Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCustomer Lifetime Value Prediction with Uncertainty Estimation Using Monte Carlo Dropout
Accurately predicting customer Lifetime Value (LTV) is crucial for companies to optimize their revenue strategies. Traditional deep learning models for LTV prediction are effective but typically provide only point estimates and fail to capture model uncertainty in modeling user behaviors. To address this limitation, we propose a novel approach that enhances the architecture of purely neural network models by incorporating the Monte Carlo Dropout (MCD) framework. We benchmarked the proposed method using data from one of the most downloaded mobile games in the world, and demonstrated a substantial improvement in predictive Top 5\% Mean Absolute Percentage Error compared to existing state-of-the-art methods. Additionally, our approach provides confidence metric as an extra dimension for performance evaluation across various neural network models, facilitating more informed business decisions.
GFlowOut: Dropout with Generative Flow Networks
Bayesian Inference offers principled tools to tackle many critical problems with modern neural networks such as poor calibration and generalization, and data inefficiency. However, scaling Bayesian inference to large architectures is challenging and requires restrictive approximations. Monte Carlo Dropout has been widely used as a relatively cheap way for approximate Inference and to estimate uncertainty with deep neural networks. Traditionally, the dropout mask is sampled independently from a fixed distribution. Recent works show that the dropout mask can be viewed as a latent variable, which can be inferred with variational inference. These methods face two important challenges: (a) the posterior distribution over masks can be highly multi-modal which can be difficult to approximate with standard variational inference and (b) it is not trivial to fully utilize sample-dependent information and correlation among dropout masks to improve posterior estimation. In this work, we propose GFlowOut to address these issues. GFlowOut leverages the recently proposed probabilistic framework of Generative Flow Networks (GFlowNets) to learn the posterior distribution over dropout masks. We empirically demonstrate that GFlowOut results in predictive distributions that generalize better to out-of-distribution data, and provide uncertainty estimates which lead to better performance in downstream tasks.
Dropout's Dream Land: Generalization from Learned Simulators to Reality
A World Model is a generative model used to simulate an environment. World Models have proven capable of learning spatial and temporal representations of Reinforcement Learning environments. In some cases, a World Model offers an agent the opportunity to learn entirely inside of its own dream environment. In this work we explore improving the generalization capabilities from dream environments to real environments (Dream2Real). We present a general approach to improve a controller's ability to transfer from a neural network dream environment to reality at little additional cost. These improvements are gained by drawing on inspiration from Domain Randomization, where the basic idea is to randomize as much of a simulator as possible without fundamentally changing the task at hand. Generally, Domain Randomization assumes access to a pre-built simulator with configurable parameters but oftentimes this is not available. By training the World Model using dropout, the dream environment is capable of creating a nearly infinite number of different dream environments. Previous use cases of dropout either do not use dropout at inference time or averages the predictions generated by multiple sampled masks (Monte-Carlo Dropout). Dropout's Dream Land leverages each unique mask to create a diverse set of dream environments. Our experimental results show that Dropout's Dream Land is an effective technique to bridge the reality gap between dream environments and reality. Furthermore, we additionally perform an extensive set of ablation studies.
Uncertainty Estimation for Super-Resolution using ESRGAN
Deep Learning-based image super-resolution (SR) has been gaining traction with the aid of Generative Adversarial Networks. Models like SRGAN and ESRGAN are constantly ranked between the best image SR tools. However, they lack principled ways for estimating predictive uncertainty. In the present work, we enhance these models using Monte Carlo-Dropout and Deep Ensemble, allowing the computation of predictive uncertainty. When coupled with a prediction, uncertainty estimates can provide more information to the model users, highlighting pixels where the SR output might be uncertain, hence potentially inaccurate, if these estimates were to be reliable. Our findings suggest that these uncertainty estimates are decently calibrated and can hence fulfill this goal, while providing no performance drop with respect to the corresponding models without uncertainty estimation.
Uncertainty in Semantic Language Modeling with PIXELS
Pixel-based language models aim to solve the vocabulary bottleneck problem in language modeling, but the challenge of uncertainty quantification remains open. The novelty of this work consists of analysing uncertainty and confidence in pixel-based language models across 18 languages and 7 scripts, all part of 3 semantically challenging tasks. This is achieved through several methods such as Monte Carlo Dropout, Transformer Attention, and Ensemble Learning. The results suggest that pixel-based models underestimate uncertainty when reconstructing patches. The uncertainty is also influenced by the script, with Latin languages displaying lower uncertainty. The findings on ensemble learning show better performance when applying hyperparameter tuning during the named entity recognition and question-answering tasks across 16 languages.
Uncertainty-Aware Machine Translation Evaluation
Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, biased and scarce human judgements, often resulting in unreliable quality predictions. In this paper, we introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality. We combine the COMET framework with two uncertainty estimation methods, Monte Carlo dropout and deep ensembles, to obtain quality scores along with confidence intervals. We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task, augmented with MQM annotations. We experiment with varying numbers of references and further discuss the usefulness of uncertainty-aware quality estimation (without references) to flag possibly critical translation mistakes.
Active Learning for Sequence Tagging with Deep Pre-trained Models and Bayesian Uncertainty Estimates
Annotating training data for sequence tagging of texts is usually very time-consuming. Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget. We are the first to thoroughly investigate this powerful combination for the sequence tagging task. We conduct an extensive empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework and find the best combinations for different types of models. Besides, we also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance and reduces obstacles for applying deep active learning in practice.
LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data
Multimodal Deep Learning enhances decision-making by integrating diverse information sources, such as texts, images, audio, and videos. To develop trustworthy multimodal approaches, it is essential to understand how uncertainty impacts these models. We introduce LUMA, a unique benchmark dataset, featuring audio, image, and textual data from 50 classes, for learning from uncertain and multimodal data. It extends the well-known CIFAR 10/100 dataset with audio samples extracted from three audio corpora, and text data generated using the Gemma-7B Large Language Model (LLM). The LUMA dataset enables the controlled injection of varying types and degrees of uncertainty to achieve and tailor specific experiments and benchmarking initiatives. LUMA is also available as a Python package including the functions for generating multiple variants of the dataset with controlling the diversity of the data, the amount of noise for each modality, and adding out-of-distribution samples. A baseline pre-trained model is also provided alongside three uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive Multi-View Learning. This comprehensive dataset and its tools are intended to promote and support the development and benchmarking of trustworthy and robust multimodal deep learning approaches.
Disentangling Uncertainty in Machine Translation Evaluation
Trainable evaluation metrics for machine translation (MT) exhibit strong correlation with human judgements, but they are often hard to interpret and might produce unreliable scores under noisy or out-of-domain data. Recent work has attempted to mitigate this with simple uncertainty quantification techniques (Monte Carlo dropout and deep ensembles), however these techniques (as we show) are limited in several ways -- for example, they are unable to distinguish between different kinds of uncertainty, and they are time and memory consuming. In this paper, we propose more powerful and efficient uncertainty predictors for MT evaluation, and we assess their ability to target different sources of aleatoric and epistemic uncertainty. To this end, we develop and compare training objectives for the COMET metric to enhance it with an uncertainty prediction output, including heteroscedastic regression, divergence minimization, and direct uncertainty prediction. Our experiments show improved results on uncertainty prediction for the WMT metrics task datasets, with a substantial reduction in computational costs. Moreover, they demonstrate the ability of these predictors to address specific uncertainty causes in MT evaluation, such as low quality references and out-of-domain data.
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Deep neural networks are powerful predictors for a variety of tasks. However, they do not capture uncertainty directly. Using neural network ensembles to quantify uncertainty is competitive with approaches based on Bayesian neural networks while benefiting from better computational scalability. However, building ensembles of neural networks is a challenging task because, in addition to choosing the right neural architecture or hyperparameters for each member of the ensemble, there is an added cost of training each model. We propose AutoDEUQ, an automated approach for generating an ensemble of deep neural networks. Our approach leverages joint neural architecture and hyperparameter search to generate ensembles. We use the law of total variance to decompose the predictive variance of deep ensembles into aleatoric (data) and epistemic (model) uncertainties. We show that AutoDEUQ outperforms probabilistic backpropagation, Monte Carlo dropout, deep ensemble, distribution-free ensembles, and hyper ensemble methods on a number of regression benchmarks.
Parallel Test-Time Scaling for Latent Reasoning Models
Parallel test-time scaling (TTS) is a pivotal approach for enhancing large language models (LLMs), typically by sampling multiple token-based chains-of-thought in parallel and aggregating outcomes through voting or search. Recent advances in latent reasoning, where intermediate reasoning unfolds in continuous vector spaces, offer a more efficient alternative to explicit Chain-of-Thought, yet whether such latent models can similarly benefit from parallel TTS remains open, mainly due to the absence of sampling mechanisms in continuous space, and the lack of probabilistic signals for advanced trajectory aggregation. \ This work enables parallel TTS for latent reasoning models by addressing the above issues. For sampling, we introduce two uncertainty-inspired stochastic strategies: Monte Carlo Dropout and Additive Gaussian Noise. For aggregation, we design a Latent Reward Model (LatentRM) trained with step-wise contrastive objective to score and guide latent reasoning. Extensive experiments and visualization analyses show that both sampling strategies scale effectively with compute and exhibit distinct exploration dynamics, while LatentRM enables effective trajectory selection. Together, our explorations open a new direction for scalable inference in continuous spaces. Code released at https://github.com/YRYangang/LatentTTS.
Probabilistic Circuits That Know What They Don't Know
Probabilistic circuits (PCs) are models that allow exact and tractable probabilistic inference. In contrast to neural networks, they are often assumed to be well-calibrated and robust to out-of-distribution (OOD) data. In this paper, we show that PCs are in fact not robust to OOD data, i.e., they don't know what they don't know. We then show how this challenge can be overcome by model uncertainty quantification. To this end, we propose tractable dropout inference (TDI), an inference procedure to estimate uncertainty by deriving an analytical solution to Monte Carlo dropout (MCD) through variance propagation. Unlike MCD in neural networks, which comes at the cost of multiple network evaluations, TDI provides tractable sampling-free uncertainty estimates in a single forward pass. TDI improves the robustness of PCs to distribution shift and OOD data, demonstrated through a series of experiments evaluating the classification confidence and uncertainty estimates on real-world data.
Trustworthy Sensor Fusion against Inaudible Command Attacks in Advanced Driver-Assistance System
There are increasing concerns about malicious attacks on autonomous vehicles. In particular, inaudible voice command attacks pose a significant threat as voice commands become available in autonomous driving systems. How to empirically defend against these inaudible attacks remains an open question. Previous research investigates utilizing deep learning-based multimodal fusion for defense, without considering the model uncertainty in trustworthiness. As deep learning has been applied to increasingly sensitive tasks, uncertainty measurement is crucial in helping improve model robustness, especially in mission-critical scenarios. In this paper, we propose the Multimodal Fusion Framework (MFF) as an intelligent security system to defend against inaudible voice command attacks. MFF fuses heterogeneous audio-vision modalities using VGG family neural networks and achieves the detection accuracy of 92.25% in the comparative fusion method empirical study. Additionally, extensive experiments on audio-vision tasks reveal the model's uncertainty. Using Expected Calibration Errors, we measure calibration errors and Monte-Carlo Dropout to estimate the predictive distribution for the proposed models. Our findings show empirically to train robust multimodal models, improve standard accuracy and provide a further step toward interpretability. Finally, we discuss the pros and cons of our approach and its applicability for Advanced Driver Assistance Systems.
Evaluating Uncertainty Quantification approaches for Neural PDEs in scientific applications
The accessibility of spatially distributed data, enabled by affordable sensors, field, and numerical experiments, has facilitated the development of data-driven solutions for scientific problems, including climate change, weather prediction, and urban planning. Neural Partial Differential Equations (Neural PDEs), which combine deep learning (DL) techniques with domain expertise (e.g., governing equations) for parameterization, have proven to be effective in capturing valuable correlations within spatiotemporal datasets. However, sparse and noisy measurements coupled with modeling approximation introduce aleatoric and epistemic uncertainties. Therefore, quantifying uncertainties propagated from model inputs to outputs remains a challenge and an essential goal for establishing the trustworthiness of Neural PDEs. This work evaluates various Uncertainty Quantification (UQ) approaches for both Forward and Inverse Problems in scientific applications. Specifically, we investigate the effectiveness of Bayesian methods, such as Hamiltonian Monte Carlo (HMC) and Monte-Carlo Dropout (MCD), and a more conventional approach, Deep Ensembles (DE). To illustrate their performance, we take two canonical PDEs: Burger's equation and the Navier-Stokes equation. Our results indicate that Neural PDEs can effectively reconstruct flow systems and predict the associated unknown parameters. However, it is noteworthy that the results derived from Bayesian methods, based on our observations, tend to display a higher degree of certainty in their predictions as compared to those obtained using the DE. This elevated certainty in predictions suggests that Bayesian techniques might underestimate the true underlying uncertainty, thereby appearing more confident in their predictions than the DE approach.
Deep Generative Modeling with Spatial and Network Images: An Explainable AI (XAI) Approach
This article addresses the challenge of modeling the amplitude of spatially indexed low frequency fluctuations (ALFF) in resting state functional MRI as a function of cortical structural features and a multi-task coactivation network in the Adolescent Brain Cognitive Development (ABCD) Study. It proposes a generative model that integrates effects of spatially-varying inputs and a network-valued input using deep neural networks to capture complex non-linear and spatial associations with the output. The method models spatial smoothness, accounts for subject heterogeneity and complex associations between network and spatial images at different scales, enables accurate inference of each images effect on the output image, and allows prediction with uncertainty quantification via Monte Carlo dropout, contributing to one of the first Explainable AI (XAI) frameworks for heterogeneous imaging data. The model is highly scalable to high-resolution data without the heavy pre-processing or summarization often required by Bayesian methods. Empirical results demonstrate its strong performance compared to existing statistical and deep learning methods. We applied the XAI model to the ABCD data which revealed associations between cortical features and ALFF throughout the entire brain. Our model performed comparably to existing methods in predictive accuracy but provided superior uncertainty quantification and faster computation, demonstrating its effectiveness for large-scale neuroimaging analysis. Open-source software in Python for XAI is available.
STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-Tuning of Large Language Models
Though Large Language Models (LLMs) have demonstrated the powerful capabilities of few-shot learning through prompting methods, supervised training is still necessary for complex reasoning tasks. Because of their extensive parameters and memory consumption, both Parameter-Efficient Fine-Tuning (PEFT) methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless, the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains unexplored. One obvious way is to combine the PEFT method with active learning. However, the experimental results show that such a combination is not trivial and yields inferior results. Through probe experiments, such observation might be explained by two main reasons: uncertainty gap and poor model calibration. Therefore, in this paper, we propose a novel approach to effectively integrate uncertainty-based active learning and LoRA. Specifically, for the uncertainty gap, we introduce a dynamic uncertainty measurement that combines the uncertainty of the base model and the uncertainty of the full model during the iteration of active learning. For poor model calibration, we incorporate the regularization method during LoRA training to keep the model from being over-confident, and the Monte-Carlo dropout mechanism is employed to enhance the uncertainty estimation. Experimental results show that the proposed approach outperforms existing baseline models on three complex reasoning tasks.
Uncertainty-Aware DNN for Multi-Modal Camera Localization
Camera localization, i.e., camera pose regression, represents an important task in computer vision since it has many practical applications such as in the context of intelligent vehicles and their localization. Having reliable estimates of the regression uncertainties is also important, as it would allow us to catch dangerous localization failures. In the literature, uncertainty estimation in Deep Neural Networks (DNNs) is often performed through sampling methods, such as Monte Carlo Dropout (MCD) and Deep Ensemble (DE), at the expense of undesirable execution time or an increase in hardware resources. In this work, we considered an uncertainty estimation approach named Deep Evidential Regression (DER) that avoids any sampling technique, providing direct uncertainty estimates. Our goal is to provide a systematic approach to intercept localization failures of camera localization systems based on DNNs architectures, by analyzing the generated uncertainties. We propose to exploit CMRNet, a DNN approach for multi-modal image to LiDAR map registration, by modifying its internal configuration to allow for extensive experimental activity on the KITTI dataset. The experimental section highlights CMRNet's major flaws and proves that our proposal does not compromise the original localization performances but also provides, at the same time, the necessary introspection measures that would allow end-users to act accordingly.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Deep Network Uncertainty Maps for Indoor Navigation
Most mobile robots for indoor use rely on 2D laser scanners for localization, mapping and navigation. These sensors, however, cannot detect transparent surfaces or measure the full occupancy of complex objects such as tables. Deep Neural Networks have recently been proposed to overcome this limitation by learning to estimate object occupancy. These estimates are nevertheless subject to uncertainty, making the evaluation of their confidence an important issue for these measures to be useful for autonomous navigation and mapping. In this work we approach the problem from two sides. First we discuss uncertainty estimation in deep models, proposing a solution based on a fully convolutional neural network. The proposed architecture is not restricted by the assumption that the uncertainty follows a Gaussian model, as in the case of many popular solutions for deep model uncertainty estimation, such as Monte-Carlo Dropout. We present results showing that uncertainty over obstacle distances is actually better modeled with a Laplace distribution. Then, we propose a novel approach to build maps based on Deep Neural Network uncertainty models. In particular, we present an algorithm to build a map that includes information over obstacle distance estimates while taking into account the level of uncertainty in each estimate. We show how the constructed map can be used to increase global navigation safety by planning trajectories which avoid areas of high uncertainty, enabling higher autonomy for mobile robots in indoor settings.
An Analysis of Temporal Dropout in Earth Observation Time Series for Regression Tasks
Missing instances in time series data impose a significant challenge to deep learning models, particularly in regression tasks. In the Earth Observation field, satellite failure or cloud occlusion frequently results in missing time-steps, introducing uncertainties in the predicted output and causing a decline in predictive performance. While many studies address missing time-steps through data augmentation to improve model robustness, the uncertainty arising at the input level is commonly overlooked. To address this gap, we introduce Monte Carlo Temporal Dropout (MC-TD), a method that explicitly accounts for input-level uncertainty by randomly dropping time-steps during inference using a predefined dropout ratio, thereby simulating the effect of missing data. To bypass the need for costly searches for the optimal dropout ratio, we extend this approach with Monte Carlo Concrete Temporal Dropout (MC-ConcTD), a method that learns the optimal dropout distribution directly. Both MC-TD and MC-ConcTD are applied during inference, leveraging Monte Carlo sampling for uncertainty quantification. Experiments on three EO time-series datasets demonstrate that MC-ConcTD improves predictive performance and uncertainty calibration compared to existing approaches. Additionally, we highlight the advantages of adaptive dropout tuning over manual selection, making uncertainty quantification more robust and accessible for EO applications.
Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs), but the performance is still underwhelming due to too much noisy preference data yielded in the loop. To combat this issue, we present an Uncertainty-enhanced Preference Optimization (UPO) framework to make the LLM self-evolve with reliable feedback. The key idea is mitigating the noisy preference data derived from the current policy and reward models by performing pair-wise uncertainty estimation and judiciously reliable feedback sampling. To reach this goal, we thus introduce an estimator model, which incorporates Monte Carlo (MC) dropout in Bayesian neural network (BNN) to perform uncertainty estimation for the preference data derived from the LLM policy. Compared to the existing methods that directly filter generated responses based on the reward score, the estimator focuses on the model uncertainty in a pair-wise manner and effectively bypasses the confirmation bias problem of the reward model. Additionally, we also propose an uncertainty-enhanced self-evolution algorithm to improve the robustness of preference optimization and encourage the LLM to generate responses with both high reward and certainty. Extensive experiments over multiple benchmarks demonstrate that our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
Robust Grasp Planning Over Uncertain Shape Completions
We present a method for planning robust grasps over uncertain shape completed objects. For shape completion, a deep neural network is trained to take a partial view of the object as input and outputs the completed shape as a voxel grid. The key part of the network is dropout layers which are enabled not only during training but also at run-time to generate a set of shape samples representing the shape uncertainty through Monte Carlo sampling. Given the set of shape completed objects, we generate grasp candidates on the mean object shape but evaluate them based on their joint performance in terms of analytical grasp metrics on all the shape candidates. We experimentally validate and benchmark our method against another state-of-the-art method with a Barrett hand on 90000 grasps in simulation and 200 grasps on a real Franka Emika Panda. All experimental results show statistically significant improvements both in terms of grasp quality metrics and grasp success rate, demonstrating that planning shape-uncertainty-aware grasps brings significant advantages over solely planning on a single shape estimate, especially when dealing with complex or unknown objects.
Structured Stochastic Gradient MCMC
Stochastic gradient Markov Chain Monte Carlo (SGMCMC) is considered the gold standard for Bayesian inference in large-scale models, such as Bayesian neural networks. Since practitioners face speed versus accuracy tradeoffs in these models, variational inference (VI) is often the preferable option. Unfortunately, VI makes strong assumptions on both the factorization and functional form of the posterior. In this work, we propose a new non-parametric variational approximation that makes no assumptions about the approximate posterior's functional form and allows practitioners to specify the exact dependencies the algorithm should respect or break. The approach relies on a new Langevin-type algorithm that operates on a modified energy function, where parts of the latent variables are averaged over samples from earlier iterations of the Markov chain. This way, statistical dependencies can be broken in a controlled way, allowing the chain to mix faster. This scheme can be further modified in a "dropout" manner, leading to even more scalability. We test our scheme for ResNet-20 on CIFAR-10, SVHN, and FMNIST. In all cases, we find improvements in convergence speed and/or final accuracy compared to SG-MCMC and VI.
Reverse Diffusion Monte Carlo
We propose a Monte Carlo sampler from the reverse diffusion process. Unlike the practice of diffusion models, where the intermediary updates -- the score functions -- are learned with a neural network, we transform the score matching problem into a mean estimation one. By estimating the means of the regularized posterior distributions, we derive a novel Monte Carlo sampling algorithm called reverse diffusion Monte Carlo (rdMC), which is distinct from the Markov chain Monte Carlo (MCMC) methods. We determine the sample size from the error tolerance and the properties of the posterior distribution to yield an algorithm that can approximately sample the target distribution with any desired accuracy. Additionally, we demonstrate and prove under suitable conditions that sampling with rdMC can be significantly faster than that with MCMC. For multi-modal target distributions such as those in Gaussian mixture models, rdMC greatly improves over the Langevin-style MCMC sampling methods both theoretically and in practice. The proposed rdMC method offers a new perspective and solution beyond classical MCMC algorithms for the challenging complex distributions.
Approximating Poker Probabilities with Deep Learning
Many poker systems, whether created with heuristics or machine learning, rely on the probability of winning as a key input. However calculating the precise probability using combinatorics is an intractable problem, so instead we approximate it. Monte Carlo simulation is an effective technique that can be used to approximate the probability that a player will win and/or tie a hand. However, without the use of a memory-intensive lookup table or a supercomputer, it becomes infeasible to run millions of times when training an agent with self-play. To combat the space-time tradeoff, we use deep learning to approximate the probabilities obtained from the Monte Carlo simulation with high accuracy. The learned model proves to be a lightweight alternative to Monte Carlo simulation, which ultimately allows us to use the probabilities as inputs during self-play efficiently. The source code and optimized neural network can be found at https://github.com/brandinho/Poker-Probability-Approximation
Dropout Strategy in Reinforcement Learning: Limiting the Surrogate Objective Variance in Policy Optimization Methods
Policy-based reinforcement learning algorithms are widely used in various fields. Among them, mainstream policy optimization algorithms such as TRPO and PPO introduce importance sampling into policy iteration, which allows the reuse of historical data. However, this can also lead to a high variance of the surrogate objective and indirectly affects the stability and convergence of the algorithm. In this paper, we first derived an upper bound of the surrogate objective variance, which can grow quadratically with the increase of the surrogate objective. Next, we proposed the dropout technique to avoid the excessive increase of the surrogate objective variance caused by importance sampling. Then, we introduced a general reinforcement learning framework applicable to mainstream policy optimization methods, and applied the dropout technique to the PPO algorithm to obtain the D-PPO variant. Finally, we conduct comparative experiments between D-PPO and PPO algorithms in the Atari 2600 environment, and the results show that D-PPO achieved significant performance improvements compared to PPO, and effectively limited the excessive increase of the surrogate objective variance during training.
Dropout Q-Functions for Doubly Efficient Reinforcement Learning
Randomized ensembled double Q-learning (REDQ) (Chen et al., 2021b) has recently achieved state-of-the-art sample efficiency on continuous-action reinforcement learning benchmarks. This superior sample efficiency is made possible by using a large Q-function ensemble. However, REDQ is much less computationally efficient than non-ensemble counterparts such as Soft Actor-Critic (SAC) (Haarnoja et al., 2018a). To make REDQ more computationally efficient, we propose a method of improving computational efficiency called DroQ, which is a variant of REDQ that uses a small ensemble of dropout Q-functions. Our dropout Q-functions are simple Q-functions equipped with dropout connection and layer normalization. Despite its simplicity of implementation, our experimental results indicate that DroQ is doubly (sample and computationally) efficient. It achieved comparable sample efficiency with REDQ, much better computational efficiency than REDQ, and comparable computational efficiency with that of SAC.
Maxout Networks
We consider the problem of designing models to leverage a recently introduced approximate model averaging technique called dropout. We define a simple new model called maxout (so named because its output is the max of a set of inputs, and because it is a natural companion to dropout) designed to both facilitate optimization by dropout and improve the accuracy of dropout's fast approximate model averaging technique. We empirically verify that the model successfully accomplishes both of these tasks. We use maxout and dropout to demonstrate state of the art classification performance on four benchmark datasets: MNIST, CIFAR-10, CIFAR-100, and SVHN.
Optimal randomized multilevel Monte Carlo for repeatedly nested expectations
The estimation of repeatedly nested expectations is a challenging task that arises in many real-world systems. However, existing methods generally suffer from high computational costs when the number of nestings becomes large. Fix any non-negative integer D for the total number of nestings. Standard Monte Carlo methods typically cost at least O(varepsilon^{-(2+D)}) and sometimes O(varepsilon^{-2(1+D)}) to obtain an estimator up to varepsilon-error. More advanced methods, such as multilevel Monte Carlo, currently only exist for D = 1. In this paper, we propose a novel Monte Carlo estimator called READ, which stands for "Recursive Estimator for Arbitrary Depth.'' Our estimator has an optimal computational cost of O(varepsilon^{-2}) for every fixed D under suitable assumptions, and a nearly optimal computational cost of O(varepsilon^{-2(1 + delta)}) for any 0 < delta < frac12 under much more general assumptions. Our estimator is also unbiased, which makes it easy to parallelize. The key ingredients in our construction are an observation of the problem's recursive structure and the recursive use of the randomized multilevel Monte Carlo method.
Optimized Monte Carlo Tree Search for Enhanced Decision Making in the FrozenLake Environment
Monte Carlo Tree Search (MCTS) is a powerful algorithm for solving complex decision-making problems. This paper presents an optimized MCTS implementation applied to the FrozenLake environment, a classic reinforcement learning task characterized by stochastic transitions. The optimization leverages cumulative reward and visit count tables along with the Upper Confidence Bound for Trees (UCT) formula, resulting in efficient learning in a slippery grid world. We benchmark our implementation against other decision-making algorithms, including MCTS with Policy and Q-Learning, and perform a detailed comparison of their performance. The results demonstrate that our optimized approach effectively maximizes rewards and success rates while minimizing convergence time, outperforming baseline methods, especially in environments with inherent randomness.
