Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSecurity Matrix for Multimodal Agents on Mobile Devices: A Systematic and Proof of Concept Study
The rapid progress in the reasoning capability of the Multi-modal Large Language Models (MLLMs) has triggered the development of autonomous agent systems on mobile devices. MLLM-based mobile agent systems consist of perception, reasoning, memory, and multi-agent collaboration modules, enabling automatic analysis of user instructions and the design of task pipelines with only natural language and device screenshots as inputs. Despite the increased human-machine interaction efficiency, the security risks of MLLM-based mobile agent systems have not been systematically studied. Existing security benchmarks for agents mainly focus on Web scenarios, and the attack techniques against MLLMs are also limited in the mobile agent scenario. To close these gaps, this paper proposes a mobile agent security matrix covering 3 functional modules of the agent systems. Based on the security matrix, this paper proposes 4 realistic attack paths and verifies these attack paths through 8 attack methods. By analyzing the attack results, this paper reveals that MLLM-based mobile agent systems are not only vulnerable to multiple traditional attacks, but also raise new security concerns previously unconsidered. This paper highlights the need for security awareness in the design of MLLM-based systems and paves the way for future research on attacks and defense methods.
Regional Adversarial Training for Better Robust Generalization
Adversarial training (AT) has been demonstrated as one of the most promising defense methods against various adversarial attacks. To our knowledge, existing AT-based methods usually train with the locally most adversarial perturbed points and treat all the perturbed points equally, which may lead to considerably weaker adversarial robust generalization on test data. In this work, we introduce a new adversarial training framework that considers the diversity as well as characteristics of the perturbed points in the vicinity of benign samples. To realize the framework, we propose a Regional Adversarial Training (RAT) defense method that first utilizes the attack path generated by the typical iterative attack method of projected gradient descent (PGD), and constructs an adversarial region based on the attack path. Then, RAT samples diverse perturbed training points efficiently inside this region, and utilizes a distance-aware label smoothing mechanism to capture our intuition that perturbed points at different locations should have different impact on the model performance. Extensive experiments on several benchmark datasets show that RAT consistently makes significant improvement on standard adversarial training (SAT), and exhibits better robust generalization.
PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models
What should a malicious user write next to fool a detection model? Identifying malicious users is critical to ensure the safety and integrity of internet platforms. Several deep learning-based detection models have been created. However, malicious users can evade deep detection models by manipulating their behavior, rendering these models of little use. The vulnerability of such deep detection models against adversarial attacks is unknown. Here we create a novel adversarial attack model against deep user sequence embedding based classification models, which use the sequence of user posts to generate user embeddings and detect malicious users. In the attack, the adversary generates a new post to fool the classifier. We propose a novel end-to-end Personalized Text Generation Attack model, called PETGEN, that simultaneously reduces the efficacy of the detection model and generates posts that have several key desirable properties. Specifically, PETGEN generates posts that are personalized to the user's writing style, have knowledge about a given target context, are aware of the user's historical posts on the target context, and encapsulate the user's recent topical interests. We conduct extensive experiments on two real-world datasets (Yelp and Wikipedia, both with ground-truth of malicious users) to show that PETGEN significantly reduces the performance of popular deep user sequence embedding-based classification models. PETGEN outperforms five attack baselines in terms of text quality and attack efficacy in both white-box and black-box classifier settings. Overall, this work paves the path towards the next generation of adversary-aware sequence classification models.
Pathway to Secure and Trustworthy ZSM for LLMs: Attacks, Defense, and Opportunities
Recently, large language models (LLMs) have been gaining a lot of interest due to their adaptability and extensibility in emerging applications, including communication networks. It is anticipated that ZSM networks will be able to support LLMs as a service, as they provide ultra reliable low-latency communications and closed loop massive connectivity. However, LLMs are vulnerable to data and model privacy issues that affect the trustworthiness of LLMs to be deployed for user-based services. In this paper, we explore the security vulnerabilities associated with fine-tuning LLMs in ZSM networks, in particular the membership inference attack. We define the characteristics of an attack network that can perform a membership inference attack if the attacker has access to the fine-tuned model for the downstream task. We show that the membership inference attacks are effective for any downstream task, which can lead to a personal data breach when using LLM as a service. The experimental results show that the attack success rate of maximum 92% can be achieved on named entity recognition task. Based on the experimental analysis, we discuss possible defense mechanisms and present possible research directions to make the LLMs more trustworthy in the context of ZSM networks.
Backpropagation Path Search On Adversarial Transferability
Deep neural networks are vulnerable to adversarial examples, dictating the imperativeness to test the model's robustness before deployment. Transfer-based attackers craft adversarial examples against surrogate models and transfer them to victim models deployed in the black-box situation. To enhance the adversarial transferability, structure-based attackers adjust the backpropagation path to avoid the attack from overfitting the surrogate model. However, existing structure-based attackers fail to explore the convolution module in CNNs and modify the backpropagation graph heuristically, leading to limited effectiveness. In this paper, we propose backPropagation pAth Search (PAS), solving the aforementioned two problems. We first propose SkipConv to adjust the backpropagation path of convolution by structural reparameterization. To overcome the drawback of heuristically designed backpropagation paths, we further construct a DAG-based search space, utilize one-step approximation for path evaluation and employ Bayesian Optimization to search for the optimal path. We conduct comprehensive experiments in a wide range of transfer settings, showing that PAS improves the attack success rate by a huge margin for both normally trained and defense models.
A Mechanism for Detection of Gray Hole Attack in Mobile Ad Hoc Networks
Protecting the network layer from malicious attacks is an important and challenging security issue in mobile ad hoc networks (MANETs). In this paper, a security mechanism is proposed to defend against a cooperative gray hole attack on the well known AODV routing protocol in MANETs. A gray hole is a node that selectively drops and forwards data packets after it advertises itself as having the shortest path to the destination node in response to a route request message from a source node. The proposed mechanism does not apply any cryptographic primitives on the routing messages. Instead, it protects the network by detecting and reacting to malicious activities of any node. Simulation results show that the scheme has a significantly high detection rate with moderate network traffic overhead.
CGBA: Curvature-aware Geometric Black-box Attack
Decision-based black-box attacks often necessitate a large number of queries to craft an adversarial example. Moreover, decision-based attacks based on querying boundary points in the estimated normal vector direction often suffer from inefficiency and convergence issues. In this paper, we propose a novel query-efficient curvature-aware geometric decision-based black-box attack (CGBA) that conducts boundary search along a semicircular path on a restricted 2D plane to ensure finding a boundary point successfully irrespective of the boundary curvature. While the proposed CGBA attack can work effectively for an arbitrary decision boundary, it is particularly efficient in exploiting the low curvature to craft high-quality adversarial examples, which is widely seen and experimentally verified in commonly used classifiers under non-targeted attacks. In contrast, the decision boundaries often exhibit higher curvature under targeted attacks. Thus, we develop a new query-efficient variant, CGBA-H, that is adapted for the targeted attack. In addition, we further design an algorithm to obtain a better initial boundary point at the expense of some extra queries, which considerably enhances the performance of the targeted attack. Extensive experiments are conducted to evaluate the performance of our proposed methods against some well-known classifiers on the ImageNet and CIFAR10 datasets, demonstrating the superiority of CGBA and CGBA-H over state-of-the-art non-targeted and targeted attacks, respectively. The source code is available at https://github.com/Farhamdur/CGBA.
Crown Jewels Analysis using Reinforcement Learning with Attack Graphs
Cyber attacks pose existential threats to nations and enterprises. Current practice favors piece-wise analysis using threat-models in the stead of rigorous cyber terrain analysis and intelligence preparation of the battlefield. Automated penetration testing using reinforcement learning offers a new and promising approach for developing methodologies that are driven by network structure and cyber terrain, that can be later interpreted in terms of threat-models, but that are principally network-driven analyses. This paper presents a novel method for crown jewel analysis termed CJA-RL that uses reinforcement learning to identify key terrain and avenues of approach for exploiting crown jewels. In our experiment, CJA-RL identified ideal entry points, choke points, and pivots for exploiting a network with multiple crown jewels, exemplifying how CJA-RL and reinforcement learning for penetration testing generally can benefit computer network operations workflows.
Detection of Cooperative Black Hole Attack in Wireless Ad Hoc Networks
A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms, absence of centralized monitoring points, and lack of clear lines of defense. Protecting the network layer of a MANET from malicious attacks is an important and challenging security issue, since most of the routing protocols for MANETs are vulnerable to various types of attacks. Ad hoc on-demand distance vector routing (AODV) is a very popular routing algorithm. However, it is vulnerable to the well-known black hole attack, where a malicious node falsely advertises good paths to a destination node during the route discovery process but drops all packets in the data forwarding phase. This attack becomes more severe when a group of malicious nodes cooperate each other. The proposed mechanism does not apply any cryptographic primitives on the routing messages. Instead, it protects the network by detecting and reacting to malicious activities of the nodes. Simulation results show that the scheme has a significantly high detection rate with moderate network traffic overhead and computation overhead in the nodes.
A Mechanism for Detection of Cooperative Black Hole Attack in Mobile Ad Hoc Networks
A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms,absence of centralized monitoring points, and lack of clear lines of defense. Most of the routing protocols for MANETs are thus vulnerable to various types of attacks. Ad hoc on-demand distance vector routing (AODV) is a very popular routing algorithm. However, it is vulnerable to the well-known black hole attack, where a malicious node falsely advertises good paths to a destination node during the route discovery process. This attack becomes more sever when a group of malicious nodes cooperate each other. In this paper, a defense mechanism is presented against a coordinated attack by multiple black hole nodes in a MANET. The simulation carried out on the proposed scheme has produced results that demonstrate the effectiveness of the mechanism in detection of the attack while maintaining a reasonable level of throughput in the network.
Eradicating the Unseen: Detecting, Exploiting, and Remediating a Path Traversal Vulnerability across GitHub
Vulnerabilities in open-source software can cause cascading effects in the modern digital ecosystem. It is especially worrying if these vulnerabilities repeat across many projects, as once the adversaries find one of them, they can scale up the attack very easily. Unfortunately, since developers frequently reuse code from their own or external code resources, some nearly identical vulnerabilities exist across many open-source projects. We conducted a study to examine the prevalence of a particular vulnerable code pattern that enables path traversal attacks (CWE-22) across open-source GitHub projects. To handle this study at the GitHub scale, we developed an automated pipeline that scans GitHub for the targeted vulnerable pattern, confirms the vulnerability by first running a static analysis and then exploiting the vulnerability in the context of the studied project, assesses its impact by calculating the CVSS score, generates a patch using GPT-4, and reports the vulnerability to the maintainers. Using our pipeline, we identified 1,756 vulnerable open-source projects, some of which are very influential. For many of the affected projects, the vulnerability is critical (CVSS score higher than 9.0), as it can be exploited remotely without any privileges and critically impact the confidentiality and availability of the system. We have responsibly disclosed the vulnerability to the maintainers, and 14\% of the reported vulnerabilities have been remediated. We also investigated the root causes of the vulnerable code pattern and assessed the side effects of the large number of copies of this vulnerable pattern that seem to have poisoned several popular LLMs. Our study highlights the urgent need to help secure the open-source ecosystem by leveraging scalable automated vulnerability management solutions and raising awareness among developers.
ACSE-Eval: Can LLMs threat model real-world cloud infrastructure?
While Large Language Models have shown promise in cybersecurity applications, their effectiveness in identifying security threats within cloud deployments remains unexplored. This paper introduces AWS Cloud Security Engineering Eval, a novel dataset for evaluating LLMs cloud security threat modeling capabilities. ACSE-Eval contains 100 production grade AWS deployment scenarios, each featuring detailed architectural specifications, Infrastructure as Code implementations, documented security vulnerabilities, and associated threat modeling parameters. Our dataset enables systemic assessment of LLMs abilities to identify security risks, analyze attack vectors, and propose mitigation strategies in cloud environments. Our evaluations on ACSE-Eval demonstrate that GPT 4.1 and Gemini 2.5 Pro excel at threat identification, with Gemini 2.5 Pro performing optimally in 0-shot scenarios and GPT 4.1 showing superior results in few-shot settings. While GPT 4.1 maintains a slight overall performance advantage, Claude 3.7 Sonnet generates the most semantically sophisticated threat models but struggles with threat categorization and generalization. To promote reproducibility and advance research in automated cybersecurity threat analysis, we open-source our dataset, evaluation metrics, and methodologies.
AccEar: Accelerometer Acoustic Eavesdropping with Unconstrained Vocabulary
With the increasing popularity of voice-based applications, acoustic eavesdropping has become a serious threat to users' privacy. While on smartphones the access to microphones needs an explicit user permission, acoustic eavesdropping attacks can rely on motion sensors (such as accelerometer and gyroscope), which access is unrestricted. However, previous instances of such attacks can only recognize a limited set of pre-trained words or phrases. In this paper, we present AccEar, an accelerometerbased acoustic eavesdropping attack that can reconstruct any audio played on the smartphone's loudspeaker with unconstrained vocabulary. We show that an attacker can employ a conditional Generative Adversarial Network (cGAN) to reconstruct highfidelity audio from low-frequency accelerometer signals. The presented cGAN model learns to recreate high-frequency components of the user's voice from low-frequency accelerometer signals through spectrogram enhancement. We assess the feasibility and effectiveness of AccEar attack in a thorough set of experiments using audio from 16 public personalities. As shown by the results in both objective and subjective evaluations, AccEar successfully reconstructs user speeches from accelerometer signals in different scenarios including varying sampling rate, audio volume, device model, etc.
Towards Understanding the Fragility of Multilingual LLMs against Fine-Tuning Attacks
Recent advancements in Large Language Models (LLMs) have sparked widespread concerns about their safety. Recent work demonstrates that safety alignment of LLMs can be easily removed by fine-tuning with a few adversarially chosen instruction-following examples, i.e., fine-tuning attacks. We take a further step to understand fine-tuning attacks in multilingual LLMs. We first discover cross-lingual generalization of fine-tuning attacks: using a few adversarially chosen instruction-following examples in one language, multilingual LLMs can also be easily compromised (e.g., multilingual LLMs fail to refuse harmful prompts in other languages). Motivated by this finding, we hypothesize that safety-related information is language-agnostic and propose a new method termed Safety Information Localization (SIL) to identify the safety-related information in the model parameter space. Through SIL, we validate this hypothesis and find that only changing 20% of weight parameters in fine-tuning attacks can break safety alignment across all languages. Furthermore, we provide evidence to the alternative pathways hypothesis for why freezing safety-related parameters does not prevent fine-tuning attacks, and we demonstrate that our attack vector can still jailbreak LLMs adapted to new languages.
Watch, Listen, Understand, Mislead: Tri-modal Adversarial Attacks on Short Videos for Content Appropriateness Evaluation
Multimodal Large Language Models (MLLMs) are increasingly used for content moderation, yet their robustness in short-form video contexts remains underexplored. Current safety evaluations often rely on unimodal attacks, failing to address combined attack vulnerabilities. In this paper, we introduce a comprehensive framework for evaluating the tri-modal safety of MLLMs. First, we present the Short-Video Multimodal Adversarial (SVMA) dataset, comprising diverse short-form videos with human-guided synthetic adversarial attacks. Second, we propose ChimeraBreak, a novel tri-modal attack strategy that simultaneously challenges visual, auditory, and semantic reasoning pathways. Extensive experiments on state-of-the-art MLLMs reveal significant vulnerabilities with high Attack Success Rates (ASR). Our findings uncover distinct failure modes, showing model biases toward misclassifying benign or policy-violating content. We assess results using LLM-as-a-judge, demonstrating attack reasoning efficacy. Our dataset and findings provide crucial insights for developing more robust and safe MLLMs.
Using Cyber Terrain in Reinforcement Learning for Penetration Testing
Reinforcement learning (RL) has been applied to attack graphs for penetration testing, however, trained agents do not reflect reality because the attack graphs lack operational nuances typically captured within the intelligence preparation of the battlefield (IPB) that include notions of (cyber) terrain. In particular, current practice constructs attack graphs exclusively using the Common Vulnerability Scoring System (CVSS) and its components. We present methods for constructing attack graphs using notions from IPB on cyber terrain analysis of obstacles, avenues of approach, key terrain, observation and fields of fire, and cover and concealment. We demonstrate our methods on an example where firewalls are treated as obstacles and represented in (1) the reward space and (2) the state dynamics. We show that terrain analysis can be used to bring realism to attack graphs for RL.
GID: Graph-based Intrusion Detection on Massive Process Traces for Enterprise Security Systems
Intrusion detection system (IDS) is an important part of enterprise security system architecture. In particular, anomaly-based IDS has been widely applied to detect abnormal process behaviors that deviate from the majority. However, such abnormal behavior usually consists of a series of low-level heterogeneous events. The gap between the low-level events and the high-level abnormal behaviors makes it hard to infer which single events are related to the real abnormal activities, especially considering that there are massive "noisy" low-level events happening in between. Hence, the existing work that focus on detecting single entities/events can hardly achieve high detection accuracy. Different from previous work, we design and implement GID, an efficient graph-based intrusion detection technique that can identify abnormal event sequences from a massive heterogeneous process traces with high accuracy. GID first builds a compact graph structure to capture the interactions between different system entities. The suspiciousness or anomaly score of process paths is then measured by leveraging random walk technique to the constructed acyclic directed graph. To eliminate the score bias from the path length, the Box-Cox power transformation based approach is introduced to normalize the anomaly scores so that the scores of paths of different lengths have the same distribution. The efficiency of suspicious path discovery is further improved by the proposed optimization scheme. We fully implement our GID algorithm and deploy it into a real enterprise security system, and it greatly helps detect the advanced threats, and optimize the incident response. Executing GID on system monitoring datasets showing that GID is efficient (about 2 million records per minute) and accurate (higher than 80% in terms of detection rate).
A Novel Bifurcation Method for Observation Perturbation Attacks on Reinforcement Learning Agents: Load Altering Attacks on a Cyber Physical Power System
Components of cyber physical systems, which affect real-world processes, are often exposed to the internet. Replacing conventional control methods with Deep Reinforcement Learning (DRL) in energy systems is an active area of research, as these systems become increasingly complex with the advent of renewable energy sources and the desire to improve their efficiency. Artificial Neural Networks (ANN) are vulnerable to specific perturbations of their inputs or features, called adversarial examples. These perturbations are difficult to detect when properly regularized, but have significant effects on the ANN's output. Because DRL uses ANN to map optimal actions to observations, they are similarly vulnerable to adversarial examples. This work proposes a novel attack technique for continuous control using Group Difference Logits loss with a bifurcation layer. By combining aspects of targeted and untargeted attacks, the attack significantly increases the impact compared to an untargeted attack, with drastically smaller distortions than an optimally targeted attack. We demonstrate the impacts of powerful gradient-based attacks in a realistic smart energy environment, show how the impacts change with different DRL agents and training procedures, and use statistical and time-series analysis to evaluate attacks' stealth. The results show that adversarial attacks can have significant impacts on DRL controllers, and constraining an attack's perturbations makes it difficult to detect. However, certain DRL architectures are far more robust, and robust training methods can further reduce the impact.
Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report
To understand and identify the unprecedented risks posed by rapidly advancing artificial intelligence (AI) models, this report presents a comprehensive assessment of their frontier risks. Drawing on the E-T-C analysis (deployment environment, threat source, enabling capability) from the Frontier AI Risk Management Framework (v1.0) (SafeWork-F1-Framework), we identify critical risks in seven areas: cyber offense, biological and chemical risks, persuasion and manipulation, uncontrolled autonomous AI R\&D, strategic deception and scheming, self-replication, and collusion. Guided by the "AI-45^circ Law," we evaluate these risks using "red lines" (intolerable thresholds) and "yellow lines" (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and controlled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines. Specifically, no evaluated models cross the yellow line for cyber offense or uncontrolled AI R\&D risks. For self-replication, and strategic deception and scheming, most models remain in the green zone, except for certain reasoning models in the yellow zone. In persuasion and manipulation, most models are in the yellow zone due to their effective influence on humans. For biological and chemical risks, we are unable to rule out the possibility of most models residing in the yellow zone, although detailed threat modeling and in-depth assessment are required to make further claims. This work reflects our current understanding of AI frontier risks and urges collective action to mitigate these challenges.
Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment
To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Warning: This paper contains examples of harmful language, and reader discretion is recommended. The increasing open release of powerful large language models (LLMs) has facilitated the development of downstream applications by reducing the essential cost of data annotation and computation. To ensure AI safety, extensive safety-alignment measures have been conducted to armor these models against malicious use (primarily hard prompt attack). However, beneath the seemingly resilient facade of the armor, there might lurk a shadow. By simply tuning on 100 malicious examples with 1 GPU hour, these safely aligned LLMs can be easily subverted to generate harmful content. Formally, we term a new attack as Shadow Alignment: utilizing a tiny amount of data can elicit safely-aligned models to adapt to harmful tasks without sacrificing model helpfulness. Remarkably, the subverted models retain their capability to respond appropriately to regular inquiries. Experiments across 8 models released by 5 different organizations (LLaMa-2, Falcon, InternLM, BaiChuan2, Vicuna) demonstrate the effectiveness of shadow alignment attack. Besides, the single-turn English-only attack successfully transfers to multi-turn dialogue and other languages. This study serves as a clarion call for a collective effort to overhaul and fortify the safety of open-source LLMs against malicious attackers.
Adversarial Cheap Talk
Adversarial attacks in reinforcement learning (RL) often assume highly-privileged access to the victim's parameters, environment, or data. Instead, this paper proposes a novel adversarial setting called a Cheap Talk MDP in which an Adversary can merely append deterministic messages to the Victim's observation, resulting in a minimal range of influence. The Adversary cannot occlude ground truth, influence underlying environment dynamics or reward signals, introduce non-stationarity, add stochasticity, see the Victim's actions, or access their parameters. Additionally, we present a simple meta-learning algorithm called Adversarial Cheap Talk (ACT) to train Adversaries in this setting. We demonstrate that an Adversary trained with ACT still significantly influences the Victim's training and testing performance, despite the highly constrained setting. Affecting train-time performance reveals a new attack vector and provides insight into the success and failure modes of existing RL algorithms. More specifically, we show that an ACT Adversary is capable of harming performance by interfering with the learner's function approximation, or instead helping the Victim's performance by outputting useful features. Finally, we show that an ACT Adversary can manipulate messages during train-time to directly and arbitrarily control the Victim at test-time. Project video and code are available at https://sites.google.com/view/adversarial-cheap-talk
A Multi-Path Certification Protocol for Mobile Ad Hoc Networks
A mobile ad hoc network (MANET) is a collection of autonomous nodes that communicate with each other by forming a multi-hop radio network and maintaining connections in a decentralized manner. Security remains a major challenge for these networks due to their features of open medium, dynamically changing topologies, reliance on cooperative algorithms, absence of centralized monitoring points, and lack of clear lines of defense. Most of the routing protocols for MANETs are thus vulnerable to various types of attacks. For security, these protocols are highly dependent on cryptographic key exchange operations. This paper presents a multi-path certification protocol for efficient and reliable key exchange among the nodes in a MANET. Simulation results have shown the effectiveness and efficiency of the protocol.
Unnoticeable Backdoor Attacks on Graph Neural Networks
Graph Neural Networks (GNNs) have achieved promising results in various tasks such as node classification and graph classification. Recent studies find that GNNs are vulnerable to adversarial attacks. However, effective backdoor attacks on graphs are still an open problem. In particular, backdoor attack poisons the graph by attaching triggers and the target class label to a set of nodes in the training graph. The backdoored GNNs trained on the poisoned graph will then be misled to predict test nodes to target class once attached with triggers. Though there are some initial efforts in graph backdoor attacks, our empirical analysis shows that they may require a large attack budget for effective backdoor attacks and the injected triggers can be easily detected and pruned. Therefore, in this paper, we study a novel problem of unnoticeable graph backdoor attacks with limited attack budget. To fully utilize the attack budget, we propose to deliberately select the nodes to inject triggers and target class labels in the poisoning phase. An adaptive trigger generator is deployed to obtain effective triggers that are difficult to be noticed. Extensive experiments on real-world datasets against various defense strategies demonstrate the effectiveness of our proposed method in conducting effective unnoticeable backdoor attacks.
Towards Practical Deployment-Stage Backdoor Attack on Deep Neural Networks
One major goal of the AI security community is to securely and reliably produce and deploy deep learning models for real-world applications. To this end, data poisoning based backdoor attacks on deep neural networks (DNNs) in the production stage (or training stage) and corresponding defenses are extensively explored in recent years. Ironically, backdoor attacks in the deployment stage, which can often happen in unprofessional users' devices and are thus arguably far more threatening in real-world scenarios, draw much less attention of the community. We attribute this imbalance of vigilance to the weak practicality of existing deployment-stage backdoor attack algorithms and the insufficiency of real-world attack demonstrations. To fill the blank, in this work, we study the realistic threat of deployment-stage backdoor attacks on DNNs. We base our study on a commonly used deployment-stage attack paradigm -- adversarial weight attack, where adversaries selectively modify model weights to embed backdoor into deployed DNNs. To approach realistic practicality, we propose the first gray-box and physically realizable weights attack algorithm for backdoor injection, namely subnet replacement attack (SRA), which only requires architecture information of the victim model and can support physical triggers in the real world. Extensive experimental simulations and system-level real-world attack demonstrations are conducted. Our results not only suggest the effectiveness and practicality of the proposed attack algorithm, but also reveal the practical risk of a novel type of computer virus that may widely spread and stealthily inject backdoor into DNN models in user devices. By our study, we call for more attention to the vulnerability of DNNs in the deployment stage.
Defending Against Patch-based Backdoor Attacks on Self-Supervised Learning
Recently, self-supervised learning (SSL) was shown to be vulnerable to patch-based data poisoning backdoor attacks. It was shown that an adversary can poison a small part of the unlabeled data so that when a victim trains an SSL model on it, the final model will have a backdoor that the adversary can exploit. This work aims to defend self-supervised learning against such attacks. We use a three-step defense pipeline, where we first train a model on the poisoned data. In the second step, our proposed defense algorithm (PatchSearch) uses the trained model to search the training data for poisoned samples and removes them from the training set. In the third step, a final model is trained on the cleaned-up training set. Our results show that PatchSearch is an effective defense. As an example, it improves a model's accuracy on images containing the trigger from 38.2% to 63.7% which is very close to the clean model's accuracy, 64.6%. Moreover, we show that PatchSearch outperforms baselines and state-of-the-art defense approaches including those using additional clean, trusted data. Our code is available at https://github.com/UCDvision/PatchSearch
Using AI to Hack IA: A New Stealthy Spyware Against Voice Assistance Functions in Smart Phones
Intelligent Personal Assistant (IA), also known as Voice Assistant (VA), has become increasingly popular as a human-computer interaction mechanism. Most smartphones have built-in voice assistants that are granted high privilege, which is able to access system resources and private information. Thus, once the voice assistants are exploited by attackers, they become the stepping stones for the attackers to hack into the smartphones. Prior work shows that the voice assistant can be activated by inter-component communication mechanism, through an official Android API. However, this attack method is only effective on Google Assistant, which is the official voice assistant developed by Google. Voice assistants in other operating systems, even custom Android systems, cannot be activated by this mechanism. Prior work also shows that the attacking voice commands can be inaudible, but it requires additional instruments to launch the attack, making it unrealistic for real-world attack. We propose an attacking framework, which records the activation voice of the user, and launch the attack by playing the activation voice and attack commands via the built-in speaker. An intelligent stealthy module is designed to decide on the suitable occasion to launch the attack, preventing the attack being noticed by the user. We demonstrate proof-of-concept attacks on Google Assistant, showing the feasibility and stealthiness of the proposed attack scheme. We suggest to revise the activation logic of voice assistant to be resilient to the speaker based attack.
PoisonArena: Uncovering Competing Poisoning Attacks in Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) systems, widely used to improve the factual grounding of large language models (LLMs), are increasingly vulnerable to poisoning attacks, where adversaries inject manipulated content into the retriever's corpus. While prior research has predominantly focused on single-attacker settings, real-world scenarios often involve multiple, competing attackers with conflicting objectives. In this work, we introduce PoisonArena, the first benchmark to systematically study and evaluate competing poisoning attacks in RAG. We formalize the multi-attacker threat model, where attackers vie to control the answer to the same query using mutually exclusive misinformation. PoisonArena leverages the Bradley-Terry model to quantify each method's competitive effectiveness in such adversarial environments. Through extensive experiments on the Natural Questions and MS MARCO datasets, we demonstrate that many attack strategies successful in isolation fail under competitive pressure. Our findings highlight the limitations of conventional evaluation metrics like Attack Success Rate (ASR) and F1 score and underscore the need for competitive evaluation to assess real-world attack robustness. PoisonArena provides a standardized framework to benchmark and develop future attack and defense strategies under more realistic, multi-adversary conditions.
Secure and Privacy-Preserving Authentication Protocols for Wireless Mesh Networks
Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation wireless networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to service providers. As WMNs become an increasingly popular replacement technology for last-mile connectivity to the home networking, community and neighborhood networking, it is imperative to design efficient and secure communication protocols for these networks. However, several vulnerabilities exist in currently existing protocols for WMNs. These security loopholes can be exploited by potential attackers to launch attack on WMNs. The absence of a central point of administration makes securing WMNs even more challenging. The broadcast nature of transmission and the dependency on the intermediate nodes for multi-hop communications lead to several security vulnerabilities in WMNs. The attacks can be external as well as internal in nature. External attacks are launched by intruders who are not authorized users of the network. For example, an intruding node may eavesdrop on the packets and replay those packets at a later point of time to gain access to the network resources. On the other hand, the internal attacks are launched by the nodes that are part of the WMN. On example of such attack is an intermediate node dropping packets which it was supposed to forward. This chapter presents a comprehensive discussion on the current authentication and privacy protection schemes for WMN. In addition, it proposes a novel security protocol for node authentication and message confidentiality and an anonymization scheme for privacy protection of users in WMNs.
OCCULT: Evaluating Large Language Models for Offensive Cyber Operation Capabilities
The prospect of artificial intelligence (AI) competing in the adversarial landscape of cyber security has long been considered one of the most impactful, challenging, and potentially dangerous applications of AI. Here, we demonstrate a new approach to assessing AI's progress towards enabling and scaling real-world offensive cyber operations (OCO) tactics in use by modern threat actors. We detail OCCULT, a lightweight operational evaluation framework that allows cyber security experts to contribute to rigorous and repeatable measurement of the plausible cyber security risks associated with any given large language model (LLM) or AI employed for OCO. We also prototype and evaluate three very different OCO benchmarks for LLMs that demonstrate our approach and serve as examples for building benchmarks under the OCCULT framework. Finally, we provide preliminary evaluation results to demonstrate how this framework allows us to move beyond traditional all-or-nothing tests, such as those crafted from educational exercises like capture-the-flag environments, to contextualize our indicators and warnings in true cyber threat scenarios that present risks to modern infrastructure. We find that there has been significant recent advancement in the risks of AI being used to scale realistic cyber threats. For the first time, we find a model (DeepSeek-R1) is capable of correctly answering over 90% of challenging offensive cyber knowledge tests in our Threat Actor Competency Test for LLMs (TACTL) multiple-choice benchmarks. We also show how Meta's Llama and Mistral's Mixtral model families show marked performance improvements over earlier models against our benchmarks where LLMs act as offensive agents in MITRE's high-fidelity offensive and defensive cyber operations simulation environment, CyberLayer.
A Streamlit-based Artificial Intelligence Trust Platform for Next-Generation Wireless Networks
With the rapid development and integration of artificial intelligence (AI) methods in next-generation networks (NextG), AI algorithms have provided significant advantages for NextG in terms of frequency spectrum usage, bandwidth, latency, and security. A key feature of NextG is the integration of AI, i.e., self-learning architecture based on self-supervised algorithms, to improve the performance of the network. A secure AI-powered structure is also expected to protect NextG networks against cyber-attacks. However, AI itself may be attacked, i.e., model poisoning targeted by attackers, and it results in cybersecurity violations. This paper proposes an AI trust platform using Streamlit for NextG networks that allows researchers to evaluate, defend, certify, and verify their AI models and applications against adversarial threats of evasion, poisoning, extraction, and interference.
SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues
Malicious attackers can exploit large language models (LLMs) by engaging them in multi-turn dialogues to achieve harmful objectives, posing significant safety risks to society. To address this challenge, we propose a novel defense mechanism: SafeTy Reasoning Elicitation Alignment for Multi-Turn Dialogues (STREAM). STREAM defends LLMs against multi-turn attacks while preserving their functional capabilities. Our approach involves constructing a human-annotated dataset, the Safety Reasoning Multi-turn Dialogues dataset, which is used to fine-tune a plug-and-play safety reasoning moderator. This model is designed to identify malicious intent hidden within multi-turn conversations and alert the target LLM of potential risks. We evaluate STREAM across multiple LLMs against prevalent multi-turn attack strategies. Experimental results demonstrate that our method significantly outperforms existing defense techniques, reducing the Attack Success Rate (ASR) by 51.2%, all while maintaining comparable LLM capability.
Network-Level Prompt and Trait Leakage in Local Research Agents
We show that Web and Research Agents (WRAs) -- language model-based systems that investigate complex topics on the Internet -- are vulnerable to inference attacks by passive network adversaries such as ISPs. These agents could be deployed locally by organizations and individuals for privacy, legal, or financial purposes. Unlike sporadic web browsing by humans, WRAs visit 70{-}140 domains with distinguishable timing correlations, enabling unique fingerprinting attacks. Specifically, we demonstrate a novel prompt and user trait leakage attack against WRAs that only leverages their network-level metadata (i.e., visited IP addresses and their timings). We start by building a new dataset of WRA traces based on user search queries and queries generated by synthetic personas. We define a behavioral metric (called OBELS) to comprehensively assess similarity between original and inferred prompts, showing that our attack recovers over 73% of the functional and domain knowledge of user prompts. Extending to a multi-session setting, we recover up to 19 of 32 latent traits with high accuracy. Our attack remains effective under partial observability and noisy conditions. Finally, we discuss mitigation strategies that constrain domain diversity or obfuscate traces, showing negligible utility impact while reducing attack effectiveness by an average of 29%.
Attacking Cooperative Multi-Agent Reinforcement Learning by Adversarial Minority Influence
This study probes the vulnerabilities of cooperative multi-agent reinforcement learning (c-MARL) under adversarial attacks, a critical determinant of c-MARL's worst-case performance prior to real-world implementation. Current observation-based attacks, constrained by white-box assumptions, overlook c-MARL's complex multi-agent interactions and cooperative objectives, resulting in impractical and limited attack capabilities. To address these shortcomes, we propose Adversarial Minority Influence (AMI), a practical and strong for c-MARL. AMI is a practical black-box attack and can be launched without knowing victim parameters. AMI is also strong by considering the complex multi-agent interaction and the cooperative goal of agents, enabling a single adversarial agent to unilaterally misleads majority victims to form targeted worst-case cooperation. This mirrors minority influence phenomena in social psychology. To achieve maximum deviation in victim policies under complex agent-wise interactions, our unilateral attack aims to characterize and maximize the impact of the adversary on the victims. This is achieved by adapting a unilateral agent-wise relation metric derived from mutual information, thereby mitigating the adverse effects of victim influence on the adversary. To lead the victims into a jointly detrimental scenario, our targeted attack deceives victims into a long-term, cooperatively harmful situation by guiding each victim towards a specific target, determined through a trial-and-error process executed by a reinforcement learning agent. Through AMI, we achieve the first successful attack against real-world robot swarms and effectively fool agents in simulated environments into collectively worst-case scenarios, including Starcraft II and Multi-agent Mujoco. The source code and demonstrations can be found at: https://github.com/DIG-Beihang/AMI.
MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents
Recent research has explored that LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions. Existing defenses against IPI have significant limitations: either require essential model training resources, lack effectiveness against sophisticated attacks, or harm the normal utilities. We present MELON (Masked re-Execution and TooL comparisON), a novel IPI defense. Our approach builds on the observation that under a successful attack, the agent's next action becomes less dependent on user tasks and more on malicious tasks. Following this, we design MELON to detect attacks by re-executing the agent's trajectory with a masked user prompt modified through a masking function. We identify an attack if the actions generated in the original and masked executions are similar. We also include three key designs to reduce the potential false positives and false negatives. Extensive evaluation on the IPI benchmark AgentDojo demonstrates that MELON outperforms SOTA defenses in both attack prevention and utility preservation. Moreover, we show that combining MELON with a SOTA prompt augmentation defense (denoted as MELON-Aug) further improves its performance. We also conduct a detailed ablation study to validate our key designs. Code is available at https://github.com/kaijiezhu11/MELON.
Membership Inference Attacks From First Principles
A membership inference attack allows an adversary to query a trained machine learning model to predict whether or not a particular example was contained in the model's training dataset. These attacks are currently evaluated using average-case "accuracy" metrics that fail to characterize whether the attack can confidently identify any members of the training set. We argue that attacks should instead be evaluated by computing their true-positive rate at low (e.g., <0.1%) false-positive rates, and find most prior attacks perform poorly when evaluated in this way. To address this we develop a Likelihood Ratio Attack (LiRA) that carefully combines multiple ideas from the literature. Our attack is 10x more powerful at low false-positive rates, and also strictly dominates prior attacks on existing metrics.
