10 LLMs as Workers in Human-Computational Algorithms? Replicating Crowdsourcing Pipelines with LLMs LLMs have shown promise in replicating human-like behavior in crowdsourcing tasks that were previously thought to be exclusive to human abilities. However, current efforts focus mainly on simple atomic tasks. We explore whether LLMs can replicate more complex crowdsourcing pipelines. We find that modern LLMs can simulate some of crowdworkers' abilities in these "human computation algorithms," but the level of success is variable and influenced by requesters' understanding of LLM capabilities, the specific skills required for sub-tasks, and the optimal interaction modality for performing these sub-tasks. We reflect on human and LLMs' different sensitivities to instructions, stress the importance of enabling human-facing safeguards for LLMs, and discuss the potential of training humans and LLMs with complementary skill sets. Crucially, we show that replicating crowdsourcing pipelines offers a valuable platform to investigate (1) the relative strengths of LLMs on different tasks (by cross-comparing their performances on sub-tasks) and (2) LLMs' potential in complex tasks, where they can complete part of the tasks while leaving others to humans. 24 authors · Jul 19, 2023
1 Dynamic backup workers for parallel machine learning The most popular framework for distributed training of machine learning models is the (synchronous) parameter server (PS). This paradigm consists of n workers, which iteratively compute updates of the model parameters, and a stateful PS, which waits and aggregates all updates to generate a new estimate of model parameters and sends it back to the workers for a new iteration. Transient computation slowdowns or transmission delays can intolerably lengthen the time of each iteration. An efficient way to mitigate this problem is to let the PS wait only for the fastest n-b updates, before generating the new parameters. The slowest b workers are called backup workers. The optimal number b of backup workers depends on the cluster configuration and workload, but also (as we show in this paper) on the hyper-parameters of the learning algorithm and the current stage of the training. We propose DBW, an algorithm that dynamically decides the number of backup workers during the training process to maximize the convergence speed at each iteration. Our experiments show that DBW 1) removes the necessity to tune b by preliminary time-consuming experiments, and 2) makes the training up to a factor 3 faster than the optimal static configuration. 3 authors · Apr 30, 2020
- ASHABot: An LLM-Powered Chatbot to Support the Informational Needs of Community Health Workers Community health workers (CHWs) provide last-mile healthcare services but face challenges due to limited medical knowledge and training. This paper describes the design, deployment, and evaluation of ASHABot, an LLM-powered, experts-in-the-loop, WhatsApp-based chatbot to address the information needs of CHWs in India. Through interviews with CHWs and their supervisors and log analysis, we examine factors affecting their engagement with ASHABot, and ASHABot's role in addressing CHWs' informational needs. We found that ASHABot provided a private channel for CHWs to ask rudimentary and sensitive questions they hesitated to ask supervisors. CHWs trusted the information they received on ASHABot and treated it as an authoritative resource. CHWs' supervisors expanded their knowledge by contributing answers to questions ASHABot failed to answer, but were concerned about demands on their workload and increased accountability. We emphasize positioning LLMs as supplemental fallible resources within the community healthcare ecosystem, instead of as replacements for supervisor support. 8 authors · Sep 17, 2024
- ChatGPT Outperforms Crowd-Workers for Text-Annotation Tasks Many NLP applications require manual data annotations for a variety of tasks, notably to train classifiers or evaluate the performance of unsupervised models. Depending on the size and degree of complexity, the tasks may be conducted by crowd-workers on platforms such as MTurk as well as trained annotators, such as research assistants. Using a sample of 2,382 tweets, we demonstrate that ChatGPT outperforms crowd-workers for several annotation tasks, including relevance, stance, topics, and frames detection. Specifically, the zero-shot accuracy of ChatGPT exceeds that of crowd-workers for four out of five tasks, while ChatGPT's intercoder agreement exceeds that of both crowd-workers and trained annotators for all tasks. Moreover, the per-annotation cost of ChatGPT is less than $0.003 -- about twenty times cheaper than MTurk. These results show the potential of large language models to drastically increase the efficiency of text classification. 3 authors · Mar 27, 2023
- How Do Data Science Workers Communicate Intermediate Results? Data science workers increasingly collaborate on large-scale projects before communicating insights to a broader audience in the form of visualization. While prior work has modeled how data science teams, oftentimes with distinct roles and work processes, communicate knowledge to outside stakeholders, we have little knowledge of how data science workers communicate intermediately before delivering the final products. In this work, we contribute a nuanced description of the intermediate communication process within data science teams. By analyzing interview data with 8 self-identified data science workers, we characterized the data science intermediate communication process with four factors, including the types of audience, communication goals, shared artifacts, and mode of communication. We also identified overarching challenges in the current communication process. We also discussed design implications that might inform better tools that facilitate intermediate communication within data science teams. 4 authors · Oct 6, 2022
7 Open-Source Large Language Models Outperform Crowd Workers and Approach ChatGPT in Text-Annotation Tasks This study examines the performance of open-source Large Language Models (LLMs) in text annotation tasks and compares it with proprietary models like ChatGPT and human-based services such as MTurk. While prior research demonstrated the high performance of ChatGPT across numerous NLP tasks, open-source LLMs like HugginChat and FLAN are gaining attention for their cost-effectiveness, transparency, reproducibility, and superior data protection. We assess these models using both zero-shot and few-shot approaches and different temperature parameters across a range of text annotation tasks. Our findings show that while ChatGPT achieves the best performance in most tasks, open-source LLMs not only outperform MTurk but also demonstrate competitive potential against ChatGPT in specific tasks. 7 authors · Jul 5, 2023 2
- LMTurk: Few-Shot Learners as Crowdsourcing Workers in a Language-Model-as-a-Service Framework Vast efforts have been devoted to creating high-performance few-shot learners, i.e., large-scale pretrained language models (PLMs) that perform well with little downstream task training data. Training PLMs has incurred significant cost, but utilizing the few-shot learners is still challenging due to their enormous size. This work focuses on a crucial question: How to make effective use of these few-shot learners? We propose LMTurk, a novel approach that treats few-shot learners as crowdsourcing workers. The rationale is that crowdsourcing workers are in fact few-shot learners: They are shown a few illustrative examples to learn about a task and then start annotating. LMTurk employs few-shot learners built upon PLMs as workers. We show that the resulting annotations can be utilized to train models that solve the task well and are small enough to be deployable in practical scenarios. Active learning is integrated into LMTurk to reduce the amount of queries made to PLMs, minimizing the computational cost of running PLM inference passes. Altogether, LMTurk is an important step towards making effective use of current PLMs. 7 authors · Dec 14, 2021