Truncating Trajectories in Monte Carlo Reinforcement Learning
In Reinforcement Learning (RL), an agent acts in an unknown environment to maximize the expected cumulative discounted sum of an external reward signal, i.e., the expected return. In practice, in many tasks of interest, such as policy optimization, the agent usually spends its interaction budget by collecting episodes of fixed length within a simulator (i.e., Monte Carlo simulation). However, given the discounted nature of the RL objective, this data collection strategy might not be the best option. Indeed, the rewards taken in early simulation steps weigh exponentially more than future rewards. Taking a cue from this intuition, in this paper, we design an a-priori budget allocation strategy that leads to the collection of trajectories of different lengths, i.e., truncated. The proposed approach provably minimizes the width of the confidence intervals around the empirical estimates of the expected return of a policy. After discussing the theoretical properties of our method, we make use of our trajectory truncation mechanism to extend Policy Optimization via Importance Sampling (POIS, Metelli et al., 2018) algorithm. Finally, we conduct a numerical comparison between our algorithm and POIS: the results are consistent with our theory and show that an appropriate truncation of the trajectories can succeed in improving performance.
ReZero: Boosting MCTS-based Algorithms by Backward-view and Entire-buffer Reanalyze
Monte Carlo Tree Search (MCTS)-based algorithms, such as MuZero and its derivatives, have achieved widespread success in various decision-making domains. These algorithms employ the reanalyze process to enhance sample efficiency from stale data, albeit at the expense of significant wall-clock time consumption. To address this issue, we propose a general approach named ReZero to boost tree search operations for MCTS-based algorithms. Specifically, drawing inspiration from the one-armed bandit model, we reanalyze training samples through a backward-view reuse technique which uses the value estimation of a certain child node to save the corresponding sub-tree search time. To further adapt to this design, we periodically reanalyze the entire buffer instead of frequently reanalyzing the mini-batch. The synergy of these two designs can significantly reduce the search cost and meanwhile guarantee or even improve performance, simplifying both data collecting and reanalyzing. Experiments conducted on Atari environments, DMControl suites and board games demonstrate that ReZero substantially improves training speed while maintaining high sample efficiency. The code is available as part of the LightZero MCTS benchmark at https://github.com/opendilab/LightZero.
SCAN: Self-Denoising Monte Carlo Annotation for Robust Process Reward Learning
Process reward models (PRMs) offer fine-grained, step-level evaluations that facilitate deeper reasoning processes in large language models (LLMs), proving effective in complex tasks like mathematical reasoning. However, developing PRMs is challenging due to the high cost and limited scalability of human-annotated data. Synthetic data from Monte Carlo (MC) estimation is a promising alternative but suffers from a high noise ratio, which can cause overfitting and hinder large-scale training. In this work, we conduct a preliminary study on the noise distribution in synthetic data from MC estimation, identifying that annotation models tend to both underestimate and overestimate step correctness due to limitations in their annotation capabilities. Building on these insights, we propose Self-Denoising Monte Carlo Annotation (SCAN), an efficient data synthesis and noise-tolerant learning framework. Our key findings indicate that: (1) Even lightweight models (e.g., 1.5B parameters) can produce high-quality annotations through a self-denoising strategy, enabling PRMs to achieve superior performance with only 6% the inference cost required by vanilla MC estimation. (2) With our robust learning strategy, PRMs can effectively learn from this weak supervision, achieving a 39.2 F1 score improvement (from 19.9 to 59.1) in ProcessBench. Despite using only a compact synthetic dataset, our models surpass strong baselines, including those trained on large-scale human-annotated datasets such as PRM800K. Furthermore, performance continues to improve as we scale up the synthetic data, highlighting the potential of SCAN for scalable, cost-efficient, and robust PRM training.
Comparative Analysis of Numerical Methods for Parameter Determination
We made a comparative analysis of numerical methods for multidimensional optimization. The main parameter is a number of computations of the test function to reach necessary accuracy, as it is computationally "slow". For complex functions, analytic differentiation by many parameters can cause problems associated with a significant complication of the program and thus slowing its operation. For comparison, we used the methods: "brute force" (or minimization on a regular grid), Monte Carlo, steepest descent, conjugate gradients, Brent's method (golden section search), parabolic interpolation etc. The Monte-Carlo method was applied to the eclipsing binary system AM Leo.
PALBERT: Teaching ALBERT to Ponder
Currently, pre-trained models can be considered the default choice for a wide range of NLP tasks. Despite their SoTA results, there is practical evidence that these models may require a different number of computing layers for different input sequences, since evaluating all layers leads to overconfidence in wrong predictions (namely overthinking). This problem can potentially be solved by implementing adaptive computation time approaches, which were first designed to improve inference speed. Recently proposed PonderNet may be a promising solution for performing an early exit by treating the exit layer's index as a latent variable. However, the originally proposed exit criterion, relying on sampling from trained posterior distribution on the probability of exiting from the i-th layer, introduces major variance in exit layer indices, significantly reducing the resulting model's performance. In this paper, we propose improving PonderNet with a novel deterministic Q-exit criterion and a revisited model architecture. We adapted the proposed mechanism to ALBERT and RoBERTa and compared it with recent methods for performing an early exit. We observed that the proposed changes can be considered significant improvements on the original PonderNet architecture and outperform PABEE on a wide range of GLUE tasks. In addition, we also performed an in-depth ablation study of the proposed architecture to further understand Lambda layers and their performance.
Composition and Control with Distilled Energy Diffusion Models and Sequential Monte Carlo
Diffusion models may be formulated as a time-indexed sequence of energy-based models, where the score corresponds to the negative gradient of an energy function. As opposed to learning the score directly, an energy parameterization is attractive as the energy itself can be used to control generation via Monte Carlo samplers. Architectural constraints and training instability in energy parameterized models have so far yielded inferior performance compared to directly approximating the score or denoiser. We address these deficiencies by introducing a novel training regime for the energy function through distillation of pre-trained diffusion models, resembling a Helmholtz decomposition of the score vector field. We further showcase the synergies between energy and score by casting the diffusion sampling procedure as a Feynman Kac model where sampling is controlled using potentials from the learnt energy functions. The Feynman Kac model formalism enables composition and low temperature sampling through sequential Monte Carlo.
ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a ConjNorm method, reframing density function design as a search for the optimal norm coefficient p against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed ConjNorm has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25% and 28.19% (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
Automatically Marginalized MCMC in Probabilistic Programming
Hamiltonian Monte Carlo (HMC) is a powerful algorithm to sample latent variables from Bayesian models. The advent of probabilistic programming languages (PPLs) frees users from writing inference algorithms and lets users focus on modeling. However, many models are difficult for HMC to solve directly, and often require tricks like model reparameterization. We are motivated by the fact that many of those models could be simplified by marginalization. We propose to use automatic marginalization as part of the sampling process using HMC in a graphical model extracted from a PPL, which substantially improves sampling from real-world hierarchical models.
Reasoning with Sampling: Your Base Model is Smarter Than You Think
Frontier reasoning models have exhibited incredible capabilities across a wide array of disciplines, driven by posttraining large language models (LLMs) with reinforcement learning (RL). However, despite the widespread success of this paradigm, much of the literature has been devoted to disentangling truly novel behaviors that emerge during RL but are not present in the base models. In our work, we approach this question from a different angle, instead asking whether comparable reasoning capabilites can be elicited from base models at inference time by pure sampling, without any additional training. Inspired by Markov chain Monte Carlo (MCMC) techniques for sampling from sharpened distributions, we propose a simple iterative sampling algorithm leveraging the base models' own likelihoods. Over different base models, we show that our algorithm offers substantial boosts in reasoning that nearly match and even outperform those from RL on a wide variety of single-shot tasks, including MATH500, HumanEval, and GPQA. Moreover, our sampler avoids the collapse in diversity over multiple samples that is characteristic of RL-posttraining. Crucially, our method does not require training, curated datasets, or a verifier, suggesting broad applicability beyond easily verifiable domains.
MBDP: A Model-based Approach to Achieve both Robustness and Sample Efficiency via Double Dropout Planning
Model-based reinforcement learning is a widely accepted solution for solving excessive sample demands. However, the predictions of the dynamics models are often not accurate enough, and the resulting bias may incur catastrophic decisions due to insufficient robustness. Therefore, it is highly desired to investigate how to improve the robustness of model-based RL algorithms while maintaining high sampling efficiency. In this paper, we propose Model-Based Double-dropout Planning (MBDP) to balance robustness and efficiency. MBDP consists of two kinds of dropout mechanisms, where the rollout-dropout aims to improve the robustness with a small cost of sample efficiency, while the model-dropout is designed to compensate for the lost efficiency at a slight expense of robustness. By combining them in a complementary way, MBDP provides a flexible control mechanism to meet different demands of robustness and efficiency by tuning two corresponding dropout ratios. The effectiveness of MBDP is demonstrated both theoretically and experimentally.
AlphaSnake: Policy Iteration on a Nondeterministic NP-hard Markov Decision Process
Reinforcement learning has recently been used to approach well-known NP-hard combinatorial problems in graph theory. Among these problems, Hamiltonian cycle problems are exceptionally difficult to analyze, even when restricted to individual instances of structurally complex graphs. In this paper, we use Monte Carlo Tree Search (MCTS), the search algorithm behind many state-of-the-art reinforcement learning algorithms such as AlphaZero, to create autonomous agents that learn to play the game of Snake, a game centered on properties of Hamiltonian cycles on grid graphs. The game of Snake can be formulated as a single-player discounted Markov Decision Process (MDP) where the agent must behave optimally in a stochastic environment. Determining the optimal policy for Snake, defined as the policy that maximizes the probability of winning - or win rate - with higher priority and minimizes the expected number of time steps to win with lower priority, is conjectured to be NP-hard. Performance-wise, compared to prior work in the Snake game, our algorithm is the first to achieve a win rate over 0.5 (a uniform random policy achieves a win rate < 2.57 times 10^{-15}), demonstrating the versatility of AlphaZero in approaching NP-hard environments.
Mitigating Premature Exploitation in Particle-based Monte Carlo for Inference-Time Scaling
Inference-Time Scaling (ITS) improves language models by allocating more computation at generation time. Particle Filtering (PF) has emerged as a strong ITS method for complex mathematical reasoning tasks, but it is vulnerable when guided by process reward models, which often assign overconfident scores early in the reasoning process. This causes PF to suffer from premature exploitation: it myopically commits to locally promising trajectories, prunes potentially correct hypotheses, and converges to suboptimal solutions. This failure mode, known as particle impoverishment, is especially severe under constrained computational budgets. To address this, we analyze the problem and identify two root causes: a lack of diversity in the particle set due to overconfident resampling and consequent inability to assess the potential of a reasoning path. We introduce Entropic Particle Filtering (ePF), an algorithm that integrates two new techniques to solve these issues. The first technique, Entropic Annealing (EA), directly mitigates particle impoverishment by monitoring search diversity via entropy; when diversity drops, it intervenes by dynamically annealing the resampling distribution to preserve exploration. The second, an enhancement called Look-ahead Modulation (LaM), adds a predictive guide to evaluate a state's potential based on its successors. On several challenging math benchmarks, ePF significantly outperforms strong baselines and achieves up to a 50 % relative improvement in task reward. Together, these methods improve PF's resilience by balancing the exploration of diverse solution spaces with the exploitation of high-reward regions, ultimately leading to higher-quality solutions.
SoTA with Less: MCTS-Guided Sample Selection for Data-Efficient Visual Reasoning Self-Improvement
In this paper, we present an effective method to enhance visual reasoning with significantly fewer training samples, relying purely on self-improvement with no knowledge distillation. Our key insight is that the difficulty of training data during reinforcement fine-tuning (RFT) is critical. Appropriately challenging samples can substantially boost reasoning capabilities even when the dataset is small. Despite being intuitive, the main challenge remains in accurately quantifying sample difficulty to enable effective data filtering. To this end, we propose a novel way of repurposing Monte Carlo Tree Search (MCTS) to achieve that. Starting from our curated 70k open-source training samples, we introduce an MCTS-based selection method that quantifies sample difficulty based on the number of iterations required by the VLMs to solve each problem. This explicit step-by-step reasoning in MCTS enforces the model to think longer and better identifies samples that are genuinely challenging. We filter and retain 11k samples to perform RFT on Qwen2.5-VL-7B-Instruct, resulting in our final model, ThinkLite-VL. Evaluation results on eight benchmarks show that ThinkLite-VL improves the average performance of Qwen2.5-VL-7B-Instruct by 7%, using only 11k training samples with no knowledge distillation. This significantly outperforms all existing 7B-level reasoning VLMs, and our fairly comparable baselines that use classic selection methods such as accuracy-based filtering. Notably, on MathVista, ThinkLite-VL-7B achieves the SoTA accuracy of 75.1, surpassing Qwen2.5-VL-72B, GPT-4o, and O1. Our code, data, and model are available at https://github.com/si0wang/ThinkLite-VL.
Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift
This paper first answers the question "why do the two most powerful techniques Dropout and Batch Normalization (BN) often lead to a worse performance when they are combined together?" in both theoretical and statistical aspects. Theoretically, we find that Dropout would shift the variance of a specific neural unit when we transfer the state of that network from train to test. However, BN would maintain its statistical variance, which is accumulated from the entire learning procedure, in the test phase. The inconsistency of that variance (we name this scheme as "variance shift") causes the unstable numerical behavior in inference that leads to more erroneous predictions finally, when applying Dropout before BN. Thorough experiments on DenseNet, ResNet, ResNeXt and Wide ResNet confirm our findings. According to the uncovered mechanism, we next explore several strategies that modifies Dropout and try to overcome the limitations of their combination by avoiding the variance shift risks.
Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B
This paper introduces the MCT Self-Refine (MCTSr) algorithm, an innovative integration of Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS), designed to enhance performance in complex mathematical reasoning tasks. Addressing the challenges of accuracy and reliability in LLMs, particularly in strategic and mathematical reasoning, MCTSr leverages systematic exploration and heuristic self-refine mechanisms to improve decision-making frameworks within LLMs. The algorithm constructs a Monte Carlo search tree through iterative processes of Selection, self-refine, self-evaluation, and Backpropagation, utilizing an improved Upper Confidence Bound (UCB) formula to optimize the exploration-exploitation balance. Extensive experiments demonstrate MCTSr's efficacy in solving Olympiad-level mathematical problems, significantly improving success rates across multiple datasets, including GSM8K, GSM Hard, MATH, and Olympiad-level benchmarks, including Math Odyssey, AIME, and OlympiadBench. The study advances the application of LLMs in complex reasoning tasks and sets a foundation for future AI integration, enhancing decision-making accuracy and reliability in LLM-driven applications.
