Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeOmni-Effects: Unified and Spatially-Controllable Visual Effects Generation
Visual effects (VFX) are essential visual enhancements fundamental to modern cinematic production. Although video generation models offer cost-efficient solutions for VFX production, current methods are constrained by per-effect LoRA training, which limits generation to single effects. This fundamental limitation impedes applications that require spatially controllable composite effects, i.e., the concurrent generation of multiple effects at designated locations. However, integrating diverse effects into a unified framework faces major challenges: interference from effect variations and spatial uncontrollability during multi-VFX joint training. To tackle these challenges, we propose Omni-Effects, a first unified framework capable of generating prompt-guided effects and spatially controllable composite effects. The core of our framework comprises two key innovations: (1) LoRA-based Mixture of Experts (LoRA-MoE), which employs a group of expert LoRAs, integrating diverse effects within a unified model while effectively mitigating cross-task interference. (2) Spatial-Aware Prompt (SAP) incorporates spatial mask information into the text token, enabling precise spatial control. Furthermore, we introduce an Independent-Information Flow (IIF) module integrated within the SAP, isolating the control signals corresponding to individual effects to prevent any unwanted blending. To facilitate this research, we construct a comprehensive VFX dataset Omni-VFX via a novel data collection pipeline combining image editing and First-Last Frame-to-Video (FLF2V) synthesis, and introduce a dedicated VFX evaluation framework for validating model performance. Extensive experiments demonstrate that Omni-Effects achieves precise spatial control and diverse effect generation, enabling users to specify both the category and location of desired effects.
X2Edit: Revisiting Arbitrary-Instruction Image Editing through Self-Constructed Data and Task-Aware Representation Learning
Existing open-source datasets for arbitrary-instruction image editing remain suboptimal, while a plug-and-play editing module compatible with community-prevalent generative models is notably absent. In this paper, we first introduce the X2Edit Dataset, a comprehensive dataset covering 14 diverse editing tasks, including subject-driven generation. We utilize the industry-leading unified image generation models and expert models to construct the data. Meanwhile, we design reasonable editing instructions with the VLM and implement various scoring mechanisms to filter the data. As a result, we construct 3.7 million high-quality data with balanced categories. Second, to better integrate seamlessly with community image generation models, we design task-aware MoE-LoRA training based on FLUX.1, with only 8\% of the parameters of the full model. To further improve the final performance, we utilize the internal representations of the diffusion model and define positive/negative samples based on image editing types to introduce contrastive learning. Extensive experiments demonstrate that the model's editing performance is competitive among many excellent models. Additionally, the constructed dataset exhibits substantial advantages over existing open-source datasets. The open-source code, checkpoints, and datasets for X2Edit can be found at the following link: https://github.com/OPPO-Mente-Lab/X2Edit.
VIVID-10M: A Dataset and Baseline for Versatile and Interactive Video Local Editing
Diffusion-based image editing models have made remarkable progress in recent years. However, achieving high-quality video editing remains a significant challenge. One major hurdle is the absence of open-source, large-scale video editing datasets based on real-world data, as constructing such datasets is both time-consuming and costly. Moreover, video data requires a significantly larger number of tokens for representation, which substantially increases the training costs for video editing models. Lastly, current video editing models offer limited interactivity, often making it difficult for users to express their editing requirements effectively in a single attempt. To address these challenges, this paper introduces a dataset VIVID-10M and a baseline model VIVID. VIVID-10M is the first large-scale hybrid image-video local editing dataset aimed at reducing data construction and model training costs, which comprises 9.7M samples that encompass a wide range of video editing tasks. VIVID is a Versatile and Interactive VIdeo local eDiting model trained on VIVID-10M, which supports entity addition, modification, and deletion. At its core, a keyframe-guided interactive video editing mechanism is proposed, enabling users to iteratively edit keyframes and propagate it to other frames, thereby reducing latency in achieving desired outcomes. Extensive experimental evaluations show that our approach achieves state-of-the-art performance in video local editing, surpassing baseline methods in both automated metrics and user studies. The VIVID-10M dataset and the VIVID editing model will be available at https://inkosizhong.github.io/VIVID/.
UltraEdit: Instruction-based Fine-Grained Image Editing at Scale
This paper presents UltraEdit, a large-scale (approximately 4 million editing samples), automatically generated dataset for instruction-based image editing. Our key idea is to address the drawbacks in existing image editing datasets like InstructPix2Pix and MagicBrush, and provide a systematic approach to producing massive and high-quality image editing samples. UltraEdit offers several distinct advantages: 1) It features a broader range of editing instructions by leveraging the creativity of large language models (LLMs) alongside in-context editing examples from human raters; 2) Its data sources are based on real images, including photographs and artworks, which provide greater diversity and reduced bias compared to datasets solely generated by text-to-image models; 3) It also supports region-based editing, enhanced by high-quality, automatically produced region annotations. Our experiments show that canonical diffusion-based editing baselines trained on UltraEdit set new records on MagicBrush and Emu-Edit benchmarks. Our analysis further confirms the crucial role of real image anchors and region-based editing data. The dataset, code, and models can be found in https://ultra-editing.github.io.
SEED-Data-Edit Technical Report: A Hybrid Dataset for Instructional Image Editing
In this technical report, we introduce SEED-Data-Edit: a unique hybrid dataset for instruction-guided image editing, which aims to facilitate image manipulation using open-form language. SEED-Data-Edit is composed of three distinct types of data: (1) High-quality editing data produced by an automated pipeline, ensuring a substantial volume of diverse image editing pairs. (2) Real-world scenario data collected from the internet, which captures the intricacies of user intentions for promoting the practical application of image editing in the real world. (3) High-precision multi-turn editing data annotated by humans, which involves multiple rounds of edits for simulating iterative editing processes. The combination of these diverse data sources makes SEED-Data-Edit a comprehensive and versatile dataset for training language-guided image editing model. We fine-tune a pretrained Multimodal Large Language Model (MLLM) that unifies comprehension and generation with SEED-Data-Edit. The instruction tuned model demonstrates promising results, indicating the potential and effectiveness of SEED-Data-Edit in advancing the field of instructional image editing. The datasets are released in https://huggingface.co/datasets/AILab-CVC/SEED-Data-Edit.
Beyond Editing Pairs: Fine-Grained Instructional Image Editing via Multi-Scale Learnable Regions
Current text-driven image editing methods typically follow one of two directions: relying on large-scale, high-quality editing pair datasets to improve editing precision and diversity, or exploring alternative dataset-free techniques. However, constructing large-scale editing datasets requires carefully designed pipelines, is time-consuming, and often results in unrealistic samples or unwanted artifacts. Meanwhile, dataset-free methods may suffer from limited instruction comprehension and restricted editing capabilities. Faced with these challenges, the present work develops a novel paradigm for instruction-driven image editing that leverages widely available and enormous text-image pairs, instead of relying on editing pair datasets. Our approach introduces a multi-scale learnable region to localize and guide the editing process. By treating the alignment between images and their textual descriptions as supervision and learning to generate task-specific editing regions, our method achieves high-fidelity, precise, and instruction-consistent image editing. Extensive experiments demonstrate that the proposed approach attains state-of-the-art performance across various tasks and benchmarks, while exhibiting strong adaptability to various types of generative models.
SVGEditBench V2: A Benchmark for Instruction-based SVG Editing
Vector format has been popular for representing icons and sketches. It has also been famous for design purposes. Regarding image editing, research on vector graphics editing rarely exists in contrast with the raster counterpart. We considered the reason to be the lack of datasets and benchmarks. Thus, we propose SVGEditBench V2, a benchmark dataset for instruction-based SVG editing. SVGEditBench V2 comprises triplets of an original image, a ground truth image, and the editing prompt. We built the dataset by first extracting image pairs from various SVG emoji datasets. Then, we had GPT-4o to create the prompt. We found that triplets gained by this simple pipeline contain varying sorts of editing tasks. Additionally, we performed the editing tasks with existing LLMs and investigated how those current methods can perform SVG editing. Although there were some successful cases, we found that there is a massive room for improvement.
EditCast3D: Single-Frame-Guided 3D Editing with Video Propagation and View Selection
Recent advances in foundation models have driven remarkable progress in image editing, yet their extension to 3D editing remains underexplored. A natural approach is to replace the image editing modules in existing workflows with foundation models. However, their heavy computational demands and the restrictions and costs of closed-source APIs make plugging these models into existing iterative editing strategies impractical. To address this limitation, we propose EditCast3D, a pipeline that employs video generation foundation models to propagate edits from a single first frame across the entire dataset prior to reconstruction. While editing propagation enables dataset-level editing via video models, its consistency remains suboptimal for 3D reconstruction, where multi-view alignment is essential. To overcome this, EditCast3D introduces a view selection strategy that explicitly identifies consistent and reconstruction-friendly views and adopts feedforward reconstruction without requiring costly refinement. In combination, the pipeline both minimizes reliance on expensive image editing and mitigates prompt ambiguities that arise when applying foundation models independently across images. We evaluate EditCast3D on commonly used 3D editing datasets and compare it against state-of-the-art 3D editing baselines, demonstrating superior editing quality and high efficiency. These results establish EditCast3D as a scalable and general paradigm for integrating foundation models into 3D editing pipelines. The code is available at https://github.com/UNITES-Lab/EditCast3D
VectorEdits: A Dataset and Benchmark for Instruction-Based Editing of Vector Graphics
We introduce a large-scale dataset for instruction-guided vector image editing, consisting of over 270,000 pairs of SVG images paired with natural language edit instructions. Our dataset enables training and evaluation of models that modify vector graphics based on textual commands. We describe the data collection process, including image pairing via CLIP similarity and instruction generation with vision-language models. Initial experiments with state-of-the-art large language models reveal that current methods struggle to produce accurate and valid edits, underscoring the challenge of this task. To foster research in natural language-driven vector graphic generation and editing, we make our resources created within this work publicly available.
OpenVE-3M: A Large-Scale High-Quality Dataset for Instruction-Guided Video Editing
The quality and diversity of instruction-based image editing datasets are continuously increasing, yet large-scale, high-quality datasets for instruction-based video editing remain scarce. To address this gap, we introduce OpenVE-3M, an open-source, large-scale, and high-quality dataset for instruction-based video editing. It comprises two primary categories: spatially-aligned edits (Global Style, Background Change, Local Change, Local Remove, Local Add, and Subtitles Edit) and non-spatially-aligned edits (Camera Multi-Shot Edit and Creative Edit). All edit types are generated via a meticulously designed data pipeline with rigorous quality filtering. OpenVE-3M surpasses existing open-source datasets in terms of scale, diversity of edit types, instruction length, and overall quality. Furthermore, to address the lack of a unified benchmark in the field, we construct OpenVE-Bench, containing 431 video-edit pairs that cover a diverse range of editing tasks with three key metrics highly aligned with human judgment. We present OpenVE-Edit, a 5B model trained on our dataset that demonstrates remarkable efficiency and effectiveness by setting a new state-of-the-art on OpenVE-Bench, outperforming all prior open-source models including a 14B baseline. Project page is at https://github.com/lewandofskee/OpenVE.
MultiEdit: Advancing Instruction-based Image Editing on Diverse and Challenging Tasks
Current instruction-based image editing (IBIE) methods struggle with challenging editing tasks, as both editing types and sample counts of existing datasets are limited. Moreover, traditional dataset construction often contains noisy image-caption pairs, which may introduce biases and limit model capabilities in complex editing scenarios. To address these limitations, we introduce MultiEdit, a comprehensive dataset featuring over 107K high-quality image editing samples. It encompasses 6 challenging editing tasks through a diverse collection of 18 non-style-transfer editing types and 38 style transfer operations, covering a spectrum from sophisticated style transfer to complex semantic operations like person reference editing and in-image text editing. We employ a novel dataset construction pipeline that utilizes two multi-modal large language models (MLLMs) to generate visual-adaptive editing instructions and produce high-fidelity edited images, respectively. Extensive experiments demonstrate that fine-tuning foundational open-source models with our MultiEdit-Train set substantially improves models' performance on sophisticated editing tasks in our proposed MultiEdit-Test benchmark, while effectively preserving their capabilities on the standard editing benchmark. We believe MultiEdit provides a valuable resource for advancing research into more diverse and challenging IBIE capabilities. Our dataset is available at https://huggingface.co/datasets/inclusionAI/MultiEdit.
FreeEdit: Mask-free Reference-based Image Editing with Multi-modal Instruction
Introducing user-specified visual concepts in image editing is highly practical as these concepts convey the user's intent more precisely than text-based descriptions. We propose FreeEdit, a novel approach for achieving such reference-based image editing, which can accurately reproduce the visual concept from the reference image based on user-friendly language instructions. Our approach leverages the multi-modal instruction encoder to encode language instructions to guide the editing process. This implicit way of locating the editing area eliminates the need for manual editing masks. To enhance the reconstruction of reference details, we introduce the Decoupled Residual ReferAttention (DRRA) module. This module is designed to integrate fine-grained reference features extracted by a detail extractor into the image editing process in a residual way without interfering with the original self-attention. Given that existing datasets are unsuitable for reference-based image editing tasks, particularly due to the difficulty in constructing image triplets that include a reference image, we curate a high-quality dataset, FreeBench, using a newly developed twice-repainting scheme. FreeBench comprises the images before and after editing, detailed editing instructions, as well as a reference image that maintains the identity of the edited object, encompassing tasks such as object addition, replacement, and deletion. By conducting phased training on FreeBench followed by quality tuning, FreeEdit achieves high-quality zero-shot editing through convenient language instructions. We conduct extensive experiments to evaluate the effectiveness of FreeEdit across multiple task types, demonstrating its superiority over existing methods. The code will be available at: https://freeedit.github.io/.
ICE-G: Image Conditional Editing of 3D Gaussian Splats
Recently many techniques have emerged to create high quality 3D assets and scenes. When it comes to editing of these objects, however, existing approaches are either slow, compromise on quality, or do not provide enough customization. We introduce a novel approach to quickly edit a 3D model from a single reference view. Our technique first segments the edit image, and then matches semantically corresponding regions across chosen segmented dataset views using DINO features. A color or texture change from a particular region of the edit image can then be applied to other views automatically in a semantically sensible manner. These edited views act as an updated dataset to further train and re-style the 3D scene. The end-result is therefore an edited 3D model. Our framework enables a wide variety of editing tasks such as manual local edits, correspondence based style transfer from any example image, and a combination of different styles from multiple example images. We use Gaussian Splats as our primary 3D representation due to their speed and ease of local editing, but our technique works for other methods such as NeRFs as well. We show through multiple examples that our method produces higher quality results while offering fine-grained control of editing. Project page: ice-gaussian.github.io
InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at InsViE.
