Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeApproximation of the truncated Zeta distribution and Zipf's law
Zipf's law appears in many application areas but does not have a closed form expression, which may make its use cumbersome. Since it coincides with the truncated version of the Zeta distribution, in this paper we propose three approximate closed form expressions for the truncated Zeta distribution, which may be employed for Zipf's law as well. The three approximations are based on the replacement of the sum occurring in Zipf's law with an integral, and are named respectively the integral approximation, the average integral approximation, and the trapezoidal approximation. While the first one is shown to be of little use, the trapezoidal approximation exhibits an error which is typically lower than 1\%, but is as low as 0.1\% for the range of values of the Zipf parameter below 1.
Lewis's Signaling Game as beta-VAE For Natural Word Lengths and Segments
As a sub-discipline of evolutionary and computational linguistics, emergent communication (EC) studies communication protocols, called emergent languages, arising in simulations where agents communicate. A key goal of EC is to give rise to languages that share statistical properties with natural languages. In this paper, we reinterpret Lewis's signaling game, a frequently used setting in EC, as beta-VAE and reformulate its objective function as ELBO. Consequently, we clarify the existence of prior distributions of emergent languages and show that the choice of the priors can influence their statistical properties. Specifically, we address the properties of word lengths and segmentation, known as Zipf's law of abbreviation (ZLA) and Harris's articulation scheme (HAS), respectively. It has been reported that the emergent languages do not follow them when using the conventional objective. We experimentally demonstrate that by selecting an appropriate prior distribution, more natural segments emerge, while suggesting that the conventional one prevents the languages from following ZLA and HAS.
Zero Day Malware Detection with Alpha: Fast DBI with Transformer Models for Real World Application
The effectiveness of an AI model in accurately classifying novel malware hinges on the quality of the features it is trained on, which in turn depends on the effectiveness of the analysis tool used. Peekaboo, a Dynamic Binary Instrumentation (DBI) tool, defeats malware evasion techniques to capture authentic behavior at the Assembly (ASM) instruction level. This behavior exhibits patterns consistent with Zipf's law, a distribution commonly seen in natural languages, making Transformer models particularly effective for binary classification tasks. We introduce Alpha, a framework for zero day malware detection that leverages Transformer models and ASM language. Alpha is trained on malware and benign software data collected through Peekaboo, enabling it to identify entirely new samples with exceptional accuracy. Alpha eliminates any common functions from the test samples that are in the training dataset. This forces the model to rely on contextual patterns and novel ASM instruction combinations to detect malicious behavior, rather than memorizing familiar features. By combining the strengths of DBI, ASM analysis, and Transformer architectures, Alpha offers a powerful approach to proactively addressing the evolving threat of malware. Alpha demonstrates perfect accuracy for Ransomware, Worms and APTs with flawless classification for both malicious and benign samples. The results highlight the model's exceptional performance in detecting truly new malware samples.
Zipfian Whitening
The word embedding space in neural models is skewed, and correcting this can improve task performance. We point out that most approaches for modeling, correcting, and measuring the symmetry of an embedding space implicitly assume that the word frequencies are uniform; in reality, word frequencies follow a highly non-uniform distribution, known as Zipf's law. Surprisingly, simply performing PCA whitening weighted by the empirical word frequency that follows Zipf's law significantly improves task performance, surpassing established baselines. From a theoretical perspective, both our approach and existing methods can be clearly categorized: word representations are distributed according to an exponential family with either uniform or Zipfian base measures. By adopting the latter approach, we can naturally emphasize informative low-frequency words in terms of their vector norm, which becomes evident from the information-geometric perspective, and in terms of the loss functions for imbalanced classification. Additionally, our theory corroborates that popular natural language processing methods, such as skip-gram negative sampling, WhiteningBERT, and headless language models, work well just because their word embeddings encode the empirical word frequency into the underlying probabilistic model.