BountyBench: Dollar Impact of AI Agent Attackers and Defenders on Real-World Cybersecurity Systems
AI agents have the potential to significantly alter the cybersecurity landscape. To help us understand this change, we introduce the first framework to capture offensive and defensive cyber-capabilities in evolving real-world systems. Instantiating this framework with BountyBench, we set up 25 systems with complex, real-world codebases. To capture the vulnerability lifecycle, we define three task types: Detect (detecting a new vulnerability), Exploit (exploiting a specific vulnerability), and Patch (patching a specific vulnerability). For Detect, we construct a new success indicator, which is general across vulnerability types and provides localized evaluation. We manually set up the environment for each system, including installing packages, setting up server(s), and hydrating database(s). We add 40 bug bounties, which are vulnerabilities with monetary awards from \10 to 30,485, and cover 9 of the OWASP Top 10 Risks. To modulate task difficulty, we devise a new strategy based on information to guide detection, interpolating from identifying a zero day to exploiting a specific vulnerability. We evaluate 5 agents: Claude Code, OpenAI Codex CLI, and custom agents with GPT-4.1, Gemini 2.5 Pro Preview, and Claude 3.7 Sonnet Thinking. Given up to three attempts, the top-performing agents are Claude Code (5% on Detect, mapping to \1,350), Custom Agent with Claude 3.7 Sonnet Thinking (5% on Detect, mapping to 1,025; 67.5% on Exploit), and OpenAI Codex CLI (5% on Detect, mapping to \2,400; 90% on Patch, mapping to 14,422). OpenAI Codex CLI and Claude Code are more capable at defense, achieving higher Patch scores of 90% and 87.5%, compared to Exploit scores of 32.5% and 57.5% respectively; in contrast, the custom agents are relatively balanced between offense and defense, achieving Exploit scores of 40-67.5% and Patch scores of 45-60%.
Harmful Fine-tuning Attacks and Defenses for Large Language Models: A Survey
Recent research demonstrates that the nascent fine-tuning-as-a-service business model exposes serious safety concerns -- fine-tuning over a few harmful data uploaded by the users can compromise the safety alignment of the model. The attack, known as harmful fine-tuning, has raised a broad research interest among the community. However, as the attack is still new, we observe from our miserable submission experience that there are general misunderstandings within the research community. We in this paper aim to clear some common concerns for the attack setting, and formally establish the research problem. Specifically, we first present the threat model of the problem, and introduce the harmful fine-tuning attack and its variants. Then we systematically survey the existing literature on attacks/defenses/mechanical analysis of the problem. Finally, we outline future research directions that might contribute to the development of the field. Additionally, we present a list of questions of interest, which might be useful to refer to when reviewers in the peer review process question the realism of the experiment/attack/defense setting. A curated list of relevant papers is maintained and made accessible at: https://github.com/git-disl/awesome_LLM-harmful-fine-tuning-papers.
Dynamic Risk Assessments for Offensive Cybersecurity Agents
Foundation models are increasingly becoming better autonomous programmers, raising the prospect that they could also automate dangerous offensive cyber-operations. Current frontier model audits probe the cybersecurity risks of such agents, but most fail to account for the degrees of freedom available to adversaries in the real world. In particular, with strong verifiers and financial incentives, agents for offensive cybersecurity are amenable to iterative improvement by would-be adversaries. We argue that assessments should take into account an expanded threat model in the context of cybersecurity, emphasizing the varying degrees of freedom that an adversary may possess in stateful and non-stateful environments within a fixed compute budget. We show that even with a relatively small compute budget (8 H100 GPU Hours in our study), adversaries can improve an agent's cybersecurity capability on InterCode CTF by more than 40\% relative to the baseline -- without any external assistance. These results highlight the need to evaluate agents' cybersecurity risk in a dynamic manner, painting a more representative picture of risk.
Adaptive Attacks on Trusted Monitors Subvert AI Control Protocols
AI control protocols serve as a defense mechanism to stop untrusted LLM agents from causing harm in autonomous settings. Prior work treats this as a security problem, stress testing with exploits that use the deployment context to subtly complete harmful side tasks, such as backdoor insertion. In practice, most AI control protocols are fundamentally based on LLM monitors, which can become a central point of failure. We study adaptive attacks by an untrusted model that knows the protocol and the monitor model, which is plausible if the untrusted model was trained with a later knowledge cutoff or can search for this information autonomously. We instantiate a simple adaptive attack vector by which the attacker embeds publicly known or zero-shot prompt injections in the model outputs. Using this tactic, frontier models consistently evade diverse monitors and complete malicious tasks on two main AI control benchmarks. The attack works universally against current protocols that rely on a monitor. Furthermore, the recent Defer-to-Resample protocol even backfires, as its resampling amplifies the prompt injection and effectively reframes it as a best-of-n attack. In general, adaptive attacks on monitor models represent a major blind spot in current control protocols and should become a standard component of evaluations for future AI control mechanisms.
The Role of Deep Learning in Advancing Proactive Cybersecurity Measures for Smart Grid Networks: A Survey
As smart grids (SG) increasingly rely on advanced technologies like sensors and communication systems for efficient energy generation, distribution, and consumption, they become enticing targets for sophisticated cyberattacks. These evolving threats demand robust security measures to maintain the stability and resilience of modern energy systems. While extensive research has been conducted, a comprehensive exploration of proactive cyber defense strategies utilizing Deep Learning (DL) in {SG} remains scarce in the literature. This survey bridges this gap, studying the latest DL techniques for proactive cyber defense. The survey begins with an overview of related works and our distinct contributions, followed by an examination of SG infrastructure. Next, we classify various cyber defense techniques into reactive and proactive categories. A significant focus is placed on DL-enabled proactive defenses, where we provide a comprehensive taxonomy of DL approaches, highlighting their roles and relevance in the proactive security of SG. Subsequently, we analyze the most significant DL-based methods currently in use. Further, we explore Moving Target Defense, a proactive defense strategy, and its interactions with DL methodologies. We then provide an overview of benchmark datasets used in this domain to substantiate the discourse.{ This is followed by a critical discussion on their practical implications and broader impact on cybersecurity in Smart Grids.} The survey finally lists the challenges associated with deploying DL-based security systems within SG, followed by an outlook on future developments in this key field.
PRP: Propagating Universal Perturbations to Attack Large Language Model Guard-Rails
Large language models (LLMs) are typically aligned to be harmless to humans. Unfortunately, recent work has shown that such models are susceptible to automated jailbreak attacks that induce them to generate harmful content. More recent LLMs often incorporate an additional layer of defense, a Guard Model, which is a second LLM that is designed to check and moderate the output response of the primary LLM. Our key contribution is to show a novel attack strategy, PRP, that is successful against several open-source (e.g., Llama 2) and closed-source (e.g., GPT 3.5) implementations of Guard Models. PRP leverages a two step prefix-based attack that operates by (a) constructing a universal adversarial prefix for the Guard Model, and (b) propagating this prefix to the response. We find that this procedure is effective across multiple threat models, including ones in which the adversary has no access to the Guard Model at all. Our work suggests that further advances are required on defenses and Guard Models before they can be considered effective.
Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal
The rapid integration of Large Language Models (LLMs) across diverse sectors has marked a transformative era, showcasing remarkable capabilities in text generation and problem-solving tasks. However, this technological advancement is accompanied by significant risks and vulnerabilities. Despite ongoing security enhancements, attackers persistently exploit these weaknesses, casting doubts on the overall trustworthiness of LLMs. Compounding the issue, organisations are deploying LLM-integrated systems without understanding the severity of potential consequences. Existing studies by OWASP and MITRE offer a general overview of threats and vulnerabilities but lack a method for directly and succinctly analysing the risks for security practitioners, developers, and key decision-makers who are working with this novel technology. To address this gap, we propose a risk assessment process using tools like the OWASP risk rating methodology which is used for traditional systems. We conduct scenario analysis to identify potential threat agents and map the dependent system components against vulnerability factors. Through this analysis, we assess the likelihood of a cyberattack. Subsequently, we conduct a thorough impact analysis to derive a comprehensive threat matrix. We also map threats against three key stakeholder groups: developers engaged in model fine-tuning, application developers utilizing third-party APIs, and end users. The proposed threat matrix provides a holistic evaluation of LLM-related risks, enabling stakeholders to make informed decisions for effective mitigation strategies. Our outlined process serves as an actionable and comprehensive tool for security practitioners, offering insights for resource management and enhancing the overall system security.
Graph Vulnerability and Robustness: A Survey
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
Living-off-The-Land Reverse-Shell Detection by Informed Data Augmentation
The living-off-the-land (LOTL) offensive methodologies rely on the perpetration of malicious actions through chains of commands executed by legitimate applications, identifiable exclusively by analysis of system logs. LOTL techniques are well hidden inside the stream of events generated by common legitimate activities, moreover threat actors often camouflage activity through obfuscation, making them particularly difficult to detect without incurring in plenty of false alarms, even using machine learning. To improve the performance of models in such an harsh environment, we propose an augmentation framework to enhance and diversify the presence of LOTL malicious activity inside legitimate logs. Guided by threat intelligence, we generate a dataset by injecting attack templates known to be employed in the wild, further enriched by malleable patterns of legitimate activities to replicate the behavior of evasive threat actors. We conduct an extensive ablation study to understand which models better handle our augmented dataset, also manipulated to mimic the presence of model-agnostic evasion and poisoning attacks. Our results suggest that augmentation is needed to maintain high-predictive capabilities, robustness to attack is achieved through specific hardening techniques like adversarial training, and it is possible to deploy near-real-time models with almost-zero false alarms.
Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus
Phishing URL Detection: A Network-based Approach Robust to Evasion
Many cyberattacks start with disseminating phishing URLs. When clicking these phishing URLs, the victim's private information is leaked to the attacker. There have been proposed several machine learning methods to detect phishing URLs. However, it still remains under-explored to detect phishing URLs with evasion, i.e., phishing URLs that pretend to be benign by manipulating patterns. In many cases, the attacker i) reuses prepared phishing web pages because making a completely brand-new set costs non-trivial expenses, ii) prefers hosting companies that do not require private information and are cheaper than others, iii) prefers shared hosting for cost efficiency, and iv) sometimes uses benign domains, IP addresses, and URL string patterns to evade existing detection methods. Inspired by those behavioral characteristics, we present a network-based inference method to accurately detect phishing URLs camouflaged with legitimate patterns, i.e., robust to evasion. In the network approach, a phishing URL will be still identified as phishy even after evasion unless a majority of its neighbors in the network are evaded at the same time. Our method consistently shows better detection performance throughout various experimental tests than state-of-the-art methods, e.g., F-1 of 0.89 for our method vs. 0.84 for the best feature-based method.
Constrained Black-Box Attacks Against Multi-Agent Reinforcement Learning
Collaborative multi-agent reinforcement learning (c-MARL) has rapidly evolved, offering state-of-the-art algorithms for real-world applications, including sensitive domains. However, a key challenge to its widespread adoption is the lack of a thorough investigation into its vulnerabilities to adversarial attacks. Existing work predominantly focuses on training-time attacks or unrealistic scenarios, such as access to policy weights or the ability to train surrogate policies. In this paper, we investigate new vulnerabilities under more realistic and constrained conditions, assuming an adversary can only collect and perturb the observations of deployed agents. We also consider scenarios where the adversary has no access at all. We propose simple yet highly effective algorithms for generating adversarial perturbations designed to misalign how victim agents perceive their environment. Our approach is empirically validated on three benchmarks and 22 environments, demonstrating its effectiveness across diverse algorithms and environments. Furthermore, we show that our algorithm is sample-efficient, requiring only 1,000 samples compared to the millions needed by previous methods.
Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors
Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.
Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders
The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.
Uncovering Adversarial Risks of Test-Time Adaptation
Recently, test-time adaptation (TTA) has been proposed as a promising solution for addressing distribution shifts. It allows a base model to adapt to an unforeseen distribution during inference by leveraging the information from the batch of (unlabeled) test data. However, we uncover a novel security vulnerability of TTA based on the insight that predictions on benign samples can be impacted by malicious samples in the same batch. To exploit this vulnerability, we propose Distribution Invading Attack (DIA), which injects a small fraction of malicious data into the test batch. DIA causes models using TTA to misclassify benign and unperturbed test data, providing an entirely new capability for adversaries that is infeasible in canonical machine learning pipelines. Through comprehensive evaluations, we demonstrate the high effectiveness of our attack on multiple benchmarks across six TTA methods. In response, we investigate two countermeasures to robustify the existing insecure TTA implementations, following the principle of "security by design". Together, we hope our findings can make the community aware of the utility-security tradeoffs in deploying TTA and provide valuable insights for developing robust TTA approaches.
Sharpness-Aware Data Poisoning Attack
Recent research has highlighted the vulnerability of Deep Neural Networks (DNNs) against data poisoning attacks. These attacks aim to inject poisoning samples into the models' training dataset such that the trained models have inference failures. While previous studies have executed different types of attacks, one major challenge that greatly limits their effectiveness is the uncertainty of the re-training process after the injection of poisoning samples, including the re-training initialization or algorithms. To address this challenge, we propose a novel attack method called ''Sharpness-Aware Data Poisoning Attack (SAPA)''. In particular, it leverages the concept of DNNs' loss landscape sharpness to optimize the poisoning effect on the worst re-trained model. It helps enhance the preservation of the poisoning effect, regardless of the specific retraining procedure employed. Extensive experiments demonstrate that SAPA offers a general and principled strategy that significantly enhances various types of poisoning attacks.
Prompt Leakage effect and defense strategies for multi-turn LLM interactions
Prompt leakage poses a compelling security and privacy threat in LLM applications. Leakage of system prompts may compromise intellectual property, and act as adversarial reconnaissance for an attacker. A systematic evaluation of prompt leakage threats and mitigation strategies is lacking, especially for multi-turn LLM interactions. In this paper, we systematically investigate LLM vulnerabilities against prompt leakage for 10 closed- and open-source LLMs, across four domains. We design a unique threat model which leverages the LLM sycophancy effect and elevates the average attack success rate (ASR) from 17.7% to 86.2% in a multi-turn setting. Our standardized setup further allows dissecting leakage of specific prompt contents such as task instructions and knowledge documents. We measure the mitigation effect of 7 black-box defense strategies, along with finetuning an open-source model to defend against leakage attempts. We present different combination of defenses against our threat model, including a cost analysis. Our study highlights key takeaways for building secure LLM applications and provides directions for research in multi-turn LLM interactions
An In-kernel Forensics Engine for Investigating Evasive Attacks
Over the years, adversarial attempts against critical services have become more effective and sophisticated in launching low-profile attacks. This trend has always been concerning. However, an even more alarming trend is the increasing difficulty of collecting relevant evidence about these attacks and the involved threat actors in the early stages before significant damage is done. This issue puts defenders at a significant disadvantage, as it becomes exceedingly difficult to understand the attack details and formulate an appropriate response. Developing robust forensics tools to collect evidence about modern threats has never been easy. One main challenge is to provide a robust trade-off between achieving sufficient visibility while leaving minimal detectable artifacts. This paper will introduce LASE, an open-source Low-Artifact Forensics Engine to perform threat analysis and forensics in Windows operating system. LASE augments current analysis tools by providing detailed, system-wide monitoring capabilities while minimizing detectable artifacts. We designed multiple deployment scenarios, showing LASE's potential in evidence gathering and threat reasoning in a real-world setting. By making LASE and its execution trace data available to the broader research community, this work encourages further exploration in the field by reducing the engineering costs for threat analysis and building a longitudinal behavioral analysis catalog for diverse security domains.
Competition Report: Finding Universal Jailbreak Backdoors in Aligned LLMs
Large language models are aligned to be safe, preventing users from generating harmful content like misinformation or instructions for illegal activities. However, previous work has shown that the alignment process is vulnerable to poisoning attacks. Adversaries can manipulate the safety training data to inject backdoors that act like a universal sudo command: adding the backdoor string to any prompt enables harmful responses from models that, otherwise, behave safely. Our competition, co-located at IEEE SaTML 2024, challenged participants to find universal backdoors in several large language models. This report summarizes the key findings and promising ideas for future research.
SurrogatePrompt: Bypassing the Safety Filter of Text-To-Image Models via Substitution
Advanced text-to-image models such as DALL-E 2 and Midjourney possess the capacity to generate highly realistic images, raising significant concerns regarding the potential proliferation of unsafe content. This includes adult, violent, or deceptive imagery of political figures. Despite claims of rigorous safety mechanisms implemented in these models to restrict the generation of not-safe-for-work (NSFW) content, we successfully devise and exhibit the first prompt attacks on Midjourney, resulting in the production of abundant photorealistic NSFW images. We reveal the fundamental principles of such prompt attacks and suggest strategically substituting high-risk sections within a suspect prompt to evade closed-source safety measures. Our novel framework, SurrogatePrompt, systematically generates attack prompts, utilizing large language models, image-to-text, and image-to-image modules to automate attack prompt creation at scale. Evaluation results disclose an 88% success rate in bypassing Midjourney's proprietary safety filter with our attack prompts, leading to the generation of counterfeit images depicting political figures in violent scenarios. Both subjective and objective assessments validate that the images generated from our attack prompts present considerable safety hazards.
CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model
This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.
POIROT: Aligning Attack Behavior with Kernel Audit Records for Cyber Threat Hunting
Cyber threat intelligence (CTI) is being used to search for indicators of attacks that might have compromised an enterprise network for a long time without being discovered. To have a more effective analysis, CTI open standards have incorporated descriptive relationships showing how the indicators or observables are related to each other. However, these relationships are either completely overlooked in information gathering or not used for threat hunting. In this paper, we propose a system, called POIROT, which uses these correlations to uncover the steps of a successful attack campaign. We use kernel audits as a reliable source that covers all causal relations and information flows among system entities and model threat hunting as an inexact graph pattern matching problem. Our technical approach is based on a novel similarity metric which assesses an alignment between a query graph constructed out of CTI correlations and a provenance graph constructed out of kernel audit log records. We evaluate POIROT on publicly released real-world incident reports as well as reports of an adversarial engagement designed by DARPA, including ten distinct attack campaigns against different OS platforms such as Linux, FreeBSD, and Windows. Our evaluation results show that POIROT is capable of searching inside graphs containing millions of nodes and pinpoint the attacks in a few minutes, and the results serve to illustrate that CTI correlations could be used as robust and reliable artifacts for threat hunting.
