Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSkillNet-NLU: A Sparsely Activated Model for General-Purpose Natural Language Understanding
Prevailing deep models are single-purpose and overspecialize at individual tasks. However, when being extended to new tasks, they typically forget previously learned skills and learn from scratch. We address this issue by introducing SkillNet-NLU, a general-purpose model that stitches together existing skills to learn new tasks more effectively. The key feature of our approach is that it is sparsely activated guided by predefined skills. Different from traditional dense models that always activate all the model parameters, SkillNet-NLU only activates parts of the model parameters whose skills are relevant to the target task. When learning for a new task, our approach precisely activates required skills and also provides an option to add new skills. We evaluate on natural language understandings tasks and have the following findings. First, with only one model checkpoint, SkillNet-NLU performs better than task-specific fine-tuning and two multi-task learning baselines (i.e., dense model and Mixture-of-Experts model) on six tasks. Second, sparsely activated pre-training further improves the overall performance. Third, SkillNet-NLU significantly outperforms baseline systems when being extended to new tasks.
SkillSpan: Hard and Soft Skill Extraction from English Job Postings
Skill Extraction (SE) is an important and widely-studied task useful to gain insights into labor market dynamics. However, there is a lacuna of datasets and annotation guidelines; available datasets are few and contain crowd-sourced labels on the span-level or labels from a predefined skill inventory. To address this gap, we introduce SKILLSPAN, a novel SE dataset consisting of 14.5K sentences and over 12.5K annotated spans. We release its respective guidelines created over three different sources annotated for hard and soft skills by domain experts. We introduce a BERT baseline (Devlin et al., 2019). To improve upon this baseline, we experiment with language models that are optimized for long spans (Joshi et al., 2020; Beltagy et al., 2020), continuous pre-training on the job posting domain (Han and Eisenstein, 2019; Gururangan et al., 2020), and multi-task learning (Caruana, 1997). Our results show that the domain-adapted models significantly outperform their non-adapted counterparts, and single-task outperforms multi-task learning.
Extreme Multi-Label Skill Extraction Training using Large Language Models
Online job ads serve as a valuable source of information for skill requirements, playing a crucial role in labor market analysis and e-recruitment processes. Since such ads are typically formatted in free text, natural language processing (NLP) technologies are required to automatically process them. We specifically focus on the task of detecting skills (mentioned literally, or implicitly described) and linking them to a large skill ontology, making it a challenging case of extreme multi-label classification (XMLC). Given that there is no sizable labeled (training) dataset are available for this specific XMLC task, we propose techniques to leverage general Large Language Models (LLMs). We describe a cost-effective approach to generate an accurate, fully synthetic labeled dataset for skill extraction, and present a contrastive learning strategy that proves effective in the task. Our results across three skill extraction benchmarks show a consistent increase of between 15 to 25 percentage points in R-Precision@5 compared to previously published results that relied solely on distant supervision through literal matches.
Skill2vec: Machine Learning Approach for Determining the Relevant Skills from Job Description
Unsupervise learned word embeddings have seen tremendous success in numerous Natural Language Processing (NLP) tasks in recent years. The main contribution of this paper is to develop a technique called Skill2vec, which applies machine learning techniques in recruitment to enhance the search strategy to find candidates possessing the appropriate skills. Skill2vec is a neural network architecture inspired by Word2vec, developed by Mikolov et al. in 2013. It transforms skills to new vector space, which has the characteristics of calculation and presents skills relationships. We conducted an experiment evaluation manually by a recruitment company's domain experts to demonstrate the effectiveness of our approach.
Skill-Based Few-Shot Selection for In-Context Learning
In-context learning is the paradigm that adapts large language models to downstream tasks by providing a few examples. Few-shot selection -- selecting appropriate examples for each test instance separately -- is important for in-context learning. In this paper, we propose Skill-KNN, a skill-based few-shot selection method for in-context learning. The key advantages of Skill-KNN include: (1) it addresses the problem that existing methods based on pre-trained embeddings can be easily biased by surface natural language features that are not important for the target task; (2) it does not require training or fine-tuning of any models, making it suitable for frequently expanding or changing example banks. The key insight is to optimize the inputs fed into the embedding model, rather than tuning the model itself. Technically, Skill-KNN generates the skill-based descriptions for each test case and candidate example by utilizing a pre-processing few-shot prompting, thus eliminating unimportant surface features. Experimental results across five cross-domain semantic parsing datasets and six backbone models show that Skill-KNN significantly outperforms existing methods.
Understanding EFL Student Idea Generation Strategies for Creative Writing with NLG Tools
Natural language generation (NLG) is a process within artificial intelligence where computer systems produce human-comprehensible language texts from information. English as a foreign language (EFL) students' use of NLG tools might facilitate their idea generation, which is fundamental to creative writing. However, little is known about how EFL students interact with NLG tools to generate ideas. This study explores strategies adopted by EFL students when searching for ideas using NLG tools, evaluating ideas generated by NLG tools and selecting NLG tools for ideas generation. Four Hong Kong secondary school students attended workshops where they learned to write stories comprising their own words and words generated by NLG tools. After the workshops, they answered questions to reflect on their writing experience with NLG tools. In a thematic analysis of the written reflections, we found students may have existing ideas when searching for ideas and evaluating ideas with NLG tools. Students showed some aversion to ideas generated by NLG tools and selected NLG tools that generated a greater quantity of ideas. The findings inform our understanding of EFL students' concerns when using NLG tools for idea generation and can inform educators' instruction to implement NLG tools for classroom creative writing.
NNOSE: Nearest Neighbor Occupational Skill Extraction
The labor market is changing rapidly, prompting increased interest in the automatic extraction of occupational skills from text. With the advent of English benchmark job description datasets, there is a need for systems that handle their diversity well. We tackle the complexity in occupational skill datasets tasks -- combining and leveraging multiple datasets for skill extraction, to identify rarely observed skills within a dataset, and overcoming the scarcity of skills across datasets. In particular, we investigate the retrieval-augmentation of language models, employing an external datastore for retrieving similar skills in a dataset-unifying manner. Our proposed method, Nearest Neighbor Occupational Skill Extraction (NNOSE) effectively leverages multiple datasets by retrieving neighboring skills from other datasets in the datastore. This improves skill extraction without additional fine-tuning. Crucially, we observe a performance gain in predicting infrequent patterns, with substantial gains of up to 30\% span-F1 in cross-dataset settings.
The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics
We introduce GEM, a living benchmark for natural language Generation (NLG), its Evaluation, and Metrics. Measuring progress in NLG relies on a constantly evolving ecosystem of automated metrics, datasets, and human evaluation standards. Due to this moving target, new models often still evaluate on divergent anglo-centric corpora with well-established, but flawed, metrics. This disconnect makes it challenging to identify the limitations of current models and opportunities for progress. Addressing this limitation, GEM provides an environment in which models can easily be applied to a wide set of tasks and in which evaluation strategies can be tested. Regular updates to the benchmark will help NLG research become more multilingual and evolve the challenge alongside models. This paper serves as the description of the data for which we are organizing a shared task at our ACL 2021 Workshop and to which we invite the entire NLG community to participate.
A Survey of Evaluation Metrics Used for NLG Systems
The success of Deep Learning has created a surge in interest in a wide a range of Natural Language Generation (NLG) tasks. Deep Learning has not only pushed the state of the art in several existing NLG tasks but has also facilitated researchers to explore various newer NLG tasks such as image captioning. Such rapid progress in NLG has necessitated the development of accurate automatic evaluation metrics that would allow us to track the progress in the field of NLG. However, unlike classification tasks, automatically evaluating NLG systems in itself is a huge challenge. Several works have shown that early heuristic-based metrics such as BLEU, ROUGE are inadequate for capturing the nuances in the different NLG tasks. The expanding number of NLG models and the shortcomings of the current metrics has led to a rapid surge in the number of evaluation metrics proposed since 2014. Moreover, various evaluation metrics have shifted from using pre-determined heuristic-based formulae to trained transformer models. This rapid change in a relatively short time has led to the need for a survey of the existing NLG metrics to help existing and new researchers to quickly come up to speed with the developments that have happened in NLG evaluation in the last few years. Through this survey, we first wish to highlight the challenges and difficulties in automatically evaluating NLG systems. Then, we provide a coherent taxonomy of the evaluation metrics to organize the existing metrics and to better understand the developments in the field. We also describe the different metrics in detail and highlight their key contributions. Later, we discuss the main shortcomings identified in the existing metrics and describe the methodology used to evaluate evaluation metrics. Finally, we discuss our suggestions and recommendations on the next steps forward to improve the automatic evaluation metrics.
The Challenge of Achieving Attributability in Multilingual Table-to-Text Generation with Question-Answer Blueprints
Multilingual Natural Language Generation (NLG) is challenging due to the lack of training data for low-resource languages. However, some low-resource languages have up to tens of millions of speakers globally, making it important to improve NLG tools for them. Table-to-Text NLG is an excellent measure of models' reasoning abilities but is very challenging in the multilingual setting. System outputs are often not attributable, or faithful, to the data in the source table. Intermediate planning techniques like Question-Answer (QA) blueprints have been shown to improve attributability on summarisation tasks. This work explores whether QA blueprints make multilingual Table-to-Text outputs more attributable to the input tables. This paper extends the challenging multilingual Table-to-Text dataset, TaTA, which includes African languages, with QA blueprints. Sequence-to-sequence language models are then finetuned on this dataset, with and without blueprints. Results show that QA blueprints improve performance for models finetuned and evaluated only on English examples, but do not demonstrate gains in the multilingual setting. This is due to inaccuracies in machine translating the blueprints from English into target languages when generating the training data, and models failing to rely closely on the blueprints they generate. An in-depth analysis is conducted on why this is challenging.
PairReranker: Pairwise Reranking for Natural Language Generation
Pre-trained language models have been successful in natural language generation (NLG) tasks. While various decoding methods have been employed, they often produce suboptimal results. We first present an empirical analysis of three NLG tasks: summarization, machine translation, and constrained text generation. We found that selecting the best output from the results of multiple decoding methods can significantly improve performance. To further improve reranking for NLG tasks, we proposed a novel method, PairReranker, which uses a single encoder and a pairwise loss function to jointly encode a source input and a pair of candidates and compare them. Experiments on three NLG tasks demonstrated the effectiveness and flexibility of PairReranker, showing strong results, compared with previous baselines. In addition, our PairReranker can generalize to significantly improve GPT-3 (text-davinci-003) results (e.g., 24.55\% on CommonGen and 11.35\% on WMT18 zh-en), even though our rerankers are not trained with any GPT-3 candidates.
Few-shot Natural Language Generation for Task-Oriented Dialog
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian
Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.
Compression, Transduction, and Creation: A Unified Framework for Evaluating Natural Language Generation
Natural language generation (NLG) spans a broad range of tasks, each of which serves for specific objectives and desires different properties of generated text. The complexity makes automatic evaluation of NLG particularly challenging. Previous work has typically focused on a single task and developed individual evaluation metrics based on specific intuitions. In this paper, we propose a unifying perspective that facilitates the design of metrics for a wide range of language generation tasks and quality aspects. Based on the nature of information change from input to output, we classify NLG tasks into compression (e.g., summarization), transduction (e.g., text rewriting), and creation (e.g., dialog). The information alignment, or overlap, between input, context, and output text plays a common central role in characterizing the generation. Using the uniform concept of information alignment, we develop a family of interpretable metrics for various NLG tasks and aspects, often without need of gold reference data. To operationalize the metrics, we train self-supervised models to approximate information alignment as a prediction task. Experiments show the uniformly designed metrics achieve stronger or comparable correlations with human judgement compared to state-of-the-art metrics in each of diverse tasks, including text summarization, style transfer, and knowledge-grounded dialog. With information alignment as the intermediate representation, we deliver a composable library for easy NLG evaluation and future metric design.
AmbigNLG: Addressing Task Ambiguity in Instruction for NLG
In this study, we introduce AmbigNLG, a new task designed to tackle the challenge of task ambiguity in instructions for Natural Language Generation (NLG) tasks. Despite the impressive capabilities of Large Language Models (LLMs) in understanding and executing a wide range of tasks through natural language interaction, their performance is significantly hindered by the ambiguity present in real-world instructions. To address this, AmbigNLG seeks to identify and mitigate such ambiguities, aiming to refine instructions to match user expectations better. We introduce a dataset, AmbigSNI-NLG, consisting of 2,500 instances, and develop an ambiguity taxonomy for categorizing and annotating instruction ambiguities. Our approach demonstrates substantial improvements in text generation quality, highlighting the critical role of clear and specific instructions in enhancing LLM performance in NLG tasks.
Logical Natural Language Generation from Open-Domain Tables
Neural natural language generation (NLG) models have recently shown remarkable progress in fluency and coherence. However, existing studies on neural NLG are primarily focused on surface-level realizations with limited emphasis on logical inference, an important aspect of human thinking and language. In this paper, we suggest a new NLG task where a model is tasked with generating natural language statements that can be logically entailed by the facts in an open-domain semi-structured table. To facilitate the study of the proposed logical NLG problem, we use the existing TabFact dataset chen2019tabfact featured with a wide range of logical/symbolic inferences as our testbed, and propose new automatic metrics to evaluate the fidelity of generation models w.r.t.\ logical inference. The new task poses challenges to the existing monotonic generation frameworks due to the mismatch between sequence order and logical order. In our experiments, we comprehensively survey different generation architectures (LSTM, Transformer, Pre-Trained LM) trained with different algorithms (RL, Adversarial Training, Coarse-to-Fine) on the dataset and made following observations: 1) Pre-Trained LM can significantly boost both the fluency and logical fidelity metrics, 2) RL and Adversarial Training are trading fluency for fidelity, 3) Coarse-to-Fine generation can help partially alleviate the fidelity issue while maintaining high language fluency. The code and data are available at https://github.com/wenhuchen/LogicNLG.
SkillMatch: Evaluating Self-supervised Learning of Skill Relatedness
Accurately modeling the relationships between skills is a crucial part of human resources processes such as recruitment and employee development. Yet, no benchmarks exist to evaluate such methods directly. We construct and release SkillMatch, a benchmark for the task of skill relatedness, based on expert knowledge mining from millions of job ads. Additionally, we propose a scalable self-supervised learning technique to adapt a Sentence-BERT model based on skill co-occurrence in job ads. This new method greatly surpasses traditional models for skill relatedness as measured on SkillMatch. By releasing SkillMatch publicly, we aim to contribute a foundation for research towards increased accuracy and transparency of skill-based recommendation systems.
Repairing the Cracked Foundation: A Survey of Obstacles in Evaluation Practices for Generated Text
Evaluation practices in natural language generation (NLG) have many known flaws, but improved evaluation approaches are rarely widely adopted. This issue has become more urgent, since neural NLG models have improved to the point where they can often no longer be distinguished based on the surface-level features that older metrics rely on. This paper surveys the issues with human and automatic model evaluations and with commonly used datasets in NLG that have been pointed out over the past 20 years. We summarize, categorize, and discuss how researchers have been addressing these issues and what their findings mean for the current state of model evaluations. Building on those insights, we lay out a long-term vision for NLG evaluation and propose concrete steps for researchers to improve their evaluation processes. Finally, we analyze 66 NLG papers from recent NLP conferences in how well they already follow these suggestions and identify which areas require more drastic changes to the status quo.
KorNLI and KorSTS: New Benchmark Datasets for Korean Natural Language Understanding
Natural language inference (NLI) and semantic textual similarity (STS) are key tasks in natural language understanding (NLU). Although several benchmark datasets for those tasks have been released in English and a few other languages, there are no publicly available NLI or STS datasets in the Korean language. Motivated by this, we construct and release new datasets for Korean NLI and STS, dubbed KorNLI and KorSTS, respectively. Following previous approaches, we machine-translate existing English training sets and manually translate development and test sets into Korean. To accelerate research on Korean NLU, we also establish baselines on KorNLI and KorSTS. Our datasets are publicly available at https://github.com/kakaobrain/KorNLUDatasets.
Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at https://github.com/Mooler0410/LLMsPracticalGuide.
Enhancing Language Representation with Constructional Information for Natural Language Understanding
Natural language understanding (NLU) is an essential branch of natural language processing, which relies on representations generated by pre-trained language models (PLMs). However, PLMs primarily focus on acquiring lexico-semantic information, while they may be unable to adequately handle the meaning of constructions. To address this issue, we introduce construction grammar (CxG), which highlights the pairings of form and meaning, to enrich language representation. We adopt usage-based construction grammar as the basis of our work, which is highly compatible with statistical models such as PLMs. Then a HyCxG framework is proposed to enhance language representation through a three-stage solution. First, all constructions are extracted from sentences via a slot-constraints approach. As constructions can overlap with each other, bringing redundancy and imbalance, we formulate the conditional max coverage problem for selecting the discriminative constructions. Finally, we propose a relational hypergraph attention network to acquire representation from constructional information by capturing high-order word interactions among constructions. Extensive experiments demonstrate the superiority of the proposed model on a variety of NLU tasks.
AI-assisted German Employment Contract Review: A Benchmark Dataset
Employment contracts are used to agree upon the working conditions between employers and employees all over the world. Understanding and reviewing contracts for void or unfair clauses requires extensive knowledge of the legal system and terminology. Recent advances in Natural Language Processing (NLP) hold promise for assisting in these reviews. However, applying NLP techniques on legal text is particularly difficult due to the scarcity of expert-annotated datasets. To address this issue and as a starting point for our effort in assisting lawyers with contract reviews using NLP, we release an anonymized and annotated benchmark dataset for legality and fairness review of German employment contract clauses, alongside with baseline model evaluations.
Through the Lens of Core Competency: Survey on Evaluation of Large Language Models
From pre-trained language model (PLM) to large language model (LLM), the field of natural language processing (NLP) has witnessed steep performance gains and wide practical uses. The evaluation of a research field guides its direction of improvement. However, LLMs are extremely hard to thoroughly evaluate for two reasons. First of all, traditional NLP tasks become inadequate due to the excellent performance of LLM. Secondly, existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios. To tackle these problems, existing works proposed various benchmarks to better evaluate LLMs. To clarify the numerous evaluation tasks in both academia and industry, we investigate multiple papers concerning LLM evaluations. We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety. For every competency, we introduce its definition, corresponding benchmarks, and metrics. Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system. Finally, we give our suggestions on the future direction of LLM's evaluation.
N-LTP: An Open-source Neural Language Technology Platform for Chinese
We introduce N-LTP, an open-source neural language technology platform supporting six fundamental Chinese NLP tasks: {lexical analysis} (Chinese word segmentation, part-of-speech tagging, and named entity recognition), {syntactic parsing} (dependency parsing), and {semantic parsing} (semantic dependency parsing and semantic role labeling). Unlike the existing state-of-the-art toolkits, such as Stanza, that adopt an independent model for each task, N-LTP adopts the multi-task framework by using a shared pre-trained model, which has the advantage of capturing the shared knowledge across relevant Chinese tasks. In addition, a knowledge distillation method DBLP:journals/corr/abs-1907-04829 where the single-task model teaches the multi-task model is further introduced to encourage the multi-task model to surpass its single-task teacher. Finally, we provide a collection of easy-to-use APIs and a visualization tool to make users to use and view the processing results more easily and directly. To the best of our knowledge, this is the first toolkit to support six Chinese NLP fundamental tasks. Source code, documentation, and pre-trained models are available at https://github.com/HIT-SCIR/ltp.
Stochastic Language Generation in Dialogue using Recurrent Neural Networks with Convolutional Sentence Reranking
The natural language generation (NLG) component of a spoken dialogue system (SDS) usually needs a substantial amount of handcrafting or a well-labeled dataset to be trained on. These limitations add significantly to development costs and make cross-domain, multi-lingual dialogue systems intractable. Moreover, human languages are context-aware. The most natural response should be directly learned from data rather than depending on predefined syntaxes or rules. This paper presents a statistical language generator based on a joint recurrent and convolutional neural network structure which can be trained on dialogue act-utterance pairs without any semantic alignments or predefined grammar trees. Objective metrics suggest that this new model outperforms previous methods under the same experimental conditions. Results of an evaluation by human judges indicate that it produces not only high quality but linguistically varied utterances which are preferred compared to n-gram and rule-based systems.
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
For natural language understanding (NLU) technology to be maximally useful, both practically and as a scientific object of study, it must be general: it must be able to process language in a way that is not exclusively tailored to any one specific task or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation benchmark (GLUE), a tool for evaluating and analyzing the performance of models across a diverse range of existing NLU tasks. GLUE is model-agnostic, but it incentivizes sharing knowledge across tasks because certain tasks have very limited training data. We further provide a hand-crafted diagnostic test suite that enables detailed linguistic analysis of NLU models. We evaluate baselines based on current methods for multi-task and transfer learning and find that they do not immediately give substantial improvements over the aggregate performance of training a separate model per task, indicating room for improvement in developing general and robust NLU systems.
Kompetencer: Fine-grained Skill Classification in Danish Job Postings via Distant Supervision and Transfer Learning
Skill Classification (SC) is the task of classifying job competences from job postings. This work is the first in SC applied to Danish job vacancy data. We release the first Danish job posting dataset: Kompetencer (en: competences), annotated for nested spans of competences. To improve upon coarse-grained annotations, we make use of The European Skills, Competences, Qualifications and Occupations (ESCO; le Vrang et al., 2014) taxonomy API to obtain fine-grained labels via distant supervision. We study two setups: The zero-shot and few-shot classification setting. We fine-tune English-based models and RemBERT (Chung et al., 2020) and compare them to in-language Danish models. Our results show RemBERT significantly outperforms all other models in both the zero-shot and the few-shot setting.