Towards Scalable and Consistent 3D Editing
3D editing - the task of locally modifying the geometry or appearance of a 3D asset - has wide applications in immersive content creation, digital entertainment, and AR/VR. However, unlike 2D editing, it remains challenging due to the need for cross-view consistency, structural fidelity, and fine-grained controllability. Existing approaches are often slow, prone to geometric distortions, or dependent on manual and accurate 3D masks that are error-prone and impractical. To address these challenges, we advance both the data and model fronts. On the data side, we introduce 3DEditVerse, the largest paired 3D editing benchmark to date, comprising 116,309 high-quality training pairs and 1,500 curated test pairs. Built through complementary pipelines of pose-driven geometric edits and foundation model-guided appearance edits, 3DEditVerse ensures edit locality, multi-view consistency, and semantic alignment. On the model side, we propose 3DEditFormer, a 3D-structure-preserving conditional transformer. By enhancing image-to-3D generation with dual-guidance attention and time-adaptive gating, 3DEditFormer disentangles editable regions from preserved structure, enabling precise and consistent edits without requiring auxiliary 3D masks. Extensive experiments demonstrate that our framework outperforms state-of-the-art baselines both quantitatively and qualitatively, establishing a new standard for practical and scalable 3D editing. Dataset and code will be released. Project: https://www.lv-lab.org/3DEditFormer/
REALEDIT: Reddit Edits As a Large-scale Empirical Dataset for Image Transformations
Existing image editing models struggle to meet real-world demands. Despite excelling in academic benchmarks, they have yet to be widely adopted for real user needs. Datasets that power these models use artificial edits, lacking the scale and ecological validity necessary to address the true diversity of user requests. We introduce REALEDIT, a large-scale image editing dataset with authentic user requests and human-made edits sourced from Reddit. REALEDIT includes a test set of 9300 examples to evaluate models on real user requests. Our results show that existing models fall short on these tasks, highlighting the need for realistic training data. To address this, we introduce 48K training examples and train our REALEDIT model, achieving substantial gains - outperforming competitors by up to 165 Elo points in human judgment and 92 percent relative improvement on the automated VIEScore metric. We deploy our model on Reddit, testing it on new requests, and receive positive feedback. Beyond image editing, we explore REALEDIT's potential in detecting edited images by partnering with a deepfake detection non-profit. Finetuning their model on REALEDIT data improves its F1-score by 14 percentage points, underscoring the dataset's value for broad applications.
Instruction-based Image Manipulation by Watching How Things Move
This paper introduces a novel dataset construction pipeline that samples pairs of frames from videos and uses multimodal large language models (MLLMs) to generate editing instructions for training instruction-based image manipulation models. Video frames inherently preserve the identity of subjects and scenes, ensuring consistent content preservation during editing. Additionally, video data captures diverse, natural dynamics-such as non-rigid subject motion and complex camera movements-that are difficult to model otherwise, making it an ideal source for scalable dataset construction. Using this approach, we create a new dataset to train InstructMove, a model capable of instruction-based complex manipulations that are difficult to achieve with synthetically generated datasets. Our model demonstrates state-of-the-art performance in tasks such as adjusting subject poses, rearranging elements, and altering camera perspectives.
MultiEdits: Simultaneous Multi-Aspect Editing with Text-to-Image Diffusion Models
Text-driven image synthesis has made significant advancements with the development of diffusion models, transforming how visual content is generated from text prompts. Despite these advances, text-driven image editing, a key area in computer graphics, faces unique challenges. A major challenge is making simultaneous edits across multiple objects or attributes. Applying these methods sequentially for multi-aspect edits increases computational demands and efficiency losses. In this paper, we address these challenges with significant contributions. Our main contribution is the development of MultiEdits, a method that seamlessly manages simultaneous edits across multiple attributes. In contrast to previous approaches, MultiEdits not only preserves the quality of single attribute edits but also significantly improves the performance of multitasking edits. This is achieved through an innovative attention distribution mechanism and a multi-branch design that operates across several processing heads. Additionally, we introduce the PIE-Bench++ dataset, an expansion of the original PIE-Bench dataset, to better support evaluating image-editing tasks involving multiple objects and attributes simultaneously. This dataset is a benchmark for evaluating text-driven image editing methods in multifaceted scenarios. Dataset and code are available at https://mingzhenhuang.com/projects/MultiEdits.html.
ImgEdit: A Unified Image Editing Dataset and Benchmark
Recent advancements in generative models have enabled high-fidelity text-to-image generation. However, open-source image-editing models still lag behind their proprietary counterparts, primarily due to limited high-quality data and insufficient benchmarks. To overcome these limitations, we introduce ImgEdit, a large-scale, high-quality image-editing dataset comprising 1.2 million carefully curated edit pairs, which contain both novel and complex single-turn edits, as well as challenging multi-turn tasks. To ensure the data quality, we employ a multi-stage pipeline that integrates a cutting-edge vision-language model, a detection model, a segmentation model, alongside task-specific in-painting procedures and strict post-processing. ImgEdit surpasses existing datasets in both task novelty and data quality. Using ImgEdit, we train ImgEdit-E1, an editing model using Vision Language Model to process the reference image and editing prompt, which outperforms existing open-source models on multiple tasks, highlighting the value of ImgEdit and model design. For comprehensive evaluation, we introduce ImgEdit-Bench, a benchmark designed to evaluate image editing performance in terms of instruction adherence, editing quality, and detail preservation. It includes a basic testsuite, a challenging single-turn suite, and a dedicated multi-turn suite. We evaluate both open-source and proprietary models, as well as ImgEdit-E1, providing deep analysis and actionable insights into the current behavior of image-editing models. The source data are publicly available on https://github.com/PKU-YuanGroup/ImgEdit.
Native 3D Editing with Full Attention
Instruction-guided 3D editing is a rapidly emerging field with the potential to broaden access to 3D content creation. However, existing methods face critical limitations: optimization-based approaches are prohibitively slow, while feed-forward approaches relying on multi-view 2D editing often suffer from inconsistent geometry and degraded visual quality. To address these issues, we propose a novel native 3D editing framework that directly manipulates 3D representations in a single, efficient feed-forward pass. Specifically, we create a large-scale, multi-modal dataset for instruction-guided 3D editing, covering diverse addition, deletion, and modification tasks. This dataset is meticulously curated to ensure that edited objects faithfully adhere to the instructional changes while preserving the consistency of unedited regions with the source object. Building upon this dataset, we explore two distinct conditioning strategies for our model: a conventional cross-attention mechanism and a novel 3D token concatenation approach. Our results demonstrate that token concatenation is more parameter-efficient and achieves superior performance. Extensive evaluations show that our method outperforms existing 2D-lifting approaches, setting a new benchmark in generation quality, 3D consistency, and instruction fidelity.
Multi-Reward as Condition for Instruction-based Image Editing
High-quality training triplets (instruction, original image, edited image) are essential for instruction-based image editing. Predominant training datasets (e.g., InsPix2Pix) are created using text-to-image generative models (e.g., Stable Diffusion, DALL-E) which are not trained for image editing. Accordingly, these datasets suffer from inaccurate instruction following, poor detail preserving, and generation artifacts. In this paper, we propose to address the training data quality issue with multi-perspective reward data instead of refining the ground-truth image quality. 1) we first design a quantitative metric system based on best-in-class LVLM (Large Vision Language Model), i.e., GPT-4o in our case, to evaluate the generation quality from 3 perspectives, namely, instruction following, detail preserving, and generation quality. For each perspective, we collected quantitative score in 0sim 5 and text descriptive feedback on the specific failure points in ground-truth edited images, resulting in a high-quality editing reward dataset, i.e., RewardEdit20K. 2) We further proposed a novel training framework to seamlessly integrate the metric output, regarded as multi-reward, into editing models to learn from the imperfect training triplets. During training, the reward scores and text descriptions are encoded as embeddings and fed into both the latent space and the U-Net of the editing models as auxiliary conditions. During inference, we set these additional conditions to the highest score with no text description for failure points, to aim at the best generation outcome. Experiments indicate that our multi-reward conditioned model outperforms its no-reward counterpart on two popular editing pipelines, i.e., InsPix2Pix and SmartEdit. The code and dataset will be released.
ByteMorph: Benchmarking Instruction-Guided Image Editing with Non-Rigid Motions
Editing images with instructions to reflect non-rigid motions, camera viewpoint shifts, object deformations, human articulations, and complex interactions, poses a challenging yet underexplored problem in computer vision. Existing approaches and datasets predominantly focus on static scenes or rigid transformations, limiting their capacity to handle expressive edits involving dynamic motion. To address this gap, we introduce ByteMorph, a comprehensive framework for instruction-based image editing with an emphasis on non-rigid motions. ByteMorph comprises a large-scale dataset, ByteMorph-6M, and a strong baseline model built upon the Diffusion Transformer (DiT), named ByteMorpher. ByteMorph-6M includes over 6 million high-resolution image editing pairs for training, along with a carefully curated evaluation benchmark ByteMorph-Bench. Both capture a wide variety of non-rigid motion types across diverse environments, human figures, and object categories. The dataset is constructed using motion-guided data generation, layered compositing techniques, and automated captioning to ensure diversity, realism, and semantic coherence. We further conduct a comprehensive evaluation of recent instruction-based image editing methods from both academic and commercial domains.
VFX Creator: Animated Visual Effect Generation with Controllable Diffusion Transformer
Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
DreamVE: Unified Instruction-based Image and Video Editing
Instruction-based editing holds vast potential due to its simple and efficient interactive editing format. However, instruction-based editing, particularly for video, has been constrained by limited training data, hindering its practical application. To this end, we introduce DreamVE, a unified model for instruction-based image and video editing. Specifically, We propose a two-stage training strategy: first image editing, then video editing. This offers two main benefits: (1) Image data scales more easily, and models are more efficient to train, providing useful priors for faster and better video editing training. (2) Unifying image and video generation is natural and aligns with current trends. Moreover, we present comprehensive training data synthesis pipelines, including collage-based and generative model-based data synthesis. The collage-based data synthesis combines foreground objects and backgrounds to generate diverse editing data, such as object manipulation, background changes, and text modifications. It can easily generate billions of accurate, consistent, realistic, and diverse editing pairs. We pretrain DreamVE on extensive collage-based data to achieve strong performance in key editing types and enhance generalization and transfer capabilities. However, collage-based data lacks some attribute editing cases, leading to a relative drop in performance. In contrast, the generative model-based pipeline, despite being hard to scale up, offers flexibility in handling attribute editing cases. Therefore, we use generative model-based data to further fine-tune DreamVE. Besides, we design an efficient and powerful editing framework for DreamVE. We build on the SOTA T2V model and use a token concatenation with early drop approach to inject source image guidance, ensuring strong consistency and editability. The codes and models will be released.
VCD: A Video Conferencing Dataset for Video Compression
Commonly used datasets for evaluating video codecs are all very high quality and not representative of video typically used in video conferencing scenarios. We present the Video Conferencing Dataset (VCD) for evaluating video codecs for real-time communication, the first such dataset focused on video conferencing. VCD includes a wide variety of camera qualities and spatial and temporal information. It includes both desktop and mobile scenarios and two types of video background processing. We report the compression efficiency of H.264, H.265, H.266, and AV1 in low-delay settings on VCD and compare it with the non-video conferencing datasets UVC, MLC-JVC, and HEVC. The results show the source quality and the scenarios have a significant effect on the compression efficiency of all the codecs. VCD enables the evaluation and tuning of codecs for this important scenario. The VCD is publicly available as an open-source dataset at https://github.com/microsoft/VCD.
AutoVFX: Physically Realistic Video Editing from Natural Language Instructions
Modern visual effects (VFX) software has made it possible for skilled artists to create imagery of virtually anything. However, the creation process remains laborious, complex, and largely inaccessible to everyday users. In this work, we present AutoVFX, a framework that automatically creates realistic and dynamic VFX videos from a single video and natural language instructions. By carefully integrating neural scene modeling, LLM-based code generation, and physical simulation, AutoVFX is able to provide physically-grounded, photorealistic editing effects that can be controlled directly using natural language instructions. We conduct extensive experiments to validate AutoVFX's efficacy across a diverse spectrum of videos and instructions. Quantitative and qualitative results suggest that AutoVFX outperforms all competing methods by a large margin in generative quality, instruction alignment, editing versatility, and physical plausibility.
HQ-Edit: A High-Quality Dataset for Instruction-based Image Editing
This study introduces HQ-Edit, a high-quality instruction-based image editing dataset with around 200,000 edits. Unlike prior approaches relying on attribute guidance or human feedback on building datasets, we devise a scalable data collection pipeline leveraging advanced foundation models, namely GPT-4V and DALL-E 3. To ensure its high quality, diverse examples are first collected online, expanded, and then used to create high-quality diptychs featuring input and output images with detailed text prompts, followed by precise alignment ensured through post-processing. In addition, we propose two evaluation metrics, Alignment and Coherence, to quantitatively assess the quality of image edit pairs using GPT-4V. HQ-Edits high-resolution images, rich in detail and accompanied by comprehensive editing prompts, substantially enhance the capabilities of existing image editing models. For example, an HQ-Edit finetuned InstructPix2Pix can attain state-of-the-art image editing performance, even surpassing those models fine-tuned with human-annotated data. The project page is https://thefllood.github.io/HQEdit_web.
Learning Action and Reasoning-Centric Image Editing from Videos and Simulations
An image editing model should be able to perform diverse edits, ranging from object replacement, changing attributes or style, to performing actions or movement, which require many forms of reasoning. Current general instruction-guided editing models have significant shortcomings with action and reasoning-centric edits. Object, attribute or stylistic changes can be learned from visually static datasets. On the other hand, high-quality data for action and reasoning-centric edits is scarce and has to come from entirely different sources that cover e.g. physical dynamics, temporality and spatial reasoning. To this end, we meticulously curate the AURORA Dataset (Action-Reasoning-Object-Attribute), a collection of high-quality training data, human-annotated and curated from videos and simulation engines. We focus on a key aspect of quality training data: triplets (source image, prompt, target image) contain a single meaningful visual change described by the prompt, i.e., truly minimal changes between source and target images. To demonstrate the value of our dataset, we evaluate an AURORA-finetuned model on a new expert-curated benchmark (AURORA-Bench) covering 8 diverse editing tasks. Our model significantly outperforms previous editing models as judged by human raters. For automatic evaluations, we find important flaws in previous metrics and caution their use for semantically hard editing tasks. Instead, we propose a new automatic metric that focuses on discriminative understanding. We hope that our efforts : (1) curating a quality training dataset and an evaluation benchmark, (2) developing critical evaluations, and (3) releasing a state-of-the-art model, will fuel further progress on general image editing.
MotionFix: Text-Driven 3D Human Motion Editing
The focus of this paper is on 3D motion editing. Given a 3D human motion and a textual description of the desired modification, our goal is to generate an edited motion as described by the text. The key challenges include the scarcity of training data and the need to design a model that accurately edits the source motion. In this paper, we address both challenges. We propose a methodology to semi-automatically collect a dataset of triplets comprising (i) a source motion, (ii) a target motion, and (iii) an edit text, introducing the new MotionFix dataset. Access to this data allows us to train a conditional diffusion model, TMED, that takes both the source motion and the edit text as input. We develop several baselines to evaluate our model, comparing it against models trained solely on text-motion pair datasets, and demonstrate the superior performance of our model trained on triplets. We also introduce new retrieval-based metrics for motion editing, establishing a benchmark on the evaluation set of MotionFix. Our results are promising, paving the way for further research in fine-grained motion generation. Code, models, and data are available at https://motionfix.is.tue.mpg.de/ .
