer to these samples as exhibiting high pairwise complexity, since each image-text pair can be decomposed into a large number of region-attribute pairings. The extent to which VLMs can capture fine-grained relationships between image regions and textual attributes when trained on such data has not been previously evaluated. The first key contribution of this work is to demonstrate through systematic evaluations that as the pairwise complexity of the training dataset increases, standard VLMs struggle to learn region-attribute relationships, exhibiting performance degradations of up to 37% on retrieval tasks. In order to address this issue, we introduce ViLLA as our second key contribution. ViLLA, which is trained to capture fine-grained region-attribute relationships from complex datasets, involves two components: (a) a lightweight, self-supervised mapping model to decompose image-text samples into region-attribute pairs, and (b) a contrastive VLM to learn representations from generated region-attribute pairs. We demonstrate with experiments across four domains (synthetic, product, medical, and natural images) that ViLLA outperforms comparable VLMs on fine-grained reasoning tasks, such as zero-shot object detection (up to 3.6 AP50 points on COCO and 0.6 mAP points on LVIS) and retrieval (up to 14.2 R-Precision points).

  • 5 authors
·
Aug 22, 2023

UniCTokens: Boosting Personalized Understanding and Generation via Unified Concept Tokens

Personalized models have demonstrated remarkable success in understanding and generating concepts provided by users. However, existing methods use separate concept tokens for understanding and generation, treating these tasks in isolation. This may result in limitations for generating images with complex prompts. For example, given the concept langle borangle, generating "langle borangle wearing its hat" without additional textual descriptions of its hat. We call this kind of generation \textbf{personalized attribute-reasoning generation}. To address the limitation, we present UniCTokens, a novel framework that effectively integrates personalized information into a unified vision language model (VLM) for understanding and generation. UniCTokens trains a set of unified concept tokens to leverage complementary semantics, boosting two personalized tasks. Moreover, we propose a progressive training strategy with three stages: understanding warm-up, bootstrapping generation from understanding, and deepening understanding from generation to enhance mutual benefits between both tasks. To quantitatively evaluate the unified VLM personalization, we present UnifyBench, the first benchmark for assessing concept understanding, concept generation, and attribute-reasoning generation. Experimental results on UnifyBench indicate that UniCTokens shows competitive performance compared to leading methods in concept understanding, concept generation, and achieving state-of-the-art results in personalized attribute-reasoning generation. Our research demonstrates that enhanced understanding improves generation, and the generation process can yield valuable insights into understanding. Our code and dataset will be released at: https://github.com/arctanxarc/UniCTokens{https://github.com/arctanxarc/UniCTokens}.

  • 13 authors
·
May 20

Relation Extraction with Fine-Tuned Large Language Models in Retrieval Augmented Generation Frameworks

Information Extraction (IE) is crucial for converting unstructured data into structured formats like Knowledge Graphs (KGs). A key task within IE is Relation Extraction (RE), which identifies relationships between entities in text. Various RE methods exist, including supervised, unsupervised, weakly supervised, and rule-based approaches. Recent studies leveraging pre-trained language models (PLMs) have shown significant success in this area. In the current era dominated by Large Language Models (LLMs), fine-tuning these models can overcome limitations associated with zero-shot LLM prompting-based RE methods, especially regarding domain adaptation challenges and identifying implicit relations between entities in sentences. These implicit relations, which cannot be easily extracted from a sentence's dependency tree, require logical inference for accurate identification. This work explores the performance of fine-tuned LLMs and their integration into the Retrieval Augmented-based (RAG) RE approach to address the challenges of identifying implicit relations at the sentence level, particularly when LLMs act as generators within the RAG framework. Empirical evaluations on the TACRED, TACRED-Revisited (TACREV), Re-TACRED, and SemEVAL datasets show significant performance improvements with fine-tuned LLMs, including Llama2-7B, Mistral-7B, and T5 (Large). Notably, our approach achieves substantial gains on SemEVAL, where implicit relations are common, surpassing previous results on this dataset. Additionally, our method outperforms previous works on TACRED, TACREV, and Re-TACRED, demonstrating exceptional performance across diverse evaluation scenarios.

  • 2 authors
·
Jun 20, 2024

LADDER: Language Driven Slice Discovery and Error Rectification

Error slice discovery is crucial to diagnose and mitigate model errors. Current clustering or discrete attribute-based slice discovery methods face key limitations: 1) clustering results in incoherent slices, while assigning discrete attributes to slices leads to incomplete coverage of error patterns due to missing or insufficient attributes; 2) these methods lack complex reasoning, preventing them from fully explaining model biases; 3) they fail to integrate domain knowledge, limiting their usage in specialized fields \eg radiology. We propose\ladder (Language-Driven Discovery and Error Rectification), to address the limitations by: (1) leveraging the flexibility of natural language to address incompleteness, (2) employing LLM's latent domain knowledge and advanced reasoning to analyze sentences and derive testable hypotheses directly, identifying biased attributes, and form coherent error slices without clustering. Existing mitigation methods typically address only the worst-performing group, often amplifying errors in other subgroups. In contrast,\ladder generates pseudo attributes from the discovered hypotheses to mitigate errors across all biases without explicit attribute annotations or prior knowledge of bias. Rigorous evaluations on 6 datasets spanning natural and medical images -- comparing 200+ classifiers with diverse architectures, pretraining strategies, and LLMs -- show that\ladder consistently outperforms existing baselines in discovering and mitigating biases.