SA-MDKIF: A Scalable and Adaptable Medical Domain Knowledge Injection Framework for Large Language Models
Recent advances in large language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks. However, their effective application in the medical domain is hampered by a lack of medical domain knowledge. In this study, we present SA-MDKIF, a scalable and adaptable framework that aims to inject medical knowledge into general-purpose LLMs through instruction tuning, thereby enabling adaptability for various downstream tasks. SA-MDKIF consists of two stages: skill training and skill adaptation. In the first stage, we define 12 basic medical skills and use AdaLoRA to train these skills based on uniformly formatted instructional datasets that we have constructed. In the next stage, we train the skill router using task-specific downstream data and use this router to integrate the acquired skills with LLMs during inference. Experimental results on 9 different medical tasks show that SA-MDKIF improves performance by 10-20% compared to the original LLMs. Notably, this improvement is particularly pronounced for unseen medical tasks, showing an improvement of up to 30%.
A Survey of Knowledge-Enhanced Text Generation
The goal of text generation is to make machines express in human language. It is one of the most important yet challenging tasks in natural language processing (NLP). Since 2014, various neural encoder-decoder models pioneered by Seq2Seq have been proposed to achieve the goal by learning to map input text to output text. However, the input text alone often provides limited knowledge to generate the desired output, so the performance of text generation is still far from satisfaction in many real-world scenarios. To address this issue, researchers have considered incorporating various forms of knowledge beyond the input text into the generation models. This research direction is known as knowledge-enhanced text generation. In this survey, we present a comprehensive review of the research on knowledge enhanced text generation over the past five years. The main content includes two parts: (i) general methods and architectures for integrating knowledge into text generation; (ii) specific techniques and applications according to different forms of knowledge data. This survey can have broad audiences, researchers and practitioners, in academia and industry.
Understanding and Tackling Label Errors in Individual-Level Nature Language Understanding
Natural language understanding (NLU) is a task that enables machines to understand human language. Some tasks, such as stance detection and sentiment analysis, are closely related to individual subjective perspectives, thus termed individual-level NLU. Previously, these tasks are often simplified to text-level NLU tasks, ignoring individual factors. This not only makes inference difficult and unexplainable but often results in a large number of label errors when creating datasets. To address the above limitations, we propose a new NLU annotation guideline based on individual-level factors. Specifically, we incorporate other posts by the same individual and then annotate individual subjective perspectives after considering all individual posts. We use this guideline to expand and re-annotate the stance detection and topic-based sentiment analysis datasets. We find that error rates in the samples were as high as 31.7\% and 23.3\%. We further use large language models to conduct experiments on the re-annotation datasets and find that the large language models perform well on both datasets after adding individual factors. Both GPT-4o and Llama3-70B can achieve an accuracy greater than 87\% on the re-annotation datasets. We also verify the effectiveness of individual factors through ablation studies. We call on future researchers to add individual factors when creating such datasets. Our re-annotation dataset can be found at https://github.com/24yearsoldstudent/Individual-NLU
Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model
Pretrained general-purpose language models can achieve state-of-the-art accuracies in various natural language processing domains by adapting to downstream tasks via zero-shot, few-shot and fine-tuning techniques. Because of their success, the size of these models has increased rapidly, requiring high-performance hardware, software, and algorithmic techniques to enable training such large models. As the result of a joint effort between Microsoft and NVIDIA, we present details on the training of the largest monolithic transformer based language model, Megatron-Turing NLG 530B (MT-NLG), with 530 billion parameters. In this paper, we first focus on the infrastructure as well as the 3D parallelism methodology used to train this model using DeepSpeed and Megatron. Next, we detail the training process, the design of our training corpus, and our data curation techniques, which we believe is a key ingredient to the success of the model. Finally, we discuss various evaluation results, as well as other interesting observations and new properties exhibited by MT-NLG. We demonstrate that MT-NLG achieves superior zero-, one-, and few-shot learning accuracies on several NLP benchmarks and establishes new state-of-the-art results. We believe that our contributions will help further the development of large-scale training infrastructures, large-scale language models, and natural language generations.
SeqGPT: An Out-of-the-box Large Language Model for Open Domain Sequence Understanding
Large language models (LLMs) have shown impressive ability for open-domain NLP tasks. However, LLMs are sometimes too footloose for natural language understanding (NLU) tasks which always have restricted output and input format. Their performances on NLU tasks are highly related to prompts or demonstrations and are shown to be poor at performing several representative NLU tasks, such as event extraction and entity typing. To this end, we present SeqGPT, a bilingual (i.e., English and Chinese) open-source autoregressive model specially enhanced for open-domain natural language understanding. We express all NLU tasks with two atomic tasks, which define fixed instructions to restrict the input and output format but still ``open'' for arbitrarily varied label sets. The model is first instruction-tuned with extremely fine-grained labeled data synthesized by ChatGPT and then further fine-tuned by 233 different atomic tasks from 152 datasets across various domains. The experimental results show that SeqGPT has decent classification and extraction ability, and is capable of performing language understanding tasks on unseen domains. We also conduct empirical studies on the scaling of data and model size as well as on the transfer across tasks. Our model is accessible at https://github.com/Alibaba-NLP/SeqGPT.
Graph Neural Prompting with Large Language Models
Large Language Models (LLMs) have shown remarkable generalization capability with exceptional performance in various language modeling tasks. However, they still exhibit inherent limitations in precisely capturing and returning grounded knowledge. While existing work has explored utilizing knowledge graphs to enhance language modeling via joint training and customized model architectures, applying this to LLMs is problematic owing to their large number of parameters and high computational cost. In addition, how to leverage the pre-trained LLMs and avoid training a customized model from scratch remains an open question. In this work, we propose Graph Neural Prompting (GNP), a novel plug-and-play method to assist pre-trained LLMs in learning beneficial knowledge from KGs. GNP encompasses various designs, including a standard graph neural network encoder, a cross-modality pooling module, a domain projector, and a self-supervised link prediction objective. Extensive experiments on multiple datasets demonstrate the superiority of GNP on both commonsense and biomedical reasoning tasks across different LLM sizes and settings.
Bridging Subword Gaps in Pretrain-Finetune Paradigm for Natural Language Generation
A well-known limitation in pretrain-finetune paradigm lies in its inflexibility caused by the one-size-fits-all vocabulary. This potentially weakens the effect when applying pretrained models into natural language generation (NLG) tasks, especially for the subword distributions between upstream and downstream tasks with significant discrepancy. Towards approaching this problem, we extend the vanilla pretrain-finetune pipeline with an extra embedding transfer step. Specifically, a plug-and-play embedding generator is introduced to produce the representation of any input token, according to pre-trained embeddings of its morphologically similar ones. Thus, embeddings of mismatch tokens in downstream tasks can also be efficiently initialized. We conduct experiments on a variety of NLG tasks under the pretrain-finetune fashion. Experimental results and extensive analyses show that the proposed strategy offers us opportunities to feel free to transfer the vocabulary, leading to more efficient and better performed downstream NLG models.
Design of Negative Sampling Strategies for Distantly Supervised Skill Extraction
Skills play a central role in the job market and many human resources (HR) processes. In the wake of other digital experiences, today's online job market has candidates expecting to see the right opportunities based on their skill set. Similarly, enterprises increasingly need to use data to guarantee that the skills within their workforce remain future-proof. However, structured information about skills is often missing, and processes building on self- or manager-assessment have shown to struggle with issues around adoption, completeness, and freshness of the resulting data. Extracting skills is a highly challenging task, given the many thousands of possible skill labels mentioned either explicitly or merely described implicitly and the lack of finely annotated training corpora. Previous work on skill extraction overly simplifies the task to an explicit entity detection task or builds on manually annotated training data that would be infeasible if applied to a complete vocabulary of skills. We propose an end-to-end system for skill extraction, based on distant supervision through literal matching. We propose and evaluate several negative sampling strategies, tuned on a small validation dataset, to improve the generalization of skill extraction towards implicitly mentioned skills, despite the lack of such implicit skills in the distantly supervised data. We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements, and combining three different strategies in one model further increases the performance, up to 8 percentage points in RP@5. We introduce a manually annotated evaluation benchmark for skill extraction based on the ESCO taxonomy, on which we validate our models. We release the benchmark dataset for research purposes to stimulate further research on the task.
Learning from Task Descriptions
Typically, machine learning systems solve new tasks by training on thousands of examples. In contrast, humans can solve new tasks by reading some instructions, with perhaps an example or two. To take a step toward closing this gap, we introduce a framework for developing NLP systems that solve new tasks after reading their descriptions, synthesizing prior work in this area. We instantiate this framework with a new English language dataset, ZEST, structured for task-oriented evaluation on unseen tasks. Formulating task descriptions as questions, we ensure each is general enough to apply to many possible inputs, thus comprehensively evaluating a model's ability to solve each task. Moreover, the dataset's structure tests specific types of systematic generalization. We find that the state-of-the-art T5 model achieves a score of 12% on ZEST, leaving a significant challenge for NLP researchers.
SandboxAQ's submission to MRL 2024 Shared Task on Multi-lingual Multi-task Information Retrieval
This paper explores the problems of Question Answering (QA) and Named Entity Recognition (NER) in five diverse languages. We tested five Large Language Models with various prompting methods, including zero-shot, chain-of-thought reasoning, and translation techniques. Our results show that while some models consistently outperform others, their effectiveness varies significantly across tasks and languages. We saw that advanced prompting techniques generally improved QA performance but had mixed results for NER; and we observed that language difficulty patterns differed between tasks. Our findings highlight the need for task-specific approaches in multilingual NLP and suggest that current models may develop different linguistic competencies for different tasks.
Is ChatGPT a Good NLG Evaluator? A Preliminary Study
Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
LexGLUE: A Benchmark Dataset for Legal Language Understanding in English
Laws and their interpretations, legal arguments and agreements\ are typically expressed in writing, leading to the production of vast corpora of legal text. Their analysis, which is at the center of legal practice, becomes increasingly elaborate as these collections grow in size. Natural language understanding (NLU) technologies can be a valuable tool to support legal practitioners in these endeavors. Their usefulness, however, largely depends on whether current state-of-the-art models can generalize across various tasks in the legal domain. To answer this currently open question, we introduce the Legal General Language Understanding Evaluation (LexGLUE) benchmark, a collection of datasets for evaluating model performance across a diverse set of legal NLU tasks in a standardized way. We also provide an evaluation and analysis of several generic and legal-oriented models demonstrating that the latter consistently offer performance improvements across multiple tasks.
Leveraging Large Language Models for NLG Evaluation: A Survey
In the rapidly evolving domain of Natural Language Generation (NLG) evaluation, introducing Large Language Models (LLMs) has opened new avenues for assessing generated content quality, e.g., coherence, creativity, and context relevance. This survey aims to provide a thorough overview of leveraging LLMs for NLG evaluation, a burgeoning area that lacks a systematic analysis. We propose a coherent taxonomy for organizing existing LLM-based evaluation metrics, offering a structured framework to understand and compare these methods. Our detailed exploration includes critically assessing various LLM-based methodologies, as well as comparing their strengths and limitations in evaluating NLG outputs. By discussing unresolved challenges, including bias, robustness, domain-specificity, and unified evaluation, this survey seeks to offer insights to researchers and advocate for fairer and more advanced NLG evaluation techniques.
IndoNLG: Benchmark and Resources for Evaluating Indonesian Natural Language Generation
Natural language generation (NLG) benchmarks provide an important avenue to measure progress and develop better NLG systems. Unfortunately, the lack of publicly available NLG benchmarks for low-resource languages poses a challenging barrier for building NLG systems that work well for languages with limited amounts of data. Here we introduce IndoNLG, the first benchmark to measure natural language generation (NLG) progress in three low-resource -- yet widely spoken -- languages of Indonesia: Indonesian, Javanese, and Sundanese. Altogether, these languages are spoken by more than 100 million native speakers, and hence constitute an important use case of NLG systems today. Concretely, IndoNLG covers six tasks: summarization, question answering, chit-chat, and three different pairs of machine translation (MT) tasks. We collate a clean pretraining corpus of Indonesian, Sundanese, and Javanese datasets, Indo4B-Plus, which is used to pretrain our models: IndoBART and IndoGPT. We show that IndoBART and IndoGPT achieve competitive performance on all tasks -- despite using only one-fifth the parameters of a larger multilingual model, mBART-LARGE (Liu et al., 2020). This finding emphasizes the importance of pretraining on closely related, local languages to achieve more efficient learning and faster inference for very low-resource languages like Javanese and Sundanese.
DeltaLM: Encoder-Decoder Pre-training for Language Generation and Translation by Augmenting Pretrained Multilingual Encoders
While pretrained encoders have achieved success in various natural language understanding (NLU) tasks, there is a gap between these pretrained encoders and natural language generation (NLG). NLG tasks are often based on the encoder-decoder framework, where the pretrained encoders can only benefit part of it. To reduce this gap, we introduce DeltaLM, a pretrained multilingual encoder-decoder model that regards the decoder as the task layer of off-the-shelf pretrained encoders. Specifically, we augment the pretrained multilingual encoder with a decoder and pre-train it in a self-supervised way. To take advantage of both the large-scale monolingual data and bilingual data, we adopt the span corruption and translation span corruption as the pre-training tasks. Experiments show that DeltaLM outperforms various strong baselines on both natural language generation and translation tasks, including machine translation, abstractive text summarization, data-to-text, and question generation. The code and pretrained models are available at https://aka.ms/deltalm.
CLSE: Corpus of Linguistically Significant Entities
One of the biggest challenges of natural language generation (NLG) is the proper handling of named entities. Named entities are a common source of grammar mistakes such as wrong prepositions, wrong article handling, or incorrect entity inflection. Without factoring linguistic representation, such errors are often underrepresented when evaluating on a small set of arbitrarily picked argument values, or when translating a dataset from a linguistically simpler language, like English, to a linguistically complex language, like Russian. However, for some applications, broadly precise grammatical correctness is critical -- native speakers may find entity-related grammar errors silly, jarring, or even offensive. To enable the creation of more linguistically diverse NLG datasets, we release a Corpus of Linguistically Significant Entities (CLSE) annotated by linguist experts. The corpus includes 34 languages and covers 74 different semantic types to support various applications from airline ticketing to video games. To demonstrate one possible use of CLSE, we produce an augmented version of the Schema-Guided Dialog Dataset, SGD-CLSE. Using the CLSE's entities and a small number of human translations, we create a linguistically representative NLG evaluation benchmark in three languages: French (high-resource), Marathi (low-resource), and Russian (highly inflected language). We establish quality baselines for neural, template-based, and hybrid NLG systems and discuss the strengths and weaknesses of each approach.
Survey of Hallucination in Natural Language Generation
Natural Language Generation (NLG) has improved exponentially in recent years thanks to the development of sequence-to-sequence deep learning technologies such as Transformer-based language models. This advancement has led to more fluent and coherent NLG, leading to improved development in downstream tasks such as abstractive summarization, dialogue generation and data-to-text generation. However, it is also apparent that deep learning based generation is prone to hallucinate unintended text, which degrades the system performance and fails to meet user expectations in many real-world scenarios. To address this issue, many studies have been presented in measuring and mitigating hallucinated texts, but these have never been reviewed in a comprehensive manner before. In this survey, we thus provide a broad overview of the research progress and challenges in the hallucination problem in NLG. The survey is organized into two parts: (1) a general overview of metrics, mitigation methods, and future directions; and (2) an overview of task-specific research progress on hallucinations in the following downstream tasks, namely abstractive summarization, dialogue generation, generative question answering, data-to-text generation, machine translation, and visual-language generation. This survey serves to facilitate collaborative efforts among researchers in tackling the challenge of hallucinated texts in NLG.
ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large Language Models in Multilingual Learning
Over the last few years, large language models (LLMs) have emerged as the most important breakthroughs in natural language processing (NLP) that fundamentally transform research and developments in the field. ChatGPT represents one of the most exciting LLM systems developed recently to showcase impressive skills for language generation and highly attract public attention. Among various exciting applications discovered for ChatGPT in English, the model can process and generate texts for multiple languages due to its multilingual training data. Given the broad adoption of ChatGPT for English in different problems and areas, a natural question is whether ChatGPT can also be applied effectively for other languages or it is necessary to develop more language-specific technologies. The answer to this question requires a thorough evaluation of ChatGPT over multiple tasks with diverse languages and large datasets (i.e., beyond reported anecdotes), which is still missing or limited in current research. Our work aims to fill this gap for the evaluation of ChatGPT and similar LLMs to provide more comprehensive information for multilingual NLP applications. While this work will be an ongoing effort to include additional experiments in the future, our current paper evaluates ChatGPT on 7 different tasks, covering 37 diverse languages with high, medium, low, and extremely low resources. We also focus on the zero-shot learning setting for ChatGPT to improve reproducibility and better simulate the interactions of general users. Compared to the performance of previous models, our extensive experimental results demonstrate a worse performance of ChatGPT for different NLP tasks and languages, calling for further research to develop better models and understanding for multilingual learning.
Can LLMs Augment Low-Resource Reading Comprehension Datasets? Opportunities and Challenges
Large Language Models (LLMs) have demonstrated impressive zero shot performance on a wide range of NLP tasks, demonstrating the ability to reason and apply commonsense. A relevant application is to use them for creating high quality synthetic datasets for downstream tasks. In this work, we probe whether GPT-4 can be used to augment existing extractive reading comprehension datasets. Automating data annotation processes has the potential to save large amounts of time, money and effort that goes into manually labelling datasets. In this paper, we evaluate the performance of GPT-4 as a replacement for human annotators for low resource reading comprehension tasks, by comparing performance after fine tuning, and the cost associated with annotation. This work serves to be the first analysis of LLMs as synthetic data augmenters for QA systems, highlighting the unique opportunities and challenges. Additionally, we release augmented versions of low resource datasets, that will allow the research community to create further benchmarks for evaluation of generated datasets.
Nyonic Technical Report
This report details the development and key achievements of our latest language model designed for custom large language models. The advancements introduced include a novel Online Data Scheduler that supports flexible training data adjustments and curriculum learning. The model's architecture is fortified with state-of-the-art techniques such as Rotary Positional Embeddings, QK-LayerNorm, and a specially crafted multilingual tokenizer to enhance stability and performance. Moreover, our robust training framework incorporates advanced monitoring and rapid recovery features to ensure optimal efficiency. Our Wonton 7B model has demonstrated competitive performance on a range of multilingual and English benchmarks. Future developments will prioritize narrowing the performance gap with more extensively trained models, thereby enhancing the model's real-world efficacy and adaptability.GitHub: https://github.com/nyonicai/nyonic-public
Improving Natural Language Understanding for LLMs via Large-Scale Instruction Synthesis
High-quality, large-scale instructions are crucial for aligning large language models (LLMs), however, there is a severe shortage of instruction in the field of natural language understanding (NLU). Previous works on constructing NLU instructions mainly focus on information extraction (IE), neglecting tasks such as machine reading comprehension, question answering, and text classification. Furthermore, the lack of diversity in the data has led to a decreased generalization ability of trained LLMs in other NLU tasks and a noticeable decline in the fundamental model's general capabilities. To address this issue, we propose Hum, a large-scale, high-quality synthetic instruction corpus for NLU tasks, designed to enhance the NLU capabilities of LLMs. Specifically, Hum includes IE (either close IE or open IE), machine reading comprehension, text classification, and instruction generalist tasks, thereby enriching task diversity. Additionally, we introduce a human-LLMs collaborative mechanism to synthesize instructions, which enriches instruction diversity by incorporating guidelines, preference rules, and format variants. We conduct extensive experiments on 5 NLU tasks and 28 general capability evaluation datasets for LLMs. Experimental results show that Hum enhances the NLU capabilities of six LLMs by an average of 3.1\%, with no significant decline observed in other general capabilities.
Zero-Shot Learning for Joint Intent and Slot Labeling
It is expensive and difficult to obtain the large number of sentence-level intent and token-level slot label annotations required to train neural network (NN)-based Natural Language Understanding (NLU) components of task-oriented dialog systems, especially for the many real world tasks that have a large and growing number of intents and slot types. While zero shot learning approaches that require no labeled examples -- only features and auxiliary information -- have been proposed only for slot labeling, we show that one can profitably perform joint zero-shot intent classification and slot labeling. We demonstrate the value of capturing dependencies between intents and slots, and between different slots in an utterance in the zero shot setting. We describe NN architectures that translate between word and sentence embedding spaces, and demonstrate that these modifications are required to enable zero shot learning for this task. We show a substantial improvement over strong baselines and explain the intuition behind each architectural modification through visualizations and ablation studies.
Augmenting Legal Decision Support Systems with LLM-based NLI for Analyzing Social Media Evidence
This paper presents our system description and error analysis of our entry for NLLP 2024 shared task on Legal Natural Language Inference (L-NLI) hagag2024legallenssharedtask2024. The task required classifying these relationships as entailed, contradicted, or neutral, indicating any association between the review and the complaint. Our system emerged as the winning submission, significantly outperforming other entries with a substantial margin and demonstrating the effectiveness of our approach in legal text analysis. We provide a detailed analysis of the strengths and limitations of each model and approach tested, along with a thorough error analysis and suggestions for future improvements. This paper aims to contribute to the growing field of legal NLP by offering insights into advanced techniques for natural language inference in legal contexts, making it accessible to both experts and newcomers in the field.