EditWorld: Simulating World Dynamics for Instruction-Following Image Editing
Diffusion models have significantly improved the performance of image editing. Existing methods realize various approaches to achieve high-quality image editing, including but not limited to text control, dragging operation, and mask-and-inpainting. Among these, instruction-based editing stands out for its convenience and effectiveness in following human instructions across diverse scenarios. However, it still focuses on simple editing operations like adding, replacing, or deleting, and falls short of understanding aspects of world dynamics that convey the realistic dynamic nature in the physical world. Therefore, this work, EditWorld, introduces a new editing task, namely world-instructed image editing, which defines and categorizes the instructions grounded by various world scenarios. We curate a new image editing dataset with world instructions using a set of large pretrained models (e.g., GPT-3.5, Video-LLava and SDXL). To enable sufficient simulation of world dynamics for image editing, our EditWorld trains model in the curated dataset, and improves instruction-following ability with designed post-edit strategy. Extensive experiments demonstrate our method significantly outperforms existing editing methods in this new task. Our dataset and code will be available at https://github.com/YangLing0818/EditWorld
EffiVED:Efficient Video Editing via Text-instruction Diffusion Models
Large-scale text-to-video models have shown remarkable abilities, but their direct application in video editing remains challenging due to limited available datasets. Current video editing methods commonly require per-video fine-tuning of diffusion models or specific inversion optimization to ensure high-fidelity edits. In this paper, we introduce EffiVED, an efficient diffusion-based model that directly supports instruction-guided video editing. To achieve this, we present two efficient workflows to gather video editing pairs, utilizing augmentation and fundamental vision-language techniques. These workflows transform vast image editing datasets and open-world videos into a high-quality dataset for training EffiVED. Experimental results reveal that EffiVED not only generates high-quality editing videos but also executes rapidly. Finally, we demonstrate that our data collection method significantly improves editing performance and can potentially tackle the scarcity of video editing data. The datasets will be made publicly available upon publication.
TIP-I2V: A Million-Scale Real Text and Image Prompt Dataset for Image-to-Video Generation
Video generation models are revolutionizing content creation, with image-to-video models drawing increasing attention due to their enhanced controllability, visual consistency, and practical applications. However, despite their popularity, these models rely on user-provided text and image prompts, and there is currently no dedicated dataset for studying these prompts. In this paper, we introduce TIP-I2V, the first large-scale dataset of over 1.70 million unique user-provided Text and Image Prompts specifically for Image-to-Video generation. Additionally, we provide the corresponding generated videos from five state-of-the-art image-to-video models. We begin by outlining the time-consuming and costly process of curating this large-scale dataset. Next, we compare TIP-I2V to two popular prompt datasets, VidProM (text-to-video) and DiffusionDB (text-to-image), highlighting differences in both basic and semantic information. This dataset enables advancements in image-to-video research. For instance, to develop better models, researchers can use the prompts in TIP-I2V to analyze user preferences and evaluate the multi-dimensional performance of their trained models; and to enhance model safety, they may focus on addressing the misinformation issue caused by image-to-video models. The new research inspired by TIP-I2V and the differences with existing datasets emphasize the importance of a specialized image-to-video prompt dataset. The project is publicly available at https://tip-i2v.github.io.
Instruction Guided Multi Object Image Editing with Quantity and Layout Consistency
Instruction driven image editing with standard CLIP text encoders often fails in complex scenes with many objects. We present QL-Adapter, a framework for multiple object editing that tackles two challenges: enforcing object counts and spatial layouts, and accommodating diverse categories. QL-Adapter consists of two core modules: the Image-Layout Fusion Module (ILFM) and the Cross-Modal Augmentation Module (CMAM). ILFM fuses layout priors with ViT patch tokens from the CLIP image encoder to strengthen spatial structure understanding. CMAM injects image features into the text branch to enrich textual embeddings and improve instruction following. We further build QL-Dataset, a benchmark that spans broad category, layout, and count variations, and define the task of quantity and layout consistent image editing (QL-Edit). Extensive experiments show that QL-Adapter achieves state of the art performance on QL-Edit and significantly outperforms existing models.
RadEdit: stress-testing biomedical vision models via diffusion image editing
Biomedical imaging datasets are often small and biased, meaning that real-world performance of predictive models can be substantially lower than expected from internal testing. This work proposes using generative image editing to simulate dataset shifts and diagnose failure modes of biomedical vision models; this can be used in advance of deployment to assess readiness, potentially reducing cost and patient harm. Existing editing methods can produce undesirable changes, with spurious correlations learned due to the co-occurrence of disease and treatment interventions, limiting practical applicability. To address this, we train a text-to-image diffusion model on multiple chest X-ray datasets and introduce a new editing method RadEdit that uses multiple masks, if present, to constrain changes and ensure consistency in the edited images. We consider three types of dataset shifts: acquisition shift, manifestation shift, and population shift, and demonstrate that our approach can diagnose failures and quantify model robustness without additional data collection, complementing more qualitative tools for explainable AI.
VideoUFO: A Million-Scale User-Focused Dataset for Text-to-Video Generation
Text-to-video generative models convert textual prompts into dynamic visual content, offering wide-ranging applications in film production, gaming, and education. However, their real-world performance often falls short of user expectations. One key reason is that these models have not been trained on videos related to some topics users want to create. In this paper, we propose VideoUFO, the first Video dataset specifically curated to align with Users' FOcus in real-world scenarios. Beyond this, our VideoUFO also features: (1) minimal (0.29%) overlap with existing video datasets, and (2) videos searched exclusively via YouTube's official API under the Creative Commons license. These two attributes provide future researchers with greater freedom to broaden their training sources. The VideoUFO comprises over 1.09 million video clips, each paired with both a brief and a detailed caption (description). Specifically, through clustering, we first identify 1,291 user-focused topics from the million-scale real text-to-video prompt dataset, VidProM. Then, we use these topics to retrieve videos from YouTube, split the retrieved videos into clips, and generate both brief and detailed captions for each clip. After verifying the clips with specified topics, we are left with about 1.09 million video clips. Our experiments reveal that (1) current 16 text-to-video models do not achieve consistent performance across all user-focused topics; and (2) a simple model trained on VideoUFO outperforms others on worst-performing topics. The dataset is publicly available at https://huggingface.co/datasets/WenhaoWang/VideoUFO under the CC BY 4.0 License.
Señorita-2M: A High-Quality Instruction-based Dataset for General Video Editing by Video Specialists
Recent advancements in video generation have spurred the development of video editing techniques, which can be divided into inversion-based and end-to-end methods. However, current video editing methods still suffer from several challenges. Inversion-based methods, though training-free and flexible, are time-consuming during inference, struggle with fine-grained editing instructions, and produce artifacts and jitter. On the other hand, end-to-end methods, which rely on edited video pairs for training, offer faster inference speeds but often produce poor editing results due to a lack of high-quality training video pairs. In this paper, to close the gap in end-to-end methods, we introduce Se\~norita-2M, a high-quality video editing dataset. Se\~norita-2M consists of approximately 2 millions of video editing pairs. It is built by crafting four high-quality, specialized video editing models, each crafted and trained by our team to achieve state-of-the-art editing results. We also propose a filtering pipeline to eliminate poorly edited video pairs. Furthermore, we explore common video editing architectures to identify the most effective structure based on current pre-trained generative model. Extensive experiments show that our dataset can help to yield remarkably high-quality video editing results. More details are available at https://senorita.github.io.
EVE: Efficient zero-shot text-based Video Editing with Depth Map Guidance and Temporal Consistency Constraints
Motivated by the superior performance of image diffusion models, more and more researchers strive to extend these models to the text-based video editing task. Nevertheless, current video editing tasks mainly suffer from the dilemma between the high fine-tuning cost and the limited generation capacity. Compared with images, we conjecture that videos necessitate more constraints to preserve the temporal consistency during editing. Towards this end, we propose EVE, a robust and efficient zero-shot video editing method. Under the guidance of depth maps and temporal consistency constraints, EVE derives satisfactory video editing results with an affordable computational and time cost. Moreover, recognizing the absence of a publicly available video editing dataset for fair comparisons, we construct a new benchmark ZVE-50 dataset. Through comprehensive experimentation, we validate that EVE could achieve a satisfactory trade-off between performance and efficiency. We will release our dataset and codebase to facilitate future researchers.
CVPR 2023 Text Guided Video Editing Competition
Humans watch more than a billion hours of video per day. Most of this video was edited manually, which is a tedious process. However, AI-enabled video-generation and video-editing is on the rise. Building on text-to-image models like Stable Diffusion and Imagen, generative AI has improved dramatically on video tasks. But it's hard to evaluate progress in these video tasks because there is no standard benchmark. So, we propose a new dataset for text-guided video editing (TGVE), and we run a competition at CVPR to evaluate models on our TGVE dataset. In this paper we present a retrospective on the competition and describe the winning method. The competition dataset is available at https://sites.google.com/view/loveucvpr23/track4.
RTMV: A Ray-Traced Multi-View Synthetic Dataset for Novel View Synthesis
We present a large-scale synthetic dataset for novel view synthesis consisting of ~300k images rendered from nearly 2000 complex scenes using high-quality ray tracing at high resolution (1600 x 1600 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis, thus providing a large unified benchmark for both training and evaluation. Using 4 distinct sources of high-quality 3D meshes, the scenes of our dataset exhibit challenging variations in camera views, lighting, shape, materials, and textures. Because our dataset is too large for existing methods to process, we propose Sparse Voxel Light Field (SVLF), an efficient voxel-based light field approach for novel view synthesis that achieves comparable performance to NeRF on synthetic data, while being an order of magnitude faster to train and two orders of magnitude faster to render. SVLF achieves this speed by relying on a sparse voxel octree, careful voxel sampling (requiring only a handful of queries per ray), and reduced network structure; as well as ground truth depth maps at training time. Our dataset is generated by NViSII, a Python-based ray tracing renderer, which is designed to be simple for non-experts to use and share, flexible and powerful through its use of scripting, and able to create high-quality and physically-based rendered images. Experiments with a subset of our dataset allow us to compare standard methods like NeRF and mip-NeRF for single-scene modeling, and pixelNeRF for category-level modeling, pointing toward the need for future improvements in this area.
DataComp: In search of the next generation of multimodal datasets
Large multimodal datasets have been instrumental in recent breakthroughs such as CLIP, Stable Diffusion, and GPT-4. At the same time, datasets rarely receive the same research attention as model architectures or training algorithms. To address this shortcoming in the machine learning ecosystem, we introduce DataComp, a benchmark where the training code is fixed and researchers innovate by proposing new training sets. We provide a testbed for dataset experiments centered around a new candidate pool of 12.8B image-text pairs from Common Crawl. Participants in our benchmark design new filtering techniques or curate new data sources and then evaluate their new dataset by running our standardized CLIP training code and testing on 38 downstream test sets. Our benchmark consists of multiple scales, with four candidate pool sizes and associated compute budgets ranging from 12.8M to 12.8B samples seen during training. This multi-scale design facilitates the study of scaling trends and makes the benchmark accessible to researchers with varying resources. Our baseline experiments show that the DataComp workflow is a promising way of improving multimodal datasets. We introduce DataComp-1B, a dataset created by applying a simple filtering algorithm to the 12.8B candidate pool. The resulting 1.4B subset enables training a CLIP ViT-L/14 from scratch to 79.2% zero-shot accuracy on ImageNet. Our new ViT-L/14 model outperforms a larger ViT-g/14 trained on LAION-2B by 0.7 percentage points while requiring 9x less training compute. We also outperform OpenAI's CLIP ViT-L/14 by 3.7 percentage points, which is trained with the same compute budget as our model. These gains highlight the potential for improving model performance by carefully curating training sets. We view DataComp-1B as only the first step and hope that DataComp paves the way toward the next generation of multimodal datasets.
VDOR: A Video-based Dataset for Object Removal via Sequence Consistency
Object removal, as a sub-task of image inpainting, has garnered significant attention in recent years. Existing datasets related to object removal serve a valuable foundation for model validation and optimization. However, they mainly rely on inpainting techniques to generate pseudo-removed results, leading to distribution gaps between synthetic and real-world data. While some real-world datasets mitigate these issues, they face challenges such as limited scalability, high annotation costs, and unrealistic representations of lighting and shadows. To address these limitations, we propose a novel video-based annotation pipeline for constructing a realistic illumination-aware object removal dataset. Leveraging this pipeline, we introduce VDOR, a dataset specifically designed for object removal tasks, which comprises triplets of original frame images with objects, background images without objects, and corresponding masks. By leveraging continuous real-world video frames, we minimize distribution gaps and accurately capture realistic lighting and shadow variations, ensuring close alignment with real-world scenarios. Our approach significantly reduces annotation effort while providing a robust foundation for advancing object removal research.
GPT-IMAGE-EDIT-1.5M: A Million-Scale, GPT-Generated Image Dataset
Recent advancements in large multimodal models like GPT-4o have set a new standard for high-fidelity, instruction-guided image editing. However, the proprietary nature of these models and their training data creates a significant barrier for open-source research. To bridge this gap, we introduce GPT-IMAGE-EDIT-1.5M, a publicly available, large-scale image-editing corpus containing more than 1.5 million high-quality triplets (instruction, source image, edited image). We systematically construct this dataset by leveraging the versatile capabilities of GPT-4o to unify and refine three popular image-editing datasets: OmniEdit, HQ-Edit, and UltraEdit. Specifically, our methodology involves 1) regenerating output images to enhance visual quality and instruction alignment, and 2) selectively rewriting prompts to improve semantic clarity. To validate the efficacy of our dataset, we fine-tune advanced open-source models on GPT-IMAGE-EDIT-1.5M. The empirical results are exciting, e.g., the fine-tuned FluxKontext achieves highly competitive performance across a comprehensive suite of benchmarks, including 7.24 on GEdit-EN, 3.80 on ImgEdit-Full, and 8.78 on Complex-Edit, showing stronger instruction following and higher perceptual quality while maintaining identity. These scores markedly exceed all previously published open-source methods and substantially narrow the gap to leading proprietary models. We hope the full release of GPT-IMAGE-EDIT-1.5M can help to catalyze further open research in instruction-guided image editing.
InsightEdit: Towards Better Instruction Following for Image Editing
In this paper, we focus on the task of instruction-based image editing. Previous works like InstructPix2Pix, InstructDiffusion, and SmartEdit have explored end-to-end editing. However, two limitations still remain: First, existing datasets suffer from low resolution, poor background consistency, and overly simplistic instructions. Second, current approaches mainly condition on the text while the rich image information is underexplored, therefore inferior in complex instruction following and maintaining background consistency. Targeting these issues, we first curated the AdvancedEdit dataset using a novel data construction pipeline, formulating a large-scale dataset with high visual quality, complex instructions, and good background consistency. Then, to further inject the rich image information, we introduce a two-stream bridging mechanism utilizing both the textual and visual features reasoned by the powerful Multimodal Large Language Models (MLLM) to guide the image editing process more precisely. Extensive results demonstrate that our approach, InsightEdit, achieves state-of-the-art performance, excelling in complex instruction following and maintaining high background consistency with the original image.
Editing Large Language Models: Problems, Methods, and Opportunities
Despite the ability to train capable LLMs, the methodology for maintaining their relevancy and rectifying errors remains elusive. To this end, the past few years have witnessed a surge in techniques for editing LLMs, the objective of which is to efficiently alter the behavior of LLMs within a specific domain without negatively impacting performance across other inputs. This paper embarks on a deep exploration of the problems, methods, and opportunities related to model editing for LLMs. In particular, we provide an exhaustive overview of the task definition and challenges associated with model editing, along with an in-depth empirical analysis of the most progressive methods currently at our disposal. We also build a new benchmark dataset to facilitate a more robust evaluation and pinpoint enduring issues intrinsic to existing techniques. Our objective is to provide valuable insights into the effectiveness and feasibility of each editing technique, thereby assisting the community in making informed decisions on the selection of the most appropriate method for a specific task or context. Code and datasets are available at https://github.com/zjunlp/EasyEdit.