BostonU Boston University
·
Jul 31, 2024

TASER: Table Agents for Schema-guided Extraction and Recommendation

Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.

  • 5 authors
·
Aug 18

Spatial Dual-Modality Graph Reasoning for Key Information Extraction

Key information extraction from document images is of paramount importance in office automation. Conventional template matching based approaches fail to generalize well to document images of unseen templates, and are not robust against text recognition errors. In this paper, we propose an end-to-end Spatial Dual-Modality Graph Reasoning method (SDMG-R) to extract key information from unstructured document images. We model document images as dual-modality graphs, nodes of which encode both the visual and textual features of detected text regions, and edges of which represent the spatial relations between neighboring text regions. The key information extraction is solved by iteratively propagating messages along graph edges and reasoning the categories of graph nodes. In order to roundly evaluate our proposed method as well as boost the future research, we release a new dataset named WildReceipt, which is collected and annotated tailored for the evaluation of key information extraction from document images of unseen templates in the wild. It contains 25 key information categories, a total of about 69000 text boxes, and is about 2 times larger than the existing public datasets. Extensive experiments validate that all information including visual features, textual features and spatial relations can benefit key information extraction. It has been shown that SDMG-R can effectively extract key information from document images of unseen templates, and obtain new state-of-the-art results on the recent popular benchmark SROIE and our WildReceipt. Our code and dataset will be publicly released.

  • 5 authors
·
Mar 26, 2021

Data-Efficient Adaptation and a Novel Evaluation Method for Aspect-based Sentiment Analysis

Aspect-based Sentiment Analysis (ABSA) is a fine-grained opinion mining approach that identifies and classifies opinions associated with specific entities (aspects) or their categories within a sentence. Despite its rapid growth and broad potential, ABSA research and resources remain concentrated in commercial domains, leaving analytical needs unmet in high-demand yet low-resource areas such as education and healthcare. Domain adaptation challenges and most existing methods' reliance on resource-intensive in-training knowledge injection further hinder progress in these areas. Moreover, traditional evaluation methods based on exact matches are overly rigid for ABSA tasks, penalising any boundary variations which may misrepresent the performance of generative models. This work addresses these gaps through three contributions: 1) We propose a novel evaluation method, Flexible Text Similarity Matching and Optimal Bipartite Pairing (FTS-OBP), which accommodates realistic extraction boundary variations while maintaining strong correlation with traditional metrics and offering fine-grained diagnostics. 2) We present the first ABSA study of small decoder-only generative language models (SLMs; <7B parameters), examining resource lower bounds via a case study in education review ABSA. We systematically explore data-free (in-context learning and weight merging) and data-light fine-tuning methods, and propose a multitask fine-tuning strategy that significantly enhances SLM performance, enabling 1.5-3.8 B models to surpass proprietary large models and approach benchmark results with only 200-1,000 examples on a single GPU. 3) We release the first public set of education review ABSA resources to support future research in low-resource domains.

  • 4 authors
·
Nov 4 1

DocTer: Documentation Guided Fuzzing for Testing Deep Learning API Functions

Input constraints are useful for many software development tasks. For example, input constraints of a function enable the generation of valid inputs, i.e., inputs that follow these constraints, to test the function deeper. API functions of deep learning (DL) libraries have DL specific input constraints, which are described informally in the free form API documentation. Existing constraint extraction techniques are ineffective for extracting DL specific input constraints. To fill this gap, we design and implement a new technique, DocTer, to analyze API documentation to extract DL specific input constraints for DL API functions. DocTer features a novel algorithm that automatically constructs rules to extract API parameter constraints from syntactic patterns in the form of dependency parse trees of API descriptions. These rules are then applied to a large volume of API documents in popular DL libraries to extract their input parameter constraints. To demonstrate the effectiveness of the extracted constraints, DocTer uses the constraints to enable the automatic generation of valid and invalid inputs to test DL API functions. Our evaluation on three popular DL libraries (TensorFlow, PyTorch, and MXNet) shows that the precision of DocTer in extracting input constraints is 85.4%. DocTer detects 94 bugs from 174 API functions, including one previously unknown security vulnerability that is now documented in the CVE database, while a baseline technique without input constraints detects only 59 bugs. Most (63) of the 94 bugs are previously unknown, 54 of which have been fixed or confirmed by developers after we report them. In addition, DocTer detects 43 inconsistencies in documents, 39 of which are fixed or confirmed.