Faithfulness in Natural Language Generation: A Systematic Survey of Analysis, Evaluation and Optimization Methods
Natural Language Generation (NLG) has made great progress in recent years due to the development of deep learning techniques such as pre-trained language models. This advancement has resulted in more fluent, coherent and even properties controllable (e.g. stylistic, sentiment, length etc.) generation, naturally leading to development in downstream tasks such as abstractive summarization, dialogue generation, machine translation, and data-to-text generation. However, the faithfulness problem that the generated text usually contains unfaithful or non-factual information has become the biggest challenge, which makes the performance of text generation unsatisfactory for practical applications in many real-world scenarios. Many studies on analysis, evaluation, and optimization methods for faithfulness problems have been proposed for various tasks, but have not been organized, compared and discussed in a combined manner. In this survey, we provide a systematic overview of the research progress on the faithfulness problem of NLG, including problem analysis, evaluation metrics and optimization methods. We organize the evaluation and optimization methods for different tasks into a unified taxonomy to facilitate comparison and learning across tasks. Several research trends are discussed further.
Annotated Dataset Creation through General Purpose Language Models for non-English Medical NLP
Obtaining text datasets with semantic annotations is an effortful process, yet crucial for supervised training in natural language processsing (NLP). In general, developing and applying new NLP pipelines in domain-specific contexts for tasks often requires custom designed datasets to address NLP tasks in supervised machine learning fashion. When operating in non-English languages for medical data processing, this exposes several minor and major, interconnected problems such as lack of task-matching datasets as well as task-specific pre-trained models. In our work we suggest to leverage pretrained language models for training data acquisition in order to retrieve sufficiently large datasets for training smaller and more efficient models for use-case specific tasks. To demonstrate the effectiveness of your approach, we create a custom dataset which we use to train a medical NER model for German texts, GPTNERMED, yet our method remains language-independent in principle. Our obtained dataset as well as our pre-trained models are publicly available at: https://github.com/frankkramer-lab/GPTNERMED
DHP Benchmark: Are LLMs Good NLG Evaluators?
Large Language Models (LLMs) are increasingly serving as evaluators in Natural Language Generation (NLG) tasks. However, the capabilities of LLMs in scoring NLG quality remain inadequately explored. Current studies depend on human assessments and simple metrics that fail to capture the discernment of LLMs across diverse NLG tasks. To address this gap, we propose the Discernment of Hierarchical Perturbation (DHP) benchmarking framework, which provides quantitative discernment scores for LLMs utilizing hierarchically perturbed text data and statistical tests to measure the NLG evaluation capabilities of LLMs systematically. We have re-established six evaluation datasets for this benchmark, covering four NLG tasks: Summarization, Story Completion, Question Answering, and Translation. Our comprehensive benchmarking of five major LLM series provides critical insight into their strengths and limitations as NLG evaluators.
A scalable framework for learning from implicit user feedback to improve natural language understanding in large-scale conversational AI systems
Natural Language Understanding (NLU) is an established component within a conversational AI or digital assistant system, and it is responsible for producing semantic understanding of a user request. We propose a scalable and automatic approach for improving NLU in a large-scale conversational AI system by leveraging implicit user feedback, with an insight that user interaction data and dialog context have rich information embedded from which user satisfaction and intention can be inferred. In particular, we propose a general domain-agnostic framework for curating new supervision data for improving NLU from live production traffic. With an extensive set of experiments, we show the results of applying the framework and improving NLU for a large-scale production system and show its impact across 10 domains.
Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks
How well can NLP models generalize to a variety of unseen tasks when provided with task instructions? To address this question, we first introduce Super-NaturalInstructions, a benchmark of 1,616 diverse NLP tasks and their expert-written instructions. Our collection covers 76 distinct task types, including but not limited to classification, extraction, infilling, sequence tagging, text rewriting, and text composition. This large and diverse collection of tasks enables rigorous benchmarking of cross-task generalization under instructions -- training models to follow instructions on a subset of tasks and evaluating them on the remaining unseen ones. Furthermore, we build Tk-Instruct, a transformer model trained to follow a variety of in-context instructions (plain language task definitions or k-shot examples). Our experiments show that Tk-Instruct outperforms existing instruction-following models such as InstructGPT by over 9% on our benchmark despite being an order of magnitude smaller. We further analyze generalization as a function of various scaling parameters, such as the number of observed tasks, the number of instances per task, and model sizes. We hope our dataset and model facilitate future progress towards more general-purpose NLP models.
PidginUNMT: Unsupervised Neural Machine Translation from West African Pidgin to English
Over 800 languages are spoken across West Africa. Despite the obvious diversity among people who speak these languages, one language significantly unifies them all - West African Pidgin English. There are at least 80 million speakers of West African Pidgin English. However, there is no known natural language processing (NLP) work on this language. In this work, we perform the first NLP work on the most popular variant of the language, providing three major contributions. First, the provision of a Pidgin corpus of over 56000 sentences, which is the largest we know of. Secondly, the training of the first ever cross-lingual embedding between Pidgin and English. This aligned embedding will be helpful in the performance of various downstream tasks between English and Pidgin. Thirdly, the training of an Unsupervised Neural Machine Translation model between Pidgin and English which achieves BLEU scores of 7.93 from Pidgin to English, and 5.18 from English to Pidgin. In all, this work greatly reduces the barrier of entry for future NLP works on West African Pidgin English.
Large-Scale Contextualised Language Modelling for Norwegian
We present the ongoing NorLM initiative to support the creation and use of very large contextualised language models for Norwegian (and in principle other Nordic languages), including a ready-to-use software environment, as well as an experience report for data preparation and training. This paper introduces the first large-scale monolingual language models for Norwegian, based on both the ELMo and BERT frameworks. In addition to detailing the training process, we present contrastive benchmark results on a suite of NLP tasks for Norwegian. For additional background and access to the data, models, and software, please see http://norlm.nlpl.eu
bgGLUE: A Bulgarian General Language Understanding Evaluation Benchmark
We present bgGLUE(Bulgarian General Language Understanding Evaluation), a benchmark for evaluating language models on Natural Language Understanding (NLU) tasks in Bulgarian. Our benchmark includes NLU tasks targeting a variety of NLP problems (e.g., natural language inference, fact-checking, named entity recognition, sentiment analysis, question answering, etc.) and machine learning tasks (sequence labeling, document-level classification, and regression). We run the first systematic evaluation of pre-trained language models for Bulgarian, comparing and contrasting results across the nine tasks in the benchmark. The evaluation results show strong performance on sequence labeling tasks, but there is a lot of room for improvement for tasks that require more complex reasoning. We make bgGLUE publicly available together with the fine-tuning and the evaluation code, as well as a public leaderboard at https://bgglue.github.io/, and we hope that it will enable further advancements in developing NLU models for Bulgarian.
HR-MultiWOZ: A Task Oriented Dialogue (TOD) Dataset for HR LLM Agent
Recent advancements in Large Language Models (LLMs) have been reshaping Natural Language Processing (NLP) task in several domains. Their use in the field of Human Resources (HR) has still room for expansions and could be beneficial for several time consuming tasks. Examples such as time-off submissions, medical claims filing, and access requests are noteworthy, but they are by no means the sole instances. However, the aforementioned developments must grapple with the pivotal challenge of constructing a high-quality training dataset. On one hand, most conversation datasets are solving problems for customers not employees. On the other hand, gathering conversations with HR could raise privacy concerns. To solve it, we introduce HR-Multiwoz, a fully-labeled dataset of 550 conversations spanning 10 HR domains to evaluate LLM Agent. Our work has the following contributions: (1) It is the first labeled open-sourced conversation dataset in the HR domain for NLP research. (2) It provides a detailed recipe for the data generation procedure along with data analysis and human evaluations. The data generation pipeline is transferable and can be easily adapted for labeled conversation data generation in other domains. (3) The proposed data-collection pipeline is mostly based on LLMs with minimal human involvement for annotation, which is time and cost-efficient.
CodeIE: Large Code Generation Models are Better Few-Shot Information Extractors
Large language models (LLMs) pre-trained on massive corpora have demonstrated impressive few-shot learning ability on many NLP tasks. A common practice is to recast the task into a text-to-text format such that generative LLMs of natural language (NL-LLMs) like GPT-3 can be prompted to solve it. However, it is nontrivial to perform information extraction (IE) tasks with NL-LLMs since the output of the IE task is usually structured and therefore is hard to be converted into plain text. In this paper, we propose to recast the structured output in the form of code instead of natural language and utilize generative LLMs of code (Code-LLMs) such as Codex to perform IE tasks, in particular, named entity recognition and relation extraction. In contrast to NL-LLMs, we show that Code-LLMs can be well-aligned with these IE tasks by designing code-style prompts and formulating these IE tasks as code generation tasks. Experiment results on seven benchmarks show that our method consistently outperforms fine-tuning moderate-size pre-trained models specially designed for IE tasks (e.g., UIE) and prompting NL-LLMs under few-shot settings. We further conduct a series of in-depth analyses to demonstrate the merits of leveraging Code-LLMs for IE tasks.
LUNA: A Framework for Language Understanding and Naturalness Assessment
The evaluation of Natural Language Generation (NLG) models has gained increased attention, urging the development of metrics that evaluate various aspects of generated text. LUNA addresses this challenge by introducing a unified interface for 20 NLG evaluation metrics. These metrics are categorized based on their reference-dependence and the type of text representation they employ, from string-based n-gram overlap to the utilization of static embeddings and pre-trained language models. The straightforward design of LUNA allows for easy extension with novel metrics, requiring just a few lines of code. LUNA offers a user-friendly tool for evaluating generated texts.
Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models
The quality of training data impacts the performance of pre-trained large language models (LMs). Given a fixed budget of tokens, we study how to best select data that leads to good downstream model performance across tasks. We develop a new framework based on a simple hypothesis: just as humans acquire interdependent skills in a deliberate order, language models also follow a natural order when learning a set of skills from their training data. If such an order exists, it can be utilized for improved understanding of LMs and for data-efficient training. Using this intuition, our framework formalizes the notion of a skill and of an ordered set of skills in terms of the associated data. First, using both synthetic and real data, we demonstrate that these ordered skill sets exist, and that their existence enables more advanced skills to be learned with less data when we train on their prerequisite skills. Second, using our proposed framework, we introduce an online data sampling algorithm, Skill-It, over mixtures of skills for both continual pre-training and fine-tuning regimes, where the objective is to efficiently learn multiple skills in the former and an individual skill in the latter. On the LEGO synthetic in the continual pre-training setting, Skill-It obtains 36.5 points higher accuracy than random sampling. On the Natural Instructions dataset in the fine-tuning setting, Skill-It reduces the validation loss on the target skill by 13.6% versus training on data associated with the target skill itself. We apply our skills framework on the recent RedPajama dataset to continually pre-train a 3B-parameter LM, achieving higher accuracy on the LM Evaluation Harness with 1B tokens than the baseline approach of sampling uniformly over data sources with 3B tokens.
Findings of the E2E NLG Challenge
This paper summarises the experimental setup and results of the first shared task on end-to-end (E2E) natural language generation (NLG) in spoken dialogue systems. Recent end-to-end generation systems are promising since they reduce the need for data annotation. However, they are currently limited to small, delexicalised datasets. The E2E NLG shared task aims to assess whether these novel approaches can generate better-quality output by learning from a dataset containing higher lexical richness, syntactic complexity and diverse discourse phenomena. We compare 62 systems submitted by 17 institutions, covering a wide range of approaches, including machine learning architectures -- with the majority implementing sequence-to-sequence models (seq2seq) -- as well as systems based on grammatical rules and templates.
Is Prompt All You Need? No. A Comprehensive and Broader View of Instruction Learning
Task semantics can be expressed by a set of input-to-output examples or a piece of textual instruction. Conventional machine learning approaches for natural language processing (NLP) mainly rely on the availability of large-scale sets of task-specific examples. Two issues arise: first, collecting task-specific labeled examples does not apply to scenarios where tasks may be too complicated or costly to annotate, or the system is required to handle a new task immediately; second, this is not user-friendly since end-users are probably more willing to provide task description rather than a set of examples before using the system. Therefore, the community is paying increasing interest in a new supervision-seeking paradigm for NLP: learning from task instructions. Despite its impressive progress, there are some common issues that the community struggles with. This survey paper tries to summarize and provide insights into the current research on instruction learning, particularly by answering the following questions: (i) What is task instruction, and what instruction types exist? (ii) How to model instructions? (iii) What factors influence and explain the instructions' performance? (iv) What challenges remain in instruction learning? To our knowledge, this is the first comprehensive survey about textual instructions.
ERNIE 3.0: Large-scale Knowledge Enhanced Pre-training for Language Understanding and Generation
Pre-trained models have achieved state-of-the-art results in various Natural Language Processing (NLP) tasks. Recent works such as T5 and GPT-3 have shown that scaling up pre-trained language models can improve their generalization abilities. Particularly, the GPT-3 model with 175 billion parameters shows its strong task-agnostic zero-shot/few-shot learning capabilities. Despite their success, these large-scale models are trained on plain texts without introducing knowledge such as linguistic knowledge and world knowledge. In addition, most large-scale models are trained in an auto-regressive way. As a result, this kind of traditional fine-tuning approach demonstrates relatively weak performance when solving downstream language understanding tasks. In order to solve the above problems, we propose a unified framework named ERNIE 3.0 for pre-training large-scale knowledge enhanced models. It fuses auto-regressive network and auto-encoding network, so that the trained model can be easily tailored for both natural language understanding and generation tasks with zero-shot learning, few-shot learning or fine-tuning. We trained the model with 10 billion parameters on a 4TB corpus consisting of plain texts and a large-scale knowledge graph. Empirical results show that the model outperforms the state-of-the-art models on 54 Chinese NLP tasks, and its English version achieves the first place on the SuperGLUE benchmark (July 3, 2021), surpassing the human performance by +0.8% (90.6% vs. 89.8%).
A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task
Enabling a computer to understand a document so that it can answer comprehension questions is a central, yet unsolved goal of NLP. A key factor impeding its solution by machine learned systems is the limited availability of human-annotated data. Hermann et al. (2015) seek to solve this problem by creating over a million training examples by pairing CNN and Daily Mail news articles with their summarized bullet points, and show that a neural network can then be trained to give good performance on this task. In this paper, we conduct a thorough examination of this new reading comprehension task. Our primary aim is to understand what depth of language understanding is required to do well on this task. We approach this from one side by doing a careful hand-analysis of a small subset of the problems and from the other by showing that simple, carefully designed systems can obtain accuracies of 73.6% and 76.6% on these two datasets, exceeding current state-of-the-art results by 7-10% and approaching what we believe is the ceiling for performance on this task.
CLUE: A Chinese Language Understanding Evaluation Benchmark
The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com
Foundation Models for Natural Language Processing -- Pre-trained Language Models Integrating Media
This open access book provides a comprehensive overview of the state of the art in research and applications of Foundation Models and is intended for readers familiar with basic Natural Language Processing (NLP) concepts. Over the recent years, a revolutionary new paradigm has been developed for training models for NLP. These models are first pre-trained on large collections of text documents to acquire general syntactic knowledge and semantic information. Then, they are fine-tuned for specific tasks, which they can often solve with superhuman accuracy. When the models are large enough, they can be instructed by prompts to solve new tasks without any fine-tuning. Moreover, they can be applied to a wide range of different media and problem domains, ranging from image and video processing to robot control learning. Because they provide a blueprint for solving many tasks in artificial intelligence, they have been called Foundation Models. After a brief introduction to basic NLP models the main pre-trained language models BERT, GPT and sequence-to-sequence transformer are described, as well as the concepts of self-attention and context-sensitive embedding. Then, different approaches to improving these models are discussed, such as expanding the pre-training criteria, increasing the length of input texts, or including extra knowledge. An overview of the best-performing models for about twenty application areas is then presented, e.g., question answering, translation, story generation, dialog systems, generating images from text, etc. For each application area, the strengths and weaknesses of current models are discussed, and an outlook on further developments is given. In addition, links are provided to freely available program code. A concluding chapter summarizes the economic opportunities, mitigation of risks, and potential developments of AI.
Controlled Text Generation with Natural Language Instructions
Large language models generate fluent texts and can follow natural language instructions to solve a wide range of tasks without task-specific training. Nevertheless, it is notoriously difficult to control their generation to satisfy the various constraints required by different applications. In this work, we present InstructCTG, a controlled text generation framework that incorporates different constraints by conditioning on natural language descriptions and demonstrations of the constraints. In particular, we first extract the underlying constraints of natural texts through a combination of off-the-shelf NLP tools and simple heuristics. We then verbalize the constraints into natural language instructions to form weakly supervised training data. By prepending natural language descriptions of the constraints and a few demonstrations, we fine-tune a pre-trained language model to incorporate various types of constraints. Compared to existing search-based or score-based methods, InstructCTG is more flexible to different constraint types and has a much smaller impact on the generation quality and speed because it does not modify the decoding procedure. Additionally, InstructCTG allows the model to adapt to new constraints without re-training through the use of few-shot task generalization and in-context learning abilities of instruction-tuned language models.
LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content
Large Language Models (LLMs) have demonstrated remarkable success as general-purpose task solvers across various fields, including NLP, healthcare, finance, and law. However, their capabilities remain limited when addressing domain-specific problems, particularly in downstream NLP tasks. Research has shown that models fine-tuned on instruction-based downstream NLP datasets outperform those that are not fine-tuned. While most efforts in this area have primarily focused on resource-rich languages like English and broad domains, little attention has been given to multilingual settings and specific domains. To address this gap, this study focuses on developing a specialized LLM, LlamaLens, for analyzing news and social media content in a multilingual context. To the best of our knowledge, this is the first attempt to tackle both domain specificity and multilinguality, with a particular focus on news and social media. Our experimental setup includes 19 tasks, represented by 52 datasets covering Arabic, English, and Hindi. We demonstrate that LlamaLens outperforms the current state-of-the-art (SOTA) on 16 testing sets, and achieves comparable performance on 10 sets. We make the models and resources publicly available for the research community.(https://huggingface.co/QCRI)
TrICy: Trigger-guided Data-to-text Generation with Intent aware Attention-Copy
Data-to-text (D2T) generation is a crucial task in many natural language understanding (NLU) applications and forms the foundation of task-oriented dialog systems. In the context of conversational AI solutions that can work directly with local data on the user's device, architectures utilizing large pre-trained language models (PLMs) are impractical for on-device deployment due to a high memory footprint. To this end, we propose TrICy, a novel lightweight framework for an enhanced D2T task that generates text sequences based on the intent in context and may further be guided by user-provided triggers. We leverage an attention-copy mechanism to predict out-of-vocabulary (OOV) words accurately. Performance analyses on E2E NLG dataset (BLEU: 66.43%, ROUGE-L: 70.14%), WebNLG dataset (BLEU: Seen 64.08%, Unseen 52.35%), and our Custom dataset related to text messaging applications, showcase our architecture's effectiveness. Moreover, we show that by leveraging an optional trigger input, data-to-text generation quality increases significantly and achieves the new SOTA score of 69.29% BLEU for E2E NLG. Furthermore, our analyses show that TrICy achieves at least 24% and 3% improvement in BLEU and METEOR respectively over LLMs like GPT-3, ChatGPT, and Llama 2. We also demonstrate that in some scenarios, performance improvement due to triggers is observed even when they are absent in training.
WANLI: Worker and AI Collaboration for Natural Language Inference Dataset Creation
A recurring challenge of crowdsourcing NLP datasets at scale is that human writers often rely on repetitive patterns when crafting examples, leading to a lack of linguistic diversity. We introduce a novel approach for dataset creation based on worker and AI collaboration, which brings together the generative strength of language models and the evaluative strength of humans. Starting with an existing dataset, MultiNLI for natural language inference (NLI), our approach uses dataset cartography to automatically identify examples that demonstrate challenging reasoning patterns, and instructs GPT-3 to compose new examples with similar patterns. Machine generated examples are then automatically filtered, and finally revised and labeled by human crowdworkers. The resulting dataset, WANLI, consists of 107,885 NLI examples and presents unique empirical strengths over existing NLI datasets. Remarkably, training a model on WANLI improves performance on eight out-of-domain test sets we consider, including by 11% on HANS and 9% on Adversarial NLI, compared to training on the 4x larger MultiNLI. Moreover, it continues to be more effective than MultiNLI augmented with other NLI datasets. Our results demonstrate the promise of leveraging natural language generation techniques and re-imagining the role of humans in the dataset creation process.
Adversarial NLI: A New Benchmark for Natural Language Understanding
We introduce a new large-scale NLI benchmark dataset, collected via an iterative, adversarial human-and-model-in-the-loop procedure. We show that training models on this new dataset leads to state-of-the-art performance on a variety of popular NLI benchmarks, while posing a more difficult challenge with its new test set. Our analysis sheds light on the shortcomings of current state-of-the-art models, and shows that non-expert annotators are successful at finding their weaknesses. The data collection method can be applied in a never-ending learning scenario, becoming a moving target for NLU, rather than a static benchmark that will quickly saturate.