AIM 2024 Sparse Neural Rendering Challenge: Dataset and Benchmark
Recent developments in differentiable and neural rendering have made impressive breakthroughs in a variety of 2D and 3D tasks, e.g. novel view synthesis, 3D reconstruction. Typically, differentiable rendering relies on a dense viewpoint coverage of the scene, such that the geometry can be disambiguated from appearance observations alone. Several challenges arise when only a few input views are available, often referred to as sparse or few-shot neural rendering. As this is an underconstrained problem, most existing approaches introduce the use of regularisation, together with a diversity of learnt and hand-crafted priors. A recurring problem in sparse rendering literature is the lack of an homogeneous, up-to-date, dataset and evaluation protocol. While high-resolution datasets are standard in dense reconstruction literature, sparse rendering methods often evaluate with low-resolution images. Additionally, data splits are inconsistent across different manuscripts, and testing ground-truth images are often publicly available, which may lead to over-fitting. In this work, we propose the Sparse Rendering (SpaRe) dataset and benchmark. We introduce a new dataset that follows the setup of the DTU MVS dataset. The dataset is composed of 97 new scenes based on synthetic, high-quality assets. Each scene has up to 64 camera views and 7 lighting configurations, rendered at 1600x1200 resolution. We release a training split of 82 scenes to foster generalizable approaches, and provide an online evaluation platform for the validation and test sets, whose ground-truth images remain hidden. We propose two different sparse configurations (3 and 9 input images respectively). This provides a powerful and convenient tool for reproducible evaluation, and enable researchers easy access to a public leaderboard with the state-of-the-art performance scores. Available at: https://sparebenchmark.github.io/
EditVerse: Unifying Image and Video Editing and Generation with In-Context Learning
Recent advances in foundation models highlight a clear trend toward unification and scaling, showing emergent capabilities across diverse domains. While image generation and editing have rapidly transitioned from task-specific to unified frameworks, video generation and editing remain fragmented due to architectural limitations and data scarcity. In this work, we introduce EditVerse, a unified framework for image and video generation and editing within a single model. By representing all modalities, i.e., text, image, and video, as a unified token sequence, EditVerse leverages self-attention to achieve robust in-context learning, natural cross-modal knowledge transfer, and flexible handling of inputs and outputs with arbitrary resolutions and durations. To address the lack of video editing training data, we design a scalable data pipeline that curates 232K video editing samples and combines them with large-scale image and video datasets for joint training. Furthermore, we present EditVerseBench, the first benchmark for instruction-based video editing covering diverse tasks and resolutions. Extensive experiments and user studies demonstrate that EditVerse achieves state-of-the-art performance, surpassing existing open-source and commercial models, while exhibiting emergent editing and generation abilities across modalities.
VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark
Recently, knowledge editing on large language models (LLMs) has received considerable attention. Compared to this, editing Large Vision-Language Models (LVLMs) faces extra challenges from diverse data modalities and complicated model components, and data for LVLMs editing are limited. The existing LVLM editing benchmark, which comprises three metrics (Reliability, Locality, and Generality), falls short in the quality of synthesized evaluation images and cannot assess whether models apply edited knowledge in relevant content. Therefore, we employ more reliable data collection methods to construct a new Large Vision-Language Model Knowledge Editing Benchmark, VLKEB, and extend the Portability metric for more comprehensive evaluation. Leveraging a multi-modal knowledge graph, our image data are bound with knowledge entities. This can be further used to extract entity-related knowledge, which constitutes the base of editing data. We conduct experiments of different editing methods on five LVLMs, and thoroughly analyze how do they impact the models. The results reveal strengths and deficiencies of these methods and hopefully provide insights for future research. The codes and dataset are available at: https://github.com/VLKEB/VLKEB{https://github.com/VLKEB/VLKEB}.
OpenGPT-4o-Image: A Comprehensive Dataset for Advanced Image Generation and Editing
The performance of unified multimodal models for image generation and editing is fundamentally constrained by the quality and comprehensiveness of their training data. While existing datasets have covered basic tasks like style transfer and simple object manipulation, they often lack the systematic structure and challenging scenarios required for real-world applications. To address this bottleneck, we introduce OpenGPT-4o-Image, a large-scale dataset constructed using a novel methodology that combines hierarchical task taxonomy with automated data generation. Our taxonomy not only includes fundamental capabilities such as text rendering and style control but also introduces highly practical yet challenging categories like scientific imagery for chemistry illustrations and complex instruction editing requiring simultaneous execution of multiple operations. Through an automated pipeline leveraging structured resource pools and GPT-4o, we generate 80k high-quality instruction-image pairs with controlled diversity, covering 11 major domains and 51 subtasks. Extensive experiments show that fine-tuning leading models on our dataset achieves significant performance gains across multiple benchmarks, with improvements of up to 18\% on editing tasks (UniWorld-V1 on ImgEdit-Bench) and 13% on generation tasks (Harmon on GenEval). Our work demonstrates that systematic data construction is key to advancing multimodal AI capabilities.
EditReward: A Human-Aligned Reward Model for Instruction-Guided Image Editing
Recently, we have witnessed great progress in image editing with natural language instructions. Several closed-source models like GPT-Image-1, Seedream, and Google-Nano-Banana have shown highly promising progress. However, the open-source models are still lagging. The main bottleneck is the lack of a reliable reward model to scale up high-quality synthetic training data. To address this critical bottleneck, we built \mname, trained with our new large-scale human preference dataset, meticulously annotated by trained experts following a rigorous protocol containing over 200K preference pairs. \mname demonstrates superior alignment with human preferences in instruction-guided image editing tasks. Experiments show that \mname achieves state-of-the-art human correlation on established benchmarks such as GenAI-Bench, AURORA-Bench, ImagenHub, and our new \benchname, outperforming a wide range of VLM-as-judge models. Furthermore, we use \mname to select a high-quality subset from the existing noisy ShareGPT-4o-Image dataset. We train Step1X-Edit on the selected subset, which shows significant improvement over training on the full set. This demonstrates \mname's ability to serve as a reward model to scale up high-quality training data for image editing. Furthermore, its strong alignment suggests potential for advanced applications like reinforcement learning-based post-training and test-time scaling of image editing models. \mname with its training dataset will be released to help the community build more high-quality image editing training datasets.
Step1X-Edit: A Practical Framework for General Image Editing
In recent years, image editing models have witnessed remarkable and rapid development. The recent unveiling of cutting-edge multimodal models such as GPT-4o and Gemini2 Flash has introduced highly promising image editing capabilities. These models demonstrate an impressive aptitude for fulfilling a vast majority of user-driven editing requirements, marking a significant advancement in the field of image manipulation. However, there is still a large gap between the open-source algorithm with these closed-source models. Thus, in this paper, we aim to release a state-of-the-art image editing model, called Step1X-Edit, which can provide comparable performance against the closed-source models like GPT-4o and Gemini2 Flash. More specifically, we adopt the Multimodal LLM to process the reference image and the user's editing instruction. A latent embedding has been extracted and integrated with a diffusion image decoder to obtain the target image. To train the model, we build a data generation pipeline to produce a high-quality dataset. For evaluation, we develop the GEdit-Bench, a novel benchmark rooted in real-world user instructions. Experimental results on GEdit-Bench demonstrate that Step1X-Edit outperforms existing open-source baselines by a substantial margin and approaches the performance of leading proprietary models, thereby making significant contributions to the field of image editing.
Cora: Correspondence-aware image editing using few step diffusion
Image editing is an important task in computer graphics, vision, and VFX, with recent diffusion-based methods achieving fast and high-quality results. However, edits requiring significant structural changes, such as non-rigid deformations, object modifications, or content generation, remain challenging. Existing few step editing approaches produce artifacts such as irrelevant texture or struggle to preserve key attributes of the source image (e.g., pose). We introduce Cora, a novel editing framework that addresses these limitations by introducing correspondence-aware noise correction and interpolated attention maps. Our method aligns textures and structures between the source and target images through semantic correspondence, enabling accurate texture transfer while generating new content when necessary. Cora offers control over the balance between content generation and preservation. Extensive experiments demonstrate that, quantitatively and qualitatively, Cora excels in maintaining structure, textures, and identity across diverse edits, including pose changes, object addition, and texture refinements. User studies confirm that Cora delivers superior results, outperforming alternatives.
PromptVFX: Text-Driven Fields for Open-World 3D Gaussian Animation
Visual effects (VFX) are key to immersion in modern films, games, and AR/VR. Creating 3D effects requires specialized expertise and training in 3D animation software and can be time consuming. Generative solutions typically rely on computationally intense methods such as diffusion models which can be slow at 4D inference. We reformulate 3D animation as a field prediction task and introduce a text-driven framework that infers a time-varying 4D flow field acting on 3D Gaussians. By leveraging large language models (LLMs) and vision-language models (VLMs) for function generation, our approach interprets arbitrary prompts (e.g., "make the vase glow orange, then explode") and instantly updates color, opacity, and positions of 3D Gaussians in real time. This design avoids overheads such as mesh extraction, manual or physics-based simulations and allows both novice and expert users to animate volumetric scenes with minimal effort on a consumer device even in a web browser. Experimental results show that simple textual instructions suffice to generate compelling time-varying VFX, reducing the manual effort typically required for rigging or advanced modeling. We thus present a fast and accessible pathway to language-driven 3D content creation that can pave the way to democratize VFX further.
VidCRAFT3: Camera, Object, and Lighting Control for Image-to-Video Generation
Recent image-to-video generation methods have demonstrated success in enabling control over one or two visual elements, such as camera trajectory or object motion. However, these methods are unable to offer control over multiple visual elements due to limitations in data and network efficacy. In this paper, we introduce VidCRAFT3, a novel framework for precise image-to-video generation that enables control over camera motion, object motion, and lighting direction simultaneously. To better decouple control over each visual element, we propose the Spatial Triple-Attention Transformer, which integrates lighting direction, text, and image in a symmetric way. Since most real-world video datasets lack lighting annotations, we construct a high-quality synthetic video dataset, the VideoLightingDirection (VLD) dataset. This dataset includes lighting direction annotations and objects of diverse appearance, enabling VidCRAFT3 to effectively handle strong light transmission and reflection effects. Additionally, we propose a three-stage training strategy that eliminates the need for training data annotated with multiple visual elements (camera motion, object motion, and lighting direction) simultaneously. Extensive experiments on benchmark datasets demonstrate the efficacy of VidCRAFT3 in producing high-quality video content, surpassing existing state-of-the-art methods in terms of control granularity and visual coherence. All code and data will be publicly available. Project page: https://sixiaozheng.github.io/VidCRAFT3/.
Toffee: Efficient Million-Scale Dataset Construction for Subject-Driven Text-to-Image Generation
In subject-driven text-to-image generation, recent works have achieved superior performance by training the model on synthetic datasets containing numerous image pairs. Trained on these datasets, generative models can produce text-aligned images for specific subject from arbitrary testing image in a zero-shot manner. They even outperform methods which require additional fine-tuning on testing images. However, the cost of creating such datasets is prohibitive for most researchers. To generate a single training pair, current methods fine-tune a pre-trained text-to-image model on the subject image to capture fine-grained details, then use the fine-tuned model to create images for the same subject based on creative text prompts. Consequently, constructing a large-scale dataset with millions of subjects can require hundreds of thousands of GPU hours. To tackle this problem, we propose Toffee, an efficient method to construct datasets for subject-driven editing and generation. Specifically, our dataset construction does not need any subject-level fine-tuning. After pre-training two generative models, we are able to generate infinite number of high-quality samples. We construct the first large-scale dataset for subject-driven image editing and generation, which contains 5 million image pairs, text prompts, and masks. Our dataset is 5 times the size of previous largest dataset, yet our cost is tens of thousands of GPU hours lower. To test the proposed dataset, we also propose a model which is capable of both subject-driven image editing and generation. By simply training the model on our proposed dataset, it obtains competitive results, illustrating the effectiveness of the proposed dataset construction framework.
MagicBrush: A Manually Annotated Dataset for Instruction-Guided Image Editing
Text-guided image editing is widely needed in daily life, ranging from personal use to professional applications such as Photoshop. However, existing methods are either zero-shot or trained on an automatically synthesized dataset, which contains a high volume of noise. Thus, they still require lots of manual tuning to produce desirable outcomes in practice. To address this issue, we introduce MagicBrush (https://osu-nlp-group.github.io/MagicBrush/), the first large-scale, manually annotated dataset for instruction-guided real image editing that covers diverse scenarios: single-turn, multi-turn, mask-provided, and mask-free editing. MagicBrush comprises over 10K manually annotated triples (source image, instruction, target image), which supports trainining large-scale text-guided image editing models. We fine-tune InstructPix2Pix on MagicBrush and show that the new model can produce much better images according to human evaluation. We further conduct extensive experiments to evaluate current image editing baselines from multiple dimensions including quantitative, qualitative, and human evaluations. The results reveal the challenging nature of our dataset and the gap between current baselines and real-world editing needs.
SuperEdit: Rectifying and Facilitating Supervision for Instruction-Based Image Editing
Due to the challenges of manually collecting accurate editing data, existing datasets are typically constructed using various automated methods, leading to noisy supervision signals caused by the mismatch between editing instructions and original-edited image pairs. Recent efforts attempt to improve editing models through generating higher-quality edited images, pre-training on recognition tasks, or introducing vision-language models (VLMs) but fail to resolve this fundamental issue. In this paper, we offer a novel solution by constructing more effective editing instructions for given image pairs. This includes rectifying the editing instructions to better align with the original-edited image pairs and using contrastive editing instructions to further enhance their effectiveness. Specifically, we find that editing models exhibit specific generation attributes at different inference steps, independent of the text. Based on these prior attributes, we define a unified guide for VLMs to rectify editing instructions. However, there are some challenging editing scenarios that cannot be resolved solely with rectified instructions. To this end, we further construct contrastive supervision signals with positive and negative instructions and introduce them into the model training using triplet loss, thereby further facilitating supervision effectiveness. Our method does not require the VLM modules or pre-training tasks used in previous work, offering a more direct and efficient way to provide better supervision signals, and providing a novel, simple, and effective solution for instruction-based image editing. Results on multiple benchmarks demonstrate that our method significantly outperforms existing approaches. Compared with previous SOTA SmartEdit, we achieve 9.19% improvements on the Real-Edit benchmark with 30x less training data and 13x smaller model size.
InstructGIE: Towards Generalizable Image Editing
Recent advances in image editing have been driven by the development of denoising diffusion models, marking a significant leap forward in this field. Despite these advances, the generalization capabilities of recent image editing approaches remain constrained. In response to this challenge, our study introduces a novel image editing framework with enhanced generalization robustness by boosting in-context learning capability and unifying language instruction. This framework incorporates a module specifically optimized for image editing tasks, leveraging the VMamba Block and an editing-shift matching strategy to augment in-context learning. Furthermore, we unveil a selective area-matching technique specifically engineered to address and rectify corrupted details in generated images, such as human facial features, to further improve the quality. Another key innovation of our approach is the integration of a language unification technique, which aligns language embeddings with editing semantics to elevate the quality of image editing. Moreover, we compile the first dataset for image editing with visual prompts and editing instructions that could be used to enhance in-context capability. Trained on this dataset, our methodology not only achieves superior synthesis quality for trained tasks, but also demonstrates robust generalization capability across unseen vision tasks through tailored prompts.