  • 7 authors
·
Sep 2, 2021

Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction

Universal Information Extraction (UIE) has garnered significant attention due to its ability to address model explosion problems effectively. Extractive UIE can achieve strong performance using a relatively small model, making it widely adopted. Extractive UIEs generally rely on task instructions for different tasks, including single-target instructions and multiple-target instructions. Single-target instruction UIE enables the extraction of only one type of relation at a time, limiting its ability to model correlations between relations and thus restricting its capability to extract complex relations. While multiple-target instruction UIE allows for the extraction of multiple relations simultaneously, the inclusion of irrelevant relations introduces decision complexity and impacts extraction accuracy. Therefore, for multi-relation extraction, we propose LDNet, which incorporates multi-aspect relation modeling and a label drop mechanism. By assigning different relations to different levels for understanding and decision-making, we reduce decision confusion. Additionally, the label drop mechanism effectively mitigates the impact of irrelevant relations. Experiments show that LDNet outperforms or achieves competitive performance with state-of-the-art systems on 9 tasks, 33 datasets, in both single-modal and multi-modal, few-shot and zero-shot settings.https://github.com/Lu-Yang666/LDNet

  • 6 authors
·
Feb 18

Comparison of biomedical relationship extraction methods and models for knowledge graph creation

Biomedical research is growing at such an exponential pace that scientists, researchers, and practitioners are no more able to cope with the amount of published literature in the domain. The knowledge presented in the literature needs to be systematized in such a way that claims and hypotheses can be easily found, accessed, and validated. Knowledge graphs can provide such a framework for semantic knowledge representation from literature. However, in order to build a knowledge graph, it is necessary to extract knowledge as relationships between biomedical entities and normalize both entities and relationship types. In this paper, we present and compare few rule-based and machine learning-based (Naive Bayes, Random Forests as examples of traditional machine learning methods and DistilBERT, PubMedBERT, T5 and SciFive-based models as examples of modern deep learning transformers) methods for scalable relationship extraction from biomedical literature, and for the integration into the knowledge graphs. We examine how resilient are these various methods to unbalanced and fairly small datasets. Our experiments show that transformer-based models handle well both small (due to pre-training on a large dataset) and unbalanced datasets. The best performing model was the PubMedBERT-based model fine-tuned on balanced data, with a reported F1-score of 0.92. DistilBERT-based model followed with F1-score of 0.89, performing faster and with lower resource requirements. BERT-based models performed better then T5-based generative models.

  • 2 authors
·
Jan 5, 2022

Relation-Rich Visual Document Generator for Visual Information Extraction

Despite advances in Large Language Models (LLMs) and Multimodal LLMs (MLLMs) for visual document understanding (VDU), visual information extraction (VIE) from relation-rich documents remains challenging due to the layout diversity and limited training data. While existing synthetic document generators attempt to address data scarcity, they either rely on manually designed layouts and templates, or adopt rule-based approaches that limit layout diversity. Besides, current layout generation methods focus solely on topological patterns without considering textual content, making them impractical for generating documents with complex associations between the contents and layouts. In this paper, we propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach: (1) Content Generation, which leverages LLMs to generate document content using a carefully designed Hierarchical Structure Text format which captures entity categories and relationships, and (2) Content-driven Layout Generation, which learns to create diverse, plausible document layouts solely from easily available Optical Character Recognition (OCR) results, requiring no human labeling or annotations efforts. Experimental results have demonstrated that our method significantly enhances the performance of document understanding models on various VIE benchmarks. The code and model will be available at https://github.com/AI-Application-and-Integration-Lab/RIDGE .

  • 6 authors
·
Apr 14

Lightweight Transformers for Clinical Natural Language Processing

Specialised pre-trained language models are becoming more frequent in NLP since they can potentially outperform models trained on generic texts. BioBERT and BioClinicalBERT are two examples of such models that have shown promise in medical NLP tasks. Many of these models are overparametrised and resource-intensive, but thanks to techniques like Knowledge Distillation (KD), it is possible to create smaller versions that perform almost as well as their larger counterparts. In this work, we specifically focus on development of compact language models for processing clinical texts (i.e. progress notes, discharge summaries etc). We developed a number of efficient lightweight clinical transformers using knowledge distillation and continual learning, with the number of parameters ranging from 15 million to 65 million. These models performed comparably to larger models such as BioBERT and ClinicalBioBERT and significantly outperformed other compact models trained on general or biomedical data. Our extensive evaluation was done across several standard datasets and covered a wide range of clinical text-mining tasks, including Natural Language Inference, Relation Extraction, Named Entity Recognition, and Sequence Classification. To our knowledge, this is the first comprehensive study specifically focused on creating efficient and compact transformers for clinical NLP tasks. The models and code used in this study can be found on our Huggingface profile at https://huggingface.co/nlpie and Github page at https://github.com/nlpie-research/Lightweight-Clinical-Transformers, respectively, promoting reproducibility of our results.