GENIUS: Sketch-based Language Model Pre-training via Extreme and Selective Masking for Text Generation and Augmentation
We introduce GENIUS: a conditional text generation model using sketches as input, which can fill in the missing contexts for a given sketch (key information consisting of textual spans, phrases, or words, concatenated by mask tokens). GENIUS is pre-trained on a large-scale textual corpus with a novel reconstruction from sketch objective using an extreme and selective masking strategy, enabling it to generate diverse and high-quality texts given sketches. Comparison with other competitive conditional language models (CLMs) reveals the superiority of GENIUS's text generation quality. We further show that GENIUS can be used as a strong and ready-to-use data augmentation tool for various natural language processing (NLP) tasks. Most existing textual data augmentation methods are either too conservative, by making small changes to the original text, or too aggressive, by creating entirely new samples. With GENIUS, we propose GeniusAug, which first extracts the target-aware sketches from the original training set and then generates new samples based on the sketches. Empirical experiments on 6 text classification datasets show that GeniusAug significantly improves the models' performance in both in-distribution (ID) and out-of-distribution (OOD) settings. We also demonstrate the effectiveness of GeniusAug on named entity recognition (NER) and machine reading comprehension (MRC) tasks. (Code and models are publicly available at https://github.com/microsoft/SCGLab and https://github.com/beyondguo/genius)
VacancySBERT: the approach for representation of titles and skills for semantic similarity search in the recruitment domain
The paper focuses on deep learning semantic search algorithms applied in the HR domain. The aim of the article is developing a novel approach to training a Siamese network to link the skills mentioned in the job ad with the title. It has been shown that the title normalization process can be based either on classification or similarity comparison approaches. While classification algorithms strive to classify a sample into predefined set of categories, similarity search algorithms take a more flexible approach, since they are designed to find samples that are similar to a given query sample, without requiring pre-defined classes and labels. In this article semantic similarity search to find candidates for title normalization has been used. A pre-trained language model has been adapted while teaching it to match titles and skills based on co-occurrence information. For the purpose of this research fifty billion title-descriptions pairs had been collected for training the model and thirty three thousand title-description-normalized title triplets, where normalized job title was picked up manually by job ad creator for testing purposes. As baselines FastText, BERT, SentenceBert and JobBert have been used. As a metric of the accuracy of the designed algorithm is Recall in top one, five and ten model's suggestions. It has been shown that the novel training objective lets it achieve significant improvement in comparison to other generic and specific text encoders. Two settings with treating titles as standalone strings, and with included skills as additional features during inference have been used and the results have been compared in this article. Improvements by 10% and 21.5% have been achieved using VacancySBERT and VacancySBERT (with skills) respectively. The benchmark has been developed as open-source to foster further research in the area.
Benchmarking Abstractive Summarisation: A Dataset of Human-authored Summaries of Norwegian News Articles
We introduce a dataset of high-quality human-authored summaries of news articles in Norwegian. The dataset is intended for benchmarking the abstractive summarisation capabilities of generative language models. Each document in the dataset is provided with three different candidate gold-standard summaries written by native Norwegian speakers, and all summaries are provided in both of the written variants of Norwegian -- Bokm{\aa}l and Nynorsk. The paper describes details on the data creation effort as well as an evaluation of existing open LLMs for Norwegian on the dataset. We also provide insights from a manual human evaluation, comparing human-authored to model-generated summaries. Our results indicate that the dataset provides a challenging LLM benchmark for Norwegian summarisation capabilities
Synergizing Machine Learning & Symbolic Methods: A Survey on Hybrid Approaches to Natural Language Processing
The advancement of machine learning and symbolic approaches have underscored their strengths and weaknesses in Natural Language Processing (NLP). While machine learning approaches are powerful in identifying patterns in data, they often fall short in learning commonsense and the factual knowledge required for the NLP tasks. Meanwhile, the symbolic methods excel in representing knowledge-rich data. However, they struggle to adapt dynamic data and generalize the knowledge. Bridging these two paradigms through hybrid approaches enables the alleviation of weaknesses in both while preserving their strengths. Recent studies extol the virtues of this union, showcasing promising results in a wide range of NLP tasks. In this paper, we present an overview of hybrid approaches used for NLP. Specifically, we delve into the state-of-the-art hybrid approaches used for a broad spectrum of NLP tasks requiring natural language understanding, generation, and reasoning. Furthermore, we discuss the existing resources available for hybrid approaches for NLP along with the challenges and future directions, offering a roadmap for future research avenues.
Text2KGBench: A Benchmark for Ontology-Driven Knowledge Graph Generation from Text
The recent advances in large language models (LLM) and foundation models with emergent capabilities have been shown to improve the performance of many NLP tasks. LLMs and Knowledge Graphs (KG) can complement each other such that LLMs can be used for KG construction or completion while existing KGs can be used for different tasks such as making LLM outputs explainable or fact-checking in Neuro-Symbolic manner. In this paper, we present Text2KGBench, a benchmark to evaluate the capabilities of language models to generate KGs from natural language text guided by an ontology. Given an input ontology and a set of sentences, the task is to extract facts from the text while complying with the given ontology (concepts, relations, domain/range constraints) and being faithful to the input sentences. We provide two datasets (i) Wikidata-TekGen with 10 ontologies and 13,474 sentences and (ii) DBpedia-WebNLG with 19 ontologies and 4,860 sentences. We define seven evaluation metrics to measure fact extraction performance, ontology conformance, and hallucinations by LLMs. Furthermore, we provide results for two baseline models, Vicuna-13B and Alpaca-LoRA-13B using automatic prompt generation from test cases. The baseline results show that there is room for improvement using both Semantic Web and Natural Language Processing techniques.
IndicNLG Benchmark: Multilingual Datasets for Diverse NLG Tasks in Indic Languages
Natural Language Generation (NLG) for non-English languages is hampered by the scarcity of datasets in these languages. In this paper, we present the IndicNLG Benchmark, a collection of datasets for benchmarking NLG for 11 Indic languages. We focus on five diverse tasks, namely, biography generation using Wikipedia infoboxes, news headline generation, sentence summarization, paraphrase generation and, question generation. We describe the created datasets and use them to benchmark the performance of several monolingual and multilingual baselines that leverage pre-trained sequence-to-sequence models. Our results exhibit the strong performance of multilingual language-specific pre-trained models, and the utility of models trained on our dataset for other related NLG tasks. Our dataset creation methods can be easily applied to modest-resource languages as they involve simple steps such as scraping news articles and Wikipedia infoboxes, light cleaning, and pivoting through machine translation data. To the best of our knowledge, the IndicNLG Benchmark is the first NLG benchmark for Indic languages and the most diverse multilingual NLG dataset, with approximately 8M examples across 5 tasks and 11 languages. The datasets and models are publicly available at https://ai4bharat.iitm.ac.in/indicnlg-suite.
ZeroNLG: Aligning and Autoencoding Domains for Zero-Shot Multimodal and Multilingual Natural Language Generation
Natural Language Generation (NLG) accepts input data in the form of images, videos, or text and generates corresponding natural language text as output. Existing NLG methods mainly adopt a supervised approach and rely heavily on coupled data-to-text pairs. However, for many targeted scenarios and for non-English languages, sufficient quantities of labeled data are often not available. To relax the dependency on labeled data of downstream tasks, we propose an intuitive and effective zero-shot learning framework, ZeroNLG, which can deal with multiple NLG tasks, including image-to-text (image captioning), video-to-text (video captioning), and text-to-text (neural machine translation), across English, Chinese, German, and French within a unified framework. ZeroNLG does not require any labeled downstream pairs for training. During training, ZeroNLG (i) projects different domains (across modalities and languages) to corresponding coordinates in a shared common latent space; (ii) bridges different domains by aligning their corresponding coordinates in this space; and (iii) builds an unsupervised multilingual auto-encoder to learn to generate text by reconstructing the input text given its coordinate in shared latent space. Consequently, during inference, based on the data-to-text pipeline, ZeroNLG can generate target sentences across different languages given the coordinate of input data in the common space. Within this unified framework, given visual (imaging or video) data as input, ZeroNLG can perform zero-shot visual captioning; given textual sentences as input, ZeroNLG can perform zero-shot machine translation. We present the results of extensive experiments on twelve NLG tasks, showing that, without using any labeled downstream pairs for training, ZeroNLG generates high-quality and believable outputs and significantly outperforms existing zero-shot methods.
NoticIA: A Clickbait Article Summarization Dataset in Spanish
We present NoticIA, a dataset consisting of 850 Spanish news articles featuring prominent clickbait headlines, each paired with high-quality, single-sentence generative summarizations written by humans. This task demands advanced text understanding and summarization abilities, challenging the models' capacity to infer and connect diverse pieces of information to meet the user's informational needs generated by the clickbait headline. We evaluate the Spanish text comprehension capabilities of a wide range of state-of-the-art large language models. Additionally, we use the dataset to train ClickbaitFighter, a task-specific model that achieves near-human performance in this task.
Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
One long-term goal of machine learning research is to produce methods that are applicable to reasoning and natural language, in particular building an intelligent dialogue agent. To measure progress towards that goal, we argue for the usefulness of a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable of conversing with a human. We believe many existing learning systems can currently not solve them, and hence our aim is to classify these tasks into skill sets, so that researchers can identify (and then rectify) the failings of their systems. We also extend and improve the recently introduced Memory Networks model, and show it is able to solve some, but not all, of the tasks.
Harnessing Explanations: LLM-to-LM Interpreter for Enhanced Text-Attributed Graph Representation Learning
Representation learning on text-attributed graphs (TAGs) has become a critical research problem in recent years. A typical example of a TAG is a paper citation graph, where the text of each paper serves as node attributes. Initial graph neural network (GNN) pipelines handled these text attributes by transforming them into shallow or hand-crafted features, such as skip-gram or bag-of-words features. Recent efforts have focused on enhancing these pipelines with language models (LMs), which typically demand intricate designs and substantial computational resources. With the advent of powerful large language models (LLMs) such as GPT or Llama2, which demonstrate an ability to reason and to utilize general knowledge, there is a growing need for techniques which combine the textual modelling abilities of LLMs with the structural learning capabilities of GNNs. Hence, in this work, we focus on leveraging LLMs to capture textual information as features, which can be used to boost GNN performance on downstream tasks. A key innovation is our use of explanations as features: we prompt an LLM to perform zero-shot classification, request textual explanations for its decision-making process, and design an LLM-to-LM interpreter to translate these explanations into informative features for downstream GNNs. Our experiments demonstrate that our method achieves state-of-the-art results on well-established TAG datasets, including Cora, PubMed, ogbn-arxiv, as well as our newly introduced dataset, tape-arxiv23. Furthermore, our method significantly speeds up training, achieving a 2.88 times improvement over the closest baseline on ogbn-arxiv. Lastly, we believe the versatility of the proposed method extends beyond TAGs and holds the potential to enhance other tasks involving graph-text data. Our codes and datasets are available at: https://github.com/XiaoxinHe/TAPE.
ViANLI: Adversarial Natural Language Inference for Vietnamese
The development of Natural Language Processing (NLI) datasets and models has been inspired by innovations in annotation design. With the rapid development of machine learning models today, the performance of existing machine learning models has quickly reached state-of-the-art results on a variety of tasks related to natural language processing, including natural language inference tasks. By using a pre-trained model during the annotation process, it is possible to challenge current NLI models by having humans produce premise-hypothesis combinations that the machine model cannot correctly predict. To remain attractive and challenging in the research of natural language inference for Vietnamese, in this paper, we introduce the adversarial NLI dataset to the NLP research community with the name ViANLI. This data set contains more than 10K premise-hypothesis pairs and is built by a continuously adjusting process to obtain the most out of the patterns generated by the annotators. ViANLI dataset has brought many difficulties to many current SOTA models when the accuracy of the most powerful model on the test set only reached 48.4%. Additionally, the experimental results show that the models trained on our dataset have significantly improved the results on other Vietnamese NLI datasets.
Robustness Testing of Language Understanding in Task-Oriented Dialog
Most language understanding models in task-oriented dialog systems are trained on a small amount of annotated training data, and evaluated in a small set from the same distribution. However, these models can lead to system failure or undesirable output when being exposed to natural language perturbation or variation in practice. In this paper, we conduct comprehensive evaluation and analysis with respect to the robustness of natural language understanding models, and introduce three important aspects related to language understanding in real-world dialog systems, namely, language variety, speech characteristics, and noise perturbation. We propose a model-agnostic toolkit LAUG to approximate natural language perturbations for testing the robustness issues in task-oriented dialog. Four data augmentation approaches covering the three aspects are assembled in LAUG, which reveals critical robustness issues in state-of-the-art models. The augmented dataset through LAUG can be used to facilitate future research on the robustness testing of language understanding in task-oriented dialog.
BioBART: Pretraining and Evaluation of A Biomedical Generative Language Model
Pretrained language models have served as important backbones for natural language processing. Recently, in-domain pretraining has been shown to benefit various domain-specific downstream tasks. In the biomedical domain, natural language generation (NLG) tasks are of critical importance, while understudied. Approaching natural language understanding (NLU) tasks as NLG achieves satisfying performance in the general domain through constrained language generation or language prompting. We emphasize the lack of in-domain generative language models and the unsystematic generative downstream benchmarks in the biomedical domain, hindering the development of the research community. In this work, we introduce the generative language model BioBART that adapts BART to the biomedical domain. We collate various biomedical language generation tasks including dialogue, summarization, entity linking, and named entity recognition. BioBART pretrained on PubMed abstracts has enhanced performance compared to BART and set strong baselines on several tasks. Furthermore, we conduct ablation studies on the pretraining tasks for BioBART and find that sentence permutation has negative effects on downstream tasks.
Themis: Towards Flexible and Interpretable NLG Evaluation
The evaluation of natural language generation (NLG) tasks is a significant and longstanding research issue. With the recent emergence of powerful large language models (LLMs), some studies have turned to LLM-based automatic evaluation methods, which demonstrate great potential to become a new evaluation paradigm following traditional string-based and model-based metrics. However, despite the improved performance of existing methods, they still possess some deficiencies, such as dependency on references and limited evaluation flexibility. Therefore, in this paper, we meticulously construct a large-scale NLG evaluation corpus NLG-Eval with human and GPT-4 annotations to alleviate the lack of relevant data in this field. Furthermore, we propose Themis, an LLM dedicated to NLG evaluation, which has been trained with our designed multi-perspective consistency and rating-oriented preference alignment methods. Themis can conduct flexible and interpretable evaluations without references, and it exhibits superior evaluation performance on various NLG tasks, simultaneously generalizing well to unseen tasks and surpassing other evaluation models, including GPT-4.
Knowledge Infused Decoding
Pre-trained language models (LMs) have been shown to memorize a substantial amount of knowledge from the pre-training corpora; however, they are still limited in recalling factually correct knowledge given a certain context. Hence, they tend to suffer from counterfactual or hallucinatory generation when used in knowledge-intensive natural language generation (NLG) tasks. Recent remedies to this problem focus on modifying either the pre-training or task fine-tuning objectives to incorporate knowledge, which normally require additional costly training or architecture modification of LMs for practical applications. We present Knowledge Infused Decoding (KID) -- a novel decoding algorithm for generative LMs, which dynamically infuses external knowledge into each step of the LM decoding. Specifically, we maintain a local knowledge memory based on the current context, interacting with a dynamically created external knowledge trie, and continuously update the local memory as a knowledge-aware constraint to guide decoding via reinforcement learning. On six diverse knowledge-intensive NLG tasks, task-agnostic LMs (e.g., GPT-2 and BART) armed with KID outperform many task-optimized state-of-the-art models, and show particularly strong performance in few-shot scenarios over seven related knowledge-infusion techniques. Human evaluation confirms KID's ability to generate more relevant and factual language for the input context when compared with multiple baselines. Finally, KID also alleviates exposure bias and provides stable generation quality when generating longer sequences. Code for KID is available at https://github.com/microsoft/KID.
OCNLI: Original Chinese Natural Language Inference
Despite the tremendous recent progress on natural language inference (NLI), driven largely by large-scale investment in new datasets (e.g., SNLI, MNLI) and advances in modeling, most progress has been limited to English due to a lack of reliable datasets for most of the world's languages. In this paper, we present the first large-scale NLI dataset (consisting of ~56,000 annotated sentence pairs) for Chinese called the Original Chinese Natural Language Inference dataset (OCNLI). Unlike recent attempts at extending NLI to other languages, our dataset does not rely on any automatic translation or non-expert annotation. Instead, we elicit annotations from native speakers specializing in linguistics. We follow closely the annotation protocol used for MNLI, but create new strategies for eliciting diverse hypotheses. We establish several baseline results on our dataset using state-of-the-art pre-trained models for Chinese, and find even the best performing models to be far outpaced by human performance (~12% absolute performance gap), making it a challenging new resource that we hope will help to accelerate progress in Chinese NLU. To the best of our knowledge, this is the first human-elicited MNLI-style corpus for a non-English language.
JobBERT: Understanding Job Titles through Skills
Job titles form a cornerstone of today's human resources (HR) processes. Within online recruitment, they allow candidates to understand the contents of a vacancy at a glance, while internal HR departments use them to organize and structure many of their processes. As job titles are a compact, convenient, and readily available data source, modeling them with high accuracy can greatly benefit many HR tech applications. In this paper, we propose a neural representation model for job titles, by augmenting a pre-trained language model with co-occurrence information from skill labels extracted from vacancies. Our JobBERT method leads to considerable improvements compared to using generic sentence encoders, for the task of job title normalization, for which we release a new evaluation benchmark.
IndoNLI: A Natural Language Inference Dataset for Indonesian
We present IndoNLI, the first human-elicited NLI dataset for Indonesian. We adapt the data collection protocol for MNLI and collect nearly 18K sentence pairs annotated by crowd workers and experts. The expert-annotated data is used exclusively as a test set. It is designed to provide a challenging test-bed for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural changes, idioms, or temporal and spatial reasoning. Experiment results show that XLM-R outperforms other pre-trained models in our data. The best performance on the expert-annotated data is still far below human performance (13.4% accuracy gap), suggesting that this test set is especially challenging. Furthermore, our analysis shows that our expert-annotated data is more diverse and contains fewer annotation artifacts than the crowd-annotated data. We hope this dataset can help accelerate progress in Indonesian NLP research.
VLUE: A New Benchmark and Multi-task Knowledge Transfer Learning for Vietnamese Natural Language Understanding
The success of Natural Language Understanding (NLU) benchmarks in various languages, such as GLUE for English, CLUE for Chinese, KLUE for Korean, and IndoNLU for Indonesian, has facilitated the evaluation of new NLU models across a wide range of tasks. To establish a standardized set of benchmarks for Vietnamese NLU, we introduce the first Vietnamese Language Understanding Evaluation (VLUE) benchmark. The VLUE benchmark encompasses five datasets covering different NLU tasks, including text classification, span extraction, and natural language understanding. To provide an insightful overview of the current state of Vietnamese NLU, we then evaluate seven state-of-the-art pre-trained models, including both multilingual and Vietnamese monolingual models, on our proposed VLUE benchmark. Furthermore, we present CafeBERT, a new state-of-the-art pre-trained model that achieves superior results across all tasks in the VLUE benchmark. Our model combines the proficiency of a multilingual pre-trained model with Vietnamese linguistic knowledge. CafeBERT is developed based on the XLM-RoBERTa model, with an additional pretraining step utilizing a significant amount of Vietnamese textual data to enhance its adaptation to the Vietnamese language. For the purpose of future research, CafeBERT is made publicly available for research purposes.
NT5?! Training T5 to Perform Numerical Reasoning
Numerical reasoning over text (NRoT) presents unique challenges that are not well addressed by existing pre-training objectives. We explore five sequential training schedules that adapt a pre-trained T5 model for NRoT. Our final model is adapted from T5, but further pre-trained on three datasets designed to strengthen skills necessary for NRoT and general reading comprehension before being fine-tuned on the Discrete Reasoning over Text (DROP) dataset. The training improves DROP's adjusted F1 performance (a numeracy-focused score) from 45.90 to 70.83. Our model closes in on GenBERT (72.4), a custom BERT-Base model using the same datasets with significantly more parameters. We show that training the T5 multitasking framework with multiple numerical reasoning datasets of increasing difficulty, good performance on DROP can be achieved without manually engineering partitioned functionality between distributed and symbol modules.
NLLG Quarterly arXiv Report 09/24: What are the most influential current AI Papers?
The NLLG (Natural Language Learning & Generation) arXiv reports assist in navigating the rapidly evolving landscape of NLP and AI research across cs.CL, cs.CV, cs.AI, and cs.LG categories. This fourth installment captures a transformative period in AI history - from January 1, 2023, following ChatGPT's debut, through September 30, 2024. Our analysis reveals substantial new developments in the field - with 45% of the top 40 most-cited papers being new entries since our last report eight months ago and offers insights into emerging trends and major breakthroughs, such as novel multimodal architectures, including diffusion and state space models. Natural Language Processing (NLP; cs.CL) remains the dominant main category in the list of our top-40 papers but its dominance is on the decline in favor of Computer vision (cs.CV) and general machine learning (cs.LG). This report also presents novel findings on the integration of generative AI in academic writing, documenting its increasing adoption since 2022 while revealing an intriguing pattern: top-cited papers show notably fewer markers of AI-generated content compared to random samples. Furthermore, we track the evolution of AI-associated language, identifying declining trends in previously common indicators such as "delve".
Understanding the Effectiveness of Very Large Language Models on Dialog Evaluation
Language models have steadily increased in size over the past few years. They achieve a high level of performance on various natural language processing (NLP) tasks such as question answering and summarization. Large language models (LLMs) have been used for generation and can now output human-like text. Due to this, there are other downstream tasks in the realm of dialog that can now harness the LLMs' language understanding capabilities. Dialog evaluation is one task that this paper will explore. It concentrates on prompting with LLMs: BLOOM, OPT, GPT-3, Flan-T5, InstructDial and TNLGv2. The paper shows that the choice of datasets used for training a model contributes to how well it performs on a task as well as on how the prompt should be structured. Specifically, the more diverse and relevant the group of datasets that a model is trained on, the better dialog evaluation performs. This paper also investigates how the number of examples in the prompt and the type of example selection used affect the model's performance.
Template Guided Text Generation for Task-Oriented Dialogue
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.