Two-parameter superposable S-curves
Straight line equation y=mx with slope m, when singularly perturbed as ay^3+y=mx with a positive parameter a, results in S-shaped curves or S-curves on a real plane. As arightarrow 0, we get back y=mx which is a cumulative distribution function of a continuous uniform distribution that describes the occurrence of every event in an interval to be equally probable. As arightarrowinfty, the derivative of y has finite support only at y=0 resembling a degenerate distribution. Based on these arguments, in this work, we propose that these S-curves can represent maximum entropy uniform distribution to a zero entropy single value. We also argue that these S-curves are superposable as they are only parametrically nonlinear but fundamentally linear. So far, the superposed forms have been used to capture the patterns of natural systems such as nonlinear dynamics of biological growth and kinetics of enzyme reactions. Here, we attempt to use the S-curve and its superposed form as statistical models. We fit the models on a classical dataset containing flower measurements of iris plants and analyze their usefulness in pattern recognition. Based on these models, we claim that any non-uniform pattern can be represented as a singular perturbation to uniform distribution. However, our parametric estimation procedure have some limitations such as sensitivity to initial conditions depending on the data at hand.
Temperature Steerable Flows and Boltzmann Generators
Boltzmann generators approach the sampling problem in many-body physics by combining a normalizing flow and a statistical reweighting method to generate samples in thermodynamic equilibrium. The equilibrium distribution is usually defined by an energy function and a thermodynamic state. Here we propose temperature-steerable flows (TSF) which are able to generate a family of probability densities parametrized by a choosable temperature parameter. TSFs can be embedded in generalized ensemble sampling frameworks to sample a physical system across multiple thermodynamic states.
Kibble-Zurek Mechanism and Beyond: Lessons from a Holographic Superfluid Disk
The superfluid phase transition dynamics and associated spontaneous vortex formation with the crossing of the critical temperature in a disk geometry is studied in the framework of the AdS/CFT correspondence by solving the Einstein-Abelian-Higgs model in an AdS_4 black hole. For a slow quench, the vortex density admits a universal scaling law with the cooling rate as predicted by the Kibble-Zurek mechanism (KZM), while for fast quenches, the density shows a universal scaling behavior as a function of the final temperature, that lies beyond the KZM prediction. The vortex number distribution in both the power-law and saturation regimes can be approximated by a normal distribution. However, the study of the universal scaling of the cumulants reveals non-normal features and indicates that vortex statistics in the newborn superfluid is best described by the Poisson binomial distribution, previously predicted in the KZM regime [Phys. Rev. Lett. 124, 240602 (2020)]. This is confirmed by studying the cumulant scalings as a function of the quench time and the quench depth. Our work supports the existence of a universal defect number distribution that accommodates the KZM scaling, its breakdown at fast quenches, and the additional universal scaling laws as a function of the final value of the control parameter.
Generalized Polya's theorem on connected locally compact Abelian groups of dimension 1
According to the generalized Polya theorem, the Gaussian distribution on the real line is characterized by the property of equidistribution of a monomial and a linear form of independent identically distributed random variables. We give a complete description of a-adic solenoids for which an analog of this theorem is true. The proof of the main theorem is reduced to solving some functional equation in the class of continuous positive definite functions on the character group of an a-adic solenoid
Linear statistics for Coulomb gases: higher order cumulants
We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N.
Cosmic Evolution Early Release Science (CEERS) survey: The colour evolution of galaxies in the distant Universe
The wavelength-coverage and sensitivity of JWST now enables us to probe the rest-frame UV - optical spectral energy distributions (SEDs) of galaxies at high-redshift (z>4). From these SEDs it is, in principle, through SED fitting possible to infer key physical properties, including stellar masses, star formation rates, and dust attenuation. These in turn can be compared with the predictions of galaxy formation simulations allowing us to validate and refine the incorporated physics. However, the inference of physical properties, particularly from photometry alone, can lead to large uncertainties and potential biases. Instead, it is now possible, and common, for simulations to be forward-modelled to yield synthetic observations that can be compared directly to real observations. In this work, we measure the JWST broadband fluxes and colours of a robust sample of 5<z<10 galaxies using the Cosmic Evolution Early Release Science (CEERS) Survey. We then analyse predictions from a variety of models using the same methodology and compare the NIRCam/F277W magnitude distribution and NIRCam colours with observations. We find that the predicted and observed magnitude distributions are similar, at least at 5<z<8. At z>8 the distributions differ somewhat, though our observed sample size is small and thus susceptible to statistical fluctuations. Likewise, the predicted and observed colour evolution show broad agreement, at least at 5<z<8. There is however some disagreement between the observed and modelled strength of the strong line contribution. In particular all the models fails to reproduce the F410M-F444W colour at z>8, though, again, the sample size is small here.