  • 8 authors
·
Feb 9, 2023 1

SemRe-Rank: Improving Automatic Term Extraction By Incorporating Semantic Relatedness With Personalised PageRank

Automatic Term Extraction deals with the extraction of terminology from a domain specific corpus, and has long been an established research area in data and knowledge acquisition. ATE remains a challenging task as it is known that there is no existing ATE methods that can consistently outperform others in any domain. This work adopts a refreshed perspective to this problem: instead of searching for such a 'one-size-fit-all' solution that may never exist, we propose to develop generic methods to 'enhance' existing ATE methods. We introduce SemRe-Rank, the first method based on this principle, to incorporate semantic relatedness - an often overlooked venue - into an existing ATE method to further improve its performance. SemRe-Rank incorporates word embeddings into a personalised PageRank process to compute 'semantic importance' scores for candidate terms from a graph of semantically related words (nodes), which are then used to revise the scores of candidate terms computed by a base ATE algorithm. Extensively evaluated with 13 state-of-the-art base ATE methods on four datasets of diverse nature, it is shown to have achieved widespread improvement over all base methods and across all datasets, with up to 15 percentage points when measured by the Precision in the top ranked K candidate terms (the average for a set of K's), or up to 28 percentage points in F1 measured at a K that equals to the expected real terms in the candidates (F1 in short). Compared to an alternative approach built on the well-known TextRank algorithm, SemRe-Rank can potentially outperform by up to 8 points in Precision at top K, or up to 17 points in F1.

  • 3 authors
·
Nov 9, 2017

Extracting Accurate Materials Data from Research Papers with Conversational Language Models and Prompt Engineering

There has been a growing effort to replace hand extraction of data from research papers with automated data extraction based on natural language processing, language models, and recently, large language models (LLMs). Although these methods enable efficient extraction of data from large sets of research papers, they require a significant amount of up-front effort, expertise, and coding. In this work we propose the ChatExtract method that can fully automate very accurate data extraction with minimal initial effort and background, using an advanced conversational LLM. ChatExtract consists of a set of engineered prompts applied to a conversational LLM that both identify sentences with data, extract that data, and assure the data's correctness through a series of follow-up questions. These follow-up questions largely overcome known issues with LLMs providing factually inaccurate responses. ChatExtract can be applied with any conversational LLMs and yields very high quality data extraction. In tests on materials data we find precision and recall both close to 90% from the best conversational LLMs, like ChatGPT-4. We demonstrate that the exceptional performance is enabled by the information retention in a conversational model combined with purposeful redundancy and introducing uncertainty through follow-up prompts. These results suggest that approaches similar to ChatExtract, due to their simplicity, transferability, and accuracy are likely to become powerful tools for data extraction in the near future. Finally, databases for critical cooling rates of metallic glasses and yield strengths of high entropy alloys are developed using ChatExtract.

  • 2 authors
·
Mar 7, 2023

PEneo: Unifying Line Extraction, Line Grouping, and Entity Linking for End-to-end Document Pair Extraction

Document pair extraction aims to identify key and value entities as well as their relationships from visually-rich documents. Most existing methods divide it into two separate tasks: semantic entity recognition (SER) and relation extraction (RE). However, simply concatenating SER and RE serially can lead to severe error propagation, and it fails to handle cases like multi-line entities in real scenarios. To address these issues, this paper introduces a novel framework, PEneo (Pair Extraction new decoder option), which performs document pair extraction in a unified pipeline, incorporating three concurrent sub-tasks: line extraction, line grouping, and entity linking. This approach alleviates the error accumulation problem and can handle the case of multi-line entities. Furthermore, to better evaluate the model's performance and to facilitate future research on pair extraction, we introduce RFUND, a re-annotated version of the commonly used FUNSD and XFUND datasets, to make them more accurate and cover realistic situations. Experiments on various benchmarks demonstrate PEneo's superiority over previous pipelines, boosting the performance by a large margin (e.g., 19.89%-22.91% F1 score on RFUND-EN) when combined with various backbones like LiLT and LayoutLMv3, showing its effectiveness and generality. Codes and the new annotations will be open to the public.

  • 7 authors
·
Jan 7, 2024

A Named Entity Based Approach to Model Recipes

Traditional cooking recipes follow a structure which can be modelled very well if the rules and semantics of the different sections of the recipe text are analyzed and represented accurately. We propose a structure that can accurately represent the recipe as well as a pipeline to infer the best representation of the recipe in this uniform structure. The Ingredients section in a recipe typically lists down the ingredients required and corresponding attributes such as quantity, temperature, and processing state. This can be modelled by defining these attributes and their values. The physical entities which make up a recipe can be broadly classified into utensils, ingredients and their combinations that are related by cooking techniques. The instruction section lists down a series of events in which a cooking technique or process is applied upon these utensils and ingredients. We model these relationships in the form of tuples. Thus, using a combination of these methods we model cooking recipe in the dataset RecipeDB to show the efficacy of our method. This mined information model can have several applications which include translating recipes between languages, determining similarity between recipes, generation of novel recipes and estimation of the nutritional profile of recipes. For the purpose of recognition of ingredient attributes, we train the Named Entity Relationship (NER) models and analyze the inferences with the help of K-Means clustering. Our model presented with an F1 score of 0.95 across all datasets. We use a similar NER tagging model for labelling cooking techniques (F1 score = 0.88) and utensils (F1 score = 0.90) within the instructions section. Finally, we determine the temporal sequence of relationships between ingredients, utensils and cooking techniques for modeling the instruction steps.