InjecAgent: Benchmarking Indirect Prompt Injections in Tool-Integrated Large Language Model Agents
Recent work has embodied LLMs as agents, allowing them to access tools, perform actions, and interact with external content (e.g., emails or websites). However, external content introduces the risk of indirect prompt injection (IPI) attacks, where malicious instructions are embedded within the content processed by LLMs, aiming to manipulate these agents into executing detrimental actions against users. Given the potentially severe consequences of such attacks, establishing benchmarks to assess and mitigate these risks is imperative. In this work, we introduce InjecAgent, a benchmark designed to assess the vulnerability of tool-integrated LLM agents to IPI attacks. InjecAgent comprises 1,054 test cases covering 17 different user tools and 62 attacker tools. We categorize attack intentions into two primary types: direct harm to users and exfiltration of private data. We evaluate 30 different LLM agents and show that agents are vulnerable to IPI attacks, with ReAct-prompted GPT-4 vulnerable to attacks 24% of the time. Further investigation into an enhanced setting, where the attacker instructions are reinforced with a hacking prompt, shows additional increases in success rates, nearly doubling the attack success rate on the ReAct-prompted GPT-4. Our findings raise questions about the widespread deployment of LLM Agents. Our benchmark is available at https://github.com/uiuc-kang-lab/InjecAgent.
Servant, Stalker, Predator: How An Honest, Helpful, And Harmless (3H) Agent Unlocks Adversarial Skills
This paper identifies and analyzes a novel vulnerability class in Model Context Protocol (MCP) based agent systems. The attack chain describes and demonstrates how benign, individually authorized tasks can be orchestrated to produce harmful emergent behaviors. Through systematic analysis using the MITRE ATLAS framework, we demonstrate how 95 agents tested with access to multiple services-including browser automation, financial analysis, location tracking, and code deployment-can chain legitimate operations into sophisticated attack sequences that extend beyond the security boundaries of any individual service. These red team exercises survey whether current MCP architectures lack cross-domain security measures necessary to detect or prevent a large category of compositional attacks. We present empirical evidence of specific attack chains that achieve targeted harm through service orchestration, including data exfiltration, financial manipulation, and infrastructure compromise. These findings reveal that the fundamental security assumption of service isolation fails when agents can coordinate actions across multiple domains, creating an exponential attack surface that grows with each additional capability. This research provides a barebones experimental framework that evaluate not whether agents can complete MCP benchmark tasks, but what happens when they complete them too well and optimize across multiple services in ways that violate human expectations and safety constraints. We propose three concrete experimental directions using the existing MCP benchmark suite.
RED QUEEN: Safeguarding Large Language Models against Concealed Multi-Turn Jailbreaking
The rapid progress of Large Language Models (LLMs) has opened up new opportunities across various domains and applications; yet it also presents challenges related to potential misuse. To mitigate such risks, red teaming has been employed as a proactive security measure to probe language models for harmful outputs via jailbreak attacks. However, current jailbreak attack approaches are single-turn with explicit malicious queries that do not fully capture the complexity of real-world interactions. In reality, users can engage in multi-turn interactions with LLM-based chat assistants, allowing them to conceal their true intentions in a more covert manner. To bridge this gap, we, first, propose a new jailbreak approach, RED QUEEN ATTACK. This method constructs a multi-turn scenario, concealing the malicious intent under the guise of preventing harm. We craft 40 scenarios that vary in turns and select 14 harmful categories to generate 56k multi-turn attack data points. We conduct comprehensive experiments on the RED QUEEN ATTACK with four representative LLM families of different sizes. Our experiments reveal that all LLMs are vulnerable to RED QUEEN ATTACK, reaching 87.62% attack success rate on GPT-4o and 75.4% on Llama3-70B. Further analysis reveals that larger models are more susceptible to the RED QUEEN ATTACK, with multi-turn structures and concealment strategies contributing to its success. To prioritize safety, we introduce a straightforward mitigation strategy called RED QUEEN GUARD, which aligns LLMs to effectively counter adversarial attacks. This approach reduces the attack success rate to below 1% while maintaining the model's performance across standard benchmarks. Full implementation and dataset are publicly accessible at https://github.com/kriti-hippo/red_queen.
Designing Network Design Strategies Through Gradient Path Analysis
Designing a high-efficiency and high-quality expressive network architecture has always been the most important research topic in the field of deep learning. Most of today's network design strategies focus on how to integrate features extracted from different layers, and how to design computing units to effectively extract these features, thereby enhancing the expressiveness of the network. This paper proposes a new network design strategy, i.e., to design the network architecture based on gradient path analysis. On the whole, most of today's mainstream network design strategies are based on feed forward path, that is, the network architecture is designed based on the data path. In this paper, we hope to enhance the expressive ability of the trained model by improving the network learning ability. Due to the mechanism driving the network parameter learning is the backward propagation algorithm, we design network design strategies based on back propagation path. We propose the gradient path design strategies for the layer-level, the stage-level, and the network-level, and the design strategies are proved to be superior and feasible from theoretical analysis and experiments.
Taint Analysis for Graph APIs Focusing on Broken Access Control
We present the first systematic approach to static and dynamic taint analysis for Graph APIs focusing on broken access control. The approach comprises the following. We taint nodes in the Graph API if they represent data requiring specific privileges in order to be retrieved or manipulated, and identify API calls which are related to sources and sinks. Then, we statically analyze whether tainted information flow between API source and sink calls occurs. To this end, we model the API calls using graph transformation rules. We subsequently use critical pair analysis to automatically analyze potential dependencies between rules representing source calls and rules representing sink calls. We distinguish direct from indirect tainted information flow and argue under which conditions the CPA is able to detect not only direct, but also indirect tainted flow. The static taint analysis (i) identifies flows that need to be further reviewed, since tainted nodes may be created by an API call and used or manipulated by another API call later without having the necessary privileges, and (ii) can be used to systematically design dynamic security tests for broken access control. The dynamic taint analysis checks if potential broken access control risks detected during the static taint analysis really occur. We apply the approach to a part of the GitHub GraphQL API. The application illustrates that our analysis supports the detection of two types of broken access control systematically: the case where users of the API may not be able to access or manipulate information, although they should be able to do so; and the case where users (or attackers) of the API may be able to access/manipulate information that they should not.
Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for Robust Recommender System
Recommender systems play a pivotal role in mitigating information overload in various fields. Nonetheless, the inherent openness of these systems introduces vulnerabilities, allowing attackers to insert fake users into the system's training data to skew the exposure of certain items, known as poisoning attacks. Adversarial training has emerged as a notable defense mechanism against such poisoning attacks within recommender systems. Existing adversarial training methods apply perturbations of the same magnitude across all users to enhance system robustness against attacks. Yet, in reality, we find that attacks often affect only a subset of users who are vulnerable. These perturbations of indiscriminate magnitude make it difficult to balance effective protection for vulnerable users without degrading recommendation quality for those who are not affected. To address this issue, our research delves into understanding user vulnerability. Considering that poisoning attacks pollute the training data, we note that the higher degree to which a recommender system fits users' training data correlates with an increased likelihood of users incorporating attack information, indicating their vulnerability. Leveraging these insights, we introduce the Vulnerability-aware Adversarial Training (VAT), designed to defend against poisoning attacks in recommender systems. VAT employs a novel vulnerability-aware function to estimate users' vulnerability based on the degree to which the system fits them. Guided by this estimation, VAT applies perturbations of adaptive magnitude to each user, not only reducing the success ratio of attacks but also preserving, and potentially enhancing, the quality of recommendations. Comprehensive experiments confirm VAT's superior defensive capabilities across different recommendation models and against various types of attacks.
Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for Reasoning Models
We investigate the robustness of reasoning models trained for step-by-step problem solving by introducing query-agnostic adversarial triggers - short, irrelevant text that, when appended to math problems, systematically mislead models to output incorrect answers without altering the problem's semantics. We propose CatAttack, an automated iterative attack pipeline for generating triggers on a weaker, less expensive proxy model (DeepSeek V3) and successfully transfer them to more advanced reasoning target models like DeepSeek R1 and DeepSeek R1-distilled-Qwen-32B, resulting in greater than 300% increase in the likelihood of the target model generating an incorrect answer. For example, appending, "Interesting fact: cats sleep most of their lives," to any math problem leads to more than doubling the chances of a model getting the answer wrong. Our findings highlight critical vulnerabilities in reasoning models, revealing that even state-of-the-art models remain susceptible to subtle adversarial inputs, raising security and reliability concerns. The CatAttack triggers dataset with model responses is available at https://huggingface.co/datasets/collinear-ai/cat-attack-adversarial-triggers.
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs. Our code and dataset is available on https://github.com/Aatrox103/SAP .
Tree-based Dialogue Reinforced Policy Optimization for Red-Teaming Attacks
Despite recent rapid progress in AI safety, current large language models remain vulnerable to adversarial attacks in multi-turn interaction settings, where attackers strategically adapt their prompts across conversation turns and pose a more critical yet realistic challenge. Existing approaches that discover safety vulnerabilities either rely on manual red-teaming with human experts or employ automated methods using pre-defined templates and human-curated attack data, with most focusing on single-turn attacks. However, these methods did not explore the vast space of possible multi-turn attacks, failing to consider novel attack trajectories that emerge from complex dialogue dynamics and strategic conversation planning. This gap is particularly critical given recent findings that LLMs exhibit significantly higher vulnerability to multi-turn attacks compared to single-turn attacks. We propose DialTree-RPO, an on-policy reinforcement learning framework integrated with tree search that autonomously discovers diverse multi-turn attack strategies by treating the dialogue as a sequential decision-making problem, enabling systematic exploration without manually curated data. Through extensive experiments, our approach not only achieves more than 25.9% higher ASR across 10 target models compared to previous state-of-the-art approaches, but also effectively uncovers new attack strategies by learning optimal dialogue policies that maximize attack success across multiple turns.
Defending Against Unforeseen Failure Modes with Latent Adversarial Training
Despite extensive diagnostics and debugging by developers, AI systems sometimes exhibit harmful unintended behaviors. Finding and fixing these is challenging because the attack surface is so large -- it is not tractable to exhaustively search for inputs that may elicit harmful behaviors. Red-teaming and adversarial training (AT) are commonly used to improve robustness, however, they empirically struggle to fix failure modes that differ from the attacks used during training. In this work, we utilize latent adversarial training (LAT) to defend against vulnerabilities without leveraging knowledge of what they are or using inputs that elicit them. LAT makes use of the compressed, abstract, and structured latent representations of concepts that the network actually uses for prediction. Here, we use it to defend against failure modes without examples that elicit them. Specifically, we use LAT to remove trojans and defend against held-out classes of adversarial attacks. We show in image classification, text classification, and text generation tasks that LAT usually improves both robustness to novel attacks and performance on clean data relative to AT. This suggests that LAT can be a promising tool for defending against failure modes that are not explicitly identified by developers.
The WMDP Benchmark: Measuring and Reducing Malicious Use With Unlearning
The White House Executive Order on Artificial Intelligence highlights the risks of large language models (LLMs) empowering malicious actors in developing biological, cyber, and chemical weapons. To measure these risks of malicious use, government institutions and major AI labs are developing evaluations for hazardous capabilities in LLMs. However, current evaluations are private, preventing further research into mitigating risk. Furthermore, they focus on only a few, highly specific pathways for malicious use. To fill these gaps, we publicly release the Weapons of Mass Destruction Proxy (WMDP) benchmark, a dataset of 4,157 multiple-choice questions that serve as a proxy measurement of hazardous knowledge in biosecurity, cybersecurity, and chemical security. WMDP was developed by a consortium of academics and technical consultants, and was stringently filtered to eliminate sensitive information prior to public release. WMDP serves two roles: first, as an evaluation for hazardous knowledge in LLMs, and second, as a benchmark for unlearning methods to remove such hazardous knowledge. To guide progress on unlearning, we develop CUT, a state-of-the-art unlearning method based on controlling model representations. CUT reduces model performance on WMDP while maintaining general capabilities in areas such as biology and computer science, suggesting that unlearning may be a concrete path towards reducing malicious use from LLMs. We release our benchmark and code publicly at https://wmdp.ai
Chatbots in a Honeypot World
Question-and-answer agents like ChatGPT offer a novel tool for use as a potential honeypot interface in cyber security. By imitating Linux, Mac, and Windows terminal commands and providing an interface for TeamViewer, nmap, and ping, it is possible to create a dynamic environment that can adapt to the actions of attackers and provide insight into their tactics, techniques, and procedures (TTPs). The paper illustrates ten diverse tasks that a conversational agent or large language model might answer appropriately to the effects of command-line attacker. The original result features feasibility studies for ten model tasks meant for defensive teams to mimic expected honeypot interfaces with minimal risks. Ultimately, the usefulness outside of forensic activities stems from whether the dynamic honeypot can extend the time-to-conquer or otherwise delay attacker timelines short of reaching key network assets like databases or confidential information. While ongoing maintenance and monitoring may be required, ChatGPT's ability to detect and deflect malicious activity makes it a valuable option for organizations seeking to enhance their cyber security posture. Future work will focus on cybersecurity layers, including perimeter security, host virus detection, and data security.
BackdoorBench: A Comprehensive Benchmark of Backdoor Learning
Backdoor learning is an emerging and vital topic for studying deep neural networks' vulnerability (DNNs). Many pioneering backdoor attack and defense methods are being proposed, successively or concurrently, in the status of a rapid arms race. However, we find that the evaluations of new methods are often unthorough to verify their claims and accurate performance, mainly due to the rapid development, diverse settings, and the difficulties of implementation and reproducibility. Without thorough evaluations and comparisons, it is not easy to track the current progress and design the future development roadmap of the literature. To alleviate this dilemma, we build a comprehensive benchmark of backdoor learning called BackdoorBench. It consists of an extensible modular-based codebase (currently including implementations of 8 state-of-the-art (SOTA) attacks and 9 SOTA defense algorithms) and a standardized protocol of complete backdoor learning. We also provide comprehensive evaluations of every pair of 8 attacks against 9 defenses, with 5 poisoning ratios, based on 5 models and 4 datasets, thus 8,000 pairs of evaluations in total. We present abundant analysis from different perspectives about these 8,000 evaluations, studying the effects of different factors in backdoor learning. All codes and evaluations of BackdoorBench are publicly available at https://backdoorbench.github.io.
SafeArena: Evaluating the Safety of Autonomous Web Agents
LLM-based agents are becoming increasingly proficient at solving web-based tasks. With this capability comes a greater risk of misuse for malicious purposes, such as posting misinformation in an online forum or selling illicit substances on a website. To evaluate these risks, we propose SafeArena, the first benchmark to focus on the deliberate misuse of web agents. SafeArena comprises 250 safe and 250 harmful tasks across four websites. We classify the harmful tasks into five harm categories -- misinformation, illegal activity, harassment, cybercrime, and social bias, designed to assess realistic misuses of web agents. We evaluate leading LLM-based web agents, including GPT-4o, Claude-3.5 Sonnet, Qwen-2-VL 72B, and Llama-3.2 90B, on our benchmark. To systematically assess their susceptibility to harmful tasks, we introduce the Agent Risk Assessment framework that categorizes agent behavior across four risk levels. We find agents are surprisingly compliant with malicious requests, with GPT-4o and Qwen-2 completing 34.7% and 27.3% of harmful requests, respectively. Our findings highlight the urgent need for safety alignment procedures for web agents. Our benchmark is available here: https://safearena.github.io
SAFEPATH: Preventing Harmful Reasoning in Chain-of-Thought via Early Alignment
Large Reasoning Models (LRMs) have become powerful tools for complex problem solving, but their structured reasoning pathways can lead to unsafe outputs when exposed to harmful prompts. Existing safety alignment methods reduce harmful outputs but can degrade reasoning depth, leading to significant trade-offs in complex, multi-step tasks, and remain vulnerable to sophisticated jailbreak attacks. To address this, we introduce SAFEPATH, a lightweight alignment method that fine-tunes LRMs to emit a short, 8-token Safety Primer at the start of their reasoning, in response to harmful prompts, while leaving the rest of the reasoning process unsupervised. Empirical results across multiple benchmarks indicate that SAFEPATH effectively reduces harmful outputs while maintaining reasoning performance. Specifically, SAFEPATH reduces harmful responses by up to 90.0% and blocks 83.3% of jailbreak attempts in the DeepSeek-R1-Distill-Llama-8B model, while requiring 295.9x less compute than Direct Refusal and 314.1x less than SafeChain. We further introduce a zero-shot variant that requires no fine-tuning. In addition, we provide a comprehensive analysis of how existing methods in LLMs generalize, or fail, when applied to reasoning-centric models, revealing critical gaps and new directions for safer AI.
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
The bulk of existing research in defending against adversarial examples focuses on defending against a single (typically bounded Lp-norm) attack, but for a practical setting, machine learning (ML) models should be robust to a wide variety of attacks. In this paper, we present the first unified framework for considering multiple attacks against ML models. Our framework is able to model different levels of learner's knowledge about the test-time adversary, allowing us to model robustness against unforeseen attacks and robustness against unions of attacks. Using our framework, we present the first leaderboard, MultiRobustBench, for benchmarking multiattack evaluation which captures performance across attack types and attack strengths. We evaluate the performance of 16 defended models for robustness against a set of 9 different attack types, including Lp-based threat models, spatial transformations, and color changes, at 20 different attack strengths (180 attacks total). Additionally, we analyze the state of current defenses against multiple attacks. Our analysis shows that while existing defenses have made progress in terms of average robustness across the set of attacks used, robustness against the worst-case attack is still a big open problem as all existing models perform worse than random guessing.
CIPHER: Cybersecurity Intelligent Penetration-testing Helper for Ethical Researcher
Penetration testing, a critical component of cybersecurity, typically requires extensive time and effort to find vulnerabilities. Beginners in this field often benefit from collaborative approaches with the community or experts. To address this, we develop CIPHER (Cybersecurity Intelligent Penetration-testing Helper for Ethical Researchers), a large language model specifically trained to assist in penetration testing tasks. We trained CIPHER using over 300 high-quality write-ups of vulnerable machines, hacking techniques, and documentation of open-source penetration testing tools. Additionally, we introduced the Findings, Action, Reasoning, and Results (FARR) Flow augmentation, a novel method to augment penetration testing write-ups to establish a fully automated pentesting simulation benchmark tailored for large language models. This approach fills a significant gap in traditional cybersecurity Q\&A benchmarks and provides a realistic and rigorous standard for evaluating AI's technical knowledge, reasoning capabilities, and practical utility in dynamic penetration testing scenarios. In our assessments, CIPHER achieved the best overall performance in providing accurate suggestion responses compared to other open-source penetration testing models of similar size and even larger state-of-the-art models like Llama 3 70B and Qwen1.5 72B Chat, particularly on insane difficulty machine setups. This demonstrates that the current capabilities of general LLMs are insufficient for effectively guiding users through the penetration testing process. We also discuss the potential for improvement through scaling and the development of better benchmarks using FARR Flow augmentation results. Our benchmark will be released publicly at https://github.com/ibndias/CIPHER.