Safety Alignment in NLP Tasks: Weakly Aligned Summarization as an In-Context Attack
Recent developments in balancing the usefulness and safety of Large Language Models (LLMs) have raised a critical question: Are mainstream NLP tasks adequately aligned with safety consideration? Our study, focusing on safety-sensitive documents obtained through adversarial attacks, reveals significant disparities in the safety alignment of various NLP tasks. For instance, LLMs can effectively summarize malicious long documents but often refuse to translate them. This discrepancy highlights a previously unidentified vulnerability: attacks exploiting tasks with weaker safety alignment, like summarization, can potentially compromise the integraty of tasks traditionally deemed more robust, such as translation and question-answering (QA). Moreover, the concurrent use of multiple NLP tasks with lesser safety alignment increases the risk of LLMs inadvertently processing harmful content. We demonstrate these vulnerabilities in various safety-aligned LLMs, particularly Llama2 models and GPT-4, indicating an urgent need for strengthening safety alignments across a broad spectrum of NLP tasks.
A Collection of Question Answering Datasets for Norwegian
This paper introduces a new suite of question answering datasets for Norwegian; NorOpenBookQA, NorCommonSenseQA, NorTruthfulQA, and NRK-Quiz-QA. The data covers a wide range of skills and knowledge domains, including world knowledge, commonsense reasoning, truthfulness, and knowledge about Norway. Covering both of the written standards of Norwegian - Bokm{\aa}l and Nynorsk - our datasets comprise over 10k question-answer pairs, created by native speakers. We detail our dataset creation approach and present the results of evaluating 11 language models (LMs) in zero- and few-shot regimes. Most LMs perform better in Bokm{\aa}l than Nynorsk, struggle most with commonsense reasoning, and are often untruthful in generating answers to questions. All our datasets and annotation materials are publicly available.
Controlled Text Generation for Large Language Model with Dynamic Attribute Graphs
Controlled Text Generation (CTG) aims to produce texts that exhibit specific desired attributes. In this study, we introduce a pluggable CTG framework for Large Language Models (LLMs) named Dynamic Attribute Graphs-based controlled text generation (DATG). This framework utilizes an attribute scorer to evaluate the attributes of sentences generated by LLMs and constructs dynamic attribute graphs. DATG modulates the occurrence of key attribute words and key anti-attribute words, achieving effective attribute control without compromising the original capabilities of the model. We conduct experiments across four datasets in two tasks: toxicity mitigation and sentiment transformation, employing five LLMs as foundational models. Our findings highlight a remarkable enhancement in control accuracy, achieving a peak improvement of 19.29% over baseline methods in the most favorable task across four datasets. Additionally, we observe a significant decrease in perplexity, markedly improving text fluency.
Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
Natural Language Processing (NLP) is revolutionising the way both professionals and laypersons operate in the legal field. The considerable potential for NLP in the legal sector, especially in developing computational assistance tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 131 after manual filtering. It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document lengths, complex language, and limited open legal datasets. We provide an overview of NLP tasks specific to legal text, such as Document Summarisation, Named Entity Recognition, Question Answering, Argument Mining, Text Classification, and Judgement Prediction. Furthermore, we analyse both developed legal-oriented language models, and approaches for adapting general-purpose language models to the legal domain. Additionally, we identify sixteen open research challenges, including the detection and mitigation of bias in artificial intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
ESCOXLM-R: Multilingual Taxonomy-driven Pre-training for the Job Market Domain
The increasing number of benchmarks for Natural Language Processing (NLP) tasks in the computational job market domain highlights the demand for methods that can handle job-related tasks such as skill extraction, skill classification, job title classification, and de-identification. While some approaches have been developed that are specific to the job market domain, there is a lack of generalized, multilingual models and benchmarks for these tasks. In this study, we introduce a language model called ESCOXLM-R, based on XLM-R, which uses domain-adaptive pre-training on the European Skills, Competences, Qualifications and Occupations (ESCO) taxonomy, covering 27 languages. The pre-training objectives for ESCOXLM-R include dynamic masked language modeling and a novel additional objective for inducing multilingual taxonomical ESCO relations. We comprehensively evaluate the performance of ESCOXLM-R on 6 sequence labeling and 3 classification tasks in 4 languages and find that it achieves state-of-the-art results on 6 out of 9 datasets. Our analysis reveals that ESCOXLM-R performs better on short spans and outperforms XLM-R on entity-level and surface-level span-F1, likely due to ESCO containing short skill and occupation titles, and encoding information on the entity-level.
DeFine: A Decomposed and Fine-Grained Annotated Dataset for Long-form Article Generation
Long-form article generation (LFAG) presents challenges such as maintaining logical consistency, comprehensive topic coverage, and narrative coherence across extended articles. Existing datasets often lack both the hierarchical structure and fine-grained annotation needed to effectively decompose tasks, resulting in shallow, disorganized article generation. To address these limitations, we introduce DeFine, a Decomposed and Fine-grained annotated dataset for long-form article generation. DeFine is characterized by its hierarchical decomposition strategy and the integration of domain-specific knowledge with multi-level annotations, ensuring granular control and enhanced depth in article generation. To construct the dataset, a multi-agent collaborative pipeline is proposed, which systematically segments the generation process into four parts: Data Miner, Cite Retreiver, Q&A Annotator and Data Cleaner. To validate the effectiveness of DeFine, we designed and tested three LFAG baselines: the web retrieval, the local retrieval, and the grounded reference. We fine-tuned the Qwen2-7b-Instruct model using the DeFine training dataset. The experimental results showed significant improvements in text quality, specifically in topic coverage, depth of information, and content fidelity. Our dataset publicly available to facilitate future research.
Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models
As current training data for Large Language Models (LLMs) are dominated by English corpus, they are English-centric and they present impressive performance on English reasoning tasks.This paper primarily studies English-centric models, but our method could be universal by using the centric language in the dictionary for non-English-centric LLMs. Yet, they usually suffer from lower performance in other languages. There are about 7,000 languages over the world, and many are low-resourced on English-centric LLMs. For the sake of people who primarily speak these languages, it is especially urgent to enable our LLMs in those languages. Model training is usually effective, but computationally expensive and requires experienced NLP practitioners. This paper presents a novel and simple yet effective method called Dictionary Insertion Prompting (DIP). When providing a non-English prompt, DIP looks up a word dictionary and inserts words' English counterparts into the prompt for LLMs. It then enables better translation into English and better English model thinking steps which leads to obviously better results. We experiment with about 200 languages from FLORES-200. Since there are no adequate datasets, we use the NLLB translator to create synthetic multilingual benchmarks from the existing 4 English reasoning benchmarks such as GSM8K and AQuA. Despite the simplicity and computationally lightweight, we surprisingly found the effectiveness of DIP on math and commonsense reasoning tasks on multiple open-source and close-source LLMs.Our dictionaries, code, and synthetic benchmarks will be open-sourced to facilitate future research.
Knowledge Graph Based Synthetic Corpus Generation for Knowledge-Enhanced Language Model Pre-training
Prior work on Data-To-Text Generation, the task of converting knowledge graph (KG) triples into natural text, focused on domain-specific benchmark datasets. In this paper, however, we verbalize the entire English Wikidata KG, and discuss the unique challenges associated with a broad, open-domain, large-scale verbalization. We further show that verbalizing a comprehensive, encyclopedic KG like Wikidata can be used to integrate structured KGs and natural language corpora. In contrast to the many architectures that have been developed to integrate these two sources, our approach converts the KG into natural text, allowing it to be seamlessly integrated into existing language models. It carries the further advantages of improved factual accuracy and reduced toxicity in the resulting language model. We evaluate this approach by augmenting the retrieval corpus in a retrieval language model and showing significant improvements on the knowledge intensive tasks of open domain QA and the LAMA knowledge probe.
Cheetah: Natural Language Generation for 517 African Languages
Low-resource African languages pose unique challenges for natural language processing (NLP) tasks, including natural language generation (NLG). In this paper, we develop Cheetah, a massively multilingual NLG language model for African languages. Cheetah supports 517 African languages and language varieties, allowing us to address the scarcity of NLG resources and provide a solution to foster linguistic diversity. We demonstrate the effectiveness of Cheetah through comprehensive evaluations across seven generation downstream tasks. In five of the seven tasks, Cheetah significantly outperforms other models, showcasing its remarkable performance for generating coherent and contextually appropriate text in a wide range of African languages. We additionally conduct a detailed human evaluation to delve deeper into the linguistic capabilities of Cheetah. The introduction of Cheetah has far-reaching benefits for linguistic diversity. By leveraging pretrained models and adapting them to specific languages, our approach facilitates the development of practical NLG applications for African communities. The findings of this study contribute to advancing NLP research in low-resource settings, enabling greater accessibility and inclusion for African languages in a rapidly expanding digital landscape. We will publicly release our models for research.
SemEval 2023 Task 6: LegalEval - Understanding Legal Texts
In populous countries, pending legal cases have been growing exponentially. There is a need for developing NLP-based techniques for processing and automatically understanding legal documents. To promote research in the area of Legal NLP we organized the shared task LegalEval - Understanding Legal Texts at SemEval 2023. LegalEval task has three sub-tasks: Task-A (Rhetorical Roles Labeling) is about automatically structuring legal documents into semantically coherent units, Task-B (Legal Named Entity Recognition) deals with identifying relevant entities in a legal document and Task-C (Court Judgement Prediction with Explanation) explores the possibility of automatically predicting the outcome of a legal case along with providing an explanation for the prediction. In total 26 teams (approx. 100 participants spread across the world) submitted systems paper. In each of the sub-tasks, the proposed systems outperformed the baselines; however, there is a lot of scope for improvement. This paper describes the tasks, and analyzes techniques proposed by various teams.
Controllable Text Generation with Language Constraints
We consider the task of text generation in language models with constraints specified in natural language. To this end, we first create a challenging benchmark Cognac that provides as input to the model a topic with example text, along with a constraint on text to be avoided. Unlike prior work, our benchmark contains knowledge-intensive constraints sourced from databases like Wordnet and Wikidata, which allows for straightforward evaluation while striking a balance between broad attribute-level and narrow lexical-level controls. We find that even state-of-the-art language models like GPT-3 fail often on this task, and propose a solution to leverage a language model's own internal knowledge to guide generation. Our method, called CognacGen, first queries the language model to generate guidance terms for a specified topic or constraint, and uses the guidance to modify the model's token generation probabilities. We propose three forms of guidance (binary verifier, top-k tokens, textual example), and employ prefix-tuning approaches to distill the guidance to tackle diverse natural language constraints. Through extensive empirical evaluations, we demonstrate that CognacGen can successfully generalize to unseen instructions and outperform competitive baselines in generating constraint conforming text.
LOLA -- An Open-Source Massively Multilingual Large Language Model
This paper presents LOLA, a massively multilingual large language model trained on more than 160 languages using a sparse Mixture-of-Experts Transformer architecture. Our architectural and implementation choices address the challenge of harnessing linguistic diversity while maintaining efficiency and avoiding the common pitfalls of multilinguality. Our analysis of the evaluation results shows competitive performance in natural language generation and understanding tasks. Additionally, we demonstrate how the learned expert-routing mechanism exploits implicit phylogenetic linguistic patterns to potentially alleviate the curse of multilinguality. We provide an in-depth look at the training process, an analysis of the datasets, and a balanced exploration of the model's strengths and limitations. As an open-source model, LOLA promotes reproducibility and serves as a robust foundation for future research. Our findings enable the development of compute-efficient multilingual models with strong, scalable performance across languages.
ZEN 2.0: Continue Training and Adaption for N-gram Enhanced Text Encoders
Pre-trained text encoders have drawn sustaining attention in natural language processing (NLP) and shown their capability in obtaining promising results in different tasks. Recent studies illustrated that external self-supervised signals (or knowledge extracted by unsupervised learning, such as n-grams) are beneficial to provide useful semantic evidence for understanding languages such as Chinese, so as to improve the performance on various downstream tasks accordingly. To further enhance the encoders, in this paper, we propose to pre-train n-gram-enhanced encoders with a large volume of data and advanced techniques for training. Moreover, we try to extend the encoder to different languages as well as different domains, where it is confirmed that the same architecture is applicable to these varying circumstances and new state-of-the-art performance is observed from a long list of NLP tasks across languages and domains.
GKG-LLM: A Unified Framework for Generalized Knowledge Graph Construction
The construction of Generalized Knowledge Graph (GKG), including knowledge graph, event knowledge graph and commonsense knowledge graph, is fundamental for various natural language processing tasks. Current studies typically construct these types of graph separately, overlooking holistic insights and potential unification that could be beneficial in computing resources and usage perspectives. However, a key challenge in developing a unified framework for GKG is obstacles arising from task-specific differences. In this study, we propose a unified framework for constructing generalized knowledge graphs to address this challenge. First, we collect data from 15 sub-tasks in 29 datasets across the three types of graphs, categorizing them into in-sample, counter-task, and out-of-distribution (OOD) data. Then, we propose a three-stage curriculum learning fine-tuning framework, by iteratively injecting knowledge from the three types of graphs into the Large Language Models. Extensive experiments show that our proposed model improves the construction of all three graph types across in-domain, OOD and counter-task data.
XNLI 2.0: Improving XNLI dataset and performance on Cross Lingual Understanding (XLU)
Natural Language Processing systems are heavily dependent on the availability of annotated data to train practical models. Primarily, models are trained on English datasets. In recent times, significant advances have been made in multilingual understanding due to the steeply increasing necessity of working in different languages. One of the points that stands out is that since there are now so many pre-trained multilingual models, we can utilize them for cross-lingual understanding tasks. Using cross-lingual understanding and Natural Language Inference, it is possible to train models whose applications extend beyond the training language. We can leverage the power of machine translation to skip the tiresome part of translating datasets from one language to another. In this work, we focus on improving the original XNLI dataset by re-translating the MNLI dataset in all of the 14 different languages present in XNLI, including the test and dev sets of XNLI using Google Translate. We also perform experiments by training models in all 15 languages and analyzing their performance on the task of natural language inference. We then expand our boundary to investigate if we could improve performance in low-resource languages such as Swahili and Urdu by training models in languages other than English.
Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings
Large language models (LLMs) have garnered significant interest in natural language processing (NLP), particularly their remarkable performance in various downstream tasks in resource-rich languages. Recent studies have highlighted the limitations of LLMs in low-resource languages, primarily focusing on binary classification tasks and giving minimal attention to South Asian languages. These limitations are primarily attributed to constraints such as dataset scarcity, computational costs, and research gaps specific to low-resource languages. To address this gap, we present datasets for sentiment and hate speech tasks by translating from English to Bangla, Hindi, and Urdu, facilitating research in low-resource language processing. Further, we comprehensively examine zero-shot learning using multiple LLMs in English and widely spoken South Asian languages. Our findings indicate that GPT-4 consistently outperforms Llama 2 and Gemini, with English consistently demonstrating superior performance across diverse tasks compared to low-resource languages. Furthermore, our analysis reveals that natural language inference (NLI) exhibits the highest performance among the evaluated tasks, with GPT-4 demonstrating superior capabilities.
Leveraging Large Language Models for Enhanced NLP Task Performance through Knowledge Distillation and Optimized Training Strategies
The integration of Large Language Models (LLMs) like GPT-4 into traditional Natural Language Processing (NLP) tasks has opened new avenues for enhancing model performance while reducing the reliance on extensive human annotations. This paper presents a novel approach that leverages the Chain of Thought (CoT) prompting technique to distill knowledge from GPT-4, subsequently applying it to improve the efficiency and effectiveness of a smaller model, BERT, on Named Entity Recognition (NER) tasks. Our method involves a two-phase training process: initially employing GPT-4 annotated data for pre-training and then refining the model with a combination of distilled and original human-annotated data. The results demonstrate that our mixed-training strategy significantly outperforms models trained solely on human annotations, achieving superior F1-scores and showcasing a cost-effective solution for resource-limited or closed-network settings. The study also discusses the challenges encountered, such as LLM output variability and the tendency towards hallucinations, proposing future work directions to enhance prompt design and annotation selection. Our findings indicate a promising synergy between LLM insights and traditional NLP techniques, paving the way for more accessible and robust NLP applications.
Graph Language Models
While Language Models have become workhorses for NLP, their interplay with textual knowledge graphs (KGs) - structured memories of general or domain knowledge - is actively researched. Current embedding methodologies for such graphs typically either (i) linearize graphs for embedding them using sequential Language Models (LMs), which underutilize structural information, or (ii) use Graph Neural Networks (GNNs) to preserve graph structure, while GNNs cannot represent textual features as well as a pre-trained LM could. In this work we introduce a novel language model, the Graph Language Model (GLM), that integrates the strengths of both approaches, while mitigating their weaknesses. The GLM parameters are initialized from a pretrained LM, to facilitate nuanced understanding of individual concepts and triplets. Simultaneously, its architectural design incorporates graph biases, thereby promoting effective knowledge distribution within the graph. Empirical evaluations on relation classification tasks on ConceptNet subgraphs reveal that GLM embeddings surpass both LM- and GNN-based baselines in supervised and zero-shot settings.
Towards Leaving No Indic Language Behind: Building Monolingual Corpora, Benchmark and Models for Indic Languages
Building Natural Language Understanding (NLU) capabilities for Indic languages, which have a collective speaker base of more than one billion speakers is absolutely crucial. In this work, we aim to improve the NLU capabilities of Indic languages by making contributions along 3 important axes (i) monolingual corpora (ii) NLU testsets (iii) multilingual LLMs focusing on Indic languages. Specifically, we curate the largest monolingual corpora, IndicCorp, with 20.9B tokens covering 24 languages from 4 language families - a 2.3x increase over prior work, while supporting 12 additional languages. Next, we create a human-supervised benchmark, IndicXTREME, consisting of nine diverse NLU tasks covering 20 languages. Across languages and tasks, IndicXTREME contains a total of 105 evaluation sets, of which 52 are new contributions to the literature. To the best of our knowledge, this is the first effort towards creating a standard benchmark for Indic languages that aims to test the multilingual zero-shot capabilities of pretrained language models. Finally, we train IndicBERT v2, a state-of-the-art model supporting all the languages. Averaged across languages and tasks, the model achieves an absolute improvement of 2 points over a strong baseline. The data and models are available at https://github.com/AI4Bharat/IndicBERT.
CGMH: Constrained Sentence Generation by Metropolis-Hastings Sampling
In real-world applications of natural language generation, there are often constraints on the target sentences in addition to fluency and naturalness requirements. Existing language generation techniques are usually based on recurrent neural networks (RNNs). However, it is non-trivial to impose constraints on RNNs while maintaining generation quality, since RNNs generate sentences sequentially (or with beam search) from the first word to the last. In this paper, we propose CGMH, a novel approach using Metropolis-Hastings sampling for constrained sentence generation. CGMH allows complicated constraints such as the occurrence of multiple keywords in the target sentences, which cannot be handled in traditional RNN-based approaches. Moreover, CGMH works in the inference stage, and does not require parallel corpora for training. We evaluate our method on a variety of tasks, including keywords-to-sentence generation, unsupervised sentence paraphrasing, and unsupervised sentence error correction. CGMH achieves high performance compared with previous supervised methods for sentence generation. Our code is released at https://github.com/NingMiao/CGMH
Aligning Large Language Models with Human: A Survey
Large Language Models (LLMs) trained on extensive textual corpora have emerged as leading solutions for a broad array of Natural Language Processing (NLP) tasks. Despite their notable performance, these models are prone to certain limitations such as misunderstanding human instructions, generating potentially biased content, or factually incorrect (hallucinated) information. Hence, aligning LLMs with human expectations has become an active area of interest within the research community. This survey presents a comprehensive overview of these alignment technologies, including the following aspects. (1) Data collection: the methods for effectively collecting high-quality instructions for LLM alignment, including the use of NLP benchmarks, human annotations, and leveraging strong LLMs. (2) Training methodologies: a detailed review of the prevailing training methods employed for LLM alignment. Our exploration encompasses Supervised Fine-tuning, both Online and Offline human preference training, along with parameter-efficient training mechanisms. (3) Model Evaluation: the methods for evaluating the effectiveness of these human-aligned LLMs, presenting a multifaceted approach towards their assessment. In conclusion, we collate and distill our findings, shedding light on several promising future research avenues in the field. This survey, therefore, serves as a valuable resource for anyone invested in understanding and advancing the alignment of LLMs to better suit human-oriented tasks and expectations. An associated GitHub link collecting the latest papers is available at https://github.com/GaryYufei/AlignLLMHumanSurvey.
BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning
Current pre-trained language models rely on large datasets for achieving state-of-the-art performance. However, past research has shown that not all examples in a dataset are equally important during training. In fact, it is sometimes possible to prune a considerable fraction of the training set while maintaining the test performance. Established on standard vision benchmarks, two gradient-based scoring metrics for finding important examples are GraNd and its estimated version, EL2N. In this work, we employ these two metrics for the first time in NLP. We demonstrate that these metrics need to be computed after at least one epoch of fine-tuning and they are not reliable in early steps. Furthermore, we show that by pruning a small portion of the examples with the highest GraNd/EL2N scores, we can not only preserve the test accuracy, but also surpass it. This paper details adjustments and implementation choices which enable GraNd and EL2N to be applied to NLP.
Generative Judge for Evaluating Alignment
The rapid development of Large Language Models (LLMs) has substantially expanded the range of tasks they can address. In the field of Natural Language Processing (NLP), researchers have shifted their focus from conventional NLP tasks (e.g., sequence tagging and parsing) towards tasks that revolve around aligning with human needs (e.g., brainstorming and email writing). This shift in task distribution imposes new requirements on evaluating these aligned models regarding generality (i.e., assessing performance across diverse scenarios), flexibility (i.e., examining under different protocols), and interpretability (i.e., scrutinizing models with explanations). In this paper, we propose a generative judge with 13B parameters, Auto-J, designed to address these challenges. Our model is trained on user queries and LLM-generated responses under massive real-world scenarios and accommodates diverse evaluation protocols (e.g., pairwise response comparison and single-response evaluation) with well-structured natural language critiques. To demonstrate the efficacy of our approach, we construct a new testbed covering 58 different scenarios. Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models, by a large margin. We also provide detailed analysis and case studies to further reveal the potential of our method and make a variety of resources public at https://github.com/GAIR-NLP/auto-j.