  • 3 authors
·
Apr 25, 2020

Token Merging for Training-Free Semantic Binding in Text-to-Image Synthesis

Although text-to-image (T2I) models exhibit remarkable generation capabilities, they frequently fail to accurately bind semantically related objects or attributes in the input prompts; a challenge termed semantic binding. Previous approaches either involve intensive fine-tuning of the entire T2I model or require users or large language models to specify generation layouts, adding complexity. In this paper, we define semantic binding as the task of associating a given object with its attribute, termed attribute binding, or linking it to other related sub-objects, referred to as object binding. We introduce a novel method called Token Merging (ToMe), which enhances semantic binding by aggregating relevant tokens into a single composite token. This ensures that the object, its attributes and sub-objects all share the same cross-attention map. Additionally, to address potential confusion among main objects with complex textual prompts, we propose end token substitution as a complementary strategy. To further refine our approach in the initial stages of T2I generation, where layouts are determined, we incorporate two auxiliary losses, an entropy loss and a semantic binding loss, to iteratively update the composite token to improve the generation integrity. We conducted extensive experiments to validate the effectiveness of ToMe, comparing it against various existing methods on the T2I-CompBench and our proposed GPT-4o object binding benchmark. Our method is particularly effective in complex scenarios that involve multiple objects and attributes, which previous methods often fail to address. The code will be publicly available at https://github.com/hutaihang/ToMe.

  • 9 authors
·
Nov 11, 2024

Zero-Shot Document-Level Biomedical Relation Extraction via Scenario-based Prompt Design in Two-Stage with LLM

With the advent of artificial intelligence (AI), many researchers are attempting to extract structured information from document-level biomedical literature by fine-tuning large language models (LLMs). However, they face significant challenges such as the need for expensive hardware, like high-performance GPUs and the high labor costs associated with annotating training datasets, especially in biomedical realm. Recent research on LLMs, such as GPT-4 and Llama3, has shown promising performance in zero-shot settings, inspiring us to explore a novel approach to achieve the same results from unannotated full documents using general LLMs with lower hardware and labor costs. Our approach combines two major stages: named entity recognition (NER) and relation extraction (RE). NER identifies chemical, disease and gene entities from the document with synonym and hypernym extraction using an LLM with a crafted prompt. RE extracts relations between entities based on predefined relation schemas and prompts. To enhance the effectiveness of prompt, we propose a five-part template structure and a scenario-based prompt design principles, along with evaluation method to systematically assess the prompts. Finally, we evaluated our approach against fine-tuning and pre-trained models on two biomedical datasets: ChemDisGene and CDR. The experimental results indicate that our proposed method can achieve comparable accuracy levels to fine-tuning and pre-trained models but with reduced human and hardware expenses.

  • 3 authors
·
May 2

Detecting automatically the layout of clinical documents to enhance the performances of downstream natural language processing

Objective:Develop and validate an algorithm for analyzing the layout of PDF clinical documents to improve the performance of downstream natural language processing tasks. Materials and Methods: We designed an algorithm to process clinical PDF documents and extract only clinically relevant text. The algorithm consists of several steps: initial text extraction using a PDF parser, followed by classification into categories such as body text, left notes, and footers using a Transformer deep neural network architecture, and finally an aggregation step to compile the lines of a given label in the text. We evaluated the technical performance of the body text extraction algorithm by applying it to a random sample of documents that were annotated. Medical performance was evaluated by examining the extraction of medical concepts of interest from the text in their respective sections. Finally, we tested an end-to-end system on a medical use case of automatic detection of acute infection described in the hospital report. Results:Our algorithm achieved per-line precision, recall, and F1 score of 98.4, 97.0, and 97.7, respectively, for body line extraction. The precision, recall, and F1 score per document for the acute infection detection algorithm were 82.54 (95CI 72.86-91.60), 85.24 (95CI 76.61-93.70), 83.87 (95CI 76, 92-90.08) with exploitation of the results of the advanced body extraction algorithm, respectively. Conclusion:We have developed and validated a system for extracting body text from clinical documents in PDF format by identifying their layout. We were able to demonstrate that this preprocessing allowed us to obtain better performances for a common downstream task, i.e., the extraction of medical concepts in their respective sections, thus proving the interest of this method on a clinical use case.