Superclustering with the Atacama Cosmology Telescope and Dark Energy Survey: II. Anisotropic large-scale coherence in hot gas, galaxies, and dark matter
Statistics that capture the directional dependence of the baryon distribution in the cosmic web enable unique tests of cosmology and astrophysical feedback. We use constrained oriented stacking of thermal Sunyaev-Zel'dovich (tSZ) maps to measure the anisotropic distribution of hot gas 2.5-40 Mpc away from galaxy clusters embedded in massive filaments and superclusters. The cluster selection and orientation (at a scale of sim15 Mpc) use Dark Energy Survey (DES) Year 3 data, while expanded tSZ maps from the Atacama Cosmology Telescope Data Release 6 enable a sim3times more significant measurement of the extended gas compared to the technique's proof-of-concept. Decomposing stacks into cosine multipoles of order m, we detect a dipole (m=1) and quadrupole (m=2) at 8-10sigma, as well as evidence for m=4 signal at up to 6sigma, indicating sensitivity to late-time non-Gaussianity. We compare to the Cardinal simulations with spherical gas models pasted onto dark matter halos. The fiducial tSZ data can discriminate between two models that deplete pressure differently in low-mass halos (mimicking astrophysical feedback), preferring higher average pressure in extended structures. However, uncertainty in the amount of cosmic infrared background contamination reduces the constraining power. Additionally, we apply the technique to DES galaxy density and weak lensing to study for the first time their oriented relationships with tSZ. In the tSZ-to-lensing relation, averaged on 7.5 Mpc (transverse) scales, we observe dependence on redshift but not shape or radial distance. Thus, on large scales, the superclustering of gas pressure, galaxies, and total matter is coherent in shape and extent.
Von Mises Mixture Distributions for Molecular Conformation Generation
Molecules are frequently represented as graphs, but the underlying 3D molecular geometry (the locations of the atoms) ultimately determines most molecular properties. However, most molecules are not static and at room temperature adopt a wide variety of geometries or conformations. The resulting distribution on geometries p(x) is known as the Boltzmann distribution, and many molecular properties are expectations computed under this distribution. Generating accurate samples from the Boltzmann distribution is therefore essential for computing these expectations accurately. Traditional sampling-based methods are computationally expensive, and most recent machine learning-based methods have focused on identifying modes in this distribution rather than generating true samples. Generating such samples requires capturing conformational variability, and it has been widely recognized that the majority of conformational variability in molecules arises from rotatable bonds. In this work, we present VonMisesNet, a new graph neural network that captures conformational variability via a variational approximation of rotatable bond torsion angles as a mixture of von Mises distributions. We demonstrate that VonMisesNet can generate conformations for arbitrary molecules in a way that is both physically accurate with respect to the Boltzmann distribution and orders of magnitude faster than existing sampling methods.
Kernel Density Estimators in Large Dimensions
This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings.
A Coupled Flow Approach to Imitation Learning
In reinforcement learning and imitation learning, an object of central importance is the state distribution induced by the policy. It plays a crucial role in the policy gradient theorem, and references to it--along with the related state-action distribution--can be found all across the literature. Despite its importance, the state distribution is mostly discussed indirectly and theoretically, rather than being modeled explicitly. The reason being an absence of appropriate density estimation tools. In this work, we investigate applications of a normalizing flow-based model for the aforementioned distributions. In particular, we use a pair of flows coupled through the optimality point of the Donsker-Varadhan representation of the Kullback-Leibler (KL) divergence, for distribution matching based imitation learning. Our algorithm, Coupled Flow Imitation Learning (CFIL), achieves state-of-the-art performance on benchmark tasks with a single expert trajectory and extends naturally to a variety of other settings, including the subsampled and state-only regimes.