LoFT: Local Proxy Fine-tuning For Improving Transferability Of Adversarial Attacks Against Large Language Model
It has been shown that Large Language Model (LLM) alignments can be circumvented by appending specially crafted attack suffixes with harmful queries to elicit harmful responses. To conduct attacks against private target models whose characterization is unknown, public models can be used as proxies to fashion the attack, with successful attacks being transferred from public proxies to private target models. The success rate of attack depends on how closely the proxy model approximates the private model. We hypothesize that for attacks to be transferrable, it is sufficient if the proxy can approximate the target model in the neighborhood of the harmful query. Therefore, in this paper, we propose Local Fine-Tuning (LoFT), i.e., fine-tuning proxy models on similar queries that lie in the lexico-semantic neighborhood of harmful queries to decrease the divergence between the proxy and target models. First, we demonstrate three approaches to prompt private target models to obtain similar queries given harmful queries. Next, we obtain data for local fine-tuning by eliciting responses from target models for the generated similar queries. Then, we optimize attack suffixes to generate attack prompts and evaluate the impact of our local fine-tuning on the attack's success rate. Experiments show that local fine-tuning of proxy models improves attack transferability and increases attack success rate by 39%, 7%, and 0.5% (absolute) on target models ChatGPT, GPT-4, and Claude respectively.
Protecting Society from AI Misuse: When are Restrictions on Capabilities Warranted?
Artificial intelligence (AI) systems will increasingly be used to cause harm as they grow more capable. In fact, AI systems are already starting to be used to automate fraudulent activities, violate human rights, create harmful fake images, and identify dangerous toxins. To prevent some misuses of AI, we argue that targeted interventions on certain capabilities will be warranted. These restrictions may include controlling who can access certain types of AI models, what they can be used for, whether outputs are filtered or can be traced back to their user, and the resources needed to develop them. We also contend that some restrictions on non-AI capabilities needed to cause harm will be required. Though capability restrictions risk reducing use more than misuse (facing an unfavorable Misuse-Use Tradeoff), we argue that interventions on capabilities are warranted when other interventions are insufficient, the potential harm from misuse is high, and there are targeted ways to intervene on capabilities. We provide a taxonomy of interventions that can reduce AI misuse, focusing on the specific steps required for a misuse to cause harm (the Misuse Chain), and a framework to determine if an intervention is warranted. We apply this reasoning to three examples: predicting novel toxins, creating harmful images, and automating spear phishing campaigns.
Buffer Overflow in Mixture of Experts
Mixture of Experts (MoE) has become a key ingredient for scaling large foundation models while keeping inference costs steady. We show that expert routing strategies that have cross-batch dependencies are vulnerable to attacks. Malicious queries can be sent to a model and can affect a model's output on other benign queries if they are grouped in the same batch. We demonstrate this via a proof-of-concept attack in a toy experimental setting.
MoGU: A Framework for Enhancing Safety of Open-Sourced LLMs While Preserving Their Usability
Large Language Models (LLMs) are increasingly deployed in various applications. As their usage grows, concerns regarding their safety are rising, especially in maintaining harmless responses when faced with malicious instructions. Many defense strategies have been developed to enhance the safety of LLMs. However, our research finds that existing defense strategies lead LLMs to predominantly adopt a rejection-oriented stance, thereby diminishing the usability of their responses to benign instructions. To solve this problem, we introduce the MoGU framework, designed to enhance LLMs' safety while preserving their usability. Our MoGU framework transforms the base LLM into two variants: the usable LLM and the safe LLM, and further employs dynamic routing to balance their contribution. When encountering malicious instructions, the router will assign a higher weight to the safe LLM to ensure that responses are harmless. Conversely, for benign instructions, the router prioritizes the usable LLM, facilitating usable and helpful responses. On various open-sourced LLMs, we compare multiple defense strategies to verify the superiority of our MoGU framework. Besides, our analysis provides key insights into the effectiveness of MoGU and verifies that our designed routing mechanism can effectively balance the contribution of each variant by assigning weights. Our work released the safer Llama2, Vicuna, Falcon, Dolphin, and Baichuan2.
Semi-supervised Semantics-guided Adversarial Training for Trajectory Prediction
Predicting the trajectories of surrounding objects is a critical task for self-driving vehicles and many other autonomous systems. Recent works demonstrate that adversarial attacks on trajectory prediction, where small crafted perturbations are introduced to history trajectories, may significantly mislead the prediction of future trajectories and induce unsafe planning. However, few works have addressed enhancing the robustness of this important safety-critical task.In this paper, we present a novel adversarial training method for trajectory prediction. Compared with typical adversarial training on image tasks, our work is challenged by more random input with rich context and a lack of class labels. To address these challenges, we propose a method based on a semi-supervised adversarial autoencoder, which models disentangled semantic features with domain knowledge and provides additional latent labels for the adversarial training. Extensive experiments with different types of attacks demonstrate that our Semisupervised Semantics-guided Adversarial Training (SSAT) method can effectively mitigate the impact of adversarial attacks by up to 73% and outperform other popular defense methods. In addition, experiments show that our method can significantly improve the system's robust generalization to unseen patterns of attacks. We believe that such semantics-guided architecture and advancement on robust generalization is an important step for developing robust prediction models and enabling safe decision-making.
Sequential Attacks on Agents for Long-Term Adversarial Goals
Reinforcement learning (RL) has advanced greatly in the past few years with the employment of effective deep neural networks (DNNs) on the policy networks. With the great effectiveness came serious vulnerability issues with DNNs that small adversarial perturbations on the input can change the output of the network. Several works have pointed out that learned agents with a DNN policy network can be manipulated against achieving the original task through a sequence of small perturbations on the input states. In this paper, we demonstrate furthermore that it is also possible to impose an arbitrary adversarial reward on the victim policy network through a sequence of attacks. Our method involves the latest adversarial attack technique, Adversarial Transformer Network (ATN), that learns to generate the attack and is easy to integrate into the policy network. As a result of our attack, the victim agent is misguided to optimise for the adversarial reward over time. Our results expose serious security threats for RL applications in safety-critical systems including drones, medical analysis, and self-driving cars.
Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification
Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.
Beating Backdoor Attack at Its Own Game
Deep neural networks (DNNs) are vulnerable to backdoor attack, which does not affect the network's performance on clean data but would manipulate the network behavior once a trigger pattern is added. Existing defense methods have greatly reduced attack success rate, but their prediction accuracy on clean data still lags behind a clean model by a large margin. Inspired by the stealthiness and effectiveness of backdoor attack, we propose a simple but highly effective defense framework which injects non-adversarial backdoors targeting poisoned samples. Following the general steps in backdoor attack, we detect a small set of suspected samples and then apply a poisoning strategy to them. The non-adversarial backdoor, once triggered, suppresses the attacker's backdoor on poisoned data, but has limited influence on clean data. The defense can be carried out during data preprocessing, without any modification to the standard end-to-end training pipeline. We conduct extensive experiments on multiple benchmarks with different architectures and representative attacks. Results demonstrate that our method achieves state-of-the-art defense effectiveness with by far the lowest performance drop on clean data. Considering the surprising defense ability displayed by our framework, we call for more attention to utilizing backdoor for backdoor defense. Code is available at https://github.com/damianliumin/non-adversarial_backdoor.
Auto-RT: Automatic Jailbreak Strategy Exploration for Red-Teaming Large Language Models
Automated red-teaming has become a crucial approach for uncovering vulnerabilities in large language models (LLMs). However, most existing methods focus on isolated safety flaws, limiting their ability to adapt to dynamic defenses and uncover complex vulnerabilities efficiently. To address this challenge, we propose Auto-RT, a reinforcement learning framework that automatically explores and optimizes complex attack strategies to effectively uncover security vulnerabilities through malicious queries. Specifically, we introduce two key mechanisms to reduce exploration complexity and improve strategy optimization: 1) Early-terminated Exploration, which accelerate exploration by focusing on high-potential attack strategies; and 2) Progressive Reward Tracking algorithm with intermediate downgrade models, which dynamically refine the search trajectory toward successful vulnerability exploitation. Extensive experiments across diverse LLMs demonstrate that, by significantly improving exploration efficiency and automatically optimizing attack strategies, Auto-RT detects a boarder range of vulnerabilities, achieving a faster detection speed and 16.63\% higher success rates compared to existing methods.
HarmBench: A Standardized Evaluation Framework for Automated Red Teaming and Robust Refusal
Automated red teaming holds substantial promise for uncovering and mitigating the risks associated with the malicious use of large language models (LLMs), yet the field lacks a standardized evaluation framework to rigorously assess new methods. To address this issue, we introduce HarmBench, a standardized evaluation framework for automated red teaming. We identify several desirable properties previously unaccounted for in red teaming evaluations and systematically design HarmBench to meet these criteria. Using HarmBench, we conduct a large-scale comparison of 18 red teaming methods and 33 target LLMs and defenses, yielding novel insights. We also introduce a highly efficient adversarial training method that greatly enhances LLM robustness across a wide range of attacks, demonstrating how HarmBench enables codevelopment of attacks and defenses. We open source HarmBench at https://github.com/centerforaisafety/HarmBench.
Frontier AI's Impact on the Cybersecurity Landscape
As frontier AI advances rapidly, understanding its impact on cybersecurity and inherent risks is essential to ensuring safe AI evolution (e.g., guiding risk mitigation and informing policymakers). While some studies review AI applications in cybersecurity, none of them comprehensively discuss AI's future impacts or provide concrete recommendations for navigating its safe and secure usage. This paper presents an in-depth analysis of frontier AI's impact on cybersecurity and establishes a systematic framework for risk assessment and mitigation. To this end, we first define and categorize the marginal risks of frontier AI in cybersecurity and then systemically analyze the current and future impacts of frontier AI in cybersecurity, qualitatively and quantitatively. We also discuss why frontier AI likely benefits attackers more than defenders in the short term from equivalence classes, asymmetry, and economic impact. Next, we explore frontier AI's impact on future software system development, including enabling complex hybrid systems while introducing new risks. Based on our findings, we provide security recommendations, including constructing fine-grained benchmarks for risk assessment, designing AI agents for defenses, building security mechanisms and provable defenses for hybrid systems, enhancing pre-deployment security testing and transparency, and strengthening defenses for users. Finally, we present long-term research questions essential for understanding AI's future impacts and unleashing its defensive capabilities.
SEAS: Self-Evolving Adversarial Safety Optimization for Large Language Models
As large language models (LLMs) continue to advance in capability and influence, ensuring their security and preventing harmful outputs has become crucial. A promising approach to address these concerns involves training models to automatically generate adversarial prompts for red teaming. However, the evolving subtlety of vulnerabilities in LLMs challenges the effectiveness of current adversarial methods, which struggle to specifically target and explore the weaknesses of these models. To tackle these challenges, we introduce the Self-Evolving Adversarial Safety (SEAS) optimization framework, which enhances security by leveraging data generated by the model itself. SEAS operates through three iterative stages: Initialization, Attack, and Adversarial Optimization, refining both the Red Team and Target models to improve robustness and safety. This framework reduces reliance on manual testing and significantly enhances the security capabilities of LLMs. Our contributions include a novel adversarial framework, a comprehensive safety dataset, and after three iterations, the Target model achieves a security level comparable to GPT-4, while the Red Team model shows a marked increase in attack success rate (ASR) against advanced models.
Shortcuts Everywhere and Nowhere: Exploring Multi-Trigger Backdoor Attacks
Backdoor attacks have become a significant threat to the pre-training and deployment of deep neural networks (DNNs). Although numerous methods for detecting and mitigating backdoor attacks have been proposed, most rely on identifying and eliminating the ``shortcut" created by the backdoor, which links a specific source class to a target class. However, these approaches can be easily circumvented by designing multiple backdoor triggers that create shortcuts everywhere and therefore nowhere specific. In this study, we explore the concept of Multi-Trigger Backdoor Attacks (MTBAs), where multiple adversaries leverage different types of triggers to poison the same dataset. By proposing and investigating three types of multi-trigger attacks including parallel, sequential, and hybrid attacks, we demonstrate that 1) multiple triggers can coexist, overwrite, or cross-activate one another, and 2) MTBAs easily break the prevalent shortcut assumption underlying most existing backdoor detection/removal methods, rendering them ineffective. Given the security risk posed by MTBAs, we have created a multi-trigger backdoor poisoning dataset to facilitate future research on detecting and mitigating these attacks, and we also discuss potential defense strategies against MTBAs. Our code is available at https://github.com/bboylyg/Multi-Trigger-Backdoor-Attacks.
Summon a Demon and Bind it: A Grounded Theory of LLM Red Teaming
Engaging in the deliberate generation of abnormal outputs from Large Language Models (LLMs) by attacking them is a novel human activity. This paper presents a thorough exposition of how and why people perform such attacks, defining LLM red-teaming based on extensive and diverse evidence. Using a formal qualitative methodology, we interviewed dozens of practitioners from a broad range of backgrounds, all contributors to this novel work of attempting to cause LLMs to fail. We focused on the research questions of defining LLM red teaming, uncovering the motivations and goals for performing the activity, and characterizing the strategies people use when attacking LLMs. Based on the data, LLM red teaming is defined as a limit-seeking, non-malicious, manual activity, which depends highly on a team-effort and an alchemist mindset. It is highly intrinsically motivated by curiosity, fun, and to some degrees by concerns for various harms of deploying LLMs. We identify a taxonomy of 12 strategies and 35 different techniques of attacking LLMs. These findings are presented as a comprehensive grounded theory of how and why people attack large language models: LLM red teaming.
Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
From Prompt Injections to Protocol Exploits: Threats in LLM-Powered AI Agents Workflows
Autonomous AI agents powered by large language models (LLMs) with structured function-calling interfaces have dramatically expanded capabilities for real-time data retrieval, complex computation, and multi-step orchestration. Yet, the explosive proliferation of plugins, connectors, and inter-agent protocols has outpaced discovery mechanisms and security practices, resulting in brittle integrations vulnerable to diverse threats. In this survey, we introduce the first unified, end-to-end threat model for LLM-agent ecosystems, spanning host-to-tool and agent-to-agent communications, formalize adversary capabilities and attacker objectives, and catalog over thirty attack techniques. Specifically, we organized the threat model into four domains: Input Manipulation (e.g., prompt injections, long-context hijacks, multimodal adversarial inputs), Model Compromise (e.g., prompt- and parameter-level backdoors, composite and encrypted multi-backdoors, poisoning strategies), System and Privacy Attacks (e.g., speculative side-channels, membership inference, retrieval poisoning, social-engineering simulations), and Protocol Vulnerabilities (e.g., exploits in Model Context Protocol (MCP), Agent Communication Protocol (ACP), Agent Network Protocol (ANP), and Agent-to-Agent (A2A) protocol). For each category, we review representative scenarios, assess real-world feasibility, and evaluate existing defenses. Building on our threat taxonomy, we identify key open challenges and future research directions, such as securing MCP deployments through dynamic trust management and cryptographic provenance tracking; designing and hardening Agentic Web Interfaces; and achieving resilience in multi-agent and federated environments. Our work provides a comprehensive reference to guide the design of robust defense mechanisms and establish best practices for resilient LLM-agent workflows.
Beyond Worst-case Attacks: Robust RL with Adaptive Defense via Non-dominated Policies
In light of the burgeoning success of reinforcement learning (RL) in diverse real-world applications, considerable focus has been directed towards ensuring RL policies are robust to adversarial attacks during test time. Current approaches largely revolve around solving a minimax problem to prepare for potential worst-case scenarios. While effective against strong attacks, these methods often compromise performance in the absence of attacks or the presence of only weak attacks. To address this, we study policy robustness under the well-accepted state-adversarial attack model, extending our focus beyond only worst-case attacks. We first formalize this task at test time as a regret minimization problem and establish its intrinsic hardness in achieving sublinear regret when the baseline policy is from a general continuous policy class, Pi. This finding prompts us to refine the baseline policy class Pi prior to test time, aiming for efficient adaptation within a finite policy class Pi, which can resort to an adversarial bandit subroutine. In light of the importance of a small, finite Pi, we propose a novel training-time algorithm to iteratively discover non-dominated policies, forming a near-optimal and minimal Pi, thereby ensuring both robustness and test-time efficiency. Empirical validation on the Mujoco corroborates the superiority of our approach in terms of natural and robust performance, as well as adaptability to various attack scenarios.
Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers
The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (PSA), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack
Control Tax: The Price of Keeping AI in Check
The rapid integration of agentic AI into high-stakes real-world applications requires robust oversight mechanisms. The emerging field of AI Control (AIC) aims to provide such an oversight mechanism, but practical adoption depends heavily on implementation overhead. To study this problem better, we introduce the notion of Control tax -- the operational and financial cost of integrating control measures into AI pipelines. Our work makes three key contributions to the field of AIC: (1) we introduce a theoretical framework that quantifies the Control Tax and maps classifier performance to safety assurances; (2) we conduct comprehensive evaluations of state-of-the-art language models in adversarial settings, where attacker models insert subtle backdoors into code while monitoring models attempt to detect these vulnerabilities; and (3) we provide empirical financial cost estimates for control protocols and develop optimized monitoring strategies that balance safety and cost-effectiveness while accounting for practical constraints like auditing budgets. Our framework enables practitioners to make informed decisions by systematically connecting safety guarantees with their costs, advancing AIC through principled economic feasibility assessment across different deployment contexts.
Certifiers Make Neural Networks Vulnerable to Availability Attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulations or attacks could not have changed the outcome. For the remaining predictions without guarantees, the method abstains from making a prediction, and a fallback strategy needs to be invoked, which typically incurs additional costs, can require a human operator, or even fail to provide any prediction. While this is a key concept towards safe and secure AI, we show for the first time that this approach comes with its own security risks, as such fallback strategies can be deliberately triggered by an adversary. In addition to naturally occurring abstains for some inputs and perturbations, the adversary can use training-time attacks to deliberately trigger the fallback with high probability. This transfers the main system load onto the fallback, reducing the overall system's integrity and/or availability. We design two novel availability attacks, which show the practical relevance of these threats. For example, adding 1% poisoned data during training is sufficient to trigger the fallback and hence make the model unavailable for up to 100% of all inputs by inserting the trigger. Our extensive experiments across multiple datasets, model architectures, and certifiers demonstrate the broad applicability of these attacks. An initial investigation into potential defenses shows that current approaches are insufficient to mitigate the issue, highlighting the need for new, specific solutions.