  • 7 authors
·
May 23, 2023

Retrieval Augmented Structured Generation: Business Document Information Extraction As Tool Use

Business Document Information Extraction (BDIE) is the problem of transforming a blob of unstructured information (raw text, scanned documents, etc.) into a structured format that downstream systems can parse and use. It has two main tasks: Key-Information Extraction (KIE) and Line Items Recognition (LIR). In this paper, we argue that BDIE is best modeled as a Tool Use problem, where the tools are these downstream systems. We then present Retrieval Augmented Structured Generation (RASG), a novel general framework for BDIE that achieves state of the art (SOTA) results on both KIE and LIR tasks on BDIE benchmarks. The contributions of this paper are threefold: (1) We show, with ablation benchmarks, that Large Language Models (LLMs) with RASG are already competitive with or surpasses current SOTA Large Multimodal Models (LMMs) without RASG on BDIE benchmarks. (2) We propose a new metric class for Line Items Recognition, General Line Items Recognition Metric (GLIRM), that is more aligned with practical BDIE use cases compared to existing metrics, such as ANLS*, DocILE, and GriTS. (3) We provide a heuristic algorithm for backcalculating bounding boxes of predicted line items and tables without the need for vision encoders. Finally, we claim that, while LMMs might sometimes offer marginal performance benefits, LLMs + RASG is oftentimes superior given real-world applications and constraints of BDIE.

  • 4 authors
·
May 30, 2024 1

ChartMaster: Advancing Chart-to-Code Generation with Real-World Charts and Chart Similarity Reinforcement Learning

The chart-to-code generation task requires MLLMs to convert chart images into executable code. This task faces two main challenges: limited data diversity and the difficulty of maintaining visual consistency between generated charts and the original ones. Existing datasets mainly rely on synthetic seed data to prompt GPT models for code generation, resulting in homogeneous samples that limit model generalization to real-world chart styles. To address this, we propose ReChartPrompt, leveraging real-world, human-designed charts extracted from arXiv papers as prompts. By harnessing the rich content and diverse visual styles of arXiv charts, we construct ReChartPrompt-240K, a large-scale and highly diverse dataset that better reflects realistic chart variations. For the second challenge, although SFT improves code understanding by optimizing next-token prediction, it does not provide direct supervision on visual features. As a result, it often fails to guarantee that the generated charts visually match the original ones. To address this, we propose ChartSimRL, a GRPO-based reinforcement learning algorithm guided by a novel chart similarity reward. This reward consists of two components: attribute similarity, which measures the overlap of chart attributes like layout and color between the generated and original charts, and visual similarity, which evaluates overall visual features, including texture, using convolutional neural networks. Unlike traditional text-based rewards, our reward accounts for the multimodal nature of the chart-to-code generation task, significantly enhancing the model's ability to accurately reproduce charts. Integrating ReChartPrompt and ChartSimRL, we develop the ChartMaster model, achieving SOTA results among 7B-parameter models and rivaling GPT-4o on various chart-to-code benchmarks. All resources are available at https://github.com/WentaoTan/ChartMaster.

  • 6 authors
·
Aug 24

Compress & Align: Curating Image-Text Data with Human Knowledge

The massive growth of image-text data through web crawling inherently presents the challenge of variability in data quality. This paper introduces a novel algorithm, rooted in human knowledge, to compress this vast corpus of web-crawled image-text datasets to a compact and high-quality form. Our method unfolds in three major steps. First, we collect an image-text dataset, wherein each image is associated with multiple captions sourced from diverse origins. Then, to systemically capture human preferences regarding the best caption paired with each image, we establish a comprehensive set of both subjective and objective criteria for critically guiding the alignment assessment from labelers. Lastly, we train a reward model on the annotated dataset to internalize the nuanced human understanding of image-text alignment. The resulting reward model thus can act as a human-like referee to filter misaligned/low-quality image-text pairs. Extensive experiments demonstrate that we are able to secure (or even improve) model performance by compressing the image-text datasets up to ~90%. An impressive example is that, by aggressively reducing the total training sample from 130M to 15.5M (e.g., ~9x smaller), our BLIP-B/16 models still consistently show superior performance compared with the full-size-dataset counterpart on image-text retrieval (Flickr30K, COCO) by ~2.5% in Recall@1, and on image-captioning (Nocaps, COCO) by ~10.0% in CIDEr and ~2.7% in SPICE.

  • 6 authors
·
Dec 11, 2023

The SourceData-NLP dataset: integrating curation into scientific publishing for training large language models

Introduction: The scientific publishing landscape is expanding rapidly, creating challenges for researchers to stay up-to-date with the evolution of the literature. Natural Language Processing (NLP) has emerged as a potent approach to automating knowledge extraction from this vast amount of publications and preprints. Tasks such as Named-Entity Recognition (NER) and Named-Entity Linking (NEL), in conjunction with context-dependent semantic interpretation, offer promising and complementary approaches to extracting structured information and revealing key concepts. Results: We present the SourceData-NLP dataset produced through the routine curation of papers during the publication process. A unique feature of this dataset is its emphasis on the annotation of bioentities in figure legends. We annotate eight classes of biomedical entities (small molecules, gene products, subcellular components, cell lines, cell types, tissues, organisms, and diseases), their role in the experimental design, and the nature of the experimental method as an additional class. SourceData-NLP contains more than 620,000 annotated biomedical entities, curated from 18,689 figures in 3,223 papers in molecular and cell biology. We illustrate the dataset's usefulness by assessing BioLinkBERT and PubmedBERT, two transformers-based models, fine-tuned on the SourceData-NLP dataset for NER. We also introduce a novel context-dependent semantic task that infers whether an entity is the target of a controlled intervention or the object of measurement. Conclusions: SourceData-NLP's scale highlights the value of integrating curation into publishing. Models trained with SourceData-NLP will furthermore enable the development of tools able to extract causal hypotheses from the literature and assemble them into knowledge graphs.