On the statistical theory of self-gravitating collisionless dark matter flow: Scale and redshift variation of velocity and density distributions
This paper studies the scale and redshift variation of density and velocity distributions in self-gravitating collisionless dark matter flow by a halo-based non-projection approach. All particles are divided into halo and out-of-halo particles for redshift variation of distributions. Without projecting particle fields onto a structured grid, the scale variation is analyzed by identifying all particle pairs on different scales r. We demonstrate that: i) Delaunay tessellation can be used to reconstruct the density field. The density correlation, spectrum, and dispersion functions were obtained, modeled, and compared with the N-body simulation; ii) the velocity distributions are symmetric on both small and large scales and are non-symmetric with a negative skewness on intermediate scales due to the inverse energy cascade at a constant rate varepsilon_u; iii) On small scales, the even order moments of pairwise velocity Delta u_L follow a two-thirds law (-varepsilon_ur)^{2/3}, while the odd order moments follow a linear scaling langle(Delta u_L)^{2n+1}rangle=(2n+1)langle(Delta u_L)^{2n}ranglelangleDelta u_Lrangler; iv) The scale variation of the velocity distributions was studied for longitudinal velocities u_L or u_L^{'}, pairwise velocity (velocity difference) Delta u_L=u_L^{'}-u_L and velocity sum Sigma u_L=u^{'}_L+u_L. Fully developed velocity fields are never Gaussian on any scale, despite that they can initially be Gaussian; v) On small scales, u_L and Sigma u_L can be modeled by a X distribution to maximize the system entropy; vi) On large scales, Delta u_L and Sigma u_L can be modeled by a logistic or a X distribution; vii) the redshift variation of the velocity distributions follows the evolution of the X distribution involving a shape parameter alpha(z) decreasing with time.
Pz Cats: Photometric redshift catalogs based on DES Y3 BAO sample
The photometric redshift estimation (photo-z) has been developed over the years with various methods. In this work, we analyse four different photo-z estimators using the Dark Energy Survey Y3 BAO Sample: ANNz2, BPZ, ENF, and DNF. Unlike what is usually found in the literature, we investigate the possibility of selecting the best galaxies according to their redshift Probability Distribution Function (PDF). We selected 25,760 galaxies from four different spectroscopic surveys and cross-matched them with the photo-z sample. These galaxies served to understand the redshift bias and its 68th percentile sigma_{68}. We found that within a range of 0.79<z_p<0.85 there is the lowest sigma for all the estimators we analysed. DNF has the biggest absolute value of the bias (sigma), while ENF, ANNz2 and BPZ lose precision for a redshift range below 0.7 and higher than 0.9. If one wants to pick the best galaxies by removing the bins with the worst bias, one will find that ANNz2 is the most robust algorithm for all chosen criteria. When selecting the best PDFs, the resulting sub-samples gave BPZ with more selected objects. ANNz2 shows better precision, ENF has the worst selection of Gaussian PDFs, with very few galaxies left for an LSS study. We also showed that even though the PDFs are smooth, there are catastrophic redshift results. Lastly, DNF is the worst in precision but with sufficient galaxies for cosmological analysis. We also selected galaxies whose PDFs have only secondary peaks not bigger than 30\% of the main peak height, called Small Peaks. For these sub-samples, ANNz2 outperformed the other algorithms. We will make all catalogs publicly available through the package Pz Cats.
ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a ConjNorm method, reframing density function design as a search for the optimal norm coefficient p against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed ConjNorm has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25% and 28.19% (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--
For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.