BIKED++: A Multimodal Dataset of 1.4 Million Bicycle Image and Parametric CAD Designs
This paper introduces a public dataset of 1.4 million procedurally-generated bicycle designs represented parametrically, as JSON files, and as rasterized images. The dataset is created through the use of a rendering engine which harnesses the BikeCAD software to generate vector graphics from parametric designs. This rendering engine is discussed in the paper and also released publicly alongside the dataset. Though this dataset has numerous applications, a principal motivation is the need to train cross-modal predictive models between parametric and image-based design representations. For example, we demonstrate that a predictive model can be trained to accurately estimate Contrastive Language-Image Pretraining (CLIP) embeddings from a parametric representation directly. This allows similarity relations to be established between parametric bicycle designs and text strings or reference images. Trained predictive models are also made public. The dataset joins the BIKED dataset family which includes thousands of mixed-representation human-designed bicycle models and several datasets quantifying design performance. The code and dataset can be found at: https://github.com/Lyleregenwetter/BIKED_multimodal/tree/main
Pico-Banana-400K: A Large-Scale Dataset for Text-Guided Image Editing
Recent advances in multimodal models have demonstrated remarkable text-guided image editing capabilities, with systems like GPT-4o and Nano-Banana setting new benchmarks. However, the research community's progress remains constrained by the absence of large-scale, high-quality, and openly accessible datasets built from real images. We introduce Pico-Banana-400K, a comprehensive 400K-image dataset for instruction-based image editing. Our dataset is constructed by leveraging Nano-Banana to generate diverse edit pairs from real photographs in the OpenImages collection. What distinguishes Pico-Banana-400K from previous synthetic datasets is our systematic approach to quality and diversity. We employ a fine-grained image editing taxonomy to ensure comprehensive coverage of edit types while maintaining precise content preservation and instruction faithfulness through MLLM-based quality scoring and careful curation. Beyond single turn editing, Pico-Banana-400K enables research into complex editing scenarios. The dataset includes three specialized subsets: (1) a 72K-example multi-turn collection for studying sequential editing, reasoning, and planning across consecutive modifications; (2) a 56K-example preference subset for alignment research and reward model training; and (3) paired long-short editing instructions for developing instruction rewriting and summarization capabilities. By providing this large-scale, high-quality, and task-rich resource, Pico-Banana-400K establishes a robust foundation for training and benchmarking the next generation of text-guided image editing models.
Anymate: A Dataset and Baselines for Learning 3D Object Rigging
Rigging and skinning are essential steps to create realistic 3D animations, often requiring significant expertise and manual effort. Traditional attempts at automating these processes rely heavily on geometric heuristics and often struggle with objects of complex geometry. Recent data-driven approaches show potential for better generality, but are often constrained by limited training data. We present the Anymate Dataset, a large-scale dataset of 230K 3D assets paired with expert-crafted rigging and skinning information -- 70 times larger than existing datasets. Using this dataset, we propose a learning-based auto-rigging framework with three sequential modules for joint, connectivity, and skinning weight prediction. We systematically design and experiment with various architectures as baselines for each module and conduct comprehensive evaluations on our dataset to compare their performance. Our models significantly outperform existing methods, providing a foundation for comparing future methods in automated rigging and skinning. Code and dataset can be found at https://anymate3d.github.io/.
EditRoom: LLM-parameterized Graph Diffusion for Composable 3D Room Layout Editing
Given the steep learning curve of professional 3D software and the time-consuming process of managing large 3D assets, language-guided 3D scene editing has significant potential in fields such as virtual reality, augmented reality, and gaming. However, recent approaches to language-guided 3D scene editing either require manual interventions or focus only on appearance modifications without supporting comprehensive scene layout changes. In response, we propose Edit-Room, a unified framework capable of executing a variety of layout edits through natural language commands, without requiring manual intervention. Specifically, EditRoom leverages Large Language Models (LLMs) for command planning and generates target scenes using a diffusion-based method, enabling six types of edits: rotate, translate, scale, replace, add, and remove. To address the lack of data for language-guided 3D scene editing, we have developed an automatic pipeline to augment existing 3D scene synthesis datasets and introduced EditRoom-DB, a large-scale dataset with 83k editing pairs, for training and evaluation. Our experiments demonstrate that our approach consistently outperforms other baselines across all metrics, indicating higher accuracy and coherence in language-guided scene layout editing.
Draw-In-Mind: Learning Precise Image Editing via Chain-of-Thought Imagination
In recent years, integrating multimodal understanding and generation into a single unified model has emerged as a promising paradigm. While this approach achieves strong results in text-to-image (T2I) generation, it still struggles with precise image editing. We attribute this limitation to an imbalanced division of responsibilities. The understanding module primarily functions as a translator that encodes user instructions into semantic conditions, while the generation module must simultaneously act as designer and painter, inferring the original layout, identifying the target editing region, and rendering the new content. This imbalance is counterintuitive because the understanding module is typically trained with several times more data on complex reasoning tasks than the generation module. To address this issue, we introduce Draw-In-Mind (DIM), a dataset comprising two complementary subsets: (i) DIM-T2I, containing 14M long-context image-text pairs to enhance complex instruction comprehension; and (ii) DIM-Edit, consisting of 233K chain-of-thought imaginations generated by GPT-4o, serving as explicit design blueprints for image edits. We connect a frozen Qwen2.5-VL-3B with a trainable SANA1.5-1.6B via a lightweight two-layer MLP, and train it on the proposed DIM dataset, resulting in DIM-4.6B-T2I/Edit. Despite its modest parameter scale, DIM-4.6B-Edit achieves SOTA or competitive performance on the ImgEdit and GEdit-Bench benchmarks, outperforming much larger models such as UniWorld-V1 and Step1X-Edit. These findings demonstrate that explicitly assigning the design responsibility to the understanding module provides significant benefits for image editing. Our dataset and models will be available at https://github.com/showlab/DIM.
A Benchmark and Baseline for Language-Driven Image Editing
Language-driven image editing can significantly save the laborious image editing work and be friendly to the photography novice. However, most similar work can only deal with a specific image domain or can only do global retouching. To solve this new task, we first present a new language-driven image editing dataset that supports both local and global editing with editing operation and mask annotations. Besides, we also propose a baseline method that fully utilizes the annotation to solve this problem. Our new method treats each editing operation as a sub-module and can automatically predict operation parameters. Not only performing well on challenging user data, but such an approach is also highly interpretable. We believe our work, including both the benchmark and the baseline, will advance the image editing area towards a more general and free-form level.
The Devil is in the Details: StyleFeatureEditor for Detail-Rich StyleGAN Inversion and High Quality Image Editing
The task of manipulating real image attributes through StyleGAN inversion has been extensively researched. This process involves searching latent variables from a well-trained StyleGAN generator that can synthesize a real image, modifying these latent variables, and then synthesizing an image with the desired edits. A balance must be struck between the quality of the reconstruction and the ability to edit. Earlier studies utilized the low-dimensional W-space for latent search, which facilitated effective editing but struggled with reconstructing intricate details. More recent research has turned to the high-dimensional feature space F, which successfully inverses the input image but loses much of the detail during editing. In this paper, we introduce StyleFeatureEditor -- a novel method that enables editing in both w-latents and F-latents. This technique not only allows for the reconstruction of finer image details but also ensures their preservation during editing. We also present a new training pipeline specifically designed to train our model to accurately edit F-latents. Our method is compared with state-of-the-art encoding approaches, demonstrating that our model excels in terms of reconstruction quality and is capable of editing even challenging out-of-domain examples. Code is available at https://github.com/AIRI-Institute/StyleFeatureEditor.
HumanEdit: A High-Quality Human-Rewarded Dataset for Instruction-based Image Editing
We present HumanEdit, a high-quality, human-rewarded dataset specifically designed for instruction-guided image editing, enabling precise and diverse image manipulations through open-form language instructions. Previous large-scale editing datasets often incorporate minimal human feedback, leading to challenges in aligning datasets with human preferences. HumanEdit bridges this gap by employing human annotators to construct data pairs and administrators to provide feedback. With meticulously curation, HumanEdit comprises 5,751 images and requires more than 2,500 hours of human effort across four stages, ensuring both accuracy and reliability for a wide range of image editing tasks. The dataset includes six distinct types of editing instructions: Action, Add, Counting, Relation, Remove, and Replace, encompassing a broad spectrum of real-world scenarios. All images in the dataset are accompanied by masks, and for a subset of the data, we ensure that the instructions are sufficiently detailed to support mask-free editing. Furthermore, HumanEdit offers comprehensive diversity and high-resolution 1024 times 1024 content sourced from various domains, setting a new versatile benchmark for instructional image editing datasets. With the aim of advancing future research and establishing evaluation benchmarks in the field of image editing, we release HumanEdit at https://huggingface.co/datasets/BryanW/HumanEdit.
Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos
Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
OmniEdit: Building Image Editing Generalist Models Through Specialist Supervision
Instruction-guided image editing methods have demonstrated significant potential by training diffusion models on automatically synthesized or manually annotated image editing pairs. However, these methods remain far from practical, real-life applications. We identify three primary challenges contributing to this gap. Firstly, existing models have limited editing skills due to the biased synthesis process. Secondly, these methods are trained with datasets with a high volume of noise and artifacts. This is due to the application of simple filtering methods like CLIP-score. Thirdly, all these datasets are restricted to a single low resolution and fixed aspect ratio, limiting the versatility to handle real-world use cases. In this paper, we present \omniedit, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) \omniedit is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. (3) we propose a new editing architecture called EditNet to greatly boost the editing success rate, (4) we provide images with different aspect ratios to ensure that our model can handle any image in the wild. We have curated a test set containing images of different aspect ratios, accompanied by diverse instructions to cover different tasks. Both automatic evaluation and human evaluations demonstrate that \omniedit can significantly outperform all the existing models. Our code, dataset and model will be available at https://tiger-ai-lab.github.io/OmniEdit/
NANO3D: A Training-Free Approach for Efficient 3D Editing Without Masks
3D object editing is essential for interactive content creation in gaming, animation, and robotics, yet current approaches remain inefficient, inconsistent, and often fail to preserve unedited regions. Most methods rely on editing multi-view renderings followed by reconstruction, which introduces artifacts and limits practicality. To address these challenges, we propose Nano3D, a training-free framework for precise and coherent 3D object editing without masks. Nano3D integrates FlowEdit into TRELLIS to perform localized edits guided by front-view renderings, and further introduces region-aware merging strategies, Voxel/Slat-Merge, which adaptively preserve structural fidelity by ensuring consistency between edited and unedited areas. Experiments demonstrate that Nano3D achieves superior 3D consistency and visual quality compared with existing methods. Based on this framework, we construct the first large-scale 3D editing datasets Nano3D-Edit-100k, which contains over 100,000 high-quality 3D editing pairs. This work addresses long-standing challenges in both algorithm design and data availability, significantly improving the generality and reliability of 3D editing, and laying the groundwork for the development of feed-forward 3D editing models. Project Page:https://jamesyjl.github.io/Nano3D
Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
UnicEdit-10M: A Dataset and Benchmark Breaking the Scale-Quality Barrier via Unified Verification for Reasoning-Enriched Edits
With the rapid advances of powerful multimodal models such as GPT-4o, Nano Banana, and Seedream 4.0 in Image Editing, the performance gap between closed-source and open-source models is widening, primarily due to the scarcity of large-scale, high-quality training data and comprehensive benchmarks capable of diagnosing model weaknesses across diverse editing behaviors. Existing data construction methods face a scale-quality trade-off: human annotations are high-quality but not scalable, while automated pipelines suffer from error propagation and noise. To address this, we introduce a lightweight data pipeline that replaces multi-toolchains with an end-to-end model and a unified post-verification stage. For scalable quality control, we train a 7B dual-task expert model, Qwen-Verify, for efficient failure detection and instruction recaptioning. This pipeline yields UnicEdit-10M, a 10M-scale dataset spanning diverse basic and complex editing tasks. We also propose UnicBench, a general benchmark that extends beyond basic edits to explicitly assess spatial and knowledge-driven reasoning. To enable fine-grained diagnosis, we introduce novel metrics, including Non-edit Consistency and Reasoning Accuracy. Our analysis of mainstream models on UnicBench reveals their limitations and provides clear directions for future research.
SpeakerVid-5M: A Large-Scale High-Quality Dataset for Audio-Visual Dyadic Interactive Human Generation
The rapid development of large-scale models has catalyzed significant breakthroughs in the digital human domain. These advanced methodologies offer high-fidelity solutions for avatar driving and rendering, leading academia to focus on the next major challenge: audio-visual dyadic interactive virtual human. To facilitate research in this emerging area, we present SpeakerVid-5M dataset, the first large-scale, high-quality dataset designed for audio-visual dyadic interactive virtual human generation. Totaling over 8,743 hours, SpeakerVid-5M contains more than 5.2 million video clips of human portraits. It covers diverse scales and interaction types, including monadic talking, listening, and dyadic conversations. Crucially, the dataset is structured along two key dimensions: interaction type and data quality. First, it is categorized into four types (dialogue branch, single branch, listening branch and multi-turn branch) based on the interaction scenario. Second, it is stratified into a large-scale pre-training subset and a curated, high-quality subset for Supervised Fine-Tuning (SFT). This dual structure accommodates a wide array of 2D virtual human tasks. In addition, we provide an autoregressive (AR)-based video chat baseline trained on this data, accompanied by a dedicated set of metrics and test data to serve as a benchmark VidChatBench for future work. Both the dataset and the corresponding data processing code will be publicly released. Project page: https://dorniwang.github.io/SpeakerVid-5M/
Droplet3D: Commonsense Priors from Videos Facilitate 3D Generation
Scaling laws have validated the success and promise of large-data-trained models in creative generation across text, image, and video domains. However, this paradigm faces data scarcity in the 3D domain, as there is far less of it available on the internet compared to the aforementioned modalities. Fortunately, there exist adequate videos that inherently contain commonsense priors, offering an alternative supervisory signal to mitigate the generalization bottleneck caused by limited native 3D data. On the one hand, videos capturing multiple views of an object or scene provide a spatial consistency prior for 3D generation. On the other hand, the rich semantic information contained within the videos enables the generated content to be more faithful to the text prompts and semantically plausible. This paper explores how to apply the video modality in 3D asset generation, spanning datasets to models. We introduce Droplet3D-4M, the first large-scale video dataset with multi-view level annotations, and train Droplet3D, a generative model supporting both image and dense text input. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to produce spatially consistent and semantically plausible content. Moreover, in contrast to the prevailing 3D solutions, our approach exhibits the potential for extension to scene-level applications. This indicates that the commonsense priors from the videos significantly facilitate 3D creation. We have open-sourced all resources including the dataset, code, technical framework, and model weights: https://dropletx.github.io/.
Over++: Generative Video Compositing for Layer Interaction Effects
In professional video compositing workflows, artists must manually create environmental interactions-such as shadows, reflections, dust, and splashes-between foreground subjects and background layers. Existing video generative models struggle to preserve the input video while adding such effects, and current video inpainting methods either require costly per-frame masks or yield implausible results. We introduce augmented compositing, a new task that synthesizes realistic, semi-transparent environmental effects conditioned on text prompts and input video layers, while preserving the original scene. To address this task, we present Over++, a video effect generation framework that makes no assumptions about camera pose, scene stationarity, or depth supervision. We construct a paired effect dataset tailored for this task and introduce an unpaired augmentation strategy that preserves text-driven editability. Our method also supports optional mask control and keyframe guidance without requiring dense annotations. Despite training on limited data, Over++ produces diverse and realistic environmental effects and outperforms existing baselines in both effect generation and scene preservation.