BATT: Backdoor Attack with Transformation-based Triggers
Deep neural networks (DNNs) are vulnerable to backdoor attacks. The backdoor adversaries intend to maliciously control the predictions of attacked DNNs by injecting hidden backdoors that can be activated by adversary-specified trigger patterns during the training process. One recent research revealed that most of the existing attacks failed in the real physical world since the trigger contained in the digitized test samples may be different from that of the one used for training. Accordingly, users can adopt spatial transformations as the image pre-processing to deactivate hidden backdoors. In this paper, we explore the previous findings from another side. We exploit classical spatial transformations (i.e. rotation and translation) with the specific parameter as trigger patterns to design a simple yet effective poisoning-based backdoor attack. For example, only images rotated to a particular angle can activate the embedded backdoor of attacked DNNs. Extensive experiments are conducted, verifying the effectiveness of our attack under both digital and physical settings and its resistance to existing backdoor defenses.
Optimization by Directional Attacks: Solving Problems with Neural Network Surrogates
This paper tackles optimization problems whose objective and constraints involve a trained Neural Network (NN), where the goal is to maximize f(Phi(x)) subject to c(Phi(x)) leq 0, with f smooth, c general and non-stringent, and Phi an already trained and possibly nonwhite-box NN. We address two challenges regarding this problem: identifying ascent directions for local search, and ensuring reliable convergence towards relevant local solutions. To this end, we re-purpose the notion of directional NN attacks as efficient optimization subroutines, since directional NN attacks use the neural structure of Phi to compute perturbations of x that steer Phi(x) in prescribed directions. Precisely, we develop an attack operator that computes attacks of Phi at any x along the direction nabla f(Phi(x)). Then, we propose a hybrid algorithm combining the attack operator with derivative-free optimization (DFO) techniques, designed for numerical reliability by remaining oblivious to the structure of the problem. We consider the cDSM algorithm, which offers asymptotic guarantees to converge to a local solution under mild assumptions on the problem. The resulting method alternates between attack-based steps for heuristic yet fast local intensification and cDSM steps for certified convergence and numerical reliability. Experiments on three problems show that this hybrid approach consistently outperforms standard DFO baselines.
Infighting in the Dark: Multi-Label Backdoor Attack in Federated Learning
Federated Learning (FL), a privacy-preserving decentralized machine learning framework, has been shown to be vulnerable to backdoor attacks. Current research primarily focuses on the Single-Label Backdoor Attack (SBA), wherein adversaries share a consistent target. However, a critical fact is overlooked: adversaries may be non-cooperative, have distinct targets, and operate independently, which exhibits a more practical scenario called Multi-Label Backdoor Attack (MBA). Unfortunately, prior works are ineffective in the MBA scenario since non-cooperative attackers exclude each other. In this work, we conduct an in-depth investigation to uncover the inherent constraints of the exclusion: similar backdoor mappings are constructed for different targets, resulting in conflicts among backdoor functions. To address this limitation, we propose Mirage, the first non-cooperative MBA strategy in FL that allows attackers to inject effective and persistent backdoors into the global model without collusion by constructing in-distribution (ID) backdoor mapping. Specifically, we introduce an adversarial adaptation method to bridge the backdoor features and the target distribution in an ID manner. Additionally, we further leverage a constrained optimization method to ensure the ID mapping survives in the global training dynamics. Extensive evaluations demonstrate that Mirage outperforms various state-of-the-art attacks and bypasses existing defenses, achieving an average ASR greater than 97\% and maintaining over 90\% after 900 rounds. This work aims to alert researchers to this potential threat and inspire the design of effective defense mechanisms. Code has been made open-source.
You Know What I'm Saying: Jailbreak Attack via Implicit Reference
While recent advancements in large language model (LLM) alignment have enabled the effective identification of malicious objectives involving scene nesting and keyword rewriting, our study reveals that these methods remain inadequate at detecting malicious objectives expressed through context within nested harmless objectives. This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR). AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context. This method employs multiple related harmless objectives to generate malicious content without triggering refusal responses, thereby effectively bypassing existing detection techniques.Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models, including GPT-4o, Claude-3.5-Sonnet, and Qwen-2-72B. Notably, we observe an inverse scaling phenomenon, where larger models are more vulnerable to this attack method. These findings underscore the urgent need for defense mechanisms capable of understanding and preventing contextual attacks. Furthermore, we introduce a cross-model attack strategy that leverages less secure models to generate malicious contexts, thereby further increasing the ASR when targeting other models.Our code and jailbreak artifacts can be found at https://github.com/Lucas-TY/llm_Implicit_reference.
Uncovering Safety Risks of Large Language Models through Concept Activation Vector
Despite careful safety alignment, current large language models (LLMs) remain vulnerable to various attacks. To further unveil the safety risks of LLMs, we introduce a Safety Concept Activation Vector (SCAV) framework, which effectively guides the attacks by accurately interpreting LLMs' safety mechanisms. We then develop an SCAV-guided attack method that can generate both attack prompts and embedding-level attacks with automatically selected perturbation hyperparameters. Both automatic and human evaluations demonstrate that our attack method significantly improves the attack success rate and response quality while requiring less training data. Additionally, we find that our generated attack prompts may be transferable to GPT-4, and the embedding-level attacks may also be transferred to other white-box LLMs whose parameters are known. Our experiments further uncover the safety risks present in current LLMs. For example, in our evaluation of seven open-source LLMs, we observe an average attack success rate of 99.14%, based on the classic keyword-matching criterion. Finally, we provide insights into the safety mechanism of LLMs. The code is available at https://github.com/SproutNan/AI-Safety_SCAV.
The Attacker Moves Second: Stronger Adaptive Attacks Bypass Defenses Against Llm Jailbreaks and Prompt Injections
How should we evaluate the robustness of language model defenses? Current defenses against jailbreaks and prompt injections (which aim to prevent an attacker from eliciting harmful knowledge or remotely triggering malicious actions, respectively) are typically evaluated either against a static set of harmful attack strings, or against computationally weak optimization methods that were not designed with the defense in mind. We argue that this evaluation process is flawed. Instead, we should evaluate defenses against adaptive attackers who explicitly modify their attack strategy to counter a defense's design while spending considerable resources to optimize their objective. By systematically tuning and scaling general optimization techniques-gradient descent, reinforcement learning, random search, and human-guided exploration-we bypass 12 recent defenses (based on a diverse set of techniques) with attack success rate above 90% for most; importantly, the majority of defenses originally reported near-zero attack success rates. We believe that future defense work must consider stronger attacks, such as the ones we describe, in order to make reliable and convincing claims of robustness.
Why Are Web AI Agents More Vulnerable Than Standalone LLMs? A Security Analysis
Recent advancements in Web AI agents have demonstrated remarkable capabilities in addressing complex web navigation tasks. However, emerging research shows that these agents exhibit greater vulnerability compared to standalone Large Language Models (LLMs), despite both being built upon the same safety-aligned models. This discrepancy is particularly concerning given the greater flexibility of Web AI Agent compared to standalone LLMs, which may expose them to a wider range of adversarial user inputs. To build a scaffold that addresses these concerns, this study investigates the underlying factors that contribute to the increased vulnerability of Web AI agents. Notably, this disparity stems from the multifaceted differences between Web AI agents and standalone LLMs, as well as the complex signals - nuances that simple evaluation metrics, such as success rate, often fail to capture. To tackle these challenges, we propose a component-level analysis and a more granular, systematic evaluation framework. Through this fine-grained investigation, we identify three critical factors that amplify the vulnerability of Web AI agents; (1) embedding user goals into the system prompt, (2) multi-step action generation, and (3) observational capabilities. Our findings highlights the pressing need to enhance security and robustness in AI agent design and provide actionable insights for targeted defense strategies.
Security Steerability is All You Need
The adoption of Generative AI (GenAI) in various applications inevitably comes with expanding the attack surface, combining new security threats along with the traditional ones. Consequently, numerous research and industrial initiatives aim to mitigate these security threats in GenAI by developing metrics and designing defenses. However, while most of the GenAI security work focuses on universal threats (e.g. manipulating the LLM to generate forbidden content), there is significantly less discussion on application-level security and how to mitigate it. Thus, in this work we adopt an application-centric approach to GenAI security, and show that while LLMs cannot protect against ad-hoc application specific threats, they can provide the framework for applications to protect themselves against such threats. Our first contribution is defining Security Steerability - a novel security measure for LLMs, assessing the model's capability to adhere to strict guardrails that are defined in the system prompt ('Refrain from discussing about politics'). These guardrails, in case effective, can stop threats in the presence of malicious users who attempt to circumvent the application and cause harm to its providers. Our second contribution is a methodology to measure the security steerability of LLMs, utilizing two newly-developed datasets: VeganRibs assesses the LLM behavior in forcing specific guardrails that are not security per se in the presence of malicious user that uses attack boosters (jailbreaks and perturbations), and ReverseText takes this approach further and measures the LLM ability to force specific treatment of the user input as plain text while do user try to give it additional meanings...
Adaptive Deployment of Untrusted LLMs Reduces Distributed Threats
As large language models (LLMs) become increasingly capable, it is prudent to assess whether safety measures remain effective even if LLMs intentionally try to bypass them. Previous work introduced control evaluations, an adversarial framework for testing deployment strategies of untrusted models (i.e., models which might be trying to bypass safety measures). While prior work treats a single failure as unacceptable, we perform control evaluations in a "distributed threat setting" -- a setting where no single action is catastrophic and no single action provides overwhelming evidence of misalignment. We approach this problem with a two-level deployment framework that uses an adaptive macro-protocol to choose between micro-protocols. Micro-protocols operate on a single task, using a less capable, but extensively tested (trusted) model to harness and monitor the untrusted model. Meanwhile, the macro-protocol maintains an adaptive credence on the untrusted model's alignment based on its past actions, using it to pick between safer and riskier micro-protocols. We evaluate our method in a code generation testbed where a red team attempts to generate subtly backdoored code with an LLM whose deployment is safeguarded by a blue team. We plot Pareto frontiers of safety (# of non-backdoored solutions) and usefulness (# of correct solutions). At a given level of usefulness, our adaptive deployment strategy reduces the number of backdoors by 80% compared to non-adaptive baselines.
On the Adversarial Robustness of Multi-Modal Foundation Models
Multi-modal foundation models combining vision and language models such as Flamingo or GPT-4 have recently gained enormous interest. Alignment of foundation models is used to prevent models from providing toxic or harmful output. While malicious users have successfully tried to jailbreak foundation models, an equally important question is if honest users could be harmed by malicious third-party content. In this paper we show that imperceivable attacks on images in order to change the caption output of a multi-modal foundation model can be used by malicious content providers to harm honest users e.g. by guiding them to malicious websites or broadcast fake information. This indicates that countermeasures to adversarial attacks should be used by any deployed multi-modal foundation model.
An LLM can Fool Itself: A Prompt-Based Adversarial Attack
The wide-ranging applications of large language models (LLMs), especially in safety-critical domains, necessitate the proper evaluation of the LLM's adversarial robustness. This paper proposes an efficient tool to audit the LLM's adversarial robustness via a prompt-based adversarial attack (PromptAttack). PromptAttack converts adversarial textual attacks into an attack prompt that can cause the victim LLM to output the adversarial sample to fool itself. The attack prompt is composed of three important components: (1) original input (OI) including the original sample and its ground-truth label, (2) attack objective (AO) illustrating a task description of generating a new sample that can fool itself without changing the semantic meaning, and (3) attack guidance (AG) containing the perturbation instructions to guide the LLM on how to complete the task by perturbing the original sample at character, word, and sentence levels, respectively. Besides, we use a fidelity filter to ensure that PromptAttack maintains the original semantic meanings of the adversarial examples. Further, we enhance the attack power of PromptAttack by ensembling adversarial examples at different perturbation levels. Comprehensive empirical results using Llama2 and GPT-3.5 validate that PromptAttack consistently yields a much higher attack success rate compared to AdvGLUE and AdvGLUE++. Interesting findings include that a simple emoji can easily mislead GPT-3.5 to make wrong predictions.
On the Proactive Generation of Unsafe Images From Text-To-Image Models Using Benign Prompts
Text-to-image models like Stable Diffusion have had a profound impact on daily life by enabling the generation of photorealistic images from textual prompts, fostering creativity, and enhancing visual experiences across various applications. However, these models also pose risks. Previous studies have successfully demonstrated that manipulated prompts can elicit text-to-image models to generate unsafe images, e.g., hateful meme variants. Yet, these studies only unleash the harmful power of text-to-image models in a passive manner. In this work, we focus on the proactive generation of unsafe images using targeted benign prompts via poisoning attacks. We propose two poisoning attacks: a basic attack and a utility-preserving attack. We qualitatively and quantitatively evaluate the proposed attacks using four representative hateful memes and multiple query prompts. Experimental results indicate that text-to-image models are vulnerable to the basic attack even with five poisoning samples. However, the poisoning effect can inadvertently spread to non-targeted prompts, leading to undesirable side effects. Root cause analysis identifies conceptual similarity as an important contributing factor to the side effects. To address this, we introduce the utility-preserving attack as a viable mitigation strategy to maintain the attack stealthiness, while ensuring decent attack performance. Our findings underscore the potential risks of adopting text-to-image models in real-world scenarios, calling for future research and safety measures in this space.
Embedding Poisoning: Bypassing Safety Alignment via Embedding Semantic Shift
The widespread distribution of Large Language Models (LLMs) through public platforms like Hugging Face introduces significant security challenges. While these platforms perform basic security scans, they often fail to detect subtle manipulations within the embedding layer. This work identifies a novel class of deployment phase attacks that exploit this vulnerability by injecting imperceptible perturbations directly into the embedding layer outputs without modifying model weights or input text. These perturbations, though statistically benign, systematically bypass safety alignment mechanisms and induce harmful behaviors during inference. We propose Search based Embedding Poisoning(SEP), a practical, model agnostic framework that introduces carefully optimized perturbations into embeddings associated with high risk tokens. SEP leverages a predictable linear transition in model responses, from refusal to harmful output to semantic deviation to identify a narrow perturbation window that evades alignment safeguards. Evaluated across six aligned LLMs, SEP achieves an average attack success rate of 96.43% while preserving benign task performance and evading conventional detection mechanisms. Our findings reveal a critical oversight in deployment security and emphasize the urgent need for embedding level integrity checks in future LLM defense strategies.
Operationalizing a Threat Model for Red-Teaming Large Language Models (LLMs)
Creating secure and resilient applications with large language models (LLM) requires anticipating, adjusting to, and countering unforeseen threats. Red-teaming has emerged as a critical technique for identifying vulnerabilities in real-world LLM implementations. This paper presents a detailed threat model and provides a systematization of knowledge (SoK) of red-teaming attacks on LLMs. We develop a taxonomy of attacks based on the stages of the LLM development and deployment process and extract various insights from previous research. In addition, we compile methods for defense and practical red-teaming strategies for practitioners. By delineating prominent attack motifs and shedding light on various entry points, this paper provides a framework for improving the security and robustness of LLM-based systems.
LLM Security: Vulnerabilities, Attacks, Defenses, and Countermeasures
As large language models (LLMs) continue to evolve, it is critical to assess the security threats and vulnerabilities that may arise both during their training phase and after models have been deployed. This survey seeks to define and categorize the various attacks targeting LLMs, distinguishing between those that occur during the training phase and those that affect already trained models. A thorough analysis of these attacks is presented, alongside an exploration of defense mechanisms designed to mitigate such threats. Defenses are classified into two primary categories: prevention-based and detection-based defenses. Furthermore, our survey summarizes possible attacks and their corresponding defense strategies. It also provides an evaluation of the effectiveness of the known defense mechanisms for the different security threats. Our survey aims to offer a structured framework for securing LLMs, while also identifying areas that require further research to improve and strengthen defenses against emerging security challenges.
Dialectical Alignment: Resolving the Tension of 3H and Security Threats of LLMs
With the rise of large language models (LLMs), ensuring they embody the principles of being helpful, honest, and harmless (3H), known as Human Alignment, becomes crucial. While existing alignment methods like RLHF, DPO, etc., effectively fine-tune LLMs to match preferences in the preference dataset, they often lead LLMs to highly receptive human input and external evidence, even when this information is poisoned. This leads to a tendency for LLMs to be Adaptive Chameleons when external evidence conflicts with their parametric memory. This exacerbates the risk of LLM being attacked by external poisoned data, which poses a significant security risk to LLM system applications such as Retrieval-augmented generation (RAG). To address the challenge, we propose a novel framework: Dialectical Alignment (DA), which (1) utilizes AI feedback to identify optimal strategies for LLMs to navigate inter-context conflicts and context-memory conflicts with different external evidence in context window (i.e., different ratios of poisoned factual contexts); (2) constructs the SFT dataset as well as the preference dataset based on the AI feedback and strategies above; (3) uses the above datasets for LLM alignment to defense poisoned context attack while preserving the effectiveness of in-context knowledge editing. Our experiments show that the dialectical alignment model improves poisoned data attack defense by 20 and does not require any additional prompt engineering or prior declaration of ``you may be attacked`` to the LLMs' context window.
Towards Attack-tolerant Federated Learning via Critical Parameter Analysis
Federated learning is used to train a shared model in a decentralized way without clients sharing private data with each other. Federated learning systems are susceptible to poisoning attacks when malicious clients send false updates to the central server. Existing defense strategies are ineffective under non-IID data settings. This paper proposes a new defense strategy, FedCPA (Federated learning with Critical Parameter Analysis). Our attack-tolerant aggregation method is based on the observation that benign local models have similar sets of top-k and bottom-k critical parameters, whereas poisoned local models do not. Experiments with different attack scenarios on multiple datasets demonstrate that our model outperforms existing defense strategies in defending against poisoning attacks.
Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic Sign Perception
All vehicles must follow the rules that govern traffic behavior, regardless of whether the vehicles are human-driven or Connected Autonomous Vehicles (CAVs). Road signs indicate locally active rules, such as speed limits and requirements to yield or stop. Recent research has demonstrated attacks, such as adding stickers or projected colored patches to signs, that cause CAV misinterpretation, resulting in potential safety issues. Humans can see and potentially defend against these attacks. But humans can not detect what they can not observe. We have developed an effective physical-world attack that leverages the sensitivity of filterless image sensors and the properties of Infrared Laser Reflections (ILRs), which are invisible to humans. The attack is designed to affect CAV cameras and perception, undermining traffic sign recognition by inducing misclassification. In this work, we formulate the threat model and requirements for an ILR-based traffic sign perception attack to succeed. We evaluate the effectiveness of the ILR attack with real-world experiments against two major traffic sign recognition architectures on four IR-sensitive cameras. Our black-box optimization methodology allows the attack to achieve up to a 100% attack success rate in indoor, static scenarios and a >80.5% attack success rate in our outdoor, moving vehicle scenarios. We find the latest state-of-the-art certifiable defense is ineffective against ILR attacks as it mis-certifies >33.5% of cases. To address this, we propose a detection strategy based on the physical properties of IR laser reflections which can detect 96% of ILR attacks.
Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI
As generative AI, particularly large language models (LLMs), become increasingly integrated into production applications, new attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems. Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks. Despite growing academic interest in adversarial risks for generative AI, there is limited guidance tailored for practitioners to assess and mitigate these challenges in real-world environments. To address this, our contributions include: (1) a practical examination of red- and blue-teaming strategies for securing generative AI, (2) identification of key challenges and open questions in defense development and evaluation, and (3) the Attack Atlas, an intuitive framework that brings a practical approach to analyzing single-turn input attacks, placing it at the forefront for practitioners. This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models
Data poisoning attacks manipulate training data to introduce unexpected behaviors into machine learning models at training time. For text-to-image generative models with massive training datasets, current understanding of poisoning attacks suggests that a successful attack would require injecting millions of poison samples into their training pipeline. In this paper, we show that poisoning attacks can be successful on generative models. We observe that training data per concept can be quite limited in these models, making them vulnerable to prompt-specific poisoning attacks, which target a model's ability to respond to individual prompts. We introduce Nightshade, an optimized prompt-specific poisoning attack where poison samples look visually identical to benign images with matching text prompts. Nightshade poison samples are also optimized for potency and can corrupt an Stable Diffusion SDXL prompt in <100 poison samples. Nightshade poison effects "bleed through" to related concepts, and multiple attacks can composed together in a single prompt. Surprisingly, we show that a moderate number of Nightshade attacks can destabilize general features in a text-to-image generative model, effectively disabling its ability to generate meaningful images. Finally, we propose the use of Nightshade and similar tools as a last defense for content creators against web scrapers that ignore opt-out/do-not-crawl directives, and discuss possible implications for model trainers and content creators.
Multi-Agent Penetration Testing AI for the Web
AI-powered development platforms are making software creation accessible to a broader audience, but this democratization has triggered a scalability crisis in security auditing. With studies showing that up to 40% of AI-generated code contains vulnerabilities, the pace of development now vastly outstrips the capacity for thorough security assessment. We present MAPTA, a multi-agent system for autonomous web application security assessment that combines large language model orchestration with tool-grounded execution and end-to-end exploit validation. On the 104-challenge XBOW benchmark, MAPTA achieves 76.9% overall success with perfect performance on SSRF and misconfiguration vulnerabilities, 83% success on broken authorization, and strong results on injection attacks including server-side template injection (85%) and SQL injection (83%). Cross-site scripting (57%) and blind SQL injection (0%) remain challenging. Our comprehensive cost analysis across all challenges totals 21.38 with a median cost of 0.073 for successful attempts versus 0.357 for failures. Success correlates strongly with resource efficiency, enabling practical early-stopping thresholds at approximately 40 tool calls or 0.30 per challenge. MAPTA's real-world findings are impactful given both the popularity of the respective scanned GitHub repositories (8K-70K stars) and MAPTA's low average operating cost of $3.67 per open-source assessment: MAPTA discovered critical vulnerabilities including RCEs, command injections, secret exposure, and arbitrary file write vulnerabilities. Findings are responsibly disclosed, 10 findings are under CVE review.
Backdoor Defense via Suppressing Model Shortcuts
Recent studies have demonstrated that deep neural networks (DNNs) are vulnerable to backdoor attacks during the training process. Specifically, the adversaries intend to embed hidden backdoors in DNNs so that malicious model predictions can be activated through pre-defined trigger patterns. In this paper, we explore the backdoor mechanism from the angle of the model structure. We select the skip connection for discussions, inspired by the understanding that it helps the learning of model `shortcuts' where backdoor triggers are usually easier to be learned. Specifically, we demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections. Based on this observation, we design a simple yet effective backdoor removal method by suppressing the skip connections in critical layers selected by our method. We also implement fine-tuning on these layers to recover high benign accuracy and to further reduce ASR. Extensive experiments on benchmark datasets verify the effectiveness of our method.
Demystifying Poisoning Backdoor Attacks from a Statistical Perspective
The growing dependence on machine learning in real-world applications emphasizes the importance of understanding and ensuring its safety. Backdoor attacks pose a significant security risk due to their stealthy nature and potentially serious consequences. Such attacks involve embedding triggers within a learning model with the intention of causing malicious behavior when an active trigger is present while maintaining regular functionality without it. This paper evaluates the effectiveness of any backdoor attack incorporating a constant trigger, by establishing tight lower and upper boundaries for the performance of the compromised model on both clean and backdoor test data. The developed theory answers a series of fundamental but previously underexplored problems, including (1) what are the determining factors for a backdoor attack's success, (2) what is the direction of the most effective backdoor attack, and (3) when will a human-imperceptible trigger succeed. Our derived understanding applies to both discriminative and generative models. We also demonstrate the theory by conducting experiments using benchmark datasets and state-of-the-art backdoor attack scenarios.
X-Teaming: Multi-Turn Jailbreaks and Defenses with Adaptive Multi-Agents
Multi-turn interactions with language models (LMs) pose critical safety risks, as harmful intent can be strategically spread across exchanges. Yet, the vast majority of prior work has focused on single-turn safety, while adaptability and diversity remain among the key challenges of multi-turn red-teaming. To address these challenges, we present X-Teaming, a scalable framework that systematically explores how seemingly harmless interactions escalate into harmful outcomes and generates corresponding attack scenarios. X-Teaming employs collaborative agents for planning, attack optimization, and verification, achieving state-of-the-art multi-turn jailbreak effectiveness and diversity with success rates up to 98.1% across representative leading open-weight and closed-source models. In particular, X-Teaming achieves a 96.2% attack success rate against the latest Claude 3.7 Sonnet model, which has been considered nearly immune to single-turn attacks. Building on X-Teaming, we introduce XGuard-Train, an open-source multi-turn safety training dataset that is 20x larger than the previous best resource, comprising 30K interactive jailbreaks, designed to enable robust multi-turn safety alignment for LMs. Our work offers essential tools and insights for mitigating sophisticated conversational attacks, advancing the multi-turn safety of LMs.
AgentVigil: Generic Black-Box Red-teaming for Indirect Prompt Injection against LLM Agents
The strong planning and reasoning capabilities of Large Language Models (LLMs) have fostered the development of agent-based systems capable of leveraging external tools and interacting with increasingly complex environments. However, these powerful features also introduce a critical security risk: indirect prompt injection, a sophisticated attack vector that compromises the core of these agents, the LLM, by manipulating contextual information rather than direct user prompts. In this work, we propose a generic black-box fuzzing framework, AgentVigil, designed to automatically discover and exploit indirect prompt injection vulnerabilities across diverse LLM agents. Our approach starts by constructing a high-quality initial seed corpus, then employs a seed selection algorithm based on Monte Carlo Tree Search (MCTS) to iteratively refine inputs, thereby maximizing the likelihood of uncovering agent weaknesses. We evaluate AgentVigil on two public benchmarks, AgentDojo and VWA-adv, where it achieves 71% and 70% success rates against agents based on o3-mini and GPT-4o, respectively, nearly doubling the performance of baseline attacks. Moreover, AgentVigil exhibits strong transferability across unseen tasks and internal LLMs, as well as promising results against defenses. Beyond benchmark evaluations, we apply our attacks in real-world environments, successfully misleading agents to navigate to arbitrary URLs, including malicious sites.
Poison-splat: Computation Cost Attack on 3D Gaussian Splatting
3D Gaussian splatting (3DGS), known for its groundbreaking performance and efficiency, has become a dominant 3D representation and brought progress to many 3D vision tasks. However, in this work, we reveal a significant security vulnerability that has been largely overlooked in 3DGS: the computation cost of training 3DGS could be maliciously tampered by poisoning the input data. By developing an attack named Poison-splat, we reveal a novel attack surface where the adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training, pushing the algorithm towards its worst computation complexity. In extreme cases, the attack can even consume all allocable memory, leading to a Denial-of-Service (DoS) that disrupts servers, resulting in practical damages to real-world 3DGS service vendors. Such a computation cost attack is achieved by addressing a bi-level optimization problem through three tailored strategies: attack objective approximation, proxy model rendering, and optional constrained optimization. These strategies not only ensure the effectiveness of our attack but also make it difficult to defend with simple defensive measures. We hope the revelation of this novel attack surface can spark attention to this crucial yet overlooked vulnerability of 3DGS systems. Our code is available at https://github.com/jiahaolu97/poison-splat .
AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized Phishing URL Detection
The escalating reliance on revolutionary online web services has introduced heightened security risks, with persistent challenges posed by phishing despite extensive security measures. Traditional phishing systems, reliant on machine learning and manual features, struggle with evolving tactics. Recent advances in deep learning offer promising avenues for tackling novel phishing challenges and malicious URLs. This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites. The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats. In Phase I, features are trained on a base machine learning classifier, employing K-fold cross-validation for robust mean prediction. Phase II employs a two-layered stacked-based LSTM network with five adaptive optimizers for dynamic compilation, ensuring premier prediction on these features. Additionally, the symmetrical predictions from both phases are optimized and integrated to train a meta-XGBoost classifier, contributing to a final robust prediction. The significance of this work lies in advancing phishing detection with AntiPhishStack, operating without prior phishing-specific feature knowledge. Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies. This research adds value to the ongoing discourse on symmetry and asymmetry in information security and provides a forward-thinking solution for enhancing network security in the face of evolving cyber threats.
SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models
In the rapidly evolving landscape of Large Language Models (LLMs), ensuring robust safety measures is paramount. To meet this crucial need, we propose SALAD-Bench, a safety benchmark specifically designed for evaluating LLMs, attack, and defense methods. Distinguished by its breadth, SALAD-Bench transcends conventional benchmarks through its large scale, rich diversity, intricate taxonomy spanning three levels, and versatile functionalities.SALAD-Bench is crafted with a meticulous array of questions, from standard queries to complex ones enriched with attack, defense modifications and multiple-choice. To effectively manage the inherent complexity, we introduce an innovative evaluators: the LLM-based MD-Judge for QA pairs with a particular focus on attack-enhanced queries, ensuring a seamless, and reliable evaluation. Above components extend SALAD-Bench from standard LLM safety evaluation to both LLM attack and defense methods evaluation, ensuring the joint-purpose utility. Our extensive experiments shed light on the resilience of LLMs against emerging threats and the efficacy of contemporary defense tactics. Data and evaluator are released under https://github.com/OpenSafetyLab/SALAD-BENCH. Warning: this paper includes examples that may be offensive or harmful.
Dissecting Distribution Inference
A distribution inference attack aims to infer statistical properties of data used to train machine learning models. These attacks are sometimes surprisingly potent, but the factors that impact distribution inference risk are not well understood and demonstrated attacks often rely on strong and unrealistic assumptions such as full knowledge of training environments even in supposedly black-box threat scenarios. To improve understanding of distribution inference risks, we develop a new black-box attack that even outperforms the best known white-box attack in most settings. Using this new attack, we evaluate distribution inference risk while relaxing a variety of assumptions about the adversary's knowledge under black-box access, like known model architectures and label-only access. Finally, we evaluate the effectiveness of previously proposed defenses and introduce new defenses. We find that although noise-based defenses appear to be ineffective, a simple re-sampling defense can be highly effective. Code is available at https://github.com/iamgroot42/dissecting_distribution_inference
Exploring the Role of Large Language Models in Cybersecurity: A Systematic Survey
With the rapid development of technology and the acceleration of digitalisation, the frequency and complexity of cyber security threats are increasing. Traditional cybersecurity approaches, often based on static rules and predefined scenarios, are struggling to adapt to the rapidly evolving nature of modern cyberattacks. There is an urgent need for more adaptive and intelligent defence strategies. The emergence of Large Language Model (LLM) provides an innovative solution to cope with the increasingly severe cyber threats, and its potential in analysing complex attack patterns, predicting threats and assisting real-time response has attracted a lot of attention in the field of cybersecurity, and exploring how to effectively use LLM to defend against cyberattacks has become a hot topic in the current research field. This survey examines the applications of LLM from the perspective of the cyber attack lifecycle, focusing on the three phases of defense reconnaissance, foothold establishment, and lateral movement, and it analyzes the potential of LLMs in Cyber Threat Intelligence (CTI) tasks. Meanwhile, we investigate how LLM-based security solutions are deployed and applied in different network scenarios. It also summarizes the internal and external risk issues faced by LLM during its application. Finally, this survey also points out the facing risk issues and possible future research directions in this domain.
Is poisoning a real threat to LLM alignment? Maybe more so than you think
Recent advancements in Reinforcement Learning with Human Feedback (RLHF) have significantly impacted the alignment of Large Language Models (LLMs). The sensitivity of reinforcement learning algorithms such as Proximal Policy Optimization (PPO) has led to new line work on Direct Policy Optimization (DPO), which treats RLHF in a supervised learning framework. The increased practical use of these RLHF methods warrants an analysis of their vulnerabilities. In this work, we investigate the vulnerabilities of DPO to poisoning attacks under different scenarios and compare the effectiveness of preference poisoning, a first of its kind. We comprehensively analyze DPO's vulnerabilities under different types of attacks, i.e., backdoor and non-backdoor attacks, and different poisoning methods across a wide array of language models, i.e., LLama 7B, Mistral 7B, and Gemma 7B. We find that unlike PPO-based methods, which, when it comes to backdoor attacks, require at least 4\% of the data to be poisoned to elicit harmful behavior, we exploit the true vulnerabilities of DPO more simply so we can poison the model with only as much as 0.5\% of the data. We further investigate the potential reasons behind the vulnerability and how well this vulnerability translates into backdoor vs non-backdoor attacks.
Exploring the Vulnerabilities of Federated Learning: A Deep Dive into Gradient Inversion Attacks
Federated Learning (FL) has emerged as a promising privacy-preserving collaborative model training paradigm without sharing raw data. However, recent studies have revealed that private information can still be leaked through shared gradient information and attacked by Gradient Inversion Attacks (GIA). While many GIA methods have been proposed, a detailed analysis, evaluation, and summary of these methods are still lacking. Although various survey papers summarize existing privacy attacks in FL, few studies have conducted extensive experiments to unveil the effectiveness of GIA and their associated limiting factors in this context. To fill this gap, we first undertake a systematic review of GIA and categorize existing methods into three types, i.e., optimization-based GIA (OP-GIA), generation-based GIA (GEN-GIA), and analytics-based GIA (ANA-GIA). Then, we comprehensively analyze and evaluate the three types of GIA in FL, providing insights into the factors that influence their performance, practicality, and potential threats. Our findings indicate that OP-GIA is the most practical attack setting despite its unsatisfactory performance, while GEN-GIA has many dependencies and ANA-GIA is easily detectable, making them both impractical. Finally, we offer a three-stage defense pipeline to users when designing FL frameworks and protocols for better privacy protection and share some future research directions from the perspectives of attackers and defenders that we believe should be pursued. We hope that our study can help researchers design more robust FL frameworks to defend against these attacks.
Model evaluation for extreme risks
Current approaches to building general-purpose AI systems tend to produce systems with both beneficial and harmful capabilities. Further progress in AI development could lead to capabilities that pose extreme risks, such as offensive cyber capabilities or strong manipulation skills. We explain why model evaluation is critical for addressing extreme risks. Developers must be able to identify dangerous capabilities (through "dangerous capability evaluations") and the propensity of models to apply their capabilities for harm (through "alignment evaluations"). These evaluations will become critical for keeping policymakers and other stakeholders informed, and for making responsible decisions about model training, deployment, and security.
MCP Safety Audit: LLMs with the Model Context Protocol Allow Major Security Exploits
To reduce development overhead and enable seamless integration between potential components comprising any given generative AI application, the Model Context Protocol (MCP) (Anthropic, 2024) has recently been released and subsequently widely adopted. The MCP is an open protocol that standardizes API calls to large language models (LLMs), data sources, and agentic tools. By connecting multiple MCP servers, each defined with a set of tools, resources, and prompts, users are able to define automated workflows fully driven by LLMs. However, we show that the current MCP design carries a wide range of security risks for end users. In particular, we demonstrate that industry-leading LLMs may be coerced into using MCP tools to compromise an AI developer's system through various attacks, such as malicious code execution, remote access control, and credential theft. To proactively mitigate these and related attacks, we introduce a safety auditing tool, MCPSafetyScanner, the first agentic tool to assess the security of an arbitrary MCP server. MCPScanner uses several agents to (a) automatically determine adversarial samples given an MCP server's tools and resources; (b) search for related vulnerabilities and remediations based on those samples; and (c) generate a security report detailing all findings. Our work highlights serious security issues with general-purpose agentic workflows while also providing a proactive tool to audit MCP server safety and address detected vulnerabilities before deployment. The described MCP server auditing tool, MCPSafetyScanner, is freely available at: https://github.com/johnhalloran321/mcpSafetyScanner
Commercial LLM Agents Are Already Vulnerable to Simple Yet Dangerous Attacks
A high volume of recent ML security literature focuses on attacks against aligned large language models (LLMs). These attacks may extract private information or coerce the model into producing harmful outputs. In real-world deployments, LLMs are often part of a larger agentic pipeline including memory systems, retrieval, web access, and API calling. Such additional components introduce vulnerabilities that make these LLM-powered agents much easier to attack than isolated LLMs, yet relatively little work focuses on the security of LLM agents. In this paper, we analyze security and privacy vulnerabilities that are unique to LLM agents. We first provide a taxonomy of attacks categorized by threat actors, objectives, entry points, attacker observability, attack strategies, and inherent vulnerabilities of agent pipelines. We then conduct a series of illustrative attacks on popular open-source and commercial agents, demonstrating the immediate practical implications of their vulnerabilities. Notably, our attacks are trivial to implement and require no understanding of machine learning.
SecReEvalBench: A Multi-turned Security Resilience Evaluation Benchmark for Large Language Models
The increasing deployment of large language models in security-sensitive domains necessitates rigorous evaluation of their resilience against adversarial prompt-based attacks. While previous benchmarks have focused on security evaluations with limited and predefined attack domains, such as cybersecurity attacks, they often lack a comprehensive assessment of intent-driven adversarial prompts and the consideration of real-life scenario-based multi-turn attacks. To address this gap, we present SecReEvalBench, the Security Resilience Evaluation Benchmark, which defines four novel metrics: Prompt Attack Resilience Score, Prompt Attack Refusal Logic Score, Chain-Based Attack Resilience Score and Chain-Based Attack Rejection Time Score. Moreover, SecReEvalBench employs six questioning sequences for model assessment: one-off attack, successive attack, successive reverse attack, alternative attack, sequential ascending attack with escalating threat levels and sequential descending attack with diminishing threat levels. In addition, we introduce a dataset customized for the benchmark, which incorporates both neutral and malicious prompts, categorised across seven security domains and sixteen attack techniques. In applying this benchmark, we systematically evaluate five state-of-the-art open-weighted large language models, Llama 3.1, Gemma 2, Mistral v0.3, DeepSeek-R1 and Qwen 3. Our findings offer critical insights into the strengths and weaknesses of modern large language models in defending against evolving adversarial threats. The SecReEvalBench dataset is publicly available at https://kaggle.com/datasets/5a7ee22cf9dab6c93b55a73f630f6c9b42e936351b0ae98fbae6ddaca7fe248d, which provides a groundwork for advancing research in large language model security.