A Decade of Knowledge Graphs in Natural Language Processing: A Survey
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
YuLan: An Open-source Large Language Model
Large language models (LLMs) have become the foundation of many applications, leveraging their extensive capabilities in processing and understanding natural language. While many open-source LLMs have been released with technical reports, the lack of training details hinders further research and development. This paper presents the development of YuLan, a series of open-source LLMs with 12 billion parameters. The base model of YuLan is pre-trained on approximately 1.7T tokens derived from a diverse corpus, including massive English, Chinese, and multilingual texts. We design a three-stage pre-training method to enhance YuLan's overall capabilities. Subsequent phases of training incorporate instruction-tuning and human alignment, employing a substantial volume of high-quality synthesized data. To facilitate the learning of complex and long-tail knowledge, we devise a curriculum-learning framework throughout across these stages, which helps LLMs learn knowledge in an easy-to-hard manner. YuLan's training is finished on Jan, 2024 and has achieved performance on par with state-of-the-art LLMs across various English and Chinese benchmarks. This paper outlines a comprehensive technical roadmap for developing LLMs from scratch. Our model and codes are available at https://github.com/RUC-GSAI/YuLan-Chat.
Learning from others' mistakes: Avoiding dataset biases without modeling them
State-of-the-art natural language processing (NLP) models often learn to model dataset biases and surface form correlations instead of features that target the intended underlying task. Previous work has demonstrated effective methods to circumvent these issues when knowledge of the bias is available. We consider cases where the bias issues may not be explicitly identified, and show a method for training models that learn to ignore these problematic correlations. Our approach relies on the observation that models with limited capacity primarily learn to exploit biases in the dataset. We can leverage the errors of such limited capacity models to train a more robust model in a product of experts, thus bypassing the need to hand-craft a biased model. We show the effectiveness of this method to retain improvements in out-of-distribution settings even if no particular bias is targeted by the biased model.
Large Language Models in the Workplace: A Case Study on Prompt Engineering for Job Type Classification
This case study investigates the task of job classification in a real-world setting, where the goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position. We explore multiple approaches to text classification, including supervised approaches such as traditional models like Support Vector Machines (SVMs) and state-of-the-art deep learning methods such as DeBERTa. We compare them with Large Language Models (LLMs) used in both few-shot and zero-shot classification settings. To accomplish this task, we employ prompt engineering, a technique that involves designing prompts to guide the LLMs towards the desired output. Specifically, we evaluate the performance of two commercially available state-of-the-art GPT-3.5-based language models, text-davinci-003 and gpt-3.5-turbo. We also conduct a detailed analysis of the impact of different aspects of prompt engineering on the model's performance. Our results show that, with a well-designed prompt, a zero-shot gpt-3.5-turbo classifier outperforms all other models, achieving a 6% increase in Precision@95% Recall compared to the best supervised approach. Furthermore, we observe that the wording of the prompt is a critical factor in eliciting the appropriate "reasoning" in the model, and that seemingly minor aspects of the prompt significantly affect the model's performance.
Would You Ask it that Way? Measuring and Improving Question Naturalness for Knowledge Graph Question Answering
Knowledge graph question answering (KGQA) facilitates information access by leveraging structured data without requiring formal query language expertise from the user. Instead, users can express their information needs by simply asking their questions in natural language (NL). Datasets used to train KGQA models that would provide such a service are expensive to construct, both in terms of expert and crowdsourced labor. Typically, crowdsourced labor is used to improve template-based pseudo-natural questions generated from formal queries. However, the resulting datasets often fall short of representing genuinely natural and fluent language. In the present work, we investigate ways to characterize and remedy these shortcomings. We create the IQN-KGQA test collection by sampling questions from existing KGQA datasets and evaluating them with regards to five different aspects of naturalness. Then, the questions are rewritten to improve their fluency. Finally, the performance of existing KGQA models is compared on the original and rewritten versions of the NL questions. We find that some KGQA systems fare worse when presented with more realistic formulations of NL questions. The IQN-KGQA test collection is a resource to help evaluate KGQA systems in a more realistic setting. The construction of this test collection also sheds light on the challenges of constructing large-scale KGQA datasets with genuinely NL questions.
LLMeBench: A Flexible Framework for Accelerating LLMs Benchmarking
The recent development and success of Large Language Models (LLMs) necessitate an evaluation of their performance across diverse NLP tasks in different languages. Although several frameworks have been developed and made publicly available, their customization capabilities for specific tasks and datasets are often complex for different users. In this study, we introduce the LLMeBench framework. Initially developed to evaluate Arabic NLP tasks using OpenAI's GPT and BLOOM models; it can be seamlessly customized for any NLP task and model, regardless of language. The framework also features zero- and few-shot learning settings. A new custom dataset can be added in less than 10 minutes, and users can use their own model API keys to evaluate the task at hand. The developed framework has been already tested on 31 unique NLP tasks using 53 publicly available datasets within 90 experimental setups, involving approximately 296K data points. We plan to open-source the framework for the community (https://github.com/qcri/LLMeBench/). A video demonstrating the framework is available online (https://youtu.be/FkQn4UjYA0s).
Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis
Is it possible to build a general and automatic natural language generation (NLG) evaluation metric? Existing learned metrics either perform unsatisfactorily or are restricted to tasks where large human rating data is already available. We introduce SESCORE, a model-based metric that is highly correlated with human judgements without requiring human annotation, by utilizing a novel, iterative error synthesis and severity scoring pipeline. This pipeline applies a series of plausible errors to raw text and assigns severity labels by simulating human judgements with entailment. We evaluate SESCORE against existing metrics by comparing how their scores correlate with human ratings. SESCORE outperforms all prior unsupervised metrics on multiple diverse NLG tasks including machine translation, image captioning, and WebNLG text generation. For WMT 20/21 En-De and Zh-En, SESCORE improve the average Kendall correlation with human judgement from 0.154 to 0.195. SESCORE even achieves comparable performance to the best supervised metric COMET, despite receiving no human-annotated training data.
LaMDA: Language Models for Dialog Applications
We present LaMDA: Language Models for Dialog Applications. LaMDA is a family of Transformer-based neural language models specialized for dialog, which have up to 137B parameters and are pre-trained on 1.56T words of public dialog data and web text. While model scaling alone can improve quality, it shows less improvements on safety and factual grounding. We demonstrate that fine-tuning with annotated data and enabling the model to consult external knowledge sources can lead to significant improvements towards the two key challenges of safety and factual grounding. The first challenge, safety, involves ensuring that the model's responses are consistent with a set of human values, such as preventing harmful suggestions and unfair bias. We quantify safety using a metric based on an illustrative set of human values, and we find that filtering candidate responses using a LaMDA classifier fine-tuned with a small amount of crowdworker-annotated data offers a promising approach to improving model safety. The second challenge, factual grounding, involves enabling the model to consult external knowledge sources, such as an information retrieval system, a language translator, and a calculator. We quantify factuality using a groundedness metric, and we find that our approach enables the model to generate responses grounded in known sources, rather than responses that merely sound plausible. Finally, we explore the use of LaMDA in the domains of education and content recommendations, and analyze their helpfulness and role consistency.
SnakModel: Lessons Learned from Training an Open Danish Large Language Model
We present SnakModel, a Danish large language model (LLM) based on Llama2-7B, which we continuously pre-train on 13.6B Danish words, and further tune on 3.7M Danish instructions. As best practices for creating LLMs for smaller language communities have yet to be established, we examine the effects of early modeling and training decisions on downstream performance throughout the entire training pipeline, including (1) the creation of a strictly curated corpus of Danish text from diverse sources; (2) the language modeling and instruction-tuning training process itself, including the analysis of intermediate training dynamics, and ablations across different hyperparameters; (3) an evaluation on eight language and culturally-specific tasks. Across these experiments SnakModel achieves the highest overall performance, outperforming multiple contemporary Llama2-7B-based models. By making SnakModel, the majority of our pre-training corpus, and the associated code available under open licenses, we hope to foster further research and development in Danish Natural Language Processing, and establish training guidelines for languages with similar resource constraints.
Symbol-LLM: Towards Foundational Symbol-centric Interface For Large Language Models
Large Language Models (LLMs) have greatly propelled the progress in natural language(NL)-centric tasks based on NL interface. However, the NL form is not enough for world knowledge. Current works focus on this question by injecting specific symbolic knowledge into LLM, which ignore two critical challenges: the interrelations between various symbols and the balance between symbolic-centric and NL-centric capabilities. In this work, we tackle these challenges from both a data and framework perspective and introduce Symbol-LLM series models. First, we collect 34 symbolic tasks, covering ~20 different forms, which are unified to capture symbol interrelations. Then, a two-stage tuning framework succeeds in injecting symbolic knowledge without loss of the generality ability. Extensive experiments on both symbol- and NL-centric tasks demonstrate the balanced and superior performances of Symbol-LLM series models.
A Taxonomy of Transcendence
Although language models are trained to mimic humans, the resulting systems display capabilities beyond the scope of any one person. To understand this phenomenon, we use a controlled setting to identify properties of the training data that lead a model to transcend the performance of its data sources. We build on previous work to outline three modes of transcendence, which we call skill denoising, skill selection, and skill generalization. We then introduce a knowledge graph-based setting in which simulated experts generate data based on their individual expertise. We highlight several aspects of data diversity that help to enable the model's transcendent capabilities. Additionally, our data generation setting offers a controlled testbed that we hope is valuable for future research in the area.
GR-NLP-TOOLKIT: An Open-Source NLP Toolkit for Modern Greek
We present GR-NLP-TOOLKIT, an open-source natural language processing (NLP) toolkit developed specifically for modern Greek. The toolkit provides state-of-the-art performance in five core NLP tasks, namely part-of-speech tagging, morphological tagging, dependency parsing, named entity recognition, and Greeklishto-Greek transliteration. The toolkit is based on pre-trained Transformers, it is freely available, and can be easily installed in Python (pip install gr-nlp-toolkit). It is also accessible through a demonstration platform on HuggingFace, along with a publicly available API for non-commercial use. We discuss the functionality provided for each task, the underlying methods, experiments against comparable open-source toolkits, and future possible enhancements. The toolkit is available at: https://github.com/nlpaueb/gr-nlp-toolkit
Prompt2Model: Generating Deployable Models from Natural Language Instructions
Large language models (LLMs) enable system builders today to create competent NLP systems through prompting, where they only need to describe the task in natural language and provide a few examples. However, in other ways, LLMs are a step backward from traditional special-purpose NLP models; they require extensive computational resources for deployment and can be gated behind APIs. In this paper, we propose Prompt2Model, a general-purpose method that takes a natural language task description like the prompts provided to LLMs, and uses it to train a special-purpose model that is conducive to deployment. This is done through a multi-step process of retrieval of existing datasets and pretrained models, dataset generation using LLMs, and supervised fine-tuning on these retrieved and generated datasets. Over three tasks, we demonstrate that given the same few-shot prompt as input, Prompt2Model trains models that outperform the results of a strong LLM, gpt-3.5-turbo, by an average of 20% while being up to 700 times smaller. We also show that this data can be used to obtain reliable performance estimates of model performance, enabling model developers to assess model reliability before deployment. Prompt2Model is available open-source at https://github.com/neulab/prompt2model.
Beyond Decoder-only: Large Language Models Can be Good Encoders for Machine Translation
The field of neural machine translation (NMT) has changed with the advent of large language models (LLMs). Much of the recent emphasis in natural language processing (NLP) has been on modeling machine translation and many other problems using a single pre-trained Transformer decoder, while encoder-decoder architectures, which were the standard in earlier NMT models, have received relatively less attention. In this paper, we explore translation models that are universal, efficient, and easy to optimize, by marrying the world of LLMs with the world of NMT. We apply LLMs to NMT encoding and leave the NMT decoder unchanged. We also develop methods for adapting LLMs to work better with the NMT decoder. Furthermore, we construct a new dataset involving multiple tasks to assess how well the machine translation system generalizes across various tasks. Evaluations on the WMT and our datasets show that results using our method match or surpass a range of baselines in terms of translation quality, but achieve 2.4 sim 6.5 times inference speedups and a 75% reduction in the memory footprint of the KV cache. It also demonstrates strong generalization across a variety of translation-related tasks.
Can Models Learn Skill Composition from Examples?
As large language models (LLMs) become increasingly advanced, their ability to exhibit compositional generalization -- the capacity to combine learned skills in novel ways not encountered during training -- has garnered significant attention. This type of generalization, particularly in scenarios beyond training data, is also of great interest in the study of AI safety and alignment. A recent study introduced the SKILL-MIX evaluation, where models are tasked with composing a short paragraph demonstrating the use of a specified k-tuple of language skills. While small models struggled with composing even with k=3, larger models like GPT-4 performed reasonably well with k=5 and 6. In this paper, we employ a setup akin to SKILL-MIX to evaluate the capacity of smaller models to learn compositional generalization from examples. Utilizing a diverse set of language skills -- including rhetorical, literary, reasoning, theory of mind, and common sense -- GPT-4 was used to generate text samples that exhibit random subsets of k skills. Subsequent fine-tuning of 7B and 13B parameter models on these combined skill texts, for increasing values of k, revealed the following findings: (1) Training on combinations of k=2 and 3 skills results in noticeable improvements in the ability to compose texts with k=4 and 5 skills, despite models never having seen such examples during training. (2) When skill categories are split into training and held-out groups, models significantly improve at composing texts with held-out skills during testing despite having only seen training skills during fine-tuning, illustrating the efficacy of the training approach even with previously unseen skills. This study also suggests that incorporating skill-rich (potentially synthetic) text into training can substantially enhance the compositional capabilities of models.
Bitext Mining Using Distilled Sentence Representations for Low-Resource Languages
Scaling multilingual representation learning beyond the hundred most frequent languages is challenging, in particular to cover the long tail of low-resource languages. A promising approach has been to train one-for-all multilingual models capable of cross-lingual transfer, but these models often suffer from insufficient capacity and interference between unrelated languages. Instead, we move away from this approach and focus on training multiple language (family) specific representations, but most prominently enable all languages to still be encoded in the same representational space. To achieve this, we focus on teacher-student training, allowing all encoders to be mutually compatible for bitext mining, and enabling fast learning of new languages. We introduce a new teacher-student training scheme which combines supervised and self-supervised training, allowing encoders to take advantage of monolingual training data, which is valuable in the low-resource setting. Our approach significantly outperforms the original LASER encoder. We study very low-resource languages and handle 50 African languages, many of which are not covered by any other model. For these languages, we train sentence encoders, mine bitexts, and validate the bitexts by training NMT systems.
Multilingual Code-Switching for Zero-Shot Cross-Lingual Intent Prediction and Slot Filling
Predicting user intent and detecting the corresponding slots from text are two key problems in Natural Language Understanding (NLU). In the context of zero-shot learning, this task is typically approached by either using representations from pre-trained multilingual transformers such as mBERT, or by machine translating the source data into the known target language and then fine-tuning. Our work focuses on a particular scenario where the target language is unknown during training. To this goal, we propose a novel method to augment the monolingual source data using multilingual code-switching via random translations to enhance a transformer's language neutrality when fine-tuning it for a downstream task. This method also helps discover novel insights on how code-switching with different language families around the world impact the performance on the target language. Experiments on the benchmark dataset of MultiATIS++ yielded an average improvement of +4.2% in accuracy for intent task and +1.8% in F1 for slot task using our method over the state-of-the-art across 8 different languages. Furthermore, we present an application of our method for crisis informatics using a new human-annotated tweet dataset of slot filling in English and Haitian Creole, collected during Haiti earthquake disaster.
Bonafide at LegalLens 2024 Shared Task: Using Lightweight DeBERTa Based Encoder For Legal Violation Detection and Resolution
In this work, we present two systems -- Named Entity Resolution (NER) and Natural Language Inference (NLI) -- for detecting legal violations within unstructured textual data and for associating these violations with potentially affected individuals, respectively. Both these systems are lightweight DeBERTa based encoders that outperform the LLM baselines. The proposed NER system achieved an F1 score of 60.01\% on Subtask A of the LegalLens challenge, which focuses on identifying violations. The proposed NLI system achieved an F1 score of 84.73\% on Subtask B of the LegalLens challenge, which focuses on resolving these violations by matching them with pre-existing legal complaints of class action cases. Our NER system ranked sixth and NLI system ranked fifth on the LegalLens leaderboard. We release the trained models and inference scripts.
GemmAr: Enhancing LLMs Through Arabic Instruction-Tuning
Large language models (LLMs) have greatly impacted the natural language processing (NLP) field, particularly for the English language. These models have demonstrated capabilities in understanding and generating human-like text. The success of language models largely depends on the availability of high-quality instruction datasets, which consist of detailed task descriptions and corresponding responses that are essential for training the models to address a variety of prompts accurately. However, the availability and quality of these resources vary by language. While models perform well in English, they often need help with languages like Arabic, due to the lack of datasets for fine-tuning Arabic-specific tasks. To address this issue, we introduce InstAr-500k, a new Arabic instruction dataset created by generating and collecting content that covers several domains and instruction types. We assess this dataset by fine-tuning an open-source Gemma-7B model on several downstream tasks to improve its functionality. Based on multiple evaluations, our fine-tuned model achieves excellent performance on several Arabic NLP benchmarks. These outcomes emphasize the effectiveness of our dataset in elevating the capabilities of language models for Arabic. Our instruction dataset bridges the performance gap between English and Arabic language models by providing resources that amplify Arabic NLP development. Building on this foundation, we developed a model, GemmAr-7B-V1, specifically tuned to excel at a wide range of Arabic NLP tasks.
Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models
Clinical natural language processing requires methods that can address domain-specific challenges, such as complex medical terminology and clinical contexts. Recently, large language models (LLMs) have shown promise in this domain. Yet, their direct deployment can lead to privacy issues and are constrained by resources. To address this challenge, we delve into synthetic clinical text generation using LLMs for clinical NLP tasks. We propose an innovative, resource-efficient approach, ClinGen, which infuses knowledge into the process. Our model involves clinical knowledge extraction and context-informed LLM prompting. Both clinical topics and writing styles are drawn from external domain-specific knowledge graphs and LLMs to guide data generation. Our extensive empirical study across 7 clinical NLP tasks and 16 datasets reveals that ClinGen consistently enhances performance across various tasks, effectively aligning the distribution of real datasets and significantly enriching the diversity of generated training instances. We will publish our code and all the generated data in https://github.com/ritaranx/ClinGen.
KIT-19: A Comprehensive Korean Instruction Toolkit on 19 Tasks for Fine-Tuning Korean Large Language Models
Instruction Tuning on Large Language Models is an essential process for model to function well and achieve high performance in specific tasks. Accordingly, in mainstream languages such as English, instruction-based datasets are being constructed and made publicly available. In the case of Korean, publicly available models and datasets all rely on using the output of ChatGPT or translating datasets built in English. In this paper, We introduce KIT-19 as an instruction dataset for the development of LLM in Korean. KIT-19 is a dataset created in an instruction format, comprising 19 existing open-source datasets for Korean NLP tasks. In this paper, we train a Korean Pretrained LLM using KIT-19 to demonstrate its effectiveness. The experimental results show that the model trained on KIT-19 significantly outperforms existing Korean LLMs. Based on the its quality and empirical results, this paper proposes that KIT-19 has the potential to make a substantial contribution to the future improvement of Korean LLMs' performance.
Natural Language Generation for Advertising: A Survey
Natural language generation methods have emerged as effective tools to help advertisers increase the number of online advertisements they produce. This survey entails a review of the research trends on this topic over the past decade, from template-based to extractive and abstractive approaches using neural networks. Additionally, key challenges and directions revealed through the survey, including metric optimization, faithfulness, diversity, multimodality, and the development of benchmark datasets, are discussed.
ChatGPT and Software Testing Education: Promises & Perils
Over the past decade, predictive language modeling for code has proven to be a valuable tool for enabling new forms of automation for developers. More recently, we have seen the advent of general purpose "large language models", based on neural transformer architectures, that have been trained on massive datasets of human written text spanning code and natural language. However, despite the demonstrated representational power of such models, interacting with them has historically been constrained to specific task settings, limiting their general applicability. Many of these limitations were recently overcome with the introduction of ChatGPT, a language model created by OpenAI and trained to operate as a conversational agent, enabling it to answer questions and respond to a wide variety of commands from end users. The introduction of models, such as ChatGPT, has already spurred fervent discussion from educators, ranging from fear that students could use these AI tools to circumvent learning, to excitement about the new types of learning opportunities that they might unlock. However, given the nascent nature of these tools, we currently lack fundamental knowledge related to how well they perform in different educational settings, and the potential promise (or danger) that they might pose to traditional forms of instruction. As such, in this paper, we examine how well ChatGPT performs when tasked with answering common questions in a popular software testing curriculum. Our findings indicate that ChatGPT can provide correct or partially correct answers in 55.6% of cases, provide correct or partially correct explanations of answers in 53.0% of cases, and that prompting the tool in a shared question context leads to a marginally higher rate of correct responses. Based on these findings, we discuss the potential promises and perils related to the use of ChatGPT by students and instructors.