Ψ-Sampler: Initial Particle Sampling for SMC-Based Inference-Time Reward Alignment in Score Models
We introduce Psi-Sampler, an SMC-based framework incorporating pCNL-based initial particle sampling for effective inference-time reward alignment with a score-based generative model. Inference-time reward alignment with score-based generative models has recently gained significant traction, following a broader paradigm shift from pre-training to post-training optimization. At the core of this trend is the application of Sequential Monte Carlo (SMC) to the denoising process. However, existing methods typically initialize particles from the Gaussian prior, which inadequately captures reward-relevant regions and results in reduced sampling efficiency. We demonstrate that initializing from the reward-aware posterior significantly improves alignment performance. To enable posterior sampling in high-dimensional latent spaces, we introduce the preconditioned Crank-Nicolson Langevin (pCNL) algorithm, which combines dimension-robust proposals with gradient-informed dynamics. This approach enables efficient and scalable posterior sampling and consistently improves performance across various reward alignment tasks, including layout-to-image generation, quantity-aware generation, and aesthetic-preference generation, as demonstrated in our experiments.
Curiosity-Driven Exploration via Latent Bayesian Surprise
The human intrinsic desire to pursue knowledge, also known as curiosity, is considered essential in the process of skill acquisition. With the aid of artificial curiosity, we could equip current techniques for control, such as Reinforcement Learning, with more natural exploration capabilities. A promising approach in this respect has consisted of using Bayesian surprise on model parameters, i.e. a metric for the difference between prior and posterior beliefs, to favour exploration. In this contribution, we propose to apply Bayesian surprise in a latent space representing the agent's current understanding of the dynamics of the system, drastically reducing the computational costs. We extensively evaluate our method by measuring the agent's performance in terms of environment exploration, for continuous tasks, and looking at the game scores achieved, for video games. Our model is computationally cheap and compares positively with current state-of-the-art methods on several problems. We also investigate the effects caused by stochasticity in the environment, which is often a failure case for curiosity-driven agents. In this regime, the results suggest that our approach is resilient to stochastic transitions.
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a refinement of mean-square analysis in Li et al. (2019), and this refined framework automates the analysis of a large class of sampling algorithms based on discretizations of contractive SDEs. Using this framework, we establish an O(d/epsilon) mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known O(d/epsilon) result and is optimal (in terms of order) in both dimension d and accuracy tolerance epsilon for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.
MCMC: Bridging Rendering, Optimization and Generative AI
Generative artificial intelligence (AI) has made unprecedented advances in vision language models over the past two years. During the generative process, new samples (images) are generated from an unknown high-dimensional distribution. Markov Chain Monte Carlo (MCMC) methods are particularly effective in drawing samples from such complex, high-dimensional distributions. This makes MCMC methods an integral component for models like EBMs, ensuring accurate sample generation. Gradient-based optimization is at the core of modern generative models. The update step during the optimization forms a Markov chain where the new update depends only on the current state. This allows exploration of the parameter space in a memoryless manner, thus combining the benefits of gradient-based optimization and MCMC sampling. MCMC methods have shown an equally important role in physically based rendering where complex light paths are otherwise quite challenging to sample from simple importance sampling techniques. A lot of research is dedicated towards bringing physical realism to samples (images) generated from diffusion-based generative models in a data-driven manner, however, a unified framework connecting these techniques is still missing. In this course, we take the first steps toward understanding each of these components and exploring how MCMC could potentially serve as a bridge, linking these closely related areas of research. Our course aims to provide necessary theoretical and practical tools to guide students, researchers and practitioners towards the common goal of generative physically based rendering. All Jupyter notebooks with demonstrations associated to this tutorial can be found on the project webpage: https://sinbag.github.io/mcmc/
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
Efficient estimation of multiple expectations with the same sample by adaptive importance sampling and control variates
Some classical uncertainty quantification problems require the estimation of multiple expectations. Estimating all of them accurately is crucial and can have a major impact on the analysis to perform, and standard existing Monte Carlo methods can be costly to do so. We propose here a new procedure based on importance sampling and control variates for estimating more efficiently multiple expectations with the same sample. We first show that there exists a family of optimal estimators combining both importance sampling and control variates, which however cannot be used in practice because they require the knowledge of the values of the expectations to estimate. Motivated by the form of these optimal estimators and some interesting properties, we therefore propose an adaptive algorithm. The general idea is to adaptively update the parameters of the estimators for approaching the optimal ones. We suggest then a quantitative stopping criterion that exploits the trade-off between approaching these optimal parameters and having a sufficient budget left. This left budget is then used to draw a new independent sample from the final sampling distribution, allowing to get unbiased estimators of the expectations. We show how to apply our procedure to sensitivity analysis, by estimating Sobol' indices and quantifying the impact of the input distributions. Finally, realistic test cases show the practical interest of the proposed algorithm, and its significant improvement over estimating the expectations separately.
Sliced Wasserstein Estimation with Control Variates
The sliced Wasserstein (SW) distances between two probability measures are defined as the expectation of the Wasserstein distance between two one-dimensional projections of the two measures. The randomness comes from a projecting direction that is used to project the two input measures to one dimension. Due to the intractability of the expectation, Monte Carlo integration is performed to estimate the value of the SW distance. Despite having various variants, there has been no prior work that improves the Monte Carlo estimation scheme for the SW distance in terms of controlling its variance. To bridge the literature on variance reduction and the literature on the SW distance, we propose computationally efficient control variates to reduce the variance of the empirical estimation of the SW distance. The key idea is to first find Gaussian approximations of projected one-dimensional measures, then we utilize the closed-form of the Wasserstein-2 distance between two Gaussian distributions to design the control variates. In particular, we propose using a lower bound and an upper bound of the Wasserstein-2 distance between two fitted Gaussians as two computationally efficient control variates. We empirically show that the proposed control variate estimators can help to reduce the variance considerably when comparing measures over images and point-clouds. Finally, we demonstrate the favorable performance of the proposed control variate estimators in gradient flows to interpolate between two point-clouds and in deep generative modeling on standard image datasets, such as CIFAR10 and CelebA.
mini-TimeCube as a Neutron Scatter Camera
We present Monte Carlo (MC) simulation results from a study of a compact plastic-scintillator detector suitable for imaging fast neutrons in the 1 -- 10 MeV energy range: the miniTimeCube (mTC). Originally designed for antineutrino detection, the mTC consists of 24 MultiChannel Plate (MCP) photodetectors surrounding a 13 cm cube of boron-doped plastic scintillator. Our simulation results show that waveform digitization of 1536 optically sensitive channels surrounding the scintillator should allow for spatiotemporal determination of individual neutron-proton scatters in the detector volume to thicksim100 picoseconds and thicksim5 mm. A Bayesian estimation framework is presented for multiple-scatter reconstruction, and is used to estimate the incoming direction and energy of simulated individual neutrons. Finally, we show how populations of reconstructed neutrons can be used to estimate the direction and energy spectrum of nearby simulated neutron sources.
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
We propose efficient Langevin Monte Carlo algorithms for sampling distributions with nonsmooth convex composite potentials, which is the sum of a continuously differentiable function and a possibly nonsmooth function. We devise such algorithms leveraging recent advances in convex analysis and optimization methods involving Bregman divergences, namely the Bregman--Moreau envelopes and the Bregman proximity operators, and in the Langevin Monte Carlo algorithms reminiscent of mirror descent. The proposed algorithms extend existing Langevin Monte Carlo algorithms in two aspects -- the ability to sample nonsmooth distributions with mirror descent-like algorithms, and the use of the more general Bregman--Moreau envelope in place of the Moreau envelope as a smooth approximation of the nonsmooth part of the potential. A particular case of the proposed scheme is reminiscent of the Bregman proximal gradient algorithm. The efficiency of the proposed methodology is illustrated with various sampling tasks at which existing Langevin Monte Carlo methods are known to perform poorly.
LightZero: A Unified Benchmark for Monte Carlo Tree Search in General Sequential Decision Scenarios
Building agents based on tree-search planning capabilities with learned models has achieved remarkable success in classic decision-making problems, such as Go and Atari. However, it has been deemed challenging or even infeasible to extend Monte Carlo Tree Search (MCTS) based algorithms to diverse real-world applications, especially when these environments involve complex action spaces and significant simulation costs, or inherent stochasticity. In this work, we introduce LightZero, the first unified benchmark for deploying MCTS/MuZero in general sequential decision scenarios. Specificially, we summarize the most critical challenges in designing a general MCTS-style decision-making solver, then decompose the tightly-coupled algorithm and system design of tree-search RL methods into distinct sub-modules. By incorporating more appropriate exploration and optimization strategies, we can significantly enhance these sub-modules and construct powerful LightZero agents to tackle tasks across a wide range of domains, such as board games, Atari, MuJoCo, MiniGrid and GoBigger. Detailed benchmark results reveal the significant potential of such methods in building scalable and efficient decision intelligence. The code is available as part of OpenDILab at https://github.com/opendilab/LightZero.
Determination of Characteristics of Eclipsing Binaries with Spots: Phenomenological vs Physical Models
We discuss methods for modeling eclipsing binary stars using the "physical", "simplified" and "phenomenological" models. There are few realizations of the "physical" Wilson-Devinney (1971) code and its improvements, e.g. Binary Maker, Phoebe. A parameter search using the Monte-Carlo method was realized by Zola et al. (2010), which is efficient in expense of too many evaluations of the test function. We compare existing algorithms of minimization of multi-parametric functions and propose to use a "combined" algorithm, depending on if the Hessian matrix is positively determined. To study methods, a simply fast-computed function resembling the "complete" test function for the physical model. Also we adopt a simplified model of an eclipsing binary at a circular orbit assuming spherical components with an uniform brightness distribution. This model resembles more advanced models in a sense of correlated parameter estimates due to a similar topology of the test function. Such a model may be applied to detached Algol-type systems, where the tidal distortion of components is negligible.
Non-Log-Concave and Nonsmooth Sampling via Langevin Monte Carlo Algorithms
We study the problem of approximate sampling from non-log-concave distributions, e.g., Gaussian mixtures, which is often challenging even in low dimensions due to their multimodality. We focus on performing this task via Markov chain Monte Carlo (MCMC) methods derived from discretizations of the overdamped Langevin diffusions, which are commonly known as Langevin Monte Carlo algorithms. Furthermore, we are also interested in two nonsmooth cases for which a large class of proximal MCMC methods have been developed: (i) a nonsmooth prior is considered with a Gaussian mixture likelihood; (ii) a Laplacian mixture distribution. Such nonsmooth and non-log-concave sampling tasks arise from a wide range of applications to Bayesian inference and imaging inverse problems such as image deconvolution. We perform numerical simulations to compare the performance of most commonly used Langevin Monte Carlo algorithms.
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
We present a scalable and effective exploration strategy based on Thompson sampling for reinforcement learning (RL). One of the key shortcomings of existing Thompson sampling algorithms is the need to perform a Gaussian approximation of the posterior distribution, which is not a good surrogate in most practical settings. We instead directly sample the Q function from its posterior distribution, by using Langevin Monte Carlo, an efficient type of Markov Chain Monte Carlo (MCMC) method. Our method only needs to perform noisy gradient descent updates to learn the exact posterior distribution of the Q function, which makes our approach easy to deploy in deep RL. We provide a rigorous theoretical analysis for the proposed method and demonstrate that, in the linear Markov decision process (linear MDP) setting, it has a regret bound of O(d^{3/2}H^{3/2}T), where d is the dimension of the feature mapping, H is the planning horizon, and T is the total number of steps. We apply this approach to deep RL, by using Adam optimizer to perform gradient updates. Our approach achieves better or similar results compared with state-of-the-art deep RL algorithms on several challenging exploration tasks from the Atari57 suite.
Towards Self-Improvement of LLMs via MCTS: Leveraging Stepwise Knowledge with Curriculum Preference Learning
Monte Carlo Tree Search (MCTS) has recently emerged as a powerful technique for enhancing the reasoning capabilities of LLMs. Techniques such as SFT or DPO have enabled LLMs to distill high-quality behaviors from MCTS, improving their reasoning performance. However, existing distillation methods underutilize the rich trajectory information generated by MCTS, limiting the potential for improvements in LLM reasoning. In this paper, we propose AlphaLLM-CPL, a novel pairwise training framework that enables LLMs to self-improve through MCTS behavior distillation. AlphaLLM-CPL efficiently leverages MCTS trajectories via two key innovations: (1) AlphaLLM-CPL constructs stepwise trajectory pairs from child nodes sharing the same parent in the search tree, providing step-level information for more effective MCTS behavior distillation. (2) AlphaLLM-CPL introduces curriculum preference learning, dynamically adjusting the training sequence of trajectory pairs in each offline training epoch to prioritize critical learning steps and mitigate overfitting. Experimental results on mathematical reasoning tasks demonstrate that AlphaLLM-CPL significantly outperforms previous MCTS behavior distillation methods, substantially boosting the reasoning capabilities of LLMs.
Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach
We propose a unified framework to study policy evaluation (PE) and the associated temporal difference (TD) methods for reinforcement learning in continuous time and space. We show that PE is equivalent to maintaining the martingale condition of a process. From this perspective, we find that the mean--square TD error approximates the quadratic variation of the martingale and thus is not a suitable objective for PE. We present two methods to use the martingale characterization for designing PE algorithms. The first one minimizes a "martingale loss function", whose solution is proved to be the best approximation of the true value function in the mean--square sense. This method interprets the classical gradient Monte-Carlo algorithm. The second method is based on a system of equations called the "martingale orthogonality conditions" with test functions. Solving these equations in different ways recovers various classical TD algorithms, such as TD(lambda), LSTD, and GTD. Different choices of test functions determine in what sense the resulting solutions approximate the true value function. Moreover, we prove that any convergent time-discretized algorithm converges to its continuous-time counterpart as the mesh size goes to zero, and we provide the convergence rate. We demonstrate the theoretical results and corresponding algorithms with numerical experiments and applications.