ZIP: Scalable Crowd Counting via Zero-Inflated Poisson Modeling
Most crowd counting methods directly regress blockwise density maps using Mean Squared Error (MSE) losses. This practice has two key limitations: (1) it fails to account for the extreme spatial sparsity of annotations -- over 95% of 8x8 blocks are empty across standard benchmarks, so supervision signals in informative regions are diluted by the predominant zeros; (2) MSE corresponds to a Gaussian error model that poorly matches discrete, non-negative count data. To address these issues, we introduce ZIP, a scalable crowd counting framework that models blockwise counts with a Zero-Inflated Poisson likelihood: a zero-inflation term learns the probability a block is structurally empty (handling excess zeros), while the Poisson component captures expected counts when people are present (respecting discreteness). We provide a generalization analysis showing a tighter risk bound for ZIP than MSE-based losses and DMCount provided that the training resolution is moderately large. To assess the scalability of ZIP, we instantiate it on backbones spanning over 100x in parameters/compute. Experiments on ShanghaiTech A & B, UCF-QNRF, and NWPU-Crowd demonstrate that ZIP consistently surpasses state-of-the-art methods across all model scales.
Regression Discontinuity Design with Distribution-Valued Outcomes
This article introduces Regression Discontinuity Design (RDD) with Distribution-Valued Outcomes (R3D), extending the standard RDD framework to settings where the outcome is a distribution rather than a scalar. Such settings arise when treatment is assigned at a higher level of aggregation than the outcome-for example, when a subsidy is allocated based on a firm-level revenue cutoff while the outcome of interest is the distribution of employee wages within the firm. Since standard RDD methods cannot accommodate such two-level randomness, I propose a novel approach based on random distributions. The target estimand is a "local average quantile treatment effect", which averages across random quantiles. To estimate this target, I introduce two related approaches: one that extends local polynomial regression to random quantiles and another based on local Fr\'echet regression, a form of functional regression. For both estimators, I establish asymptotic normality and develop uniform, debiased confidence bands together with a data-driven bandwidth selection procedure. Simulations validate these theoretical properties and show existing methods to be biased and inconsistent in this setting. I then apply the proposed methods to study the effects of gubernatorial party control on within-state income distributions in the US, using a close-election design. The results suggest a classic equality-efficiency tradeoff under Democratic governorship, driven by reductions in income at the top of the distribution.
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
We consider the problem of approximating a function from L^2 by an element of a given m-dimensional space V_m, associated with some feature map varphi, using evaluations of the function at random points x_1,dots,x_n. After recalling some results on optimal weighted least-squares using independent and identically distributed points, we consider weighted least-squares using projection determinantal point processes (DPP) or volume sampling. These distributions introduce dependence between the points that promotes diversity in the selected features varphi(x_i). We first provide a generalized version of volume-rescaled sampling yielding quasi-optimality results in expectation with a number of samples n = O(mlog(m)), that means that the expected L^2 error is bounded by a constant times the best approximation error in L^2. Also, further assuming that the function is in some normed vector space H continuously embedded in L^2, we further prove that the approximation is almost surely bounded by the best approximation error measured in the H-norm. This includes the cases of functions from L^infty or reproducing kernel Hilbert spaces. Finally, we present an alternative strategy consisting in using independent repetitions of projection DPP (or volume sampling), yielding similar error bounds as with i.i.d. or volume sampling, but in practice with a much lower number of samples. Numerical experiments illustrate the performance of the different strategies.
Block occurrences in the binary expansion
The binary sum-of-digits function s returns the number of ones in the binary expansion of a nonnegative integer. Cusick's Hamming weight conjecture states that, for all integers tgeq 0, the set of nonnegative integers n such that s(n+t)geq s(n) has asymptotic density strictly larger than 1/2. We are concerned with the block-additive function r returning the number of (overlapping) occurrences of the block 11 in the binary expansion of n. The main result of this paper is a central limit-type theorem for the difference r(n+t)-r(n): the corresponding probability function is uniformly close to a Gaussian, where the uniform error tends to 0 as the number of blocks of ones in the binary expansion of t tends to infty.