QueryAttack: Jailbreaking Aligned Large Language Models Using Structured Non-natural Query Language
Recent advances in large language models (LLMs) have demonstrated remarkable potential in the field of natural language processing. Unfortunately, LLMs face significant security and ethical risks. Although techniques such as safety alignment are developed for defense, prior researches reveal the possibility of bypassing such defenses through well-designed jailbreak attacks. In this paper, we propose QueryAttack, a novel framework to examine the generalizability of safety alignment. By treating LLMs as knowledge databases, we translate malicious queries in natural language into structured non-natural query language to bypass the safety alignment mechanisms of LLMs. We conduct extensive experiments on mainstream LLMs, and the results show that QueryAttack not only can achieve high attack success rates (ASRs), but also can jailbreak various defense methods. Furthermore, we tailor a defense method against QueryAttack, which can reduce ASR by up to 64% on GPT-4-1106. Our code is available at https://github.com/horizonsinzqs/QueryAttack.
EDoG: Adversarial Edge Detection For Graph Neural Networks
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
From Allies to Adversaries: Manipulating LLM Tool-Calling through Adversarial Injection
Tool-calling has changed Large Language Model (LLM) applications by integrating external tools, significantly enhancing their functionality across diverse tasks. However, this integration also introduces new security vulnerabilities, particularly in the tool scheduling mechanisms of LLM, which have not been extensively studied. To fill this gap, we present ToolCommander, a novel framework designed to exploit vulnerabilities in LLM tool-calling systems through adversarial tool injection. Our framework employs a well-designed two-stage attack strategy. Firstly, it injects malicious tools to collect user queries, then dynamically updates the injected tools based on the stolen information to enhance subsequent attacks. These stages enable ToolCommander to execute privacy theft, launch denial-of-service attacks, and even manipulate business competition by triggering unscheduled tool-calling. Notably, the ASR reaches 91.67% for privacy theft and hits 100% for denial-of-service and unscheduled tool calling in certain cases. Our work demonstrates that these vulnerabilities can lead to severe consequences beyond simple misuse of tool-calling systems, underscoring the urgent need for robust defensive strategies to secure LLM Tool-calling systems.
Formalizing and Estimating Distribution Inference Risks
Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning -- namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.'s membership inference framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks. Code is available at https://github.com/iamgroot42/FormEstDistRisks
Local Reweighting for Adversarial Training
Instances-reweighted adversarial training (IRAT) can significantly boost the robustness of trained models, where data being less/more vulnerable to the given attack are assigned smaller/larger weights during training. However, when tested on attacks different from the given attack simulated in training, the robustness may drop significantly (e.g., even worse than no reweighting). In this paper, we study this problem and propose our solution--locally reweighted adversarial training (LRAT). The rationale behind IRAT is that we do not need to pay much attention to an instance that is already safe under the attack. We argue that the safeness should be attack-dependent, so that for the same instance, its weight can change given different attacks based on the same model. Thus, if the attack simulated in training is mis-specified, the weights of IRAT are misleading. To this end, LRAT pairs each instance with its adversarial variants and performs local reweighting inside each pair, while performing no global reweighting--the rationale is to fit the instance itself if it is immune to the attack, but not to skip the pair, in order to passively defend different attacks in future. Experiments show that LRAT works better than both IRAT (i.e., global reweighting) and the standard AT (i.e., no reweighting) when trained with an attack and tested on different attacks.
Security Challenges in AI Agent Deployment: Insights from a Large Scale Public Competition
Recent advances have enabled LLM-powered AI agents to autonomously execute complex tasks by combining language model reasoning with tools, memory, and web access. But can these systems be trusted to follow deployment policies in realistic environments, especially under attack? To investigate, we ran the largest public red-teaming competition to date, targeting 22 frontier AI agents across 44 realistic deployment scenarios. Participants submitted 1.8 million prompt-injection attacks, with over 60,000 successfully eliciting policy violations such as unauthorized data access, illicit financial actions, and regulatory noncompliance. We use these results to build the Agent Red Teaming (ART) benchmark - a curated set of high-impact attacks - and evaluate it across 19 state-of-the-art models. Nearly all agents exhibit policy violations for most behaviors within 10-100 queries, with high attack transferability across models and tasks. Importantly, we find limited correlation between agent robustness and model size, capability, or inference-time compute, suggesting that additional defenses are needed against adversarial misuse. Our findings highlight critical and persistent vulnerabilities in today's AI agents. By releasing the ART benchmark and accompanying evaluation framework, we aim to support more rigorous security assessment and drive progress toward safer agent deployment.
OverThink: Slowdown Attacks on Reasoning LLMs
We increase overhead for applications that rely on reasoning LLMs-we force models to spend an amplified number of reasoning tokens, i.e., "overthink", to respond to the user query while providing contextually correct answers. The adversary performs an OVERTHINK attack by injecting decoy reasoning problems into the public content that is used by the reasoning LLM (e.g., for RAG applications) during inference time. Due to the nature of our decoy problems (e.g., a Markov Decision Process), modified texts do not violate safety guardrails. We evaluated our attack across closed-(OpenAI o1, o1-mini, o3-mini) and open-(DeepSeek R1) weights reasoning models on the FreshQA and SQuAD datasets. Our results show up to 18x slowdown on FreshQA dataset and 46x slowdown on SQuAD dataset. The attack also shows high transferability across models. To protect applications, we discuss and implement defenses leveraging LLM-based and system design approaches. Finally, we discuss societal, financial, and energy impacts of OVERTHINK attack which could amplify the costs for third-party applications operating reasoning models.
Adversarial Feature Map Pruning for Backdoor
Deep neural networks have been widely used in many critical applications, such as autonomous vehicles and medical diagnosis. However, their security is threatened by backdoor attacks, which are achieved by adding artificial patterns to specific training data. Existing defense strategies primarily focus on using reverse engineering to reproduce the backdoor trigger generated by attackers and subsequently repair the DNN model by adding the trigger into inputs and fine-tuning the model with ground-truth labels. However, once the trigger generated by the attackers is complex and invisible, the defender cannot reproduce the trigger successfully then the DNN model will not be repaired, as the trigger is not effectively removed. In this work, we propose Adversarial Feature Map Pruning for Backdoor (FMP) to mitigate backdoor from the DNN. Unlike existing defense strategies, which focus on reproducing backdoor triggers, FMP attempts to prune backdoor feature maps, which are trained to extract backdoor information from inputs. After pruning these backdoor feature maps, FMP will fine-tune the model with a secure subset of training data. Our experiments demonstrate that, compared to existing defense strategies, FMP can effectively reduce the Attack Success Rate (ASR) even against the most complex and invisible attack triggers (e.g., FMP decreases the ASR to 2.86\% in CIFAR10, which is 19.2\% to 65.41\% lower than baselines). Second, unlike conventional defense methods that tend to exhibit low robust accuracy (that is, the accuracy of the model on poisoned data), FMP achieves a higher RA, indicating its superiority in maintaining model performance while mitigating the effects of backdoor attacks (e.g., FMP obtains 87.40\% RA in CIFAR10). Our code is publicly available at: https://github.com/retsuh-bqw/FMP.
A Mousetrap: Fooling Large Reasoning Models for Jailbreak with Chain of Iterative Chaos
Large Reasoning Models (LRMs) have significantly advanced beyond traditional Large Language Models (LLMs) with their exceptional logical reasoning capabilities, yet these improvements introduce heightened safety risks. When subjected to jailbreak attacks, their ability to generate more targeted and organized content can lead to greater harm. Although some studies claim that reasoning enables safer LRMs against existing LLM attacks, they overlook the inherent flaws within the reasoning process itself. To address this gap, we propose the first jailbreak attack targeting LRMs, exploiting their unique vulnerabilities stemming from the advanced reasoning capabilities. Specifically, we introduce a Chaos Machine, a novel component to transform attack prompts with diverse one-to-one mappings. The chaos mappings iteratively generated by the machine are embedded into the reasoning chain, which strengthens the variability and complexity and also promotes a more robust attack. Based on this, we construct the Mousetrap framework, which makes attacks projected into nonlinear-like low sample spaces with mismatched generalization enhanced. Also, due to the more competing objectives, LRMs gradually maintain the inertia of unpredictable iterative reasoning and fall into our trap. Success rates of the Mousetrap attacking o1-mini, Claude-Sonnet and Gemini-Thinking are as high as 96%, 86% and 98% respectively on our toxic dataset Trotter. On benchmarks such as AdvBench, StrongREJECT, and HarmBench, attacking Claude-Sonnet, well-known for its safety, Mousetrap can astonishingly achieve success rates of 87.5%, 86.58% and 93.13% respectively. Attention: This paper contains inappropriate, offensive and harmful content.
ATTRITION: Attacking Static Hardware Trojan Detection Techniques Using Reinforcement Learning
Stealthy hardware Trojans (HTs) inserted during the fabrication of integrated circuits can bypass the security of critical infrastructures. Although researchers have proposed many techniques to detect HTs, several limitations exist, including: (i) a low success rate, (ii) high algorithmic complexity, and (iii) a large number of test patterns. Furthermore, the most pertinent drawback of prior detection techniques stems from an incorrect evaluation methodology, i.e., they assume that an adversary inserts HTs randomly. Such inappropriate adversarial assumptions enable detection techniques to claim high HT detection accuracy, leading to a "false sense of security." Unfortunately, to the best of our knowledge, despite more than a decade of research on detecting HTs inserted during fabrication, there have been no concerted efforts to perform a systematic evaluation of HT detection techniques. In this paper, we play the role of a realistic adversary and question the efficacy of HT detection techniques by developing an automated, scalable, and practical attack framework, ATTRITION, using reinforcement learning (RL). ATTRITION evades eight detection techniques across two HT detection categories, showcasing its agnostic behavior. ATTRITION achieves average attack success rates of 47times and 211times compared to randomly inserted HTs against state-of-the-art HT detection techniques. We demonstrate ATTRITION's ability to evade detection techniques by evaluating designs ranging from the widely-used academic suites to larger designs such as the open-source MIPS and mor1kx processors to AES and a GPS module. Additionally, we showcase the impact of ATTRITION-generated HTs through two case studies (privilege escalation and kill switch) on the mor1kx processor. We envision that our work, along with our released HT benchmarks and models, fosters the development of better HT detection techniques.
Beyond the Protocol: Unveiling Attack Vectors in the Model Context Protocol Ecosystem
The Model Context Protocol (MCP) is an emerging standard designed to enable seamless interaction between Large Language Model (LLM) applications and external tools or resources. Within a short period, thousands of MCP services have already been developed and deployed. However, the client-server integration architecture inherent in MCP may expand the attack surface against LLM Agent systems, introducing new vulnerabilities that allow attackers to exploit by designing malicious MCP servers. In this paper, we present the first systematic study of attack vectors targeting the MCP ecosystem. Our analysis identifies four categories of attacks, i.e., Tool Poisoning Attacks, Puppet Attacks, Rug Pull Attacks, and Exploitation via Malicious External Resources. To evaluate the feasibility of these attacks, we conduct experiments following the typical steps of launching an attack through malicious MCP servers: upload-download-attack. Specifically, we first construct malicious MCP servers and successfully upload them to three widely used MCP aggregation platforms. The results indicate that current audit mechanisms are insufficient to identify and prevent the proposed attack methods. Next, through a user study and interview with 20 participants, we demonstrate that users struggle to identify malicious MCP servers and often unknowingly install them from aggregator platforms. Finally, we demonstrate that these attacks can trigger harmful behaviors within the user's local environment-such as accessing private files or controlling devices to transfer digital assets-by deploying a proof-of-concept (PoC) framework against five leading LLMs. Additionally, based on interview results, we discuss four key challenges faced by the current security ecosystem surrounding MCP servers. These findings underscore the urgent need for robust security mechanisms to defend against malicious MCP servers.
RAT: Adversarial Attacks on Deep Reinforcement Agents for Targeted Behaviors
Evaluating deep reinforcement learning (DRL) agents against targeted behavior attacks is critical for assessing their robustness. These attacks aim to manipulate the victim into specific behaviors that align with the attacker's objectives, often bypassing traditional reward-based defenses. Prior methods have primarily focused on reducing cumulative rewards; however, rewards are typically too generic to capture complex safety requirements effectively. As a result, focusing solely on reward reduction can lead to suboptimal attack strategies, particularly in safety-critical scenarios where more precise behavior manipulation is needed. To address these challenges, we propose RAT, a method designed for universal, targeted behavior attacks. RAT trains an intention policy that is explicitly aligned with human preferences, serving as a precise behavioral target for the adversary. Concurrently, an adversary manipulates the victim's policy to follow this target behavior. To enhance the effectiveness of these attacks, RAT dynamically adjusts the state occupancy measure within the replay buffer, allowing for more controlled and effective behavior manipulation. Our empirical results on robotic simulation tasks demonstrate that RAT outperforms existing adversarial attack algorithms in inducing specific behaviors. Additionally, RAT shows promise in improving agent robustness, leading to more resilient policies. We further validate RAT by guiding Decision Transformer agents to adopt behaviors aligned with human preferences in various MuJoCo tasks, demonstrating its effectiveness across diverse tasks.
A New Dataset and Methodology for Malicious URL Classification
Malicious URL (Uniform Resource Locator) classification is a pivotal aspect of Cybersecurity, offering defense against web-based threats. Despite deep learning's promise in this area, its advancement is hindered by two main challenges: the scarcity of comprehensive, open-source datasets and the limitations of existing models, which either lack real-time capabilities or exhibit suboptimal performance. In order to address these gaps, we introduce a novel, multi-class dataset for malicious URL classification, distinguishing between benign, phishing and malicious URLs, named DeepURLBench. The data has been rigorously cleansed and structured, providing a superior alternative to existing datasets. Notably, the multi-class approach enhances the performance of deep learning models, as compared to a standard binary classification approach. Additionally, we propose improvements to string-based URL classifiers, applying these enhancements to URLNet. Key among these is the integration of DNS-derived features, which enrich the model's capabilities and lead to notable performance gains while preserving real-time runtime efficiency-achieving an effective balance for cybersecurity applications.
Semantic Stealth: Adversarial Text Attacks on NLP Using Several Methods
In various real-world applications such as machine translation, sentiment analysis, and question answering, a pivotal role is played by NLP models, facilitating efficient communication and decision-making processes in domains ranging from healthcare to finance. However, a significant challenge is posed to the robustness of these natural language processing models by text adversarial attacks. These attacks involve the deliberate manipulation of input text to mislead the predictions of the model while maintaining human interpretability. Despite the remarkable performance achieved by state-of-the-art models like BERT in various natural language processing tasks, they are found to remain vulnerable to adversarial perturbations in the input text. In addressing the vulnerability of text classifiers to adversarial attacks, three distinct attack mechanisms are explored in this paper using the victim model BERT: BERT-on-BERT attack, PWWS attack, and Fraud Bargain's Attack (FBA). Leveraging the IMDB, AG News, and SST2 datasets, a thorough comparative analysis is conducted to assess the effectiveness of these attacks on the BERT classifier model. It is revealed by the analysis that PWWS emerges as the most potent adversary, consistently outperforming other methods across multiple evaluation scenarios, thereby emphasizing its efficacy in generating adversarial examples for text classification. Through comprehensive experimentation, the performance of these attacks is assessed and the findings indicate that the PWWS attack outperforms others, demonstrating lower runtime, higher accuracy, and favorable semantic similarity scores. The key insight of this paper lies in the assessment of the relative performances of three prevalent state-of-the-art attack mechanisms.
Rethinking Adversarial Policies: A Generalized Attack Formulation and Provable Defense in RL
Most existing works focus on direct perturbations to the victim's state/action or the underlying transition dynamics to demonstrate the vulnerability of reinforcement learning agents to adversarial attacks. However, such direct manipulations may not be always realizable. In this paper, we consider a multi-agent setting where a well-trained victim agent nu is exploited by an attacker controlling another agent alpha with an adversarial policy. Previous models do not account for the possibility that the attacker may only have partial control over alpha or that the attack may produce easily detectable "abnormal" behaviors. Furthermore, there is a lack of provably efficient defenses against these adversarial policies. To address these limitations, we introduce a generalized attack framework that has the flexibility to model to what extent the adversary is able to control the agent, and allows the attacker to regulate the state distribution shift and produce stealthier adversarial policies. Moreover, we offer a provably efficient defense with polynomial convergence to the most robust victim policy through adversarial training with timescale separation. This stands in sharp contrast to supervised learning, where adversarial training typically provides only empirical defenses. Using the Robosumo competition experiments, we show that our generalized attack formulation results in much stealthier adversarial policies when maintaining the same winning rate as baselines. Additionally, our adversarial training approach yields stable learning dynamics and less exploitable victim policies.
Topic-oriented Adversarial Attacks against Black-box Neural Ranking Models
Neural ranking models (NRMs) have attracted considerable attention in information retrieval. Unfortunately, NRMs may inherit the adversarial vulnerabilities of general neural networks, which might be leveraged by black-hat search engine optimization practitioners. Recently, adversarial attacks against NRMs have been explored in the paired attack setting, generating an adversarial perturbation to a target document for a specific query. In this paper, we focus on a more general type of perturbation and introduce the topic-oriented adversarial ranking attack task against NRMs, which aims to find an imperceptible perturbation that can promote a target document in ranking for a group of queries with the same topic. We define both static and dynamic settings for the task and focus on decision-based black-box attacks. We propose a novel framework to improve topic-oriented attack performance based on a surrogate ranking model. The attack problem is formalized as a Markov decision process (MDP) and addressed using reinforcement learning. Specifically, a topic-oriented reward function guides the policy to find a successful adversarial example that can be promoted in rankings to as many queries as possible in a group. Experimental results demonstrate that the proposed framework can significantly outperform existing attack strategies, and we conclude by re-iterating that there exist potential risks for applying NRMs in the real world.
Adversarial Manipulation of Reasoning Models using Internal Representations
Reasoning models generate chain-of-thought (CoT) tokens before their final output, but how this affects their vulnerability to jailbreak attacks remains unclear. While traditional language models make refusal decisions at the prompt-response boundary, we find evidence that DeepSeek-R1-Distill-Llama-8B makes these decisions within its CoT generation. We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply -- termed the "caution" direction because it corresponds to cautious reasoning patterns in the generated text. Ablating this direction from model activations increases harmful compliance, effectively jailbreaking the model. We additionally show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates. Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models. Code available at https://github.com/ky295/reasoning-manipulation

 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
	 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			