Quantification of Uncertainty with Adversarial Models
Quantifying uncertainty is important for actionable predictions in real-world applications. A crucial part of predictive uncertainty quantification is the estimation of epistemic uncertainty, which is defined as an integral of the product between a divergence function and the posterior. Current methods such as Deep Ensembles or MC dropout underperform at estimating the epistemic uncertainty, since they primarily consider the posterior when sampling models. We suggest Quantification of Uncertainty with Adversarial Models (QUAM) to better estimate the epistemic uncertainty. QUAM identifies regions where the whole product under the integral is large, not just the posterior. Consequently, QUAM has lower approximation error of the epistemic uncertainty compared to previous methods. Models for which the product is large correspond to adversarial models (not adversarial examples!). Adversarial models have both a high posterior as well as a high divergence between their predictions and that of a reference model. Our experiments show that QUAM excels in capturing epistemic uncertainty for deep learning models and outperforms previous methods on challenging tasks in the vision domain.
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
State space models (SSM) have been widely applied for the analysis and visualization of large sequential datasets. Sequential Monte Carlo (SMC) is a very popular particle-based method to sample latent states from intractable posteriors. However, SSM is significantly influenced by the choice of the proposal. Recently Hamiltonian Monte Carlo (HMC) sampling has shown success in many practical problems. In this paper, we propose an SMC augmented by HMC (HSMC) for inference and model learning of nonlinear SSM, which can exempt us from learning proposals and reduce the model complexity significantly. Based on the measure preserving property of HMC, the particles directly generated by transition function can approximate the posterior of latent states arbitrarily well. In order to better adapt to the local geometry of latent space, the HMC is conducted on Riemannian manifold defined by a positive definite metric. In addition, we show that the proposed HSMC method can improve SSMs realized by both Gaussian Processes (GP) and Neural Network (NN).
Training Chain-of-Thought via Latent-Variable Inference
Large language models (LLMs) solve problems more accurately and interpretably when instructed to work out the answer step by step using a ``chain-of-thought'' (CoT) prompt. One can also improve LLMs' performance on a specific task by supervised fine-tuning, i.e., by using gradient ascent on some tunable parameters to maximize the average log-likelihood of correct answers from a labeled training set. Naively combining CoT with supervised tuning requires supervision not just of the correct answers, but also of detailed rationales that lead to those answers; these rationales are expensive to produce by hand. Instead, we propose a fine-tuning strategy that tries to maximize the marginal log-likelihood of generating a correct answer using CoT prompting, approximately averaging over all possible rationales. The core challenge is sampling from the posterior over rationales conditioned on the correct answer; we address it using a simple Markov-chain Monte Carlo (MCMC) expectation-maximization (EM) algorithm inspired by the self-taught reasoner (STaR), memoized wake-sleep, Markovian score climbing, and persistent contrastive divergence. This algorithm also admits a novel control-variate technique that drives the variance of our gradient estimates to zero as the model improves. Applying our technique to GSM8K and the tasks in BIG-Bench Hard, we find that this MCMC-EM fine-tuning technique typically improves the model's accuracy on held-out examples more than STaR or prompt-tuning with or without CoT.
Solving the optimal stopping problem with reinforcement learning: an application in financial option exercise
The optimal stopping problem is a category of decision problems with a specific constrained configuration. It is relevant to various real-world applications such as finance and management. To solve the optimal stopping problem, state-of-the-art algorithms in dynamic programming, such as the least-squares Monte Carlo (LSMC), are employed. This type of algorithm relies on path simulations using only the last price of the underlying asset as a state representation. Also, the LSMC was thinking for option valuation where risk-neutral probabilities can be employed to account for uncertainty. However, the general optimal stopping problem goals may not fit the requirements of the LSMC showing auto-correlated prices. We employ a data-driven method that uses Monte Carlo simulation to train and test artificial neural networks (ANN) to solve the optimal stopping problem. Using ANN to solve decision problems is not entirely new. We propose a different architecture that uses convolutional neural networks (CNN) to deal with the dimensionality problem that arises when we transform the whole history of prices into a Markovian state. We present experiments that indicate that our proposed architecture improves results over the previous implementations under specific simulated time series function sets. Lastly, we employ our proposed method to compare the optimal exercise of the financial options problem with the LSMC algorithm. Our experiments show that our method can capture more accurate exercise opportunities when compared to the LSMC. We have outstandingly higher (above 974\% improvement) expected payoff from these exercise policies under the many Monte Carlo simulations that used the real-world return database on the out-of-sample (test) data.
Towards Practical Preferential Bayesian Optimization with Skew Gaussian Processes
We study preferential Bayesian optimization (BO) where reliable feedback is limited to pairwise comparison called duels. An important challenge in preferential BO, which uses the preferential Gaussian process (GP) model to represent flexible preference structure, is that the posterior distribution is a computationally intractable skew GP. The most widely used approach for preferential BO is Gaussian approximation, which ignores the skewness of the true posterior. Alternatively, Markov chain Monte Carlo (MCMC) based preferential BO is also proposed. In this work, we first verify the accuracy of Gaussian approximation, from which we reveal the critical problem that the predictive probability of duels can be inaccurate. This observation motivates us to improve the MCMC-based estimation for skew GP, for which we show the practical efficiency of Gibbs sampling and derive the low variance MC estimator. However, the computational time of MCMC can still be a bottleneck in practice. Towards building a more practical preferential BO, we develop a new method that achieves both high computational efficiency and low sample complexity, and then demonstrate its effectiveness through extensive numerical experiments.
Effectively Unbiased FID and Inception Score and where to find them
This paper shows that two commonly used evaluation metrics for generative models, the Fr\'echet Inception Distance (FID) and the Inception Score (IS), are biased -- the expected value of the score computed for a finite sample set is not the true value of the score. Worse, the paper shows that the bias term depends on the particular model being evaluated, so model A may get a better score than model B simply because model A's bias term is smaller. This effect cannot be fixed by evaluating at a fixed number of samples. This means all comparisons using FID or IS as currently computed are unreliable. We then show how to extrapolate the score to obtain an effectively bias-free estimate of scores computed with an infinite number of samples, which we term textrm{FID}_infty and textrm{IS}_infty. In turn, this effectively bias-free estimate requires good estimates of scores with a finite number of samples. We show that using Quasi-Monte Carlo integration notably improves estimates of FID and IS for finite sample sets. Our extrapolated scores are simple, drop-in replacements for the finite sample scores. Additionally, we show that using low discrepancy sequence in GAN training offers small improvements in the resulting generator.
Step-level Value Preference Optimization for Mathematical Reasoning
Direct Preference Optimization (DPO) using an implicit reward model has proven to be an effective alternative to reinforcement learning from human feedback (RLHF) for fine-tuning preference aligned large language models (LLMs). However, the overall preference annotations of responses do not fully capture the fine-grained quality of model outputs in complex multi-step reasoning tasks, such as mathematical reasoning. To address this limitation, we introduce a novel algorithm called Step-level Value Preference Optimization (SVPO). Our approach employs Monte Carlo Tree Search (MCTS) to automatically annotate step-level preferences for multi-step reasoning. Furthermore, from the perspective of learning-to-rank, we train an explicit value model to replicate the behavior of the implicit reward model, complementing standard preference optimization. This value model enables the LLM to generate higher reward responses with minimal cost during inference. Experimental results demonstrate that our method achieves state-of-the-art performance on both in-domain and out-of-domain mathematical reasoning benchmarks. Our code is available at https://github.com/MARIO-Math-Reasoning/Super_MARIO.
Checkmating One, by Using Many: Combining Mixture of Experts with MCTS to Improve in Chess
This paper presents a new approach that integrates deep learning with computational chess, using both the Mixture of Experts (MoE) method and Monte-Carlo Tree Search (MCTS). Our methodology employs a suite of specialized models, each designed to respond to specific changes in the game's input data. This results in a framework with sparsely activated models, which provides significant computational benefits. Our framework combines the MoE method with MCTS, in order to align it with the strategic phases of chess, thus departing from the conventional ``one-for-all'' model. Instead, we utilize distinct game phase definitions to effectively distribute computational tasks across multiple expert neural networks. Our empirical research shows a substantial improvement in playing strength, surpassing the traditional single-model framework. This validates the efficacy of our integrated approach and highlights the potential of incorporating expert knowledge and strategic principles into neural network design. The fusion of MoE and MCTS offers a promising avenue for advancing machine learning architectures.
Implicit Search via Discrete Diffusion: A Study on Chess
In the post-AlphaGo era, there has been a renewed interest in search techniques such as Monte Carlo Tree Search (MCTS), particularly in their application to Large Language Models (LLMs). This renewed attention is driven by the recognition that current next-token prediction models often lack the ability for long-term planning. Is it possible to instill search-like abilities within the models to enhance their planning abilities without relying on explicit search? We propose DiffuSearch , a model that does implicit search by looking into the future world via discrete diffusion modeling. We instantiate DiffuSearch on a classical board game, Chess, where explicit search is known to be essential. Through extensive controlled experiments, we show DiffuSearch outperforms both the searchless and explicit search-enhanced policies. Specifically, DiffuSearch outperforms the one-step policy by 19.2% and the MCTS-enhanced policy by 14% on action accuracy. Furthermore, DiffuSearch demonstrates a notable 30% enhancement in puzzle-solving abilities compared to explicit search-based policies, along with a significant 540 Elo increase in game-playing strength assessment. These results indicate that implicit search via discrete diffusion is a viable alternative to explicit search over a one-step policy. All codes are publicly available at https://github.com/HKUNLP/DiffuSearch{https://github.com/HKUNLP/DiffuSearch}.
Repelling Random Walks
We present a novel quasi-Monte Carlo mechanism to improve graph-based sampling, coined repelling random walks. By inducing correlations between the trajectories of an interacting ensemble such that their marginal transition probabilities are unmodified, we are able to explore the graph more efficiently, improving the concentration of statistical estimators whilst leaving them unbiased. The mechanism has a trivial drop-in implementation. We showcase the effectiveness of repelling random walks in a range of settings including estimation of graph kernels, the PageRank vector and graphlet concentrations. We provide detailed experimental evaluation and robust theoretical guarantees. To our knowledge, repelling random walks constitute the first rigorously studied quasi-Monte Carlo scheme correlating the directions of walkers on a graph, inviting new research in this exciting nascent domain.
What Are Step-Level Reward Models Rewarding? Counterintuitive Findings from MCTS-Boosted Mathematical Reasoning
Step-level reward models (SRMs) can significantly enhance mathematical reasoning performance through process supervision or step-level preference alignment based on reinforcement learning. The performance of SRMs is pivotal, as they serve as critical guidelines, ensuring that each step in the reasoning process is aligned with desired outcomes. Recently, AlphaZero-like methods, where Monte Carlo Tree Search (MCTS) is employed for automatic step-level preference annotation, have proven particularly effective. However, the precise mechanisms behind the success of SRMs remain largely unexplored. To address this gap, this study delves into the counterintuitive aspects of SRMs, particularly focusing on MCTS-based approaches. Our findings reveal that the removal of natural language descriptions of thought processes has minimal impact on the efficacy of SRMs. Furthermore, we demonstrate that SRMs are adept at assessing the complex logical coherence present in mathematical language while having difficulty in natural language. These insights provide a nuanced understanding of the core elements that drive effective step-level reward modeling in mathematical reasoning. By shedding light on these mechanisms, this study offers valuable guidance for developing more efficient and streamlined SRMs, which can be achieved by focusing on the crucial parts of mathematical reasoning.
GroundedPRM: Tree-Guided and Fidelity-Aware Process Reward Modeling for Step-Level Reasoning
Process Reward Models (PRMs) aim to improve multi-step reasoning in Large Language Models (LLMs) by supervising intermediate steps and identifying errors. However, building effective PRMs remains challenging due to the lack of scalable, high-quality annotations. Existing approaches rely on costly human labeling, LLM-based self-evaluation that is prone to hallucination, or Monte Carlo (MC) estimation, which infers step quality solely from rollout outcomes and often introduces noisy, misaligned supervision due to credit misattribution. These issues result in three core limitations: noisy rewards, low factual fidelity, and misalignment with step-level reasoning objectives. To address these challenges, we introduce GroundedPRM, a tree-guided and fidelity-aware framework for automatic process supervision. To reduce reward noise and enable fine-grained credit assignment, we construct structured reasoning paths via Monte Carlo Tree Search (MCTS). To eliminate hallucinated supervision, we validate each intermediate step using an external tool, providing execution-grounded correctness signals. To combine both step-level validation and global outcome assessment, we design a hybrid reward aggregation mechanism that fuses tool-based verification with MCTS-derived feedback. Finally, we format the reward signal into a rationale-enhanced, generative structure to promote interpretability and compatibility with instruction-tuned LLMs. GroundedPRM is trained on only 40K automatically labeled samples, amounting to just 10% of the data used by the best-performing PRM trained with auto-labeled supervision. Nevertheless, it achieves up to a 26% relative improvement in average performance on ProcessBench. When used for reward-guided greedy search, GroundedPRM outperforms even PRMs trained with human-labeled supervision, offering a scalable and verifiable path toward high-quality process-level reasoning.
Deep Learning Hamiltonian Monte Carlo
We generalize the Hamiltonian Monte Carlo algorithm with a stack of neural network layers and evaluate its ability to sample from different topologies in a two dimensional lattice gauge theory. We demonstrate that our model is able to successfully mix between modes of different topologies, significantly reducing the computational cost required to generated independent gauge field configurations. Our implementation is available at https://github.com/saforem2/l2hmc-qcd .