  • 4 authors
·
Oct 31, 2023

Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique

Since radiology reports needed for clinical practice and research are written and stored in free-text narrations, extraction of relative information for further analysis is difficult. In these circumstances, natural language processing (NLP) techniques can facilitate automatic information extraction and transformation of free-text formats to structured data. In recent years, deep learning (DL)-based models have been adapted for NLP experiments with promising results. Despite the significant potential of DL models based on artificial neural networks (ANN) and convolutional neural networks (CNN), the models face some limitations to implement in clinical practice. Transformers, another new DL architecture, have been increasingly applied to improve the process. Therefore, in this study, we propose a transformer-based fine-grained named entity recognition (NER) architecture for clinical information extraction. We collected 88 abdominopelvic sonography reports in free-text formats and annotated them based on our developed information schema. The text-to-text transfer transformer model (T5) and Scifive, a pre-trained domain-specific adaptation of the T5 model, were applied for fine-tuning to extract entities and relations and transform the input into a structured format. Our transformer-based model in this study outperformed previously applied approaches such as ANN and CNN models based on ROUGE-1, ROUGE-2, ROUGE-L, and BLEU scores of 0.816, 0.668, 0.528, and 0.743, respectively, while providing an interpretable structured report.

  • 5 authors
·
Sep 25, 2022

Reliable End-to-End Material Information Extraction from the Literature with Source-Tracked Multi-Stage Large Language Models

Data-driven materials discovery requires large-scale experimental datasets, yet most of the information remains trapped in unstructured literature. Existing extraction efforts often focus on a limited set of features and have not addressed the integrated composition-processing-microstructure-property relationships essential for understanding materials behavior, thereby posing challenges for building comprehensive databases. To address this gap, we propose a multi-stage information extraction pipeline powered by large language models, which captures 47 features spanning composition, processing, microstructure, and properties exclusively from experimentally reported materials. The pipeline integrates iterative extraction with source tracking to enhance both accuracy and reliability. Evaluations at the feature level (independent attributes) and tuple level (interdependent features) yielded F1 scores around 0.96. Compared with single-pass extraction without source tracking, our approach improved F1 scores of microstructure category by 10.0% (feature level) and 13.7% (tuple level), and reduced missed materials from 49 to 13 out of 396 materials in 100 articles on precipitate-containing multi-principal element alloys (miss rate reduced from 12.4% to 3.3%). The pipeline enables scalable and efficient literature mining, producing databases with high precision, minimal omissions, and zero false positives. These datasets provide trustworthy inputs for machine learning and materials informatics, while the modular design generalizes to diverse material classes, enabling comprehensive materials information extraction.

  • 6 authors
·
Oct 1

Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models

Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach.

  • 2 authors
·
Mar 10, 2023

Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development

Data is a crucial component of machine learning. The field is reliant on data to train, validate, and test models. With increased technical capabilities, machine learning research has boomed in both academic and industry settings, and one major focus has been on computer vision. Computer vision is a popular domain of machine learning increasingly pertinent to real-world applications, from facial recognition in policing to object detection for autonomous vehicles. Given computer vision's propensity to shape machine learning research and impact human life, we seek to understand disciplinary practices around dataset documentation - how data is collected, curated, annotated, and packaged into datasets for computer vision researchers and practitioners to use for model tuning and development. Specifically, we examine what dataset documentation communicates about the underlying values of vision data and the larger practices and goals of computer vision as a field. To conduct this study, we collected a corpus of about 500 computer vision datasets, from which we sampled 114 dataset publications across different vision tasks. Through both a structured and thematic content analysis, we document a number of values around accepted data practices, what makes desirable data, and the treatment of humans in the dataset construction process. We discuss how computer vision datasets authors value efficiency at the expense of care; universality at the expense of contextuality; impartiality at the expense of positionality; and model work at the expense of data work. Many of the silenced values we identify sit in opposition with social computing practices. We conclude with suggestions on how to better incorporate silenced values into the dataset creation and curation process.

  • 3 authors
·
Aug 9, 2021

BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. We make the pre-trained weights of BioBERT freely available at https://github.com/naver/biobert-pretrained, and the source code for fine-tuning BioBERT available at https://github.com/dmis-lab/biobert.