V2Edit: Versatile Video Diffusion Editor for Videos and 3D Scenes
This paper introduces V^2Edit, a novel training-free framework for instruction-guided video and 3D scene editing. Addressing the critical challenge of balancing original content preservation with editing task fulfillment, our approach employs a progressive strategy that decomposes complex editing tasks into a sequence of simpler subtasks. Each subtask is controlled through three key synergistic mechanisms: the initial noise, noise added at each denoising step, and cross-attention maps between text prompts and video content. This ensures robust preservation of original video elements while effectively applying the desired edits. Beyond its native video editing capability, we extend V^2Edit to 3D scene editing via a "render-edit-reconstruct" process, enabling high-quality, 3D-consistent edits even for tasks involving substantial geometric changes such as object insertion. Extensive experiments demonstrate that our V^2Edit achieves high-quality and successful edits across various challenging video editing tasks and complex 3D scene editing tasks, thereby establishing state-of-the-art performance in both domains.
Generative Image Layer Decomposition with Visual Effects
Recent advancements in large generative models, particularly diffusion-based methods, have significantly enhanced the capabilities of image editing. However, achieving precise control over image composition tasks remains a challenge. Layered representations, which allow for independent editing of image components, are essential for user-driven content creation, yet existing approaches often struggle to decompose image into plausible layers with accurately retained transparent visual effects such as shadows and reflections. We propose LayerDecomp, a generative framework for image layer decomposition which outputs photorealistic clean backgrounds and high-quality transparent foregrounds with faithfully preserved visual effects. To enable effective training, we first introduce a dataset preparation pipeline that automatically scales up simulated multi-layer data with synthesized visual effects. To further enhance real-world applicability, we supplement this simulated dataset with camera-captured images containing natural visual effects. Additionally, we propose a consistency loss which enforces the model to learn accurate representations for the transparent foreground layer when ground-truth annotations are not available. Our method achieves superior quality in layer decomposition, outperforming existing approaches in object removal and spatial editing tasks across several benchmarks and multiple user studies, unlocking various creative possibilities for layer-wise image editing. The project page is https://rayjryang.github.io/LayerDecomp.
UltraVideo: High-Quality UHD Video Dataset with Comprehensive Captions
The quality of the video dataset (image quality, resolution, and fine-grained caption) greatly influences the performance of the video generation model. The growing demand for video applications sets higher requirements for high-quality video generation models. For example, the generation of movie-level Ultra-High Definition (UHD) videos and the creation of 4K short video content. However, the existing public datasets cannot support related research and applications. In this paper, we first propose a high-quality open-sourced UHD-4K (22.4\% of which are 8K) text-to-video dataset named UltraVideo, which contains a wide range of topics (more than 100 kinds), and each video has 9 structured captions with one summarized caption (average of 824 words). Specifically, we carefully design a highly automated curation process with four stages to obtain the final high-quality dataset: i) collection of diverse and high-quality video clips. ii) statistical data filtering. iii) model-based data purification. iv) generation of comprehensive, structured captions. In addition, we expand Wan to UltraWan-1K/-4K, which can natively generate high-quality 1K/4K videos with more consistent text controllability, demonstrating the effectiveness of our data curation.We believe that this work can make a significant contribution to future research on UHD video generation. UltraVideo dataset and UltraWan models are available at https://xzc-zju.github.io/projects/UltraVideo.
3DEgo: 3D Editing on the Go!
We introduce 3DEgo to address a novel problem of directly synthesizing photorealistic 3D scenes from monocular videos guided by textual prompts. Conventional methods construct a text-conditioned 3D scene through a three-stage process, involving pose estimation using Structure-from-Motion (SfM) libraries like COLMAP, initializing the 3D model with unedited images, and iteratively updating the dataset with edited images to achieve a 3D scene with text fidelity. Our framework streamlines the conventional multi-stage 3D editing process into a single-stage workflow by overcoming the reliance on COLMAP and eliminating the cost of model initialization. We apply a diffusion model to edit video frames prior to 3D scene creation by incorporating our designed noise blender module for enhancing multi-view editing consistency, a step that does not require additional training or fine-tuning of T2I diffusion models. 3DEgo utilizes 3D Gaussian Splatting to create 3D scenes from the multi-view consistent edited frames, capitalizing on the inherent temporal continuity and explicit point cloud data. 3DEgo demonstrates remarkable editing precision, speed, and adaptability across a variety of video sources, as validated by extensive evaluations on six datasets, including our own prepared GS25 dataset. Project Page: https://3dego.github.io/
DreamSwapV: Mask-guided Subject Swapping for Any Customized Video Editing
With the rapid progress of video generation, demand for customized video editing is surging, where subject swapping constitutes a key component yet remains under-explored. Prevailing swapping approaches either specialize in narrow domains--such as human-body animation or hand-object interaction--or rely on some indirect editing paradigm or ambiguous text prompts that compromise final fidelity. In this paper, we propose DreamSwapV, a mask-guided, subject-agnostic, end-to-end framework that swaps any subject in any video for customization with a user-specified mask and reference image. To inject fine-grained guidance, we introduce multiple conditions and a dedicated condition fusion module that integrates them efficiently. In addition, an adaptive mask strategy is designed to accommodate subjects of varying scales and attributes, further improving interactions between the swapped subject and its surrounding context. Through our elaborate two-phase dataset construction and training scheme, our DreamSwapV outperforms existing methods, as validated by comprehensive experiments on VBench indicators and our first introduced DreamSwapV-Benchmark.
Tinker: Diffusion's Gift to 3D--Multi-View Consistent Editing From Sparse Inputs without Per-Scene Optimization
We introduce Tinker, a versatile framework for high-fidelity 3D editing that operates in both one-shot and few-shot regimes without any per-scene finetuning. Unlike prior techniques that demand extensive per-scene optimization to ensure multi-view consistency or to produce dozens of consistent edited input views, Tinker delivers robust, multi-view consistent edits from as few as one or two images. This capability stems from repurposing pretrained diffusion models, which unlocks their latent 3D awareness. To drive research in this space, we curate the first large-scale multi-view editing dataset and data pipeline, spanning diverse scenes and styles. Building on this dataset, we develop our framework capable of generating multi-view consistent edited views without per-scene training, which consists of two novel components: (1) Referring multi-view editor: Enables precise, reference-driven edits that remain coherent across all viewpoints. (2) Any-view-to-video synthesizer: Leverages spatial-temporal priors from video diffusion to perform high-quality scene completion and novel-view generation even from sparse inputs. Through extensive experiments, Tinker significantly reduces the barrier to generalizable 3D content creation, achieving state-of-the-art performance on editing, novel-view synthesis, and rendering enhancement tasks. We believe that Tinker represents a key step towards truly scalable, zero-shot 3D editing. Project webpage: https://aim-uofa.github.io/Tinker
Dataset Interfaces: Diagnosing Model Failures Using Controllable Counterfactual Generation
Distribution shifts are a major source of failure of deployed machine learning models. However, evaluating a model's reliability under distribution shifts can be challenging, especially since it may be difficult to acquire counterfactual examples that exhibit a specified shift. In this work, we introduce dataset interfaces: a framework which allows users to scalably synthesize such counterfactual examples from a given dataset. Specifically, we represent each class from the input dataset as a custom token within the text space of a text-to-image diffusion model. By incorporating these tokens into natural language prompts, we can then generate instantiations of objects in that dataset under desired distribution shifts. We demonstrate how applying our framework to the ImageNet dataset enables us to study model behavior across a diverse array of shifts, including variations in background, lighting, and attributes of the objects themselves. Code available at https://github.com/MadryLab/dataset-interfaces.
DanceEditor: Towards Iterative Editable Music-driven Dance Generation with Open-Vocabulary Descriptions
Generating coherent and diverse human dances from music signals has gained tremendous progress in animating virtual avatars. While existing methods support direct dance synthesis, they fail to recognize that enabling users to edit dance movements is far more practical in real-world choreography scenarios. Moreover, the lack of high-quality dance datasets incorporating iterative editing also limits addressing this challenge. To achieve this goal, we first construct DanceRemix, a large-scale multi-turn editable dance dataset comprising the prompt featuring over 25.3M dance frames and 84.5K pairs. In addition, we propose a novel framework for iterative and editable dance generation coherently aligned with given music signals, namely DanceEditor. Considering the dance motion should be both musical rhythmic and enable iterative editing by user descriptions, our framework is built upon a prediction-then-editing paradigm unifying multi-modal conditions. At the initial prediction stage, our framework improves the authority of generated results by directly modeling dance movements from tailored, aligned music. Moreover, at the subsequent iterative editing stages, we incorporate text descriptions as conditioning information to draw the editable results through a specifically designed Cross-modality Editing Module (CEM). Specifically, CEM adaptively integrates the initial prediction with music and text prompts as temporal motion cues to guide the synthesized sequences. Thereby, the results display music harmonics while preserving fine-grained semantic alignment with text descriptions. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on our newly collected DanceRemix dataset. Code is available at https://lzvsdy.github.io/DanceEditor/.
SUGAR: Subject-Driven Video Customization in a Zero-Shot Manner
We present SUGAR, a zero-shot method for subject-driven video customization. Given an input image, SUGAR is capable of generating videos for the subject contained in the image and aligning the generation with arbitrary visual attributes such as style and motion specified by user-input text. Unlike previous methods, which require test-time fine-tuning or fail to generate text-aligned videos, SUGAR achieves superior results without the need for extra cost at test-time. To enable zero-shot capability, we introduce a scalable pipeline to construct synthetic dataset which is specifically designed for subject-driven customization, leading to 2.5 millions of image-video-text triplets. Additionally, we propose several methods to enhance our model, including special attention designs, improved training strategies, and a refined sampling algorithm. Extensive experiments are conducted. Compared to previous methods, SUGAR achieves state-of-the-art results in identity preservation, video dynamics, and video-text alignment for subject-driven video customization, demonstrating the effectiveness of our proposed method.
VIRES: Video Instance Repainting with Sketch and Text Guidance
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page:https://suimuc.github.io/suimu.github.io/projects/VIRES/
Learning Optical Flow from Event Camera with Rendered Dataset
We study the problem of estimating optical flow from event cameras. One important issue is how to build a high-quality event-flow dataset with accurate event values and flow labels. Previous datasets are created by either capturing real scenes by event cameras or synthesizing from images with pasted foreground objects. The former case can produce real event values but with calculated flow labels, which are sparse and inaccurate. The later case can generate dense flow labels but the interpolated events are prone to errors. In this work, we propose to render a physically correct event-flow dataset using computer graphics models. In particular, we first create indoor and outdoor 3D scenes by Blender with rich scene content variations. Second, diverse camera motions are included for the virtual capturing, producing images and accurate flow labels. Third, we render high-framerate videos between images for accurate events. The rendered dataset can adjust the density of events, based on which we further introduce an adaptive density module (ADM). Experiments show that our proposed dataset can facilitate event-flow learning, whereas previous approaches when trained on our dataset can improve their performances constantly by a relatively large margin. In addition, event-flow pipelines when equipped with our ADM can further improve performances.
Learning to Highlight Audio by Watching Movies
Recent years have seen a significant increase in video content creation and consumption. Crafting engaging content requires the careful curation of both visual and audio elements. While visual cue curation, through techniques like optimal viewpoint selection or post-editing, has been central to media production, its natural counterpart, audio, has not undergone equivalent advancements. This often results in a disconnect between visual and acoustic saliency. To bridge this gap, we introduce a novel task: visually-guided acoustic highlighting, which aims to transform audio to deliver appropriate highlighting effects guided by the accompanying video, ultimately creating a more harmonious audio-visual experience. We propose a flexible, transformer-based multimodal framework to solve this task. To train our model, we also introduce a new dataset -- the muddy mix dataset, leveraging the meticulous audio and video crafting found in movies, which provides a form of free supervision. We develop a pseudo-data generation process to simulate poorly mixed audio, mimicking real-world scenarios through a three-step process -- separation, adjustment, and remixing. Our approach consistently outperforms several baselines in both quantitative and subjective evaluation. We also systematically study the impact of different types of contextual guidance and difficulty levels of the dataset. Our project page is here: https://wikichao.github.io/VisAH/.
CCEdit: Creative and Controllable Video Editing via Diffusion Models
In this work, we present CCEdit, a versatile framework designed to address the challenges of creative and controllable video editing. CCEdit accommodates a wide spectrum of user editing requirements and enables enhanced creative control through an innovative approach that decouples video structure and appearance. We leverage the foundational ControlNet architecture to preserve structural integrity, while seamlessly integrating adaptable temporal modules compatible with state-of-the-art personalization techniques for text-to-image generation, such as DreamBooth and LoRA.Furthermore, we introduce reference-conditioned video editing, empowering users to exercise precise creative control over video editing through the more manageable process of editing key frames. Our extensive experimental evaluations confirm the exceptional functionality and editing capabilities of the proposed CCEdit framework. Demo video is available at https://www.youtube.com/watch?v=UQw4jq-igN4.
MIVE: New Design and Benchmark for Multi-Instance Video Editing
Recent AI-based video editing has enabled users to edit videos through simple text prompts, significantly simplifying the editing process. However, recent zero-shot video editing techniques primarily focus on global or single-object edits, which can lead to unintended changes in other parts of the video. When multiple objects require localized edits, existing methods face challenges, such as unfaithful editing, editing leakage, and lack of suitable evaluation datasets and metrics. To overcome these limitations, we propose a zero-shot Multi-Instance Video Editing framework, called MIVE. MIVE is a general-purpose mask-based framework, not dedicated to specific objects (e.g., people). MIVE introduces two key modules: (i) Disentangled Multi-instance Sampling (DMS) to prevent editing leakage and (ii) Instance-centric Probability Redistribution (IPR) to ensure precise localization and faithful editing. Additionally, we present our new MIVE Dataset featuring diverse video scenarios and introduce the Cross-Instance Accuracy (CIA) Score to evaluate editing leakage in multi-instance video editing tasks. Our extensive qualitative, quantitative, and user study evaluations demonstrate that MIVE significantly outperforms recent state-of-the-art methods in terms of editing faithfulness, accuracy, and leakage prevention, setting a new benchmark for multi-instance video editing. The project page is available at https://kaist-viclab.github.io/mive-site/
EasyV2V: A High-quality Instruction-based Video Editing Framework
While image editing has advanced rapidly, video editing remains less explored, facing challenges in consistency, control, and generalization. We study the design space of data, architecture, and control, and introduce EasyV2V, a simple and effective framework for instruction-based video editing. On the data side, we compose existing experts with fast inverses to build diverse video pairs, lift image edit pairs into videos via single-frame supervision and pseudo pairs with shared affine motion, mine dense-captioned clips for video pairs, and add transition supervision to teach how edits unfold. On the model side, we observe that pretrained text-to-video models possess editing capability, motivating a simplified design. Simple sequence concatenation for conditioning with light LoRA fine-tuning suffices to train a strong model. For control, we unify spatiotemporal control via a single mask mechanism and support optional reference images. Overall, EasyV2V works with flexible inputs, e.g., video+text, video+mask+text, video+mask+reference+text, and achieves state-of-the-art video editing results, surpassing concurrent and commercial systems. Project page: https://snap-research.github.io/easyv2v/
V-RGBX: Video Editing with Accurate Controls over Intrinsic Properties
Large-scale video generation models have shown remarkable potential in modeling photorealistic appearance and lighting interactions in real-world scenes. However, a closed-loop framework that jointly understands intrinsic scene properties (e.g., albedo, normal, material, and irradiance), leverages them for video synthesis, and supports editable intrinsic representations remains unexplored. We present V-RGBX, the first end-to-end framework for intrinsic-aware video editing. V-RGBX unifies three key capabilities: (1) video inverse rendering into intrinsic channels, (2) photorealistic video synthesis from these intrinsic representations, and (3) keyframe-based video editing conditioned on intrinsic channels. At the core of V-RGBX is an interleaved conditioning mechanism that enables intuitive, physically grounded video editing through user-selected keyframes, supporting flexible manipulation of any intrinsic modality. Extensive qualitative and quantitative results show that V-RGBX produces temporally consistent, photorealistic videos while propagating keyframe edits across sequences in a physically plausible manner. We demonstrate its effectiveness in diverse applications, including object appearance editing and scene-level relighting, surpassing the performance of prior methods.