Solving Inverse Problems via Diffusion-Based Priors: An Approximation-Free Ensemble Sampling Approach
Diffusion models (DMs) have proven to be effective in modeling high-dimensional distributions, leading to their widespread adoption for representing complex priors in Bayesian inverse problems (BIPs). However, current DM-based posterior sampling methods proposed for solving common BIPs rely on heuristic approximations to the generative process. To exploit the generative capability of DMs and avoid the usage of such approximations, we propose an ensemble-based algorithm that performs posterior sampling without the use of heuristic approximations. Our algorithm is motivated by existing works that combine DM-based methods with the sequential Monte Carlo (SMC) method. By examining how the prior evolves through the diffusion process encoded by the pre-trained score function, we derive a modified partial differential equation (PDE) governing the evolution of the corresponding posterior distribution. This PDE includes a modified diffusion term and a reweighting term, which can be simulated via stochastic weighted particle methods. Theoretically, we prove that the error between the true posterior distribution can be bounded in terms of the training error of the pre-trained score function and the number of particles in the ensemble. Empirically, we validate our algorithm on several inverse problems in imaging to show that our method gives more accurate reconstructions compared to existing DM-based methods.
DEUP: Direct Epistemic Uncertainty Prediction
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
Stochastic Modified Equations and Dynamics of Dropout Algorithm
Dropout is a widely utilized regularization technique in the training of neural networks, nevertheless, its underlying mechanism and its impact on achieving good generalization abilities remain poorly understood. In this work, we derive the stochastic modified equations for analyzing the dynamics of dropout, where its discrete iteration process is approximated by a class of stochastic differential equations. In order to investigate the underlying mechanism by which dropout facilitates the identification of flatter minima, we study the noise structure of the derived stochastic modified equation for dropout. By drawing upon the structural resemblance between the Hessian and covariance through several intuitive approximations, we empirically demonstrate the universal presence of the inverse variance-flatness relation and the Hessian-variance relation, throughout the training process of dropout. These theoretical and empirical findings make a substantial contribution to our understanding of the inherent tendency of dropout to locate flatter minima.
Self-Steering Language Models
While test-time reasoning enables language models to tackle complex tasks, searching or planning in natural language can be slow, costly, and error-prone. But even when LMs struggle to emulate the precise reasoning steps needed to solve a problem, they often excel at describing its abstract structure--both how to verify solutions and how to search for them. This paper introduces DisCIPL, a method for "self-steering" LMs where a Planner model generates a task-specific inference program that is executed by a population of Follower models. Our approach equips LMs with the ability to write recursive search procedures that guide LM inference, enabling new forms of verifiable and efficient reasoning. When instantiated with a small Follower (e.g., Llama-3.2-1B), DisCIPL matches (and sometimes outperforms) much larger models, including GPT-4o and o1, on challenging constrained generation tasks. In decoupling planning from execution, our work opens up a design space of highly-parallelized Monte Carlo inference strategies that outperform standard best-of-N sampling, require no finetuning, and can be implemented automatically by existing LMs.
On Sequential Bayesian Inference for Continual Learning
Sequential Bayesian inference can be used for continual learning to prevent catastrophic forgetting of past tasks and provide an informative prior when learning new tasks. We revisit sequential Bayesian inference and test whether having access to the true posterior is guaranteed to prevent catastrophic forgetting in Bayesian neural networks. To do this we perform sequential Bayesian inference using Hamiltonian Monte Carlo. We propagate the posterior as a prior for new tasks by fitting a density estimator on Hamiltonian Monte Carlo samples. We find that this approach fails to prevent catastrophic forgetting demonstrating the difficulty in performing sequential Bayesian inference in neural networks. From there we study simple analytical examples of sequential Bayesian inference and CL and highlight the issue of model misspecification which can lead to sub-optimal continual learning performance despite exact inference. Furthermore, we discuss how task data imbalances can cause forgetting. From these limitations, we argue that we need probabilistic models of the continual learning generative process rather than relying on sequential Bayesian inference over Bayesian neural network weights. In this vein, we also propose a simple baseline called Prototypical Bayesian Continual Learning, which is competitive with state-of-the-art Bayesian continual learning methods on class incremental continual learning vision benchmarks.
Mastering Board Games by External and Internal Planning with Language Models
While large language models perform well on a range of complex tasks (e.g., text generation, question answering, summarization), robust multi-step planning and reasoning remains a considerable challenge for them. In this paper we show that search-based planning can significantly improve LLMs' playing strength across several board games (Chess, Fischer Random / Chess960, Connect Four, and Hex). We introduce, compare and contrast two major approaches: In external search, the model guides Monte Carlo Tree Search (MCTS) rollouts and evaluations without calls to an external engine, and in internal search, the model directly generates in-context a linearized tree of potential futures and a resulting final choice. Both build on a language model pre-trained on relevant domain knowledge, capturing the transition and value functions across these games. We find that our pre-training method minimizes hallucinations, as our model is highly accurate regarding state prediction and legal moves. Additionally, both internal and external search indeed improve win-rates against state-of-the-art bots, even reaching Grandmaster-level performance in chess while operating on a similar move count search budget per decision as human Grandmasters. The way we combine search with domain knowledge is not specific to board games, suggesting direct extensions into more general language model inference and training techniques.
I-MCTS: Enhancing Agentic AutoML via Introspective Monte Carlo Tree Search
Recent advancements in large language models (LLMs) have shown remarkable potential in automating machine learning tasks. However, existing LLM-based agents often struggle with low-diversity and suboptimal code generation. While recent work has introduced Monte Carlo Tree Search (MCTS) to address these issues, limitations persist in the quality and diversity of thoughts generated, as well as in the scalar value feedback mechanisms used for node selection. In this study, we introduce Introspective Monte Carlo Tree Search (I-MCTS), a novel approach that iteratively expands tree nodes through an introspective process that meticulously analyzes solutions and results from parent and sibling nodes. This facilitates a continuous refinement of the node in the search tree, thereby enhancing the overall decision-making process. Furthermore, we integrate a Large Language Model (LLM)-based value model to facilitate direct evaluation of each node's solution prior to conducting comprehensive computational rollouts. A hybrid rewarding mechanism is implemented to seamlessly transition the Q-value from LLM-estimated scores to actual performance scores. This allows higher-quality nodes to be traversed earlier. Applied to the various ML tasks, our approach demonstrates a 6% absolute improvement in performance compared to the strong open-source AutoML agents, showcasing its effectiveness in enhancing agentic AutoML systems. Resource available at https://github.com/jokieleung/I-MCTS
MASTER: A Multi-Agent System with LLM Specialized MCTS
Large Language Models (LLM) are increasingly being explored for problem-solving tasks. However, their strategic planning capability is often viewed with skepticism. Recent studies have incorporated the Monte Carlo Tree Search (MCTS) algorithm to augment the planning capacity of LLM. Despite its potential, MCTS relies on extensive sampling simulations to approximate the true reward distribution, which leads to two primary issues. Firstly, MCTS is effective for tasks like the Game of Go, where simulation results can yield objective rewards (e.g., 1 for a win and 0 for a loss). However, for tasks such as question answering, the result of a simulation is the answer to the question, which cannot yield an objective reward without the ground truth. Secondly, obtaining statistically significant reward estimations typically requires a sample size exceeding 30 simulations, resulting in excessive token usage and time consumption. To address these challenges, we present the Multi-Agent System with Tactical Execution and Reasoning using LLM Specialized MCTS (MASTER), a novel framework that coordinates agent recruitment and communication through LLM specialized MCTS. This system autonomously adjusts the number of agents based on task complexity and ensures focused communication among them. Comprehensive experiments across various tasks demonstrate the effectiveness of our proposed framework. It achieves 76% accuracy on HotpotQA and 80% on WebShop, setting new state-of-the-art performance on these datasets.
A Study of Bayesian Neural Network Surrogates for Bayesian Optimization
Bayesian optimization is a highly efficient approach to optimizing objective functions which are expensive to query. These objectives are typically represented by Gaussian process (GP) surrogate models which are easy to optimize and support exact inference. While standard GP surrogates have been well-established in Bayesian optimization, Bayesian neural networks (BNNs) have recently become practical function approximators, with many benefits over standard GPs such as the ability to naturally handle non-stationarity and learn representations for high-dimensional data. In this paper, we study BNNs as alternatives to standard GP surrogates for optimization. We consider a variety of approximate inference procedures for finite-width BNNs, including high-quality Hamiltonian Monte Carlo, low-cost stochastic MCMC, and heuristics such as deep ensembles. We also consider infinite-width BNNs and partially stochastic models such as deep kernel learning. We evaluate this collection of surrogate models on diverse problems with varying dimensionality, number of objectives, non-stationarity, and discrete and continuous inputs. We find: (i) the ranking of methods is highly problem dependent, suggesting the need for tailored inductive biases; (ii) HMC is the most successful approximate inference procedure for fully stochastic BNNs; (iii) full stochasticity may be unnecessary as deep kernel learning is relatively competitive; (iv) infinite-width BNNs are particularly promising, especially in high dimensions.
MedS^3: Towards Medical Small Language Models with Self-Evolved Slow Thinking
Medical language models (MLMs) have become pivotal in advancing medical natural language processing. However, prior models that rely on pre-training or supervised fine-tuning often exhibit low data efficiency and limited practicality in real-world clinical applications. While OpenAIs O1 highlights test-time scaling in mathematics, attempts to replicate this approach in medicine typically distill responses from GPT-series models to open-source models, focusing primarily on multiple-choice tasks. This strategy, though straightforward, neglects critical concerns like data privacy and realistic deployment in clinical settings. In this work, we present a deployable, small-scale medical language model, \mone, designed for long-chain reasoning in clinical tasks using a self-evolution paradigm. Starting with a seed dataset of around 8,000 instances spanning five domains and 16 datasets, we prompt a base policy model to perform Monte Carlo Tree Search (MCTS) to construct verifiable reasoning chains. Each reasoning step is assigned an evolution rollout value, allowing verified trajectories to train the policy model and the reward model. During inference, the policy model generates multiple responses, and the reward model selects the one with the highest reward score. Experiments on eleven evaluation datasets demonstrate that \mone outperforms prior open-source models by 2 points, with the addition of the reward model further boosting performance (sim13 points), surpassing GPT-4o-mini. Code and data are available at https://github.com/pixas/MedSSS.
Fast Value Tracking for Deep Reinforcement Learning
Reinforcement learning (RL) tackles sequential decision-making problems by creating agents that interacts with their environment. However, existing algorithms often view these problem as static, focusing on point estimates for model parameters to maximize expected rewards, neglecting the stochastic dynamics of agent-environment interactions and the critical role of uncertainty quantification. Our research leverages the Kalman filtering paradigm to introduce a novel and scalable sampling algorithm called Langevinized Kalman Temporal-Difference (LKTD) for deep reinforcement learning. This algorithm, grounded in Stochastic Gradient Markov Chain Monte Carlo (SGMCMC), efficiently draws samples from the posterior distribution of deep neural network parameters. Under mild conditions, we prove that the posterior samples generated by the LKTD algorithm converge to a stationary distribution. This convergence not only enables us to quantify uncertainties associated with the value function and model parameters but also allows us to monitor these uncertainties during policy updates throughout the training phase. The LKTD algorithm paves the way for more robust and adaptable reinforcement learning approaches.
RethinkMCTS: Refining Erroneous Thoughts in Monte Carlo Tree Search for Code Generation
LLM agents enhanced by tree search algorithms have yielded notable performances in code generation. However, current search algorithms in this domain suffer from low search quality due to several reasons: 1) Ineffective design of the search space for the high-reasoning demands of code generation tasks, 2) Inadequate integration of code feedback with the search algorithm, and 3) Poor handling of negative feedback during the search, leading to reduced search efficiency and quality. To address these challenges, we propose to search for the reasoning process of the code and use the detailed feedback of code execution to refine erroneous thoughts during the search. In this paper, we introduce RethinkMCTS, which employs the Monte Carlo Tree Search (MCTS) algorithm to conduct thought-level searches before generating code, thereby exploring a wider range of strategies. More importantly, we construct verbal feedback from fine-grained code execution feedback to refine erroneous thoughts during the search. This ensures that the search progresses along the correct reasoning paths, thus improving the overall search quality of the tree by leveraging execution feedback. Through extensive experiments, we demonstrate that RethinkMCTS outperforms previous search-based and feedback-based code generation baselines. On the HumanEval dataset, it improves the pass@1 of GPT-3.5-turbo from 70.12 to 89.02 and GPT-4o-mini from 87.20 to 94.51. It effectively conducts more thorough exploration through thought-level searches and enhances the search quality of the entire tree by incorporating rethink operation.
LLaMA-Berry: Pairwise Optimization for O1-like Olympiad-Level Mathematical Reasoning
This paper presents an advanced mathematical problem-solving framework, LLaMA-Berry, for enhancing the mathematical reasoning ability of Large Language Models (LLMs). The framework combines Monte Carlo Tree Search (MCTS) with iterative Self-Refine to optimize the reasoning path and utilizes a pairwise reward model to evaluate different paths globally. By leveraging the self-critic and rewriting capabilities of LLMs, Self-Refine applied to MCTS (SR-MCTS) overcomes the inefficiencies and limitations of conventional step-wise and greedy search algorithms by fostering a more efficient exploration of solution spaces. Pairwise Preference Reward Model~(PPRM), inspired by Reinforcement Learning from Human Feedback (RLHF), is then used to model pairwise preferences between solutions, utilizing an Enhanced Borda Count (EBC) method to synthesize these preferences into a global ranking score to find better answers. This approach addresses the challenges of scoring variability and non-independent distributions in mathematical reasoning tasks. The framework has been tested on general and advanced benchmarks, showing superior performance in terms of search efficiency and problem-solving capability compared to existing methods like ToT and rStar, particularly in complex Olympiad-level benchmarks, including GPQA, AIME24 and AMC23.