Joint Representations of Text and Knowledge Graphs for Retrieval and Evaluation
A key feature of neural models is that they can produce semantic vector representations of objects (texts, images, speech, etc.) ensuring that similar objects are close to each other in the vector space. While much work has focused on learning representations for other modalities, there are no aligned cross-modal representations for text and knowledge base (KB) elements. One challenge for learning such representations is the lack of parallel data, which we use contrastive training on heuristics-based datasets and data augmentation to overcome, training embedding models on (KB graph, text) pairs. On WebNLG, a cleaner manually crafted dataset, we show that they learn aligned representations suitable for retrieval. We then fine-tune on annotated data to create EREDAT (Ensembled Representations for Evaluation of DAta-to-Text), a similarity metric between English text and KB graphs. EREDAT outperforms or matches state-of-the-art metrics in terms of correlation with human judgments on WebNLG even though, unlike them, it does not require a reference text to compare against.
uOttawa at LegalLens-2024: Transformer-based Classification Experiments
This paper presents the methods used for LegalLens-2024 shared task, which focused on detecting legal violations within unstructured textual data and associating these violations with potentially affected individuals. The shared task included two subtasks: A) Legal Named Entity Recognition (L-NER) and B) Legal Natural Language Inference (L-NLI). For subtask A, we utilized the spaCy library, while for subtask B, we employed a combined model incorporating RoBERTa and CNN. Our results were 86.3% in the L-NER subtask and 88.25% in the L-NLI subtask. Overall, our paper demonstrates the effectiveness of transformer models in addressing complex tasks in the legal domain. The source code for our implementation is publicly available at https://github.com/NimaMeghdadi/uOttawa-at-LegalLens-2024-Transformer-based-Classification
Encoder vs Decoder: Comparative Analysis of Encoder and Decoder Language Models on Multilingual NLU Tasks
This paper explores the performance of encoder and decoder language models on multilingual Natural Language Understanding (NLU) tasks, with a broad focus on Germanic languages. Building upon the ScandEval benchmark, which initially was restricted to evaluating encoder models, we extend the evaluation framework to include decoder models. We introduce a method for evaluating decoder models on NLU tasks and apply it to the languages Danish, Swedish, Norwegian, Icelandic, Faroese, German, Dutch, and English. Through a series of experiments and analyses, we address key research questions regarding the comparative performance of encoder and decoder models, the impact of NLU task types, and the variation across language resources. Our findings reveal that decoder models can achieve significantly better NLU performance than encoder models, with nuances observed across different tasks and languages. Additionally, we investigate the correlation between decoders and task performance via a UMAP analysis, shedding light on the unique capabilities of decoder and encoder models. This study contributes to a deeper understanding of language model paradigms in NLU tasks and provides valuable insights for model selection and evaluation in multilingual settings.
Automatic WordNet Construction using Word Sense Induction through Sentence Embeddings
Language resources such as wordnets remain indispensable tools for different natural language tasks and applications. However, for low-resource languages such as Filipino, existing wordnets are old and outdated, and producing new ones may be slow and costly in terms of time and resources. In this paper, we propose an automatic method for constructing a wordnet from scratch using only an unlabeled corpus and a sentence embeddings-based language model. Using this, we produce FilWordNet, a new wordnet that supplants and improves the outdated Filipino WordNet. We evaluate our automatically-induced senses and synsets by matching them with senses from the Princeton WordNet, as well as comparing the synsets to the old Filipino WordNet. We empirically show that our method can induce existing, as well as potentially new, senses and synsets automatically without the need for human supervision.
MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for Natural Language Understanding in Task-Oriented Dialogue
Task-oriented dialogue (TOD) systems have been applied in a range of domains to support human users to achieve specific goals. Systems are typically constructed for a single domain or language and do not generalise well beyond this. Their extension to other languages in particular is restricted by the lack of available training data for many of the world's languages. To support work on Natural Language Understanding (NLU) in TOD across multiple languages and domains simultaneously, we constructed MULTI3NLU++, a multilingual, multi-intent, multi-domain dataset. MULTI3NLU++ extends the English-only NLU++ dataset to include manual translations into a range of high, medium and low resource languages (Spanish, Marathi, Turkish and Amharic), in two domains (banking and hotels). MULTI3NLU++ inherits the multi-intent property of NLU++, where an utterance may be labelled with multiple intents, providing a more realistic representation of a user's goals and aligning with the more complex tasks that commercial systems aim to model. We use MULTI3NLU++ to benchmark state-of-the-art multilingual language models as well as Machine Translation and Question Answering systems for the NLU task of intent detection for TOD systems in the multilingual setting. The results demonstrate the challenging nature of the dataset, particularly in the low-resource language setting.
A Dataset of German Legal Documents for Named Entity Recognition
We describe a dataset developed for Named Entity Recognition in German federal court decisions. It consists of approx. 67,000 sentences with over 2 million tokens. The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, ordinance, European legal norm, regulation, contract, court decision, and legal literature. The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, was developed for training an NER service for German legal documents in the EU project Lynx.
Fine-grained Contract NER using instruction based model
Lately, instruction-based techniques have made significant strides in improving performance in few-shot learning scenarios. They achieve this by bridging the gap between pre-trained language models and fine-tuning for specific downstream tasks. Despite these advancements, the performance of Large Language Models (LLMs) in information extraction tasks like Named Entity Recognition (NER), using prompts or instructions, still falls short of supervised baselines. The reason for this performance gap can be attributed to the fundamental disparity between NER and LLMs. NER is inherently a sequence labeling task, where the model must assign entity-type labels to individual tokens within a sentence. In contrast, LLMs are designed as a text generation task. This distinction between semantic labeling and text generation leads to subpar performance. In this paper, we transform the NER task into a text-generation task that can be readily adapted by LLMs. This involves enhancing source sentences with task-specific instructions and answer choices, allowing for the identification of entities and their types within natural language. We harness the strength of LLMs by integrating supervised learning within them. The goal of this combined strategy is to boost the performance of LLMs in extraction tasks like NER while simultaneously addressing hallucination issues often observed in LLM-generated content. A novel corpus Contract NER comprising seven frequently observed contract categories, encompassing named entities associated with 18 distinct legal entity types is released along with our baseline models. Our models and dataset are available to the community for future research * .
Vārta: A Large-Scale Headline-Generation Dataset for Indic Languages
We present V\=arta, a large-scale multilingual dataset for headline generation in Indic languages. This dataset includes 41.8 million news articles in 14 different Indic languages (and English), which come from a variety of high-quality sources. To the best of our knowledge, this is the largest collection of curated articles for Indic languages currently available. We use the data collected in a series of experiments to answer important questions related to Indic NLP and multilinguality research in general. We show that the dataset is challenging even for state-of-the-art abstractive models and that they perform only slightly better than extractive baselines. Owing to its size, we also show that the dataset can be used to pretrain strong language models that outperform competitive baselines in both NLU and NLG benchmarks.
G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment
The quality of texts generated by natural language generation (NLG) systems is hard to measure automatically. Conventional reference-based metrics, such as BLEU and ROUGE, have been shown to have relatively low correlation with human judgments, especially for tasks that require creativity and diversity. Recent studies suggest using large language models (LLMs) as reference-free metrics for NLG evaluation, which have the benefit of being applicable to new tasks that lack human references. However, these LLM-based evaluators still have lower human correspondence than medium-size neural evaluators. In this work, we present G-Eval, a framework of using large language models with chain-of-thoughts (CoT) and a form-filling paradigm, to assess the quality of NLG outputs. We experiment with two generation tasks, text summarization and dialogue generation. We show that G-Eval with GPT-4 as the backbone model achieves a Spearman correlation of 0.514 with human on summarization task, outperforming all previous methods by a large margin. We also propose preliminary analysis on the behavior of LLM-based evaluators, and highlight the potential issue of LLM-based evaluators having a bias towards the LLM-generated texts. The code is at https://github.com/nlpyang/geval
TaskWeb: Selecting Better Source Tasks for Multi-task NLP
Recent work in NLP has shown promising results in training models on large amounts of tasks to achieve better generalization. However, it is not well-understood how tasks are related, and how helpful training tasks can be chosen for a new task. In this work, we investigate whether knowing task relationships via pairwise task transfer improves choosing one or more source tasks that help to learn a new target task. We provide TaskWeb, a large-scale benchmark of pairwise task transfers for 22 NLP tasks using three different model types, sizes, and adaptation methods, spanning about 25,000 experiments. Then, we design a new method TaskShop based on our analysis of TaskWeb. TaskShop uses TaskWeb to estimate the benefit of using a source task for learning a new target task, and to choose a subset of helpful training tasks for multi-task training. Our method improves overall rankings and top-k precision of source tasks by 10% and 38%, respectively. We also use TaskShop to build much smaller multi-task training sets that improve zero-shot performances across 11 different target tasks by at least 4.3%.
FilBench: Can LLMs Understand and Generate Filipino?
Despite the impressive performance of LLMs on English-based tasks, little is known about their capabilities in specific languages such as Filipino. In this work, we address this gap by introducing FilBench, a Filipino-centric benchmark designed to evaluate LLMs across a diverse set of tasks and capabilities in Filipino, Tagalog, and Cebuano. We carefully curate the tasks in FilBench to reflect the priorities and trends of NLP research in the Philippines such as Cultural Knowledge, Classical NLP, Reading Comprehension, and Generation. By evaluating 27 state-of-the-art LLMs on FilBench, we find that several LLMs suffer from reading comprehension and translation capabilities. Our results indicate that FilBench is challenging, with the best model, GPT-4o, achieving only a score of 72.23%. Moreover, we also find that models trained specifically for Southeast Asian languages tend to underperform on FilBench, with the highest-performing model, SEA-LION v3 70B, achieving only a score of 61.07%. Our work demonstrates the value of curating language-specific LLM benchmarks to aid in driving progress on Filipino NLP and increasing the inclusion of Philippine languages in LLM development.
Debugging Neural Machine Translations
In this paper, we describe a tool for debugging the output and attention weights of neural machine translation (NMT) systems and for improved estimations of confidence about the output based on the attention. The purpose of the tool is to help researchers and developers find weak and faulty example translations that their NMT systems produce without the need for reference translations. Our tool also includes an option to directly compare translation outputs from two different NMT engines or experiments. In addition, we present a demo website of our tool with examples of good and bad translations: http://attention.lielakeda.lv
Contextual Code Switching for Machine Translation using Language Models
Large language models (LLMs) have exerted a considerable impact on diverse language-related tasks in recent years. Their demonstrated state-of-the-art performance is achieved through methodologies such as zero-shot or few-shot prompting. These models undergo training on extensive datasets that encompass segments of the Internet and subsequently undergo fine-tuning tailored to specific tasks. Notably, they exhibit proficiency in tasks such as translation, summarization, question answering, and creative writing, even in the absence of explicit training for those particular tasks. While they have shown substantial improvement in the multilingual tasks their performance in the code switching, especially for machine translation remains relatively uncharted. In this paper, we present an extensive study on the code switching task specifically for the machine translation task comparing multiple LLMs. Our results indicate that despite the LLMs having promising results in the certain tasks, the models with relatively lesser complexity outperform the multilingual large language models in the machine translation task. We posit that the efficacy of multilingual large language models in contextual code switching is constrained by their training methodologies. In contrast, relatively smaller models, when trained and fine-tuned on bespoke datasets, may yield superior results in comparison to the majority of multilingual models.
SICKNL: A Dataset for Dutch Natural Language Inference
We present SICK-NL (read: signal), a dataset targeting Natural Language Inference in Dutch. SICK-NL is obtained by translating the SICK dataset of Marelli et al. (2014)from English into Dutch. Having a parallel inference dataset allows us to compare both monolingual and multilingual NLP models for English and Dutch on the two tasks. In the paper, we motivate and detail the translation process, perform a baseline evaluation on both the original SICK dataset and its Dutch incarnation SICK-NL, taking inspiration from Dutch skipgram embeddings and contextualised embedding models. In addition, we encapsulate two phenomena encountered in the translation to formulate stress tests and verify how well the Dutch models capture syntactic restructurings that do not affect semantics. Our main finding is all models perform worse on SICK-NL than on SICK, indicating that the Dutch dataset is more challenging than the English original. Results on the stress tests show that models don't fully capture word order freedom in Dutch, warranting future systematic studies.
LMUnit: Fine-grained Evaluation with Natural Language Unit Tests
As language models become integral to critical workflows, assessing their behavior remains a fundamental challenge -- human evaluation is costly and noisy, while automated metrics provide only coarse, difficult-to-interpret signals. We introduce natural language unit tests, a paradigm that decomposes response quality into explicit, testable criteria, along with a unified scoring model, LMUnit, which combines multi-objective training across preferences, direct ratings, and natural language rationales. Through controlled human studies, we show this paradigm significantly improves inter-annotator agreement and enables more effective LLM development workflows. LMUnit achieves state-of-the-art performance on evaluation benchmarks (FLASK, BigGenBench) and competitive results on RewardBench. These results validate both our proposed paradigm and scoring model, suggesting a promising path forward for language model evaluation and development.
CoAScore: Chain-of-Aspects Prompting for NLG Evaluation
Recently, natural language generation (NLG) evaluation has shifted from a single-aspect to a multi-aspect paradigm, allowing for a more accurate assessment. Large language models (LLMs) achieve superior performance on various NLG evaluation tasks. However, current work often employs the LLM to independently evaluate different aspects, which largely ignores the rich correlation between various aspects. To fill this research gap, in this work, we propose an NLG evaluation metric called CoAScore. Powered by LLMs, the CoAScore utilizes multi-aspect knowledge through a CoA (Chain-of-Aspects) prompting framework when assessing the quality of a certain aspect. Specifically, for a given aspect to evaluate, we first prompt the LLM to generate a chain of aspects that are relevant to the target aspect and could be useful for the evaluation. We then collect evaluation scores for each generated aspect, and finally, leverage the knowledge of these aspects to improve the evaluation of the target aspect. We evaluate CoAScore across five NLG evaluation tasks (e.g., summarization, dialog response generation, etc) and nine aspects (e.g., overall quality, relevance, coherence, etc). Our experimental findings highlight that, in comparison to individual aspect evaluation, CoAScore exhibits a higher correlation with human judgments. This improvement significantly outperforms existing unsupervised evaluation metrics, whether for assessing overall quality or other aspects. We also conducted extensive ablation studies to validate the effectiveness of the three stages within the CoAScore framework and conducted case studies to show how the LLM performs in these stages. Our code and scripts are available.
ALCUNA: Large Language Models Meet New Knowledge
With the rapid development of NLP, large-scale language models (LLMs) excel in various tasks across multiple domains now. However, existing benchmarks may not adequately measure these models' capabilities, especially when faced with new knowledge. In this paper, we address the lack of benchmarks to evaluate LLMs' ability to handle new knowledge, an important and challenging aspect in the rapidly evolving world. We propose an approach called KnowGen that generates new knowledge by altering existing entity attributes and relationships, resulting in artificial entities that are distinct from real-world entities. With KnowGen, we introduce a benchmark named ALCUNA to assess LLMs' abilities in knowledge understanding, differentiation, and association. We benchmark several LLMs, reveals that their performance in face of new knowledge is not satisfactory, particularly in reasoning between new and internal knowledge. We also explore the impact of entity similarity on the model's understanding of entity knowledge and the influence of contextual entities. We appeal to the need for caution when using LLMs in new scenarios or with new knowledge, and hope that our benchmarks can help drive the development of LLMs in face of new knowledge.
ChartGPT: Leveraging LLMs to Generate Charts from Abstract Natural Language
The use of natural language interfaces (NLIs) for the creation of charts is becoming increasingly popular due to the intuitiveness of natural language interactions. One key challenge in this approach is to accurately capture user intents and transform them to proper chart specifications. This obstructs the wide use of NLI in chart generation, as users' natural language inputs are generally abstract (i.e., ambiguous or under-specified), without a clear specification of visual encodings. Recently, pre-trained large language models (LLMs) have exhibited superior performance in understanding and generating natural language, demonstrating great potential for downstream tasks. Inspired by this major trend, we propose ChartGPT, generating charts from abstract natural language inputs. However, LLMs are struggling to address complex logic problems. To enable the model to accurately specify the complex parameters and perform operations in chart generation, we decompose the generation process into a step-by-step reasoning pipeline, so that the model only needs to reason a single and specific sub-task during each run. Moreover, LLMs are pre-trained on general datasets, which might be biased for the task of chart generation. To provide adequate visualization knowledge, we create a dataset consisting of abstract utterances and charts and improve model performance through fine-tuning. We further design an interactive interface for ChartGPT that allows users to check and modify the intermediate outputs of each step. The effectiveness of the proposed system is evaluated through quantitative evaluations and a user study.
MVP: Multi-task Supervised Pre-training for Natural Language Generation
Pre-trained language models (PLMs) have achieved remarkable success in natural language generation (NLG) tasks. Up to now, most NLG-oriented PLMs are pre-trained in an unsupervised manner using the large-scale general corpus. In the meanwhile, an increasing number of models pre-trained with labeled data (i.e., ``supervised pre-training'') showcase superior performance compared to unsupervised pre-trained models. Motivated by the success of supervised pre-training, we propose Multi-task superVised Pre-training~(MVP) for natural language generation. We collect a large-scale natural language generation corpus, MVPCorpus, from 77 datasets over 11 diverse NLG tasks. Then we unify these examples into a general text-to-text format to pre-train the text generation model MVP in a supervised manner. For each task, we further pre-train specific soft prompts to stimulate the model's capacity to perform a specific task. Extensive experiments have demonstrated the effectiveness and generality of our MVP model in a number of NLG tasks, which achieves state-of-the-art performance on 13 out of 17 datasets.
Economy Watchers Survey provides Datasets and Tasks for Japanese Financial Domain
Many natural language processing (NLP) tasks in English or general domains are widely available and are often used to evaluate pre-trained language models. In contrast, there are fewer tasks available for languages other than English and for the financial domain. In particular, tasks in Japanese and the financial domain are limited. We construct two large datasets using materials published by a Japanese central government agency. The datasets provide three Japanese financial NLP tasks, which include a 3-class and 12-class classification for categorizing sentences, as well as a 5-class classification task for sentiment analysis. Our datasets are designed to be comprehensive and up-to-date, leveraging an automatic update framework that ensures the latest task datasets are publicly available anytime.
A Review of Bangla Natural Language Processing Tasks and the Utility of Transformer Models
Bangla -- ranked as the 6th most widely spoken language across the world (https://www.ethnologue.com/guides/ethnologue200), with 230 million native speakers -- is still considered as a low-resource language in the natural language processing (NLP) community. With three decades of research, Bangla NLP (BNLP) is still lagging behind mainly due to the scarcity of resources and the challenges that come with it. There is sparse work in different areas of BNLP; however, a thorough survey reporting previous work and recent advances is yet to be done. In this study, we first provide a review of Bangla NLP tasks, resources, and tools available to the research community; we benchmark datasets collected from various platforms for nine NLP tasks using current state-of-the-art algorithms (i.e., transformer-based models). We provide comparative results for the studied NLP tasks by comparing monolingual vs. multilingual models of varying sizes. We report our results using both individual and consolidated datasets and provide data splits for future research. We reviewed a total of 108 papers and conducted 175 sets of experiments. Our results show promising performance using transformer-based models while highlighting the trade-off with computational costs. We hope that such a comprehensive survey will motivate the community to build on and further advance the research on Bangla NLP.
ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via Tool Embeddings
Augmenting large language models (LLMs) with external tools has emerged as a promising approach to solving complex problems. However, traditional methods, which finetune LLMs with tool demonstration data, can be both costly and restricted to a predefined set of tools. Recent in-context learning paradigm alleviates these issues, but the limited context length only allows for a few shots of demonstrations, leading to suboptimal understandings of the tools. Moreover, when there are numerous tools to choose from, in-context learning could completely fail to work. In this paper, we propose an alternative approach, ToolkenGPT, which combines the benefits of both sides. Our approach represents each tool as a token (toolken) and learns an embedding for it, enabling tool calls in the same way as generating a regular word token. Once a toolken is triggered, the LLM is prompted to complete arguments for the tool to execute. ToolkenGPT offers the flexibility to plug in an arbitrary number of tools by expanding the set of toolkens on the fly. In addition, it improves tool use by allowing extensive demonstration data for learning the toolken embeddings. In diverse domains, including numerical reasoning, knowledge-based question answering, and embodied plan generation, our approach effectively augments LLMs with tools and substantially outperforms various latest baselines. ToolkenGPT demonstrates the promising ability to use relevant tools from a large tool set in complex scenarios.
MBR and QE Finetuning: Training-time Distillation of the Best and Most Expensive Decoding Methods
Recent research in decoding methods for Natural Language Generation (NLG) tasks has shown that MAP decoding is not optimal, because model probabilities do not always align with human preferences. Stronger decoding methods, including Quality Estimation (QE) reranking and Minimum Bayes' Risk (MBR) decoding, have since been proposed to mitigate the model-perplexity-vs-quality mismatch. While these decoding methods achieve state-of-the-art performance, they are prohibitively expensive to compute. In this work, we propose MBR finetuning and QE finetuning which distill the quality gains from these decoding methods at training time, while using an efficient decoding algorithm at inference time. Using the canonical NLG task of Neural Machine Translation (NMT), we show that even with self-training, these finetuning methods significantly outperform the base model. Moreover, when using an external LLM as a teacher model, these finetuning methods outperform finetuning on human-generated references. These findings suggest new ways to leverage monolingual data to achieve improvements in model quality that are on par with, or even exceed, improvements from human-curated data, while maintaining maximum efficiency during decoding.
