3 FastTD3: Simple, Fast, and Capable Reinforcement Learning for Humanoid Control Reinforcement learning (RL) has driven significant progress in robotics, but its complexity and long training times remain major bottlenecks. In this report, we introduce FastTD3, a simple, fast, and capable RL algorithm that significantly speeds up training for humanoid robots in popular suites such as HumanoidBench, IsaacLab, and MuJoCo Playground. Our recipe is remarkably simple: we train an off-policy TD3 agent with several modifications -- parallel simulation, large-batch updates, a distributional critic, and carefully tuned hyperparameters. FastTD3 solves a range of HumanoidBench tasks in under 3 hours on a single A100 GPU, while remaining stable during training. We also provide a lightweight and easy-to-use implementation of FastTD3 to accelerate RL research in robotics. 6 authors · May 28 2
- Open-Source Reinforcement Learning Environments Implemented in MuJoCo with Franka Manipulator This paper presents three open-source reinforcement learning environments developed on the MuJoCo physics engine with the Franka Emika Panda arm in MuJoCo Menagerie. Three representative tasks, push, slide, and pick-and-place, are implemented through the Gymnasium Robotics API, which inherits from the core of Gymnasium. Both the sparse binary and dense rewards are supported, and the observation space contains the keys of desired and achieved goals to follow the Multi-Goal Reinforcement Learning framework. Three different off-policy algorithms are used to validate the simulation attributes to ensure the fidelity of all tasks, and benchmark results are also given. Each environment and task are defined in a clean way, and the main parameters for modifying the environment are preserved to reflect the main difference. The repository, including all environments, is available at https://github.com/zichunxx/panda_mujoco_gym. 6 authors · Dec 21, 2023
- Adaptive Legged Locomotion via Online Learning for Model Predictive Control We provide an algorithm for adaptive legged locomotion via online learning and model predictive control. The algorithm is composed of two interacting modules: model predictive control (MPC) and online learning of residual dynamics. The residual dynamics can represent modeling errors and external disturbances. We are motivated by the future of autonomy where quadrupeds will autonomously perform complex tasks despite real-world unknown uncertainty, such as unknown payload and uneven terrains. The algorithm uses random Fourier features to approximate the residual dynamics in reproducing kernel Hilbert spaces. Then, it employs MPC based on the current learned model of the residual dynamics. The model is updated online in a self-supervised manner using least squares based on the data collected while controlling the quadruped. The algorithm enjoys sublinear dynamic regret, defined as the suboptimality against an optimal clairvoyant controller that knows how the residual dynamics. We validate our algorithm in Gazebo and MuJoCo simulations, where the quadruped aims to track reference trajectories. The Gazebo simulations include constant unknown external forces up to 12g, where g is the gravity vector, in flat terrain, slope terrain with 20degree inclination, and rough terrain with 0.25m height variation. The MuJoCo simulations include time-varying unknown disturbances with payload up to 8~kg and time-varying ground friction coefficients in flat terrain. 3 authors · Oct 17