Uncertainty quantification for stationary and time-dependent PDEs subject to Gevrey regular random domain deformations
We study uncertainty quantification for partial differential equations subject to domain uncertainty. We parameterize the random domain using the model recently considered by Chernov and Le (2024) as well as Harbrecht, Schmidlin, and Schwab (2024) in which the input random field is assumed to belong to a Gevrey smoothness class. This approach has the advantage of being substantially more general than models which assume a particular parametric representation of the input random field such as a Karhunen-Loeve series expansion. We consider both the Poisson equation as well as the heat equation and design randomly shifted lattice quasi-Monte Carlo (QMC) cubature rules for the computation of the expected solution under domain uncertainty. We show that these QMC rules exhibit dimension-independent, essentially linear cubature convergence rates in this framework. In addition, we complete the error analysis by taking into account the approximation errors incurred by dimension truncation of the random input field and finite element discretization. Numerical experiments are presented to confirm the theoretical rates.
On Feynman--Kac training of partial Bayesian neural networks
Recently, partial Bayesian neural networks (pBNNs), which only consider a subset of the parameters to be stochastic, were shown to perform competitively with full Bayesian neural networks. However, pBNNs are often multi-modal in the latent-variable space and thus challenging to approximate with parametric models. To address this problem, we propose an efficient sampling-based training strategy, wherein the training of a pBNN is formulated as simulating a Feynman--Kac model. We then describe variations of sequential Monte Carlo samplers that allow us to simultaneously estimate the parameters and the latent posterior distribution of this model at a tractable computational cost. We show on various synthetic and real-world datasets that our proposed training scheme outperforms the state of the art in terms of predictive performance.
Target Score Matching
Denoising Score Matching estimates the score of a noised version of a target distribution by minimizing a regression loss and is widely used to train the popular class of Denoising Diffusion Models. A well known limitation of Denoising Score Matching, however, is that it yields poor estimates of the score at low noise levels. This issue is particularly unfavourable for problems in the physical sciences and for Monte Carlo sampling tasks for which the score of the clean original target is known. Intuitively, estimating the score of a slightly noised version of the target should be a simple task in such cases. In this paper, we address this shortcoming and show that it is indeed possible to leverage knowledge of the target score. We present a Target Score Identity and corresponding Target Score Matching regression loss which allows us to obtain score estimates admitting favourable properties at low noise levels.
Transport meets Variational Inference: Controlled Monte Carlo Diffusions
Connecting optimal transport and variational inference, we present a principled and systematic framework for sampling and generative modelling centred around divergences on path space. Our work culminates in the development of the Controlled Monte Carlo Diffusion sampler (CMCD) for Bayesian computation, a score-based annealing technique that crucially adapts both forward and backward dynamics in a diffusion model. On the way, we clarify the relationship between the EM-algorithm and iterative proportional fitting (IPF) for Schr{\"o}dinger bridges, deriving as well a regularised objective that bypasses the iterative bottleneck of standard IPF-updates. Finally, we show that CMCD has a strong foundation in the Jarzinsky and Crooks identities from statistical physics, and that it convincingly outperforms competing approaches across a wide array of experiments.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
A Distributional Perspective on Reinforcement Learning
In this paper we argue for the fundamental importance of the value distribution: the distribution of the random return received by a reinforcement learning agent. This is in contrast to the common approach to reinforcement learning which models the expectation of this return, or value. Although there is an established body of literature studying the value distribution, thus far it has always been used for a specific purpose such as implementing risk-aware behaviour. We begin with theoretical results in both the policy evaluation and control settings, exposing a significant distributional instability in the latter. We then use the distributional perspective to design a new algorithm which applies Bellman's equation to the learning of approximate value distributions. We evaluate our algorithm using the suite of games from the Arcade Learning Environment. We obtain both state-of-the-art results and anecdotal evidence demonstrating the importance of the value distribution in approximate reinforcement learning. Finally, we combine theoretical and empirical evidence to highlight the ways in which the value distribution impacts learning in the approximate setting.
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Diffusion models are powerful generative models that simulate the reverse of diffusion processes using score functions to synthesize data from noise. The sampling process of diffusion models can be interpreted as solving the reverse stochastic differential equation (SDE) or the ordinary differential equation (ODE) of the diffusion process, which often requires up to thousands of discretization steps to generate a single image. This has sparked a great interest in developing efficient integration techniques for reverse-S/ODEs. Here, we propose an orthogonal approach to accelerating score-based sampling: Denoising MCMC (DMCMC). DMCMC first uses MCMC to produce samples in the product space of data and variance (or diffusion time). Then, a reverse-S/ODE integrator is used to denoise the MCMC samples. Since MCMC traverses close to the data manifold, the computation cost of producing a clean sample for DMCMC is much less than that of producing a clean sample from noise. To verify the proposed concept, we show that Denoising Langevin Gibbs (DLG), an instance of DMCMC, successfully accelerates all six reverse-S/ODE integrators considered in this work on the tasks of CIFAR10 and CelebA-HQ-256 image generation. Notably, combined with integrators of Karras et al. (2022) and pre-trained score models of Song et al. (2021b), DLG achieves SOTA results. In the limited number of score function evaluation (NFE) settings on CIFAR10, we have 3.86 FID with approx 10 NFE and 2.63 FID with approx 20 NFE. On CelebA-HQ-256, we have 6.99 FID with approx 160 NFE, which beats the current best record of Kim et al. (2022) among score-based models, 7.16 FID with 4000 NFE. Code: https://github.com/1202kbs/DMCMC
Protein Discovery with Discrete Walk-Jump Sampling
We resolve difficulties in training and sampling from a discrete generative model by learning a smoothed energy function, sampling from the smoothed data manifold with Langevin Markov chain Monte Carlo (MCMC), and projecting back to the true data manifold with one-step denoising. Our Discrete Walk-Jump Sampling formalism combines the contrastive divergence training of an energy-based model and improved sample quality of a score-based model, while simplifying training and sampling by requiring only a single noise level. We evaluate the robustness of our approach on generative modeling of antibody proteins and introduce the distributional conformity score to benchmark protein generative models. By optimizing and sampling from our models for the proposed distributional conformity score, 97-100% of generated samples are successfully expressed and purified and 70% of functional designs show equal or improved binding affinity compared to known functional antibodies on the first attempt in a single round of laboratory experiments. We also report the first demonstration of long-run fast-mixing MCMC chains where diverse antibody protein classes are visited in a single MCMC chain.
Machine Learning with a Reject Option: A survey
Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
Improving Autonomous AI Agents with Reflective Tree Search and Self-Learning
Autonomous agents have demonstrated significant potential in automating complex multistep decision-making tasks. However, even state-of-the-art vision-language models (VLMs), such as GPT-4o, still fall short of human-level performance, particularly in intricate web environments and long-horizon planning tasks. To address these limitations, we introduce Reflective Monte Carlo Tree Search (R-MCTS), a novel test-time algorithm designed to enhance the ability of AI agents, e.g., powered by GPT-4o, to explore decision space on the fly. R-MCTS extends traditional MCTS by 1) incorporating contrastive reflection, allowing agents to learn from past interactions and dynamically improve their search efficiency; and 2) using multi-agent debate to provide reliable state evaluation. Moreover, we improve the agent's performance by fine-tuning GPT-4o through self-learning, using R-MCTS generated tree traversals without any human-provided labels. On the challenging VisualWebArena benchmark, our GPT-4o-based R-MCTS agent achieves a 6% to 30% relative improvement across various tasks compared to the previous state-of-the-art. Additionally, we show that the knowledge gained from test-time search can be effectively transferred back to GPT-4o via fine-tuning. The fine-tuned GPT-4o matches 97% of R-MCTS's performance while reducing compute usage by a factor of four at test time. Furthermore, qualitative results reveal that the fine-tuned GPT-4o model demonstrates the ability to explore the environment, evaluate a state, and backtrack to viable ones when it detects that the current state cannot lead to success. Moreover, our work demonstrates the compute scaling properties in both training - data collection with R-MCTS - and testing time. These results suggest a promising research direction to enhance VLMs' reasoning and planning capabilities for agentic applications via test-time search and self-learning.
State and parameter learning with PaRIS particle Gibbs
Non-linear state-space models, also known as general hidden Markov models, are ubiquitous in statistical machine learning, being the most classical generative models for serial data and sequences in general. The particle-based, rapid incremental smoother PaRIS is a sequential Monte Carlo (SMC) technique allowing for efficient online approximation of expectations of additive functionals under the smoothing distribution in these models. Such expectations appear naturally in several learning contexts, such as likelihood estimation (MLE) and Markov score climbing (MSC). PARIS has linear computational complexity, limited memory requirements and comes with non-asymptotic bounds, convergence results and stability guarantees. Still, being based on self-normalised importance sampling, the PaRIS estimator is biased. Our first contribution is to design a novel additive smoothing algorithm, the Parisian particle Gibbs PPG sampler, which can be viewed as a PaRIS algorithm driven by conditional SMC moves, resulting in bias-reduced estimates of the targeted quantities. We substantiate the PPG algorithm with theoretical results, including new bounds on bias and variance as well as deviation inequalities. Our second contribution is to apply PPG in a learning framework, covering MLE and MSC as special examples. In this context, we establish, under standard assumptions, non-asymptotic bounds highlighting the value of bias reduction and the implicit Rao--Blackwellization of PPG. These are the first non-asymptotic results of this kind in this setting. We illustrate our theoretical results with numerical experiments supporting our claims.
LiteSearch: Efficacious Tree Search for LLM
Recent research suggests that tree search algorithms (e.g. Monte Carlo Tree Search) can dramatically boost LLM performance on complex mathematical reasoning tasks. However, they often require more than 10 times the computational resources of greedy decoding due to wasteful search strategies, making them difficult to be deployed in practical applications. This study introduces a novel guided tree search algorithm with dynamic node selection and node-level exploration budget (maximum number of children) calculation to tackle this issue. By considering the search progress towards the final answer (history) and the guidance from a value network (future) trained without any step-wise annotations, our algorithm iteratively selects the most promising tree node before expanding it within the boundaries of the allocated computational budget. Experiments conducted on the GSM8K and TabMWP datasets demonstrate that our approach not only offers competitive performance but also enjoys significantly lower computational costs compared to baseline methods.
Hard Examples Are All You Need: Maximizing GRPO Post-Training Under Annotation Budgets
Collecting high-quality training examples for language model fine-tuning is expensive, with practical budgets limiting the amount of data that can be procured. We investigate whether example difficulty affects GRPO training effectiveness by comparing selection strategies (easy, medium, hard, random) across multiple models and reasoning tasks. Training on the hardest 10\% of examples (those where the base model fails most often) yields dramatic performance gains up to 47\%, while easy examples produce minimal improvements of 3-15\%. This occurs because GRPO requires outcome variance to generate learning signals; hard examples maintain mixed success/failure outcomes throughout training while easy examples quickly converge to consistent success, eliminating learning opportunities. Moreover, models trained on hard examples show superior out-of-distribution generalization, with only hard-trained models achieving meaningful gains on the AIME2025 benchmark. Our findings provide clear guidance: when budget-constrained, prioritize collecting and annotating examples where your base model struggles, as these drive nearly all learning value in GRPO fine-tuning
Revisiting Design Choices in Offline Model-Based Reinforcement Learning
Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies, circumventing the need for potentially expensive or unsafe online data collection. Significant progress has been made recently in offline model-based reinforcement learning, approaches which leverage a learned dynamics model. This typically involves constructing a probabilistic model, and using the model uncertainty to penalize rewards where there is insufficient data, solving for a pessimistic MDP that lower bounds the true MDP. Existing methods, however, exhibit a breakdown between theory and practice, whereby pessimistic return ought to be bounded by the total variation distance of the model from the true dynamics, but is instead implemented through a penalty based on estimated model uncertainty. This has spawned a variety of uncertainty heuristics, with little to no comparison between differing approaches. In this paper, we compare these heuristics, and design novel protocols to investigate their interaction with other hyperparameters, such as the number of models, or imaginary rollout horizon. Using these insights, we show that selecting these key hyperparameters using Bayesian Optimization produces superior configurations that are vastly different to those currently used in existing hand-tuned state-of-the-art methods, and result in drastically stronger performance.
Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose Adaptive Branching Monte Carlo Tree Search (AB-MCTS), a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling.
Sequential Monte Carlo Steering of Large Language Models using Probabilistic Programs
Even after fine-tuning and reinforcement learning, large language models (LLMs) can be difficult, if not impossible, to control reliably with prompts alone. We propose a new inference-time approach to enforcing syntactic and semantic constraints on the outputs of LLMs, called sequential Monte Carlo (SMC) steering. The key idea is to specify language generation tasks as posterior inference problems in a class of discrete probabilistic sequence models, and replace standard decoding with sequential Monte Carlo inference. For a computational cost similar to that of beam search, SMC can steer LLMs to solve diverse tasks, including infilling, generation under syntactic constraints, and prompt intersection. To facilitate experimentation with SMC steering, we present a probabilistic programming library, LLaMPPL (https://github.com/probcomp/hfppl), for concisely specifying new generation tasks as language model probabilistic programs, and automating steering of LLaMA-family Transformers.
COS(M+O)S: Curiosity and RL-Enhanced MCTS for Exploring Story Space via Language Models
We present COS(M+O)S, a System 2-inspired framework for open-ended plot development that systematically explores the vast space of possible story expansions, enabling a 3B-parameter language model to approach the plot quality of a 70B model on select short-story tasks. The method accomplishes this by combining Monte Carlo Tree Search (MCTS), guided by a step-level value model that rewards moderate surprisal (curiosity) while penalizing incoherence, and Odds Ratio Preference Optimization (ORPO) to fine-tune the policy on high-value plot expansions. This iterative reinforcement learning loop systematically explores multiple candidate plot branches, backpropagates quality signals, and adapts the policy for faster convergence, notably shifting the policy from puzzle-based Chain-of-Thought to more character-driven storytelling. In small-scale tests with short-story prompts, 67%-77% of participants favored COS(M+O)S's highest-rated expansions over lower-rated ones, suggesting that our learned value function aligns. GPT-4o ratings further show that COS(M+O)S surpasses naive single-pass decoding from Llama 3.2 3B by 0.59 SD, coming within 0.06 SD of Llama 3.1 70B (no significant difference, p=0.93). Pairwise comparisons with o1 place COS(M+O)S 1.5 SD above the 3B baseline and find no statistically significant gap from 70B. Nevertheless, absolute story quality remains modest, constrained by the small model's capacity and limited training data.