SubData: A Python Library to Collect and Combine Datasets for Evaluating LLM Alignment on Downstream Tasks
With the release of ever more capable large language models (LLMs), researchers in NLP and related disciplines have started to explore the usability of LLMs for a wide variety of different annotation tasks. Very recently, a lot of this attention has shifted to tasks that are subjective in nature. Given that the latest generations of LLMs have digested and encoded extensive knowledge about different human subpopulations and individuals, the hope is that these models can be trained, tuned or prompted to align with a wide range of different human perspectives. While researchers already evaluate the success of this alignment via surveys and tests, there is a lack of resources to evaluate the alignment on what oftentimes matters the most in NLP; the actual downstream tasks. To fill this gap we present SubData, a Python library that offers researchers working on topics related to subjectivity in annotation tasks a convenient way of collecting, combining and using a range of suitable datasets.
BanglaNLG and BanglaT5: Benchmarks and Resources for Evaluating Low-Resource Natural Language Generation in Bangla
This work presents BanglaNLG, a comprehensive benchmark for evaluating natural language generation (NLG) models in Bangla, a widely spoken yet low-resource language. We aggregate six challenging conditional text generation tasks under the BanglaNLG benchmark, introducing a new dataset on dialogue generation in the process. Furthermore, using a clean corpus of 27.5 GB of Bangla data, we pretrain BanglaT5, a sequence-to-sequence Transformer language model for Bangla. BanglaT5 achieves state-of-the-art performance in all of these tasks, outperforming several multilingual models by up to 9% absolute gain and 32% relative gain. We are making the new dialogue dataset and the BanglaT5 model publicly available at https://github.com/csebuetnlp/BanglaNLG in the hope of advancing future research on Bangla NLG.
Interactive Evolution: A Neural-Symbolic Self-Training Framework For Large Language Models
One of the primary driving forces contributing to the superior performance of Large Language Models (LLMs) is the extensive availability of human-annotated natural language data, which is used for alignment fine-tuning. This inspired researchers to investigate self-training methods to mitigate the extensive reliance on human annotations. However, the current success of self-training has been primarily observed in natural language scenarios, rather than in the increasingly important neural-symbolic scenarios. To this end, we propose an environment-guided neural-symbolic self-training framework named ENVISIONS. It aims to overcome two main challenges: (1) the scarcity of symbolic data, and (2) the limited proficiency of LLMs in processing symbolic language. Extensive evaluations conducted on three distinct domains demonstrate the effectiveness of our approach. Additionally, we have conducted a comprehensive analysis to uncover the factors contributing to ENVISIONS's success, thereby offering valuable insights for future research in this area. Code will be available at https://github.com/xufangzhi/ENVISIONS.
Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages
The NLP community has mainly focused on scaling Large Language Models (LLMs) vertically, i.e., making them better for about 100 languages. We instead scale LLMs horizontally: we create, through continued pretraining, Glot500-m, an LLM that covers 511 languages, almost all of them low-resource. An important part of this effort is to collect and clean Glot500-c, a corpus that covers these 511 languages and allows us to train Glot500-m. We evaluate Glot500-m on five diverse tasks across these languages. We observe large improvements for both high-resource and lowresource languages compared to an XLM-R baseline. Our analysis shows that no single factor explains the quality of multilingual LLM representations. Rather, a combination of factors determines quality including corpus size, script, "help" from related languages and the total capacity of the model. Our work addresses an important goal of NLP research: we should not limit NLP to a small fraction of the world's languages and instead strive to support as many languages as possible to bring the benefits of NLP technology to all languages and cultures. Code, data and models are available at https://github.com/cisnlp/Glot500.
GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning
Knowledge Graphs (KGs) represent human-crafted factual knowledge in the form of triplets (head, relation, tail), which collectively form a graph. Question Answering over KGs (KGQA) is the task of answering natural questions grounding the reasoning to the information provided by the KG. Large Language Models (LLMs) are the state-of-the-art models for QA tasks due to their remarkable ability to understand natural language. On the other hand, Graph Neural Networks (GNNs) have been widely used for KGQA as they can handle the complex graph information stored in the KG. In this work, we introduce GNN-RAG, a novel method for combining language understanding abilities of LLMs with the reasoning abilities of GNNs in a retrieval-augmented generation (RAG) style. First, a GNN reasons over a dense KG subgraph to retrieve answer candidates for a given question. Second, the shortest paths in the KG that connect question entities and answer candidates are extracted to represent KG reasoning paths. The extracted paths are verbalized and given as input for LLM reasoning with RAG. In our GNN-RAG framework, the GNN acts as a dense subgraph reasoner to extract useful graph information, while the LLM leverages its natural language processing ability for ultimate KGQA. Furthermore, we develop a retrieval augmentation (RA) technique to further boost KGQA performance with GNN-RAG. Experimental results show that GNN-RAG achieves state-of-the-art performance in two widely used KGQA benchmarks (WebQSP and CWQ), outperforming or matching GPT-4 performance with a 7B tuned LLM. In addition, GNN-RAG excels on multi-hop and multi-entity questions outperforming competing approaches by 8.9--15.5% points at answer F1.
GPTA: Generative Prompt Tuning Assistant for Synergistic Downstream Neural Network Enhancement with LLMs
This study introduces GPTA, a Large Language Model assistance training framework, that enhances the training of downstream task models via prefix prompt. By minimizing data exposure to LLM, the framework addresses the security and legal challenges of applying LLM in downstream task model training. GPTA utilizes a new synergistic training approach, optimizing the downstream models with parameter gradients and LLMs with the novel ``dialogue gradient''. The framework not only demonstrates significant improvements in model performance across six NLP benchmark datasets, but also reduces overfitting in low-resource scenarios effectively. The detailed analyses further validate that our pioneer framework provides a cost-efficient and adaptive method for downstream task model training with LLM support.
LTNER: Large Language Model Tagging for Named Entity Recognition with Contextualized Entity Marking
The use of LLMs for natural language processing has become a popular trend in the past two years, driven by their formidable capacity for context comprehension and learning, which has inspired a wave of research from academics and industry professionals. However, for certain NLP tasks, such as NER, the performance of LLMs still falls short when compared to supervised learning methods. In our research, we developed a NER processing framework called LTNER that incorporates a revolutionary Contextualized Entity Marking Gen Method. By leveraging the cost-effective GPT-3.5 coupled with context learning that does not require additional training, we significantly improved the accuracy of LLMs in handling NER tasks. The F1 score on the CoNLL03 dataset increased from the initial 85.9% to 91.9%, approaching the performance of supervised fine-tuning. This outcome has led to a deeper understanding of the potential of LLMs.
Automatic Evaluation of Generative Models with Instruction Tuning
Automatic evaluation of natural language generation has long been an elusive goal in NLP.A recent paradigm fine-tunes pre-trained language models to emulate human judgements for a particular task and evaluation criterion. Inspired by the generalization ability of instruction-tuned models, we propose a learned metric based on instruction tuning. To test our approach, we collected HEAP, a dataset of human judgements across various NLG tasks and evaluation criteria. Our findings demonstrate that instruction tuning language models on HEAP yields good performance on many evaluation tasks, though some criteria are less trivial to learn than others. Further, jointly training on multiple tasks can yield additional performance improvements, which can be beneficial for future tasks with little to no human annotated data.
Simplifying Paragraph-level Question Generation via Transformer Language Models
Question generation (QG) is a natural language generation task where a model is trained to ask questions corresponding to some input text. Most recent approaches frame QG as a sequence-to-sequence problem and rely on additional features and mechanisms to increase performance; however, these often increase model complexity, and can rely on auxiliary data unavailable in practical use. A single Transformer-based unidirectional language model leveraging transfer learning can be used to produce high quality questions while disposing of additional task-specific complexity. Our QG model, finetuned from GPT-2 Small, outperforms several paragraph-level QG baselines on the SQuAD dataset by 0.95 METEOR points. Human evaluators rated questions as easy to answer, relevant to their context paragraph, and corresponding well to natural human speech. Also introduced is a new set of baseline scores on the RACE dataset, which has not previously been used for QG tasks. Further experimentation with varying model capacities and datasets with non-identification type questions is recommended in order to further verify the robustness of pretrained Transformer-based LMs as question generators.
Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers
This thesis provides methods and analysis of models which make progress on this goal. The techniques outlined are task agnostic, and should provide benefit when used with nearly any transformer LM. We introduce two new finetuning methods which add new capabilities to the models they are used on. The first adds a recurrence mechanism, which removes the fixed-window sized constraint and improves the efficiency of a transformer decoder. The second allows masked language models (MLMs) to be used for initialization of both the encoder and decoder of a non-autoregressive sequence-to-sequence transformer, opening up generative applications of models which were previously only used for natural language understanding tasks. We also introduce two new techniques for improving the quality of predictions of any transformer decoder without additional finetuning. One, hidden state optimization, can be applied to any transformer decoder to improve the quality of predictions at inference time, especially for few-shot classification. The other, conditional beam search, allows practitioners to search for natural language generation (NLG) model outputs with high likelihood while conditioning on the event that the output is not degenerate (e.g. empty, repetitive, etc.). Finally, we provide theoretical and empirical insights on the divergence of model-likelihood and output quality which has widely been observed in prior work. These insights apply to any model which represents a distribution over text, and apply to language models which are not transformers or even autoregressive. We argue that the NLP community has, to some extent, misunderstood the implications of these findings, and encourage a point of view which has more nuance.
A Primer on Neural Network Models for Natural Language Processing
Over the past few years, neural networks have re-emerged as powerful machine-learning models, yielding state-of-the-art results in fields such as image recognition and speech processing. More recently, neural network models started to be applied also to textual natural language signals, again with very promising results. This tutorial surveys neural network models from the perspective of natural language processing research, in an attempt to bring natural-language researchers up to speed with the neural techniques. The tutorial covers input encoding for natural language tasks, feed-forward networks, convolutional networks, recurrent networks and recursive networks, as well as the computation graph abstraction for automatic gradient computation.
Entity Linking in the Job Market Domain
In Natural Language Processing, entity linking (EL) has centered around Wikipedia, but yet remains underexplored for the job market domain. Disambiguating skill mentions can help us get insight into the current labor market demands. In this work, we are the first to explore EL in this domain, specifically targeting the linkage of occupational skills to the ESCO taxonomy (le Vrang et al., 2014). Previous efforts linked coarse-grained (full) sentences to a corresponding ESCO skill. In this work, we link more fine-grained span-level mentions of skills. We tune two high-performing neural EL models, a bi-encoder (Wu et al., 2020) and an autoregressive model (Cao et al., 2021), on a synthetically generated mention--skill pair dataset and evaluate them on a human-annotated skill-linking benchmark. Our findings reveal that both models are capable of linking implicit mentions of skills to their correct taxonomy counterparts. Empirically, BLINK outperforms GENRE in strict evaluation, but GENRE performs better in loose evaluation (accuracy@k).
Language Models as Continuous Self-Evolving Data Engineers
Large Language Models (LLMs) have demonstrated remarkable capabilities on various tasks, while the further evolvement is limited to the lack of high-quality training data. In addition, traditional training approaches rely too much on expert-labeled data, setting an upper limit on the performance of LLMs. To address this issue, we propose a novel paradigm that enables LLMs to train itself by autonomously generating, cleaning, reviewing, and annotating data with preference information, named LANCE. Our approach demonstrates that LLMs can serve as continuous self-evolving data engineers, significantly reducing the time and cost of the post-training data construction process. Through iterative fine-tuning on different variants of the Qwen2, we validate the effectiveness of LANCE across various tasks, showing that it can continuously improve model performance and maintain high-quality data generation. Across eight benchmark dimensions, LANCE resulted in an average score enhancement of 3.36 for Qwen2-7B and 2.70 for Qwen2-7B-Instruct. This training paradigm with autonomous data construction not only reduces the reliance on human experts or external models but also ensures that the data aligns with human values and preferences, paving the way for the development of future superintelligent systems that can exceed human capabilities.
GOLD: Generalized Knowledge Distillation via Out-of-Distribution-Guided Language Data Generation
Knowledge distillation from LLMs is essential for the efficient deployment of language models. Prior works have proposed data generation using LLMs for preparing distilled models. We argue that generating data with LLMs is prone to sampling mainly from the center of original content distribution. This limitation hinders the distilled model from learning the true underlying data distribution and to forget the tails of the distributions (samples with lower probability). To this end, we propose GOLD, a task-agnostic data generation and knowledge distillation framework, which employs an iterative out-of-distribution-guided feedback mechanism for the LLM. As a result, the generated data improves the generalizability of distilled models. An energy-based OOD evaluation approach is also introduced to deal with noisy generated data. Our extensive experiments on 10 different classification and sequence-to-sequence tasks in NLP show that GOLD respectively outperforms prior arts and the LLM with an average improvement of 5% and 14%. We will also show that the proposed method is applicable to less explored and novel tasks. The code is available.
Is ChatGPT a General-Purpose Natural Language Processing Task Solver?
Spurred by advancements in scale, large language models (LLMs) have demonstrated the ability to perform a variety of natural language processing (NLP) tasks zero-shot -- i.e., without adaptation on downstream data. Recently, the debut of ChatGPT has drawn a great deal of attention from the natural language processing (NLP) community due to the fact that it can generate high-quality responses to human input and self-correct previous mistakes based on subsequent conversations. However, it is not yet known whether ChatGPT can serve as a generalist model that can perform many NLP tasks zero-shot. In this work, we empirically analyze the zero-shot learning ability of ChatGPT by evaluating it on 20 popular NLP datasets covering 7 representative task categories. With extensive empirical studies, we demonstrate both the effectiveness and limitations of the current version of ChatGPT. We find that ChatGPT performs well on many tasks favoring reasoning capabilities (e.g., arithmetic reasoning) while it still faces challenges when solving specific tasks such as sequence tagging. We additionally provide in-depth analysis through qualitative case studies.
K-ON: Stacking Knowledge On the Head Layer of Large Language Model
Recent advancements in large language models (LLMs) have significantly improved various natural language processing (NLP) tasks. Typically, LLMs are trained to predict the next token, aligning well with many NLP tasks. However, in knowledge graph (KG) scenarios, entities are the fundamental units and identifying an entity requires at least several tokens. This leads to a granularity mismatch between KGs and natural languages. To address this issue, we propose K-ON, which integrates KG knowledge into the LLM by employing multiple head layers for next k-step prediction. K-ON can not only generate entity-level results in one step, but also enables contrastive loss against entities, which is the most powerful tool in KG representation learning. Experimental results show that K-ON outperforms state-of-the-art methods that incorporate text and even the other modalities.
LLMs in Education: Novel Perspectives, Challenges, and Opportunities
The role of large language models (LLMs) in education is an increasing area of interest today, considering the new opportunities they offer for teaching, learning, and assessment. This cutting-edge tutorial provides an overview of the educational applications of NLP and the impact that the recent advances in LLMs have had on this field. We will discuss the key challenges and opportunities presented by LLMs, grounding them in the context of four major educational applications: reading, writing, and speaking skills, and intelligent tutoring systems (ITS). This COLING 2025 tutorial is designed for researchers and practitioners interested in the educational applications of NLP and the role LLMs have to play in this area. It is the first of its kind to address this timely topic.
Fabricator: An Open Source Toolkit for Generating Labeled Training Data with Teacher LLMs
Most NLP tasks are modeled as supervised learning and thus require labeled training data to train effective models. However, manually producing such data at sufficient quality and quantity is known to be costly and time-intensive. Current research addresses this bottleneck by exploring a novel paradigm called zero-shot learning via dataset generation. Here, a powerful LLM is prompted with a task description to generate labeled data that can be used to train a downstream NLP model. For instance, an LLM might be prompted to "generate 500 movie reviews with positive overall sentiment, and another 500 with negative sentiment." The generated data could then be used to train a binary sentiment classifier, effectively leveraging an LLM as a teacher to a smaller student model. With this demo, we introduce Fabricator, an open-source Python toolkit for dataset generation. Fabricator implements common dataset generation workflows, supports a wide range of downstream NLP tasks (such as text classification, question answering, and entity recognition), and is integrated with well-known libraries to facilitate quick experimentation. With Fabricator, we aim to support researchers in conducting reproducible dataset generation experiments using LLMs and help practitioners apply this approach to train models for downstream tasks.
Multilingual JobBERT for Cross-Lingual Job Title Matching
We introduce JobBERT-V3, a contrastive learning-based model for cross-lingual job title matching. Building on the state-of-the-art monolingual JobBERT-V2, our approach extends support to English, German, Spanish, and Chinese by leveraging synthetic translations and a balanced multilingual dataset of over 21 million job titles. The model retains the efficiency-focused architecture of its predecessor while enabling robust alignment across languages without requiring task-specific supervision. Extensive evaluations on the TalentCLEF 2025 benchmark demonstrate that JobBERT-V3 outperforms strong multilingual baselines and achieves consistent performance across both monolingual and cross-lingual settings. While not the primary focus, we also show that the model can be effectively used to rank relevant skills for a given job title, demonstrating its broader applicability in multilingual labor market intelligence. The model is publicly available: https://huggingface.co/TechWolf/JobBERT-v3.
Lawyer LLaMA Technical Report
Large Language Models (LLMs), like LLaMA, have exhibited remarkable performance across various tasks. Nevertheless, when deployed to specific domains such as law or medicine, the models still confront the challenge of a deficiency in domain-specific knowledge and an inadequate capability to leverage that knowledge to resolve domain-related problems. In this paper, we propose a new framework to adapt LLMs to specific domains and build Lawyer LLaMA, a legal domain LLM, based on this framework. Specifically, we inject domain knowledge during the continual training stage and teach the model to learn professional skills using properly designed supervised fine-tuning tasks. Moreover, to alleviate the hallucination problem during the model's generation, we add a retrieval module and extract relevant legal articles before the model answers any queries. When learning domain-specific skills, we find that experts' experience is much more useful than experiences distilled from ChatGPT, where hundreds of expert-written data outperform tens of thousands of ChatGPT-generated ones. We will release our model and data.
Large Language Models Meet NL2Code: A Survey
The task of generating code from a natural language description, or NL2Code, is considered a pressing and significant challenge in code intelligence. Thanks to the rapid development of pre-training techniques, surging large language models are being proposed for code, sparking the advances in NL2Code. To facilitate further research and applications in this field, in this paper, we present a comprehensive survey of 27 existing large language models for NL2Code, and also review benchmarks and metrics. We provide an intuitive comparison of all existing models on the HumanEval benchmark. Through in-depth observation and analysis, we provide some insights and conclude that the key factors contributing to the success of large language models for NL2Code are "Large Size, Premium Data, Expert Tuning". In addition, we discuss challenges and opportunities regarding the gap between models and humans. We also create a website https://nl2code.github.io to track the latest progress through crowd-sourcing. To the best of our knowledge, this is the first survey of large language models for NL2Code, and we believe it will contribute to the ongoing development of the field.
Exploring the Effectiveness of Instruction Tuning in Biomedical Language Processing
Large Language Models (LLMs), particularly those similar to ChatGPT, have significantly influenced the field of Natural Language Processing (NLP). While these models excel in general language tasks, their performance in domain-specific downstream tasks such as biomedical and clinical Named Entity Recognition (NER), Relation Extraction (RE), and Medical Natural Language Inference (NLI) is still evolving. In this context, our study investigates the potential of instruction tuning for biomedical language processing, applying this technique to two general LLMs of substantial scale. We present a comprehensive, instruction-based model trained on a dataset that consists of approximately 200,000 instruction-focused samples. This dataset represents a carefully curated compilation of existing data, meticulously adapted and reformatted to align with the specific requirements of our instruction-based tasks. This initiative represents an important step in utilising such models to achieve results on par with specialised encoder-only models like BioBERT and BioClinicalBERT for various classical biomedical NLP tasks. Our work includes an analysis of the dataset's composition and its impact on model performance, providing insights into the intricacies of instruction tuning. By sharing our codes, models, and the distinctively assembled instruction-based dataset, we seek to encourage ongoing research and development in this area.
ERNIE-Code: Beyond English-Centric Cross-lingual Pretraining for Programming Languages
Software engineers working with the same programming language (PL) may speak different natural languages (NLs) and vice versa, erecting huge barriers to communication and working efficiency. Recent studies have demonstrated the effectiveness of generative pre-training in computer programs, yet they are always English-centric. In this work, we step towards bridging the gap between multilingual NLs and multilingual PLs for large language models (LLMs). We release ERNIE-Code, a unified pre-trained language model for 116 NLs and 6 PLs. We employ two methods for universal cross-lingual pre-training: span-corruption language modeling that learns patterns from monolingual NL or PL; and pivot-based translation language modeling that relies on parallel data of many NLs and PLs. Extensive results show that ERNIE-Code outperforms previous multilingual LLMs for PL or NL across a wide range of end tasks of code intelligence, including multilingual code-to-text, text-to-code, code-to-code, and text-to-text generation. We further show its advantage of zero-shot prompting on multilingual code summarization and text-to-text translation. We release our code and pre-trained checkpoints.
KGGen: Extracting Knowledge Graphs from Plain Text with Language Models
Recent interest in building foundation models for KGs has highlighted a fundamental challenge: knowledge-graph data is relatively scarce. The best-known KGs are primarily human-labeled, created by pattern-matching, or extracted using early NLP techniques. While human-generated KGs are in short supply, automatically extracted KGs are of questionable quality. We present a solution to this data scarcity problem in the form of a text-to-KG generator (KGGen), a package that uses language models to create high-quality graphs from plaintext. Unlike other KG extractors, KGGen clusters related entities to reduce sparsity in extracted KGs. KGGen is available as a Python library (pip install kg-gen), making it accessible to everyone. Along with KGGen, we release the first benchmark, Measure of of Information in Nodes and Edges (MINE), that tests an extractor's ability to produce a useful KG from plain text. We benchmark our new tool against existing extractors and demonstrate far superior performance.