Generating Multi-Image Synthetic Data for Text-to-Image Customization
Customization of text-to-image models enables users to insert custom concepts and generate the concepts in unseen settings. Existing methods either rely on costly test-time optimization or train encoders on single-image training datasets without multi-image supervision, leading to worse image quality. We propose a simple approach that addresses both limitations. We first leverage existing text-to-image models and 3D datasets to create a high-quality Synthetic Customization Dataset (SynCD) consisting of multiple images of the same object in different lighting, backgrounds, and poses. We then propose a new encoder architecture based on shared attention mechanisms that better incorporate fine-grained visual details from input images. Finally, we propose a new inference technique that mitigates overexposure issues during inference by normalizing the text and image guidance vectors. Through extensive experiments, we show that our model, trained on the synthetic dataset with the proposed encoder and inference algorithm, outperforms existing tuning-free methods on standard customization benchmarks.
FilmSceneDesigner: Chaining Set Design for Procedural Film Scene Generation
Film set design plays a pivotal role in cinematic storytelling and shaping the visual atmosphere. However, the traditional process depends on expert-driven manual modeling, which is labor-intensive and time-consuming. To address this issue, we introduce FilmSceneDesigner, an automated scene generation system that emulates professional film set design workflow. Given a natural language description, including scene type, historical period, and style, we design an agent-based chaining framework to generate structured parameters aligned with film set design workflow, guided by prompt strategies that ensure parameter accuracy and coherence. On the other hand, we propose a procedural generation pipeline which executes a series of dedicated functions with the structured parameters for floorplan and structure generation, material assignment, door and window placement, and object retrieval and layout, ultimately constructing a complete film scene from scratch. Moreover, to enhance cinematic realism and asset diversity, we construct SetDepot-Pro, a curated dataset of 6,862 film-specific 3D assets and 733 materials. Experimental results and human evaluations demonstrate that our system produces structurally sound scenes with strong cinematic fidelity, supporting downstream tasks such as virtual previs, construction drawing and mood board creation.
MultiRef: Controllable Image Generation with Multiple Visual References
Visual designers naturally draw inspiration from multiple visual references, combining diverse elements and aesthetic principles to create artwork. However, current image generative frameworks predominantly rely on single-source inputs -- either text prompts or individual reference images. In this paper, we focus on the task of controllable image generation using multiple visual references. We introduce MultiRef-bench, a rigorous evaluation framework comprising 990 synthetic and 1,000 real-world samples that require incorporating visual content from multiple reference images. The synthetic samples are synthetically generated through our data engine RefBlend, with 10 reference types and 33 reference combinations. Based on RefBlend, we further construct a dataset MultiRef containing 38k high-quality images to facilitate further research. Our experiments across three interleaved image-text models (i.e., OmniGen, ACE, and Show-o) and six agentic frameworks (e.g., ChatDiT and LLM + SD) reveal that even state-of-the-art systems struggle with multi-reference conditioning, with the best model OmniGen achieving only 66.6% in synthetic samples and 79.0% in real-world cases on average compared to the golden answer. These findings provide valuable directions for developing more flexible and human-like creative tools that can effectively integrate multiple sources of visual inspiration. The dataset is publicly available at: https://multiref.github.io/.
MotionEdit: Benchmarking and Learning Motion-Centric Image Editing
We introduce MotionEdit, a novel dataset for motion-centric image editing-the task of modifying subject actions and interactions while preserving identity, structure, and physical plausibility. Unlike existing image editing datasets that focus on static appearance changes or contain only sparse, low-quality motion edits, MotionEdit provides high-fidelity image pairs depicting realistic motion transformations extracted and verified from continuous videos. This new task is not only scientifically challenging but also practically significant, powering downstream applications such as frame-controlled video synthesis and animation. To evaluate model performance on the novel task, we introduce MotionEdit-Bench, a benchmark that challenges models on motion-centric edits and measures model performance with generative, discriminative, and preference-based metrics. Benchmark results reveal that motion editing remains highly challenging for existing state-of-the-art diffusion-based editing models. To address this gap, we propose MotionNFT (Motion-guided Negative-aware Fine Tuning), a post-training framework that computes motion alignment rewards based on how well the motion flow between input and model-edited images matches the ground-truth motion, guiding models toward accurate motion transformations. Extensive experiments on FLUX.1 Kontext and Qwen-Image-Edit show that MotionNFT consistently improves editing quality and motion fidelity of both base models on the motion editing task without sacrificing general editing ability, demonstrating its effectiveness.
RealisDance-DiT: Simple yet Strong Baseline towards Controllable Character Animation in the Wild
Controllable character animation remains a challenging problem, particularly in handling rare poses, stylized characters, character-object interactions, complex illumination, and dynamic scenes. To tackle these issues, prior work has largely focused on injecting pose and appearance guidance via elaborate bypass networks, but often struggles to generalize to open-world scenarios. In this paper, we propose a new perspective that, as long as the foundation model is powerful enough, straightforward model modifications with flexible fine-tuning strategies can largely address the above challenges, taking a step towards controllable character animation in the wild. Specifically, we introduce RealisDance-DiT, built upon the Wan-2.1 video foundation model. Our sufficient analysis reveals that the widely adopted Reference Net design is suboptimal for large-scale DiT models. Instead, we demonstrate that minimal modifications to the foundation model architecture yield a surprisingly strong baseline. We further propose the low-noise warmup and "large batches and small iterations" strategies to accelerate model convergence during fine-tuning while maximally preserving the priors of the foundation model. In addition, we introduce a new test dataset that captures diverse real-world challenges, complementing existing benchmarks such as TikTok dataset and UBC fashion video dataset, to comprehensively evaluate the proposed method. Extensive experiments show that RealisDance-DiT outperforms existing methods by a large margin.
Hallucination at a Glance: Controlled Visual Edits and Fine-Grained Multimodal Learning
Multimodal large language models (MLLMs) have achieved strong performance on vision-language tasks but still struggle with fine-grained visual differences, leading to hallucinations or missed semantic shifts. We attribute this to limitations in both training data and learning objectives. To address these issues, we propose a controlled data generation pipeline that produces minimally edited image pairs with semantically aligned captions. Using this pipeline, we construct the Micro Edit Dataset (MED), containing over 50K image-text pairs spanning 11 fine-grained edit categories, including attribute, count, position, and object presence changes. Building on MED, we introduce a supervised fine-tuning (SFT) framework with a feature-level consistency loss that promotes stable visual embeddings under small edits. We evaluate our approach on the Micro Edit Detection benchmark, which includes carefully balanced evaluation pairs designed to test sensitivity to subtle visual variations across the same edit categories. Our method improves difference detection accuracy and reduces hallucinations compared to strong baselines, including GPT-4o. Moreover, it yields consistent gains on standard vision-language tasks such as image captioning and visual question answering. These results demonstrate the effectiveness of combining targeted data and alignment objectives for enhancing fine-grained visual reasoning in MLLMs.
VidGen-1M: A Large-Scale Dataset for Text-to-video Generation
The quality of video-text pairs fundamentally determines the upper bound of text-to-video models. Currently, the datasets used for training these models suffer from significant shortcomings, including low temporal consistency, poor-quality captions, substandard video quality, and imbalanced data distribution. The prevailing video curation process, which depends on image models for tagging and manual rule-based curation, leads to a high computational load and leaves behind unclean data. As a result, there is a lack of appropriate training datasets for text-to-video models. To address this problem, we present VidGen-1M, a superior training dataset for text-to-video models. Produced through a coarse-to-fine curation strategy, this dataset guarantees high-quality videos and detailed captions with excellent temporal consistency. When used to train the video generation model, this dataset has led to experimental results that surpass those obtained with other models.
Consistent Video-to-Video Transfer Using Synthetic Dataset
We introduce a novel and efficient approach for text-based video-to-video editing that eliminates the need for resource-intensive per-video-per-model finetuning. At the core of our approach is a synthetic paired video dataset tailored for video-to-video transfer tasks. Inspired by Instruct Pix2Pix's image transfer via editing instruction, we adapt this paradigm to the video domain. Extending the Prompt-to-Prompt to videos, we efficiently generate paired samples, each with an input video and its edited counterpart. Alongside this, we introduce the Long Video Sampling Correction during sampling, ensuring consistent long videos across batches. Our method surpasses current methods like Tune-A-Video, heralding substantial progress in text-based video-to-video editing and suggesting exciting avenues for further exploration and deployment.
VALERIE22 -- A photorealistic, richly metadata annotated dataset of urban environments
The VALERIE tool pipeline is a synthetic data generator developed with the goal to contribute to the understanding of domain-specific factors that influence perception performance of DNNs (deep neural networks). This work was carried out under the German research project KI Absicherung in order to develop a methodology for the validation of DNNs in the context of pedestrian detection in urban environments for automated driving. The VALERIE22 dataset was generated with the VALERIE procedural tools pipeline providing a photorealistic sensor simulation rendered from automatically synthesized scenes. The dataset provides a uniquely rich set of metadata, allowing extraction of specific scene and semantic features (like pixel-accurate occlusion rates, positions in the scene and distance + angle to the camera). This enables a multitude of possible tests on the data and we hope to stimulate research on understanding performance of DNNs. Based on performance metric a comparison with several other publicly available datasets is provided, demonstrating that VALERIE22 is one of best performing synthetic datasets currently available in the open domain.
EBind: a practical approach to space binding
We simplify space binding by focusing on two core components, a single encoder per modality and high-quality data; enabling training state-of-the-art models on a single GPU in a few hours as opposed to multiple days. We present EBind, an Easy, data-centric, and parameter-efficient method to Bind the embedding spaces of multiple contrastive models. We demonstrate that a simple 1.8B-parameter image-text-video-audio-3D model can outperform models 4 to 17x the size. The key to achieving this is a carefully curated dataset of three complementary data sources: i) 6.7M fully-automated multimodal quintuples sourced via SOTA retrieval models, ii) 1M diverse, semi-automated triples annotated by humans as negative, partial, or positive matches, and iii) 3.4M pre-existing captioned data items. We use 13 different evaluations to demonstrate the value of each data source. Due to limitations with existing benchmarks, we further introduce the first high-quality, consensus-annotated zero-shot classification benchmark between audio and PCs. In contrast to related work, we will open-source our code, model weights, and datasets.
Expanding Small-Scale Datasets with Guided Imagination
The power of DNNs relies heavily on the quantity and quality of training data. However, collecting and annotating data on a large scale is often expensive and time-consuming. To address this issue, we explore a new task, termed dataset expansion, aimed at expanding a ready-to-use small dataset by automatically creating new labeled samples. To this end, we present a Guided Imagination Framework (GIF) that leverages cutting-edge generative models like DALL-E2 and Stable Diffusion (SD) to "imagine" and create informative new data from the input seed data. Specifically, GIF conducts data imagination by optimizing the latent features of the seed data in the semantically meaningful space of the prior model, resulting in the creation of photo-realistic images with new content. To guide the imagination towards creating informative samples for model training, we introduce two key criteria, i.e., class-maintained information boosting and sample diversity promotion. These criteria are verified to be essential for effective dataset expansion: GIF-SD obtains 13.5% higher model accuracy on natural image datasets than unguided expansion with SD. With these essential criteria, GIF successfully expands small datasets in various scenarios, boosting model accuracy by 36.9% on average over six natural image datasets and by 13.5% on average over three medical datasets. The source code is available at https://github.com/Vanint/DatasetExpansion.
Action Reimagined: Text-to-Pose Video Editing for Dynamic Human Actions
We introduce a novel text-to-pose video editing method, ReimaginedAct. While existing video editing tasks are limited to changes in attributes, backgrounds, and styles, our method aims to predict open-ended human action changes in video. Moreover, our method can accept not only direct instructional text prompts but also `what if' questions to predict possible action changes. ReimaginedAct comprises video understanding, reasoning, and editing modules. First, an LLM is utilized initially to obtain a plausible answer for the instruction or question, which is then used for (1) prompting Grounded-SAM to produce bounding boxes of relevant individuals and (2) retrieving a set of pose videos that we have collected for editing human actions. The retrieved pose videos and the detected individuals are then utilized to alter the poses extracted from the original video. We also employ a timestep blending module to ensure the edited video retains its original content except where necessary modifications are needed. To facilitate research in text-to-pose video editing, we introduce a new evaluation dataset, WhatifVideo-1.0. This dataset includes videos of different scenarios spanning a range of difficulty levels, along with questions and text prompts. Experimental results demonstrate that existing video editing methods struggle with human action editing, while our approach can achieve effective action editing and even imaginary editing from counterfactual questions.
InstaDrag: Lightning Fast and Accurate Drag-based Image Editing Emerging from Videos
Accuracy and speed are critical in image editing tasks. Pan et al. introduced a drag-based image editing framework that achieves pixel-level control using Generative Adversarial Networks (GANs). A flurry of subsequent studies enhanced this framework's generality by leveraging large-scale diffusion models. However, these methods often suffer from inordinately long processing times (exceeding 1 minute per edit) and low success rates. Addressing these issues head on, we present InstaDrag, a rapid approach enabling high quality drag-based image editing in ~1 second. Unlike most previous methods, we redefine drag-based editing as a conditional generation task, eliminating the need for time-consuming latent optimization or gradient-based guidance during inference. In addition, the design of our pipeline allows us to train our model on large-scale paired video frames, which contain rich motion information such as object translations, changing poses and orientations, zooming in and out, etc. By learning from videos, our approach can significantly outperform previous methods in terms of accuracy and consistency. Despite being trained solely on videos, our model generalizes well to perform local shape deformations not presented in the training data (e.g., lengthening of hair, twisting rainbows, etc.). Extensive qualitative and quantitative evaluations on benchmark datasets corroborate the superiority of our approach. The code and model will be released at https://github.com/magic-research/InstaDrag.
VIXEN: Visual Text Comparison Network for Image Difference Captioning
We present VIXEN - a technique that succinctly summarizes in text the visual differences between a pair of images in order to highlight any content manipulation present. Our proposed network linearly maps image features in a pairwise manner, constructing a soft prompt for a pretrained large language model. We address the challenge of low volume of training data and lack of manipulation variety in existing image difference captioning (IDC) datasets by training on synthetically manipulated images from the recent InstructPix2Pix dataset generated via prompt-to-prompt editing framework. We augment this dataset with change summaries produced via GPT-3. We show that VIXEN produces state-of-the-art, comprehensible difference captions for diverse image contents and edit types, offering a potential mitigation against misinformation disseminated via manipulated image content. Code and data are available at http://github.com/alexblck/vixen
Towards Language-Driven Video Inpainting via Multimodal Large Language Models
We introduce a new task -- language-driven video inpainting, which uses natural language instructions to guide the inpainting process. This approach overcomes the limitations of traditional video inpainting methods that depend on manually labeled binary masks, a process often tedious and labor-intensive. We present the Remove Objects from Videos by Instructions (ROVI) dataset, containing 5,650 videos and 9,091 inpainting results, to support training and evaluation for this task. We also propose a novel diffusion-based language-driven video inpainting framework, the first end-to-end baseline for this task, integrating Multimodal Large Language Models to understand and execute complex language-based inpainting requests effectively. Our comprehensive results showcase the dataset's versatility and the model's effectiveness in various language-instructed inpainting scenarios. We will make datasets, code, and models publicly available.