Tree-OPO: Off-policy Monte Carlo Tree-Guided Advantage Optimization for Multistep Reasoning
Recent advances in reasoning with large language models (LLMs) have shown the effectiveness of Monte Carlo Tree Search (MCTS) for generating high-quality intermediate trajectories, particularly in math and symbolic domains. Inspired by this, we explore how MCTS-derived trajectories, traditionally used for training value or reward models, can be repurposed to improve policy optimization in preference-based reinforcement learning (RL). Specifically, we focus on Group Relative Policy Optimization (GRPO), a recent algorithm that enables preference-consistent policy learning without value networks. We propose a staged GRPO training paradigm where completions are derived from partially revealed MCTS rollouts, introducing a novel tree-structured setting for advantage estimation. This leads to a rich class of prefix-conditioned reward signals, which we analyze theoretically and empirically. Our initial results indicate that while structured advantage estimation can stabilize updates and better reflect compositional reasoning quality, challenges such as advantage saturation and reward signal collapse remain. We propose heuristic and statistical solutions to mitigate these issues and discuss open challenges for learning under staged or tree-like reward structures.
LongDPO: Unlock Better Long-form Generation Abilities for LLMs via Critique-augmented Stepwise Information
Long-form generation is crucial for academic writing papers and repo-level code generation. Despite this, current models, including GPT-4o, still exhibit unsatisfactory performance. Existing methods that utilize preference learning with outcome supervision often fail to provide detailed feedback for extended contexts. This shortcoming can lead to content that does not fully satisfy query requirements, resulting in issues like length deviations, and diminished quality. In this paper, we propose enhancing long-form generation by incorporating process supervision. We employ Monte Carlo Tree Search to gather stepwise preference pairs, utilizing a global memory pool to maintain consistency. To address the issue of suboptimal candidate selection, we integrate external critiques to refine and improve the quality of the preference pairs. Finally, we apply step-level DPO using the collected stepwise preference pairs. Experimental results show that our method improves length and quality on long-form generation benchmarks, with almost lossless performance on general benchmarks across various model backbones.
Accelerated Bayesian Inference for Pulsar Timing Arrays: Normalizing Flows for Rapid Model Comparison Across Stochastic Gravitational-Wave Background Sources
The recent detection of nanohertz stochastic gravitational-wave backgrounds (SGWBs) by pulsar timing arrays (PTAs) promises unique insights into astrophysical and cosmological origins. However, traditional Markov Chain Monte Carlo (MCMC) approaches become prohibitively expensive for large datasets. We employ a normalizing flow (NF)-based machine learning framework to accelerate Bayesian inference in PTA analyses. For the first time, we perform Bayesian model comparison across SGWB source models in the framework of machine learning by training NF architectures on the PTA dataset (NANOGrav 15-year) and enabling direct evidence estimation via learned harmonic mean estimators. Our examples include 10 conventional SGWB source models such as supermassive black hole binaries, power-law spectrum, cosmic strings, domain walls, scalar-induced GWs, first-order phase transitions, and dual scenario/inflationary gravitational wave. Our approach jointly infers 20 red noise parameters and 2 SGWB parameters per model in sim 20\,hours (including training), compared to sim 10\,days with MCMC. Critically, the NF method preserves rigorous model selection accuracy, with small Hellinger distances (lesssim 0.3) relative to MCMC posteriors, and reproduces MCMC-based Bayes factors across all tested scenarios. This scalable technique for SGWB source comparison will be essential for future PTA expansions and next-generation arrays such as the SKA, offering orders-of-magnitude efficiency gains without sacrificing physical interpretability.
Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality Based on Decision Trees as Data Observation Processes
In the field of decision trees, most previous studies have difficulty ensuring the statistical optimality of a prediction of new data and suffer from overfitting because trees are usually used only to represent prediction functions to be constructed from given data. In contrast, some studies, including this paper, used the trees to represent stochastic data observation processes behind given data. Moreover, they derived the statistically optimal prediction, which is robust against overfitting, based on the Bayesian decision theory by assuming a prior distribution for the trees. However, these studies still have a problem in computing this Bayes optimal prediction because it involves an infeasible summation for all division patterns of a feature space, which is represented by the trees and some parameters. In particular, an open problem is a summation with respect to combinations of division axes, i.e., the assignment of features to inner nodes of the tree. We solve this by a Markov chain Monte Carlo method, whose step size is adaptively tuned according to a posterior distribution for the trees.
How to Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control
Score-based generative modeling, informally referred to as diffusion models, continue to grow in popularity across several important domains and tasks. While they provide high-quality and diverse samples from empirical distributions, important questions remain on the reliability and trustworthiness of these sampling procedures for their responsible use in critical scenarios. Conformal prediction is a modern tool to construct finite-sample, distribution-free uncertainty guarantees for any black-box predictor. In this work, we focus on image-to-image regression tasks and we present a generalization of the Risk-Controlling Prediction Sets (RCPS) procedure, that we term K-RCPS, which allows to (i) provide entrywise calibrated intervals for future samples of any diffusion model, and (ii) control a certain notion of risk with respect to a ground truth image with minimal mean interval length. Differently from existing conformal risk control procedures, ours relies on a novel convex optimization approach that allows for multidimensional risk control while provably minimizing the mean interval length. We illustrate our approach on two real-world image denoising problems: on natural images of faces as well as on computed tomography (CT) scans of the abdomen, demonstrating state of the art performance.
Probabilistic Programming with Programmable Variational Inference
Compared to the wide array of advanced Monte Carlo methods supported by modern probabilistic programming languages (PPLs), PPL support for variational inference (VI) is less developed: users are typically limited to a predefined selection of variational objectives and gradient estimators, which are implemented monolithically (and without formal correctness arguments) in PPL backends. In this paper, we propose a more modular approach to supporting variational inference in PPLs, based on compositional program transformation. In our approach, variational objectives are expressed as programs, that may employ first-class constructs for computing densities of and expected values under user-defined models and variational families. We then transform these programs systematically into unbiased gradient estimators for optimizing the objectives they define. Our design enables modular reasoning about many interacting concerns, including automatic differentiation, density accumulation, tracing, and the application of unbiased gradient estimation strategies. Additionally, relative to existing support for VI in PPLs, our design increases expressiveness along three axes: (1) it supports an open-ended set of user-defined variational objectives, rather than a fixed menu of options; (2) it supports a combinatorial space of gradient estimation strategies, many not automated by today's PPLs; and (3) it supports a broader class of models and variational families, because it supports constructs for approximate marginalization and normalization (previously introduced only for Monte Carlo inference). We implement our approach in an extension to the Gen probabilistic programming system (genjax.vi, implemented in JAX), and evaluate on several deep generative modeling tasks, showing minimal performance overhead vs. hand-coded implementations and performance competitive with well-established open-source PPLs.
Self-Guided Generation of Minority Samples Using Diffusion Models
We present a novel approach for generating minority samples that live on low-density regions of a data manifold. Our framework is built upon diffusion models, leveraging the principle of guided sampling that incorporates an arbitrary energy-based guidance during inference time. The key defining feature of our sampler lies in its self-contained nature, \ie, implementable solely with a pretrained model. This distinguishes our sampler from existing techniques that require expensive additional components (like external classifiers) for minority generation. Specifically, we first estimate the likelihood of features within an intermediate latent sample by evaluating a reconstruction loss w.r.t. its posterior mean. The generation then proceeds with the minimization of the estimated likelihood, thereby encouraging the emergence of minority features in the latent samples of subsequent timesteps. To further improve the performance of our sampler, we provide several time-scheduling techniques that properly manage the influence of guidance over inference steps. Experiments on benchmark real datasets demonstrate that our approach can greatly improve the capability of creating realistic low-likelihood minority instances over the existing techniques without the reliance on costly additional elements. Code is available at https://github.com/soobin-um/sg-minority.
Divide-and-Conquer Fusion
Combining several (sample approximations of) distributions, which we term sub-posteriors, into a single distribution proportional to their product, is a common challenge. Occurring, for instance, in distributed 'big data' problems, or when working under multi-party privacy constraints. Many existing approaches resort to approximating the individual sub-posteriors for practical necessity, then find either an analytical approximation or sample approximation of the resulting (product-pooled) posterior. The quality of the posterior approximation for these approaches is poor when the sub-posteriors fall out-with a narrow range of distributional form, such as being approximately Gaussian. Recently, a Fusion approach has been proposed which finds an exact Monte Carlo approximation of the posterior, circumventing the drawbacks of approximate approaches. Unfortunately, existing Fusion approaches have a number of computational limitations, particularly when unifying a large number of sub-posteriors. In this paper, we generalise the theory underpinning existing Fusion approaches, and embed the resulting methodology within a recursive divide-and-conquer sequential Monte Carlo paradigm. This ultimately leads to a competitive Fusion approach, which is robust to increasing numbers of sub-posteriors.
An Efficient Tester-Learner for Halfspaces
We give the first efficient algorithm for learning halfspaces in the testable learning model recently defined by Rubinfeld and Vasilyan (2023). In this model, a learner certifies that the accuracy of its output hypothesis is near optimal whenever the training set passes an associated test, and training sets drawn from some target distribution -- e.g., the Gaussian -- must pass the test. This model is more challenging than distribution-specific agnostic or Massart noise models where the learner is allowed to fail arbitrarily if the distributional assumption does not hold. We consider the setting where the target distribution is Gaussian (or more generally any strongly log-concave distribution) in d dimensions and the noise model is either Massart or adversarial (agnostic). For Massart noise, our tester-learner runs in polynomial time and outputs a hypothesis with (information-theoretically optimal) error opt + epsilon for any strongly log-concave target distribution. For adversarial noise, our tester-learner obtains error O(opt) + epsilon in polynomial time when the target distribution is Gaussian; for strongly log-concave distributions, we obtain O(opt) + epsilon in quasipolynomial time. Prior work on testable learning ignores the labels in the training set and checks that the empirical moments of the covariates are close to the moments of the base distribution. Here we develop new tests of independent interest that make critical use of the labels and combine them with the moment-matching approach of Gollakota et al. (2023). This enables us to simulate a variant of the algorithm of Diakonikolas et al. (2020) for learning noisy halfspaces using nonconvex SGD but in the testable learning setting.
Dropout-Based Rashomon Set Exploration for Efficient Predictive Multiplicity Estimation
Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to 20times sim 5000times. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.
Bridging the Gap: Addressing Discrepancies in Diffusion Model Training for Classifier-Free Guidance
Diffusion models have emerged as a pivotal advancement in generative models, setting new standards to the quality of the generated instances. In the current paper we aim to underscore a discrepancy between conventional training methods and the desired conditional sampling behavior of these models. While the prevalent classifier-free guidance technique works well, it's not without flaws. At higher values for the guidance scale parameter w, we often get out of distribution samples and mode collapse, whereas at lower values for w we may not get the desired specificity. To address these challenges, we introduce an updated loss function that better aligns training objectives with sampling behaviors. Experimental validation with FID scores on CIFAR-10 elucidates our method's ability to produce higher quality samples with fewer sampling timesteps, and be more robust to the choice of guidance scale w. We also experiment with fine-tuning Stable Diffusion on the proposed loss, to provide early evidence that large diffusion models may also benefit from this refined loss function.
Reparameterization Gradients through Acceptance-Rejection Sampling Algorithms
Variational inference using the reparameterization trick has enabled large-scale approximate Bayesian inference in complex probabilistic models, leveraging stochastic optimization to sidestep intractable expectations. The reparameterization trick is applicable when we can simulate a random variable by applying a differentiable deterministic function on an auxiliary random variable whose distribution is fixed. For many distributions of interest (such as the gamma or Dirichlet), simulation of random variables relies on acceptance-rejection sampling. The discontinuity introduced by the accept-reject step means that standard reparameterization tricks are not applicable. We propose a new method that lets us leverage reparameterization gradients even when variables are outputs of a acceptance-rejection sampling algorithm. Our approach enables reparameterization on a larger class of variational distributions. In several studies of real and synthetic data, we show that the variance of the estimator of the gradient is significantly lower than other state-of-the-art methods. This leads to faster convergence of stochastic gradient variational inference.
Efficient Massive Black Hole Binary parameter estimation for LISA using Sequential Neural Likelihood
The inspiral, merger, and ringdown of Massive Black Hole Binaries (MBHBs) is one the main sources of Gravitational Waves (GWs) for the future Laser Interferometer Space Antenna (LISA), an ESA-led mission in the implementation phase. It is expected that LISA will detect these systems throughout the entire observable universe. Robust and efficient data analysis algorithms are necessary to detect and estimate physical parameters for these systems. In this work, we explore the application of Sequential Neural Likelihood, a simulation-based inference algorithm, to detect and characterize MBHB GW signals in synthetic LISA data. We describe in detail the different elements of the method, their performance and possible alternatives that can be used to enhance the performance. Instead of sampling from the conventional likelihood function, which requires a forward simulation for each evaluation, this method constructs a surrogate likelihood that is ultimately described by a neural network trained from a dataset of simulations of the MBHB signals and noise. One important advantage of this method is that, given that the likelihood is independent of the priors, we can iteratively train models that target specific observations in a fraction of the time and computational cost that other traditional and machine learning-based strategies would require. Because of the iterative nature of the method, we are able to train models to obtain qualitatively similar posteriors with less than 2\% of the simulator calls that Markov Chain Monte Carlo methods would require. We compare these posteriors with those obtained from Markov Chain Monte Carlo techniques and discuss the differences that appear, in particular in relation with the important role that data compression has in the modular implementation of the method that we present. We also discuss different strategies to improve the performance of the algorithms.