Scaling Properties of Avalanche Activity in the Two-Dimensional Abelian Sandpile Model
We study the scaling properties of avalanche activity in the two-dimensional Abelian sandpile model. Instead of the conventional avalanche size distribution, we analyze the site activity distribution, which measures how often a site participates in avalanches when grains are added across the lattice. Using numerical simulations for system sizes up to \(L = 160\), averaged over \(10^4\) configurations, we determine the probability distribution \(P(A, L)\) of site activities. The results show that \(P(A, L)\) follows a finite-size scaling form \[ P(A, L) \sim L^{-2} F\Big(A{L^2}\Big). \] For small values \(A \ll L^2\) the scaling function behaves as \[ F(u) \sim u^{-1/2}, \quad corresponding to \quad P(A) \sim 1{L}, \] while for large activities \(A \sim O(L^2)\) the distribution decays as \[ F(u) \sim \exp\big(-c_3 u - c_4 u^2\big). \] The crossover between these two regimes occurs at \[ A^* \sim 0.1 \, L^2, \] marking the threshold between typical and highly excitable sites. This characterization of local avalanche activity provides complementary information to the usual avalanche size statistics, highlighting how local regions serve as frequent conduits for critical dynamics. These results may help connect sandpile models to real-world self-organized critical systems where only partial local activity can be observed.
OptDist: Learning Optimal Distribution for Customer Lifetime Value Prediction
Customer Lifetime Value (CLTV) prediction is a critical task in business applications. Accurately predicting CLTV is challenging in real-world business scenarios, as the distribution of CLTV is complex and mutable. Firstly, there is a large number of users without any consumption consisting of a long-tailed part that is too complex to fit. Secondly, the small set of high-value users spent orders of magnitude more than a typical user leading to a wide range of the CLTV distribution which is hard to capture in a single distribution. Existing approaches for CLTV estimation either assume a prior probability distribution and fit a single group of distribution-related parameters for all samples, or directly learn from the posterior distribution with manually predefined buckets in a heuristic manner. However, all these methods fail to handle complex and mutable distributions. In this paper, we propose a novel optimal distribution selection model OptDist for CLTV prediction, which utilizes an adaptive optimal sub-distribution selection mechanism to improve the accuracy of complex distribution modeling. Specifically, OptDist trains several candidate sub-distribution networks in the distribution learning module (DLM) for modeling the probability distribution of CLTV. Then, a distribution selection module (DSM) is proposed to select the sub-distribution for each sample, thus making the selection automatically and adaptively. Besides, we design an alignment mechanism that connects both modules, which effectively guides the optimization. We conduct extensive experiments on both two public and one private dataset to verify that OptDist outperforms state-of-the-art baselines. Furthermore, OptDist has been deployed on a large-scale financial platform for customer acquisition marketing campaigns and the online experiments also demonstrate the effectiveness of OptDist.
Fluctuations of the connectivity threshold and largest nearest-neighbour link
Consider a random uniform sample of n points in a compact region A of Euclidean d-space, d geq 2, with a smooth or (when d=2) polygonal boundary. Fix k bf N. Let T_{n,k} be the threshold r at which the geometric graph on these n vertices with distance parameter r becomes k-connected. We show that if d=2 then n (pi/|A|) T_{n,1}^2 - log n is asymptotically standard Gumbel. For (d,k) neq (2,1), it is n (theta_d/|A|) T_{n,k}^d - (2-2/d) log n - (4-2k-2/d) log log n that converges in distribution to a nondegenerate limit, where theta_d is the volume of the unit ball. The limit is Gumbel with scale parameter 2 except when (d,k)=(2,2) where the limit is two component extreme value distributed. The different cases reflect the fact that boundary effects are more more important in some cases than others. We also give similar results for the largest k-nearest neighbour link U_{n,k} in the sample, and show T_{n,k}=U_{n,k} with high probability. We provide estimates on rates of convergence and give similar results for Poisson samples in A. Finally, we give similar results even for non-uniform samples, with a less explicit sequence of centring constants.