A Large Dataset to Train Convolutional Networks for Disparity, Optical Flow, and Scene Flow Estimation
Recent work has shown that optical flow estimation can be formulated as a supervised learning task and can be successfully solved with convolutional networks. Training of the so-called FlowNet was enabled by a large synthetically generated dataset. The present paper extends the concept of optical flow estimation via convolutional networks to disparity and scene flow estimation. To this end, we propose three synthetic stereo video datasets with sufficient realism, variation, and size to successfully train large networks. Our datasets are the first large-scale datasets to enable training and evaluating scene flow methods. Besides the datasets, we present a convolutional network for real-time disparity estimation that provides state-of-the-art results. By combining a flow and disparity estimation network and training it jointly, we demonstrate the first scene flow estimation with a convolutional network.
Editing 3D Scenes via Text Prompts without Retraining
Numerous diffusion models have recently been applied to image synthesis and editing. However, editing 3D scenes is still in its early stages. It poses various challenges, such as the requirement to design specific methods for different editing types, retraining new models for various 3D scenes, and the absence of convenient human interaction during editing. To tackle these issues, we introduce a text-driven editing method, termed DN2N, which allows for the direct acquisition of a NeRF model with universal editing capabilities, eliminating the requirement for retraining. Our method employs off-the-shelf text-based editing models of 2D images to modify the 3D scene images, followed by a filtering process to discard poorly edited images that disrupt 3D consistency. We then consider the remaining inconsistency as a problem of removing noise perturbation, which can be solved by generating training data with similar perturbation characteristics for training. We further propose cross-view regularization terms to help the generalized NeRF model mitigate these perturbations. Our text-driven method allows users to edit a 3D scene with their desired description, which is more friendly, intuitive, and practical than prior works. Empirical results show that our method achieves multiple editing types, including but not limited to appearance editing, weather transition, material changing, and style transfer. Most importantly, our method generalizes well with editing abilities shared among a set of model parameters without requiring a customized editing model for some specific scenes, thus inferring novel views with editing effects directly from user input. The project website is available at https://sk-fun.fun/DN2N
OpenVid-1M: A Large-Scale High-Quality Dataset for Text-to-video Generation
Text-to-video (T2V) generation has recently garnered significant attention thanks to the large multi-modality model Sora. However, T2V generation still faces two important challenges: 1) Lacking a precise open sourced high-quality dataset. The previous popular video datasets, e.g. WebVid-10M and Panda-70M, are either with low quality or too large for most research institutions. Therefore, it is challenging but crucial to collect a precise high-quality text-video pairs for T2V generation. 2) Ignoring to fully utilize textual information. Recent T2V methods have focused on vision transformers, using a simple cross attention module for video generation, which falls short of thoroughly extracting semantic information from text prompt. To address these issues, we introduce OpenVid-1M, a precise high-quality dataset with expressive captions. This open-scenario dataset contains over 1 million text-video pairs, facilitating research on T2V generation. Furthermore, we curate 433K 1080p videos from OpenVid-1M to create OpenVidHD-0.4M, advancing high-definition video generation. Additionally, we propose a novel Multi-modal Video Diffusion Transformer (MVDiT) capable of mining both structure information from visual tokens and semantic information from text tokens. Extensive experiments and ablation studies verify the superiority of OpenVid-1M over previous datasets and the effectiveness of our MVDiT.
NamedCurves: Learned Image Enhancement via Color Naming
A popular method for enhancing images involves learning the style of a professional photo editor using pairs of training images comprised of the original input with the editor-enhanced version. When manipulating images, many editing tools offer a feature that allows the user to manipulate a limited selection of familiar colors. Editing by color name allows easy adjustment of elements like the "blue" of the sky or the "green" of trees. Inspired by this approach to color manipulation, we propose NamedCurves, a learning-based image enhancement technique that separates the image into a small set of named colors. Our method learns to globally adjust the image for each specific named color via tone curves and then combines the images using an attention-based fusion mechanism to mimic spatial editing. We demonstrate the effectiveness of our method against several competing methods on the well-known Adobe 5K dataset and the PPR10K dataset, showing notable improvements.
SPICE: A Synergistic, Precise, Iterative, and Customizable Image Editing Workflow
Recent prompt-based image editing models have demonstrated impressive prompt-following capability at structural editing tasks. However, existing models still fail to perform local edits, follow detailed editing prompts, or maintain global image quality beyond a single editing step. To address these challenges, we introduce SPICE, a training-free workflow that accepts arbitrary resolutions and aspect ratios, accurately follows user requirements, and improves image quality consistently during more than 100 editing steps. By synergizing the strengths of a base diffusion model and a Canny edge ControlNet model, SPICE robustly handles free-form editing instructions from the user. SPICE outperforms state-of-the-art baselines on a challenging realistic image-editing dataset consisting of semantic editing (object addition, removal, replacement, and background change), stylistic editing (texture changes), and structural editing (action change) tasks. Not only does SPICE achieve the highest quantitative performance according to standard evaluation metrics, but it is also consistently preferred by users over existing image-editing methods. We release the workflow implementation for popular diffusion model Web UIs to support further research and artistic exploration.
Learning an Image Editing Model without Image Editing Pairs
Recent image editing models have achieved impressive results while following natural language editing instructions, but they rely on supervised fine-tuning with large datasets of input-target pairs. This is a critical bottleneck, as such naturally occurring pairs are hard to curate at scale. Current workarounds use synthetic training pairs that leverage the zero-shot capabilities of existing models. However, this can propagate and magnify the artifacts of the pretrained model into the final trained model. In this work, we present a new training paradigm that eliminates the need for paired data entirely. Our approach directly optimizes a few-step diffusion model by unrolling it during training and leveraging feedback from vision-language models (VLMs). For each input and editing instruction, the VLM evaluates if an edit follows the instruction and preserves unchanged content, providing direct gradients for end-to-end optimization. To ensure visual fidelity, we incorporate distribution matching loss (DMD), which constrains generated images to remain within the image manifold learned by pretrained models. We evaluate our method on standard benchmarks and include an extensive ablation study. Without any paired data, our method performs on par with various image editing diffusion models trained on extensive supervised paired data, under the few-step setting. Given the same VLM as the reward model, we also outperform RL-based techniques like Flow-GRPO.
VFXMaster: Unlocking Dynamic Visual Effect Generation via In-Context Learning
Visual effects (VFX) are crucial to the expressive power of digital media, yet their creation remains a major challenge for generative AI. Prevailing methods often rely on the one-LoRA-per-effect paradigm, which is resource-intensive and fundamentally incapable of generalizing to unseen effects, thus limiting scalability and creation. To address this challenge, we introduce VFXMaster, the first unified, reference-based framework for VFX video generation. It recasts effect generation as an in-context learning task, enabling it to reproduce diverse dynamic effects from a reference video onto target content. In addition, it demonstrates remarkable generalization to unseen effect categories. Specifically, we design an in-context conditioning strategy that prompts the model with a reference example. An in-context attention mask is designed to precisely decouple and inject the essential effect attributes, allowing a single unified model to master the effect imitation without information leakage. In addition, we propose an efficient one-shot effect adaptation mechanism to boost generalization capability on tough unseen effects from a single user-provided video rapidly. Extensive experiments demonstrate that our method effectively imitates various categories of effect information and exhibits outstanding generalization to out-of-domain effects. To foster future research, we will release our code, models, and a comprehensive dataset to the community.
MagicStick: Controllable Video Editing via Control Handle Transformations
Text-based video editing has recently attracted considerable interest in changing the style or replacing the objects with a similar structure. Beyond this, we demonstrate that properties such as shape, size, location, motion, etc., can also be edited in videos. Our key insight is that the keyframe transformations of the specific internal feature (e.g., edge maps of objects or human pose), can easily propagate to other frames to provide generation guidance. We thus propose MagicStick, a controllable video editing method that edits the video properties by utilizing the transformation on the extracted internal control signals. In detail, to keep the appearance, we inflate both the pretrained image diffusion model and ControlNet to the temporal dimension and train low-rank adaptions (LORA) layers to fit the specific scenes. Then, in editing, we perform an inversion and editing framework. Differently, finetuned ControlNet is introduced in both inversion and generation for attention guidance with the proposed attention remix between the spatial attention maps of inversion and editing. Yet succinct, our method is the first method to show the ability of video property editing from the pre-trained text-to-image model. We present experiments on numerous examples within our unified framework. We also compare with shape-aware text-based editing and handcrafted motion video generation, demonstrating our superior temporal consistency and editing capability than previous works. The code and models will be made publicly available.
NoHumansRequired: Autonomous High-Quality Image Editing Triplet Mining
Recent advances in generative modeling enable image editing assistants that follow natural language instructions without additional user input. Their supervised training requires millions of triplets: original image, instruction, edited image. Yet mining pixel-accurate examples is hard. Each edit must affect only prompt-specified regions, preserve stylistic coherence, respect physical plausibility, and retain visual appeal. The lack of robust automated edit-quality metrics hinders reliable automation at scale. We present an automated, modular pipeline that mines high-fidelity triplets across domains, resolutions, instruction complexities, and styles. Built on public generative models and running without human intervention, our system uses a task-tuned Gemini validator to score instruction adherence and aesthetics directly, removing any need for segmentation or grounding models. Inversion and compositional bootstrapping enlarge the mined set by approximately 2.2x, enabling large-scale high-fidelity training data. By automating the most repetitive annotation steps, the approach allows a new scale of training without human labeling effort. To democratize research in this resource-intensive area, we release NHR-Edit: an open dataset of 358k high-quality triplets. In the largest cross-dataset evaluation, it surpasses all public alternatives. We also release Bagel-NHR-Edit, an open-source fine-tuned Bagel model, which achieves state-of-the-art metrics in our experiments.
EditVal: Benchmarking Diffusion Based Text-Guided Image Editing Methods
A plethora of text-guided image editing methods have recently been developed by leveraging the impressive capabilities of large-scale diffusion-based generative models such as Imagen and Stable Diffusion. A standardized evaluation protocol, however, does not exist to compare methods across different types of fine-grained edits. To address this gap, we introduce EditVal, a standardized benchmark for quantitatively evaluating text-guided image editing methods. EditVal consists of a curated dataset of images, a set of editable attributes for each image drawn from 13 possible edit types, and an automated evaluation pipeline that uses pre-trained vision-language models to assess the fidelity of generated images for each edit type. We use EditVal to benchmark 8 cutting-edge diffusion-based editing methods including SINE, Imagic and Instruct-Pix2Pix. We complement this with a large-scale human study where we show that EditVall's automated evaluation pipeline is strongly correlated with human-preferences for the edit types we considered. From both the human study and automated evaluation, we find that: (i) Instruct-Pix2Pix, Null-Text and SINE are the top-performing methods averaged across different edit types, however {\it only} Instruct-Pix2Pix and Null-Text are able to preserve original image properties; (ii) Most of the editing methods fail at edits involving spatial operations (e.g., changing the position of an object). (iii) There is no `winner' method which ranks the best individually across a range of different edit types. We hope that our benchmark can pave the way to developing more reliable text-guided image editing tools in the future. We will publicly release EditVal, and all associated code and human-study templates to support these research directions in https://deep-ml-research.github.io/editval/.
RePaint-NeRF: NeRF Editting via Semantic Masks and Diffusion Models
The emergence of Neural Radiance Fields (NeRF) has promoted the development of synthesized high-fidelity views of the intricate real world. However, it is still a very demanding task to repaint the content in NeRF. In this paper, we propose a novel framework that can take RGB images as input and alter the 3D content in neural scenes. Our work leverages existing diffusion models to guide changes in the designated 3D content. Specifically, we semantically select the target object and a pre-trained diffusion model will guide the NeRF model to generate new 3D objects, which can improve the editability, diversity, and application range of NeRF. Experiment results show that our algorithm is effective for editing 3D objects in NeRF under different text prompts, including editing appearance, shape, and more. We validate our method on both real-world datasets and synthetic-world datasets for these editing tasks. Please visit https://repaintnerf.github.io for a better view of our results.
InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset
Datasets have gained an enormous amount of popularity in the computer vision community, from training and evaluation of Deep Learning-based methods to benchmarking Simultaneous Localization and Mapping (SLAM). Without a doubt, synthetic imagery bears a vast potential due to scalability in terms of amounts of data obtainable without tedious manual ground truth annotations or measurements. Here, we present a dataset with the aim of providing a higher degree of photo-realism, larger scale, more variability as well as serving a wider range of purposes compared to existing datasets. Our dataset leverages the availability of millions of professional interior designs and millions of production-level furniture and object assets -- all coming with fine geometric details and high-resolution texture. We render high-resolution and high frame-rate video sequences following realistic trajectories while supporting various camera types as well as providing inertial measurements. Together with the release of the dataset, we will make executable program of our interactive simulator software as well as our renderer available at https://interiornetdataset.github.io. To showcase the usability and uniqueness of our dataset, we show benchmarking results of both sparse and dense SLAM algorithms.
MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators.
EditGarment: An Instruction-Based Garment Editing Dataset Constructed with Automated MLLM Synthesis and Semantic-Aware Evaluation
Instruction-based garment editing enables precise image modifications via natural language, with broad applications in fashion design and customization. Unlike general editing tasks, it requires understanding garment-specific semantics and attribute dependencies. However, progress is limited by the scarcity of high-quality instruction-image pairs, as manual annotation is costly and hard to scale. While MLLMs have shown promise in automated data synthesis, their application to garment editing is constrained by imprecise instruction modeling and a lack of fashion-specific supervisory signals. To address these challenges, we present an automated pipeline for constructing a garment editing dataset. We first define six editing instruction categories aligned with real-world fashion workflows to guide the generation of balanced and diverse instruction-image triplets. Second, we introduce Fashion Edit Score, a semantic-aware evaluation metric that captures semantic dependencies between garment attributes and provides reliable supervision during construction. Using this pipeline, we construct a total of 52,257 candidate triplets and retain 20,596 high-quality triplets to build EditGarment, the first instruction-based dataset tailored to standalone garment editing. The project page is https://yindq99.github.io/EditGarment-project/.
ADIEE: Automatic Dataset Creation and Scorer for Instruction-Guided Image Editing Evaluation
Recent advances in instruction-guided image editing underscore the need for effective automated evaluation. While Vision-Language Models (VLMs) have been explored as judges, open-source models struggle with alignment, and proprietary models lack transparency and cost efficiency. Additionally, no public training datasets exist to fine-tune open-source VLMs, only small benchmarks with diverse evaluation schemes. To address this, we introduce ADIEE, an automated dataset creation approach which is then used to train a scoring model for instruction-guided image editing evaluation. We generate a large-scale dataset with over 100K samples and use it to fine-tune a LLaVA-NeXT-8B model modified to decode a numeric score from a custom token. The resulting scorer outperforms all open-source VLMs and Gemini-Pro 1.5 across all benchmarks, achieving a 0.0696 (+17.24%) gain in score correlation with human ratings on AURORA-Bench, and improving pair-wise comparison accuracy by 4.03% (+7.21%) on GenAI-Bench and 4.75% (+9.35%) on AURORA-Bench, respectively, compared to the state-of-the-art. The scorer can act as a reward model, enabling automated best edit selection and model fine-tuning. Notably, the proposed scorer can boost MagicBrush model's average evaluation score on ImagenHub from 5.90 to 6.43 (+8.98%). Our code and models are available at https://github.com/SherryXTChen/ADIEE.git.