  • 7 authors
·
Jan 25, 2019

CCI4.0: A Bilingual Pretraining Dataset for Enhancing Reasoning in Large Language Models

We introduce CCI4.0, a large-scale bilingual pre-training dataset engineered for superior data quality and diverse human-like reasoning trajectory. CCI4.0 occupies roughly 35 TB of disk space and comprises two sub-datasets: CCI4.0-M2-Base and CCI4.0-M2-CoT. CCI4.0-M2-Base combines a 5.2 TB carefully curated Chinese web corpus, a 22.5 TB English subset from Nemotron-CC, and diverse sources from math, wiki, arxiv, and code. Although these data are mostly sourced from well-processed datasets, the quality standards of various domains are dynamic and require extensive expert experience and labor to process. So, we propose a novel pipeline justifying data quality mainly based on models through two-stage deduplication, multiclassifier quality scoring, and domain-aware fluency filtering. We extract 4.5 billion pieces of CoT(Chain-of-Thought) templates, named CCI4.0-M2-CoT. Differing from the distillation of CoT from larger models, our proposed staged CoT extraction exemplifies diverse reasoning patterns and significantly decreases the possibility of hallucination. Empirical evaluations demonstrate that LLMs pre-trained in CCI4.0 benefit from cleaner, more reliable training signals, yielding consistent improvements in downstream tasks, especially in math and code reflection tasks. Our results underscore the critical role of rigorous data curation and human thinking templates in advancing LLM performance, shedding some light on automatically processing pretraining corpora.

  • 9 authors
·
Jun 9 2

CaBaGe: Data-Free Model Extraction using ClAss BAlanced Generator Ensemble

Machine Learning as a Service (MLaaS) is often provided as a pay-per-query, black-box system to clients. Such a black-box approach not only hinders open replication, validation, and interpretation of model results, but also makes it harder for white-hat researchers to identify vulnerabilities in the MLaaS systems. Model extraction is a promising technique to address these challenges by reverse-engineering black-box models. Since training data is typically unavailable for MLaaS models, this paper focuses on the realistic version of it: data-free model extraction. We propose a data-free model extraction approach, CaBaGe, to achieve higher model extraction accuracy with a small number of queries. Our innovations include (1) a novel experience replay for focusing on difficult training samples; (2) an ensemble of generators for steadily producing diverse synthetic data; and (3) a selective filtering process for querying the victim model with harder, more balanced samples. In addition, we create a more realistic setting, for the first time, where the attacker has no knowledge of the number of classes in the victim training data, and create a solution to learn the number of classes on the fly. Our evaluation shows that CaBaGe outperforms existing techniques on seven datasets -- MNIST, FMNIST, SVHN, CIFAR-10, CIFAR-100, ImageNet-subset, and Tiny ImageNet -- with an accuracy improvement of the extracted models by up to 43.13%. Furthermore, the number of queries required to extract a clone model matching the final accuracy of prior work is reduced by up to 75.7%.

  • 4 authors
·
Sep 16, 2024

GPT Self-Supervision for a Better Data Annotator

The task of annotating data into concise summaries poses a significant challenge across various domains, frequently requiring the allocation of significant time and specialized knowledge by human experts. Despite existing efforts to use large language models for annotation tasks, significant problems such as limited applicability to unlabeled data, the absence of self-supervised methods, and the lack of focus on complex structured data still persist. In this work, we propose a GPT self-supervision annotation method, which embodies a generating-recovering paradigm that leverages the one-shot learning capabilities of the Generative Pretrained Transformer (GPT). The proposed approach comprises a one-shot tuning phase followed by a generation phase. In the one-shot tuning phase, we sample a data from the support set as part of the prompt for GPT to generate a textual summary, which is then used to recover the original data. The alignment score between the recovered and original data serves as a self-supervision navigator to refine the process. In the generation stage, the optimally selected one-shot sample serves as a template in the prompt and is applied to generating summaries from challenging datasets. The annotation performance is evaluated by tuning several human feedback reward networks and by calculating alignment scores between original and recovered data at both sentence and structure levels. Our self-supervised annotation method consistently achieves competitive scores, convincingly demonstrating its robust strength in various data-to-summary annotation tasks.

  • 3 authors
·
Jun 7, 2023

Enhancing Document Information Analysis with Multi-Task Pre-training: A Robust Approach for Information Extraction in Visually-Rich Documents

This paper introduces a deep learning model tailored for document information analysis, emphasizing document classification, entity relation extraction, and document visual question answering. The proposed model leverages transformer-based models to encode all the information present in a document image, including textual, visual, and layout information. The model is pre-trained and subsequently fine-tuned for various document image analysis tasks. The proposed model incorporates three additional tasks during the pre-training phase, including reading order identification of different layout segments in a document image, layout segments categorization as per PubLayNet, and generation of the text sequence within a given layout segment (text block). The model also incorporates a collective pre-training scheme where losses of all the tasks under consideration, including pre-training and fine-tuning tasks with all datasets, are considered. Additional encoder and decoder blocks are added to the RoBERTa network to generate results for all tasks. The proposed model achieved impressive results across all tasks, with an accuracy of 95.87% on the RVL-CDIP dataset for document classification, F1 scores of 0.9306, 0.9804, 0.9794, and 0.8742 on the FUNSD, CORD, SROIE, and Kleister-NDA datasets respectively for entity relation extraction, and an ANLS score of 0.8468 on the DocVQA dataset for visual question answering. The results highlight the effectiveness of the proposed model in understanding and interpreting complex document layouts and content, making it a promising tool for document analysis tasks.

  • 2 authors
·
Oct 25, 2023