Formalizing and Estimating Distribution Inference Risks
Distribution inference, sometimes called property inference, infers statistical properties about a training set from access to a model trained on that data. Distribution inference attacks can pose serious risks when models are trained on private data, but are difficult to distinguish from the intrinsic purpose of statistical machine learning -- namely, to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.'s membership inference framework, we propose a formal definition of distribution inference attacks that is general enough to describe a broad class of attacks distinguishing between possible training distributions. We show how our definition captures previous ratio-based property inference attacks as well as new kinds of attack including revealing the average node degree or clustering coefficient of a training graph. To understand distribution inference risks, we introduce a metric that quantifies observed leakage by relating it to the leakage that would occur if samples from the training distribution were provided directly to the adversary. We report on a series of experiments across a range of different distributions using both novel black-box attacks and improved versions of the state-of-the-art white-box attacks. Our results show that inexpensive attacks are often as effective as expensive meta-classifier attacks, and that there are surprising asymmetries in the effectiveness of attacks. Code is available at https://github.com/iamgroot42/FormEstDistRisks
A New Approach for Constraining Large-Scale Temperature Fluctuations in the Intergalactic Medium
The reionization of helium is thought to occur at 2.5lesssim zlesssim4, marking the last phase transition and final global heating event of the intergalactic medium (IGM). Since it is driven by rare quasars, helium reionization should give rise to strong temperature fluctuations in the IGM between neutral and recently-ionized regions of order sigma (ln T) sim Delta T/T = 20-50%. We introduce a novel method to search for reionization-induced temperature fluctuations in the IGM by using the effective optical depths of the Lyman-alpha forest towards a large number of background quasars. Higher IGM temperatures give rise to lower effective optical depths in the Lyman-alpha forest, implying that temperature fluctuations will broaden the observed optical depth distribution. We measured the distributions of effective Lyman-alpha forest optical depths across 71 X-Shooter spectra from the XQ-100 survey in four redshift bins from z=3.76 to z=4.19 and compared them to a large-volume cosmological hydrodynamical simulation. A good agreement is found between the observations and the simulation, which does not include temperature fluctuations; therefore, we do not detect a signature of helium reionization. We then post-process the simulations to include an increasing amount of temperature fluctuations until the model becomes inconsistent with the observations. We obtain tight constraints on sigma (ln T) < 0.29 (<0.40) at 2 sigma (3 sigma) at z=3.76 when averaging over scales of 100 comoving Mpc, and weaker constraints for higher redshifts and smaller scales. Our constraints are the tightest to date, and imply that either the IGM temperature contrast caused by helium reionization is less than sim30%, or that the process has not yet significantly started at z=3.76.
First Light And Reionisation Epoch Simulations (FLARES) II: The Photometric Properties of High-Redshift Galaxies
We present the photometric properties of galaxies in the First Light and Reionisation Epoch Simulations (FLARES). The simulations trace the evolution of galaxies in a range of overdensities through the Epoch of Reionistion (EoR). With a novel weighting scheme we combine these overdensities, extending significantly the dynamic range of observed composite distribution functions compared to periodic simulation boxes. FLARES predicts a significantly larger number of intrinsically bright galaxies, which can be explained through a simple model linking dust-attenuation to the metal content of the interstellar medium, using a line-of-sight (LOS) extinction model. With this model we present the photometric properties of the FLARES galaxies for z in [5,10]. We show that the ultraviolet (UV) luminosity function (LF) matches the observations at all redshifts. The function is fit by Schechter and double power-law forms, with the latter being favoured at these redshifts by the FLARES composite UV LF. We also present predictions for the UV continuum slope as well as the attenuation in the UV. The impact of environment on the UV LF is also explored, with the brightest galaxies forming in the densest environments. We then present the line luminosity and equivalent widths of some prominent nebular emission lines arising from the galaxies, finding rough agreement with available observations. We also look at the relative contribution of obscured and unobscured star formation, finding comparable contributions at these redshifts.
Matrix approach to generalized ensemble theory
We provide a concise framework for generalized ensemble theory through a matrix-based approach. By introducing an observation matrix, any discrete probability distribution, including those for non-equilibrium steady states, can be expressed as a generalized Boltzmann distribution, with observables and conjugate variables as the basis and coordinates in a linear space. In this framework, we identify the minimal sufficient statistics required for inferring the Boltzmann distribution. Furthermore, we show that the Hadamard and Vandermonde matrices are suitable observation matrices for spin systems and random walks. In master equation systems, the probability flux observation matrix facilitates the identification of detailed balance violations. Our findings provide a new approach to developing generalized ensemble theory for non-equilibrium steady-state systems.
