- Bhasha-Abhijnaanam: Native-script and romanized Language Identification for 22 Indic languages We create publicly available language identification (LID) datasets and models in all 22 Indian languages listed in the Indian constitution in both native-script and romanized text. First, we create Bhasha-Abhijnaanam, a language identification test set for native-script as well as romanized text which spans all 22 Indic languages. We also train IndicLID, a language identifier for all the above-mentioned languages in both native and romanized script. For native-script text, it has better language coverage than existing LIDs and is competitive or better than other LIDs. IndicLID is the first LID for romanized text in Indian languages. Two major challenges for romanized text LID are the lack of training data and low-LID performance when languages are similar. We provide simple and effective solutions to these problems. In general, there has been limited work on romanized text in any language, and our findings are relevant to other languages that need romanized language identification. Our models are publicly available at https://github.com/AI4Bharat/IndicLID under open-source licenses. Our training and test sets are also publicly available at https://huggingface.co/datasets/ai4bharat/Bhasha-Abhijnaanam under open-source licenses. 3 authors · May 25, 2023
1 ConLID: Supervised Contrastive Learning for Low-Resource Language Identification Language identification (LID) is a critical step in curating multilingual LLM pretraining corpora from web crawls. While many studies on LID model training focus on collecting diverse training data to improve performance, low-resource languages -- often limited to single-domain data, such as the Bible -- continue to perform poorly. To resolve these class imbalance and bias issues, we propose a novel supervised contrastive learning (SCL) approach to learn domain-invariant representations for low-resource languages. Through an extensive analysis, we show that our approach improves LID performance on out-of-domain data for low-resource languages by 3.2%, demonstrating its effectiveness in enhancing LID models. 4 authors · Jun 18
- LID Models are Actually Accent Classifiers: Implications and Solutions for LID on Accented Speech Prior research indicates that LID model performance significantly declines on accented speech; however, the specific causes, extent, and characterization of these errors remain under-explored. (i) We identify a common failure mode on accented speech whereby LID systems often misclassify L2 accented speech as the speaker's native language or a related language. (ii) We present evidence suggesting that state-of-the-art models are invariant to permutations of short spans of speech, implying they classify on the basis of short phonotactic features indicative of accent rather than language. Our analysis reveals a simple method to enhance model robustness to accents through input chunking. (iii) We present an approach that integrates sequence-level information into our model without relying on monolingual ASR systems; this reduces accent-language confusion and significantly enhances performance on accented speech while maintaining comparable results on standard LID. 2 authors · May 31
- NAS-LID: Efficient Neural Architecture Search with Local Intrinsic Dimension One-shot neural architecture search (NAS) substantially improves the search efficiency by training one supernet to estimate the performance of every possible child architecture (i.e., subnet). However, the inconsistency of characteristics among subnets incurs serious interference in the optimization, resulting in poor performance ranking correlation of subnets. Subsequent explorations decompose supernet weights via a particular criterion, e.g., gradient matching, to reduce the interference; yet they suffer from huge computational cost and low space separability. In this work, we propose a lightweight and effective local intrinsic dimension (LID)-based method NAS-LID. NAS-LID evaluates the geometrical properties of architectures by calculating the low-cost LID features layer-by-layer, and the similarity characterized by LID enjoys better separability compared with gradients, which thus effectively reduces the interference among subnets. Extensive experiments on NASBench-201 indicate that NAS-LID achieves superior performance with better efficiency. Specifically, compared to the gradient-driven method, NAS-LID can save up to 86% of GPU memory overhead when searching on NASBench-201. We also demonstrate the effectiveness of NAS-LID on ProxylessNAS and OFA spaces. Source code: https://github.com/marsggbo/NAS-LID. 8 authors · Nov 23, 2022
- Improving Multilingual Speech Models on ML-SUPERB 2.0: Fine-tuning with Data Augmentation and LID-Aware CTC Multilingual speech processing with self-supervised or supervised pre-trained Speech Foundation Models (SFM) has achieved strong performance on tasks like Language Identification (LID) and Automatic Speech Recognition (ASR). However, these models struggle with limited resources during fine-tuning. This paper enhances multilingual LID and ASR on ML-SUPERB 2.0 by exploring multiple strategies for adapting SFMs, including frozen upstream training, partial fine-tuning, and low-rank adaptation. Furthermore, we employ data augmentation to mitigate performance gaps in few-shot settings and introduce LID Connectionist Temporal Classification (CTC) loss for regularization. Our approach achieves a 14% relative improvement in LID accuracy and a 30% relative reduction in ASR CER over the baseline on ML-SUPERB 2.0, securing second place in the Interspeech 2025 ML-SUPERB 2.0 Challenge. 4 authors · May 30
- The Obscure Limitation of Modular Multilingual Language Models We expose the limitation of modular multilingual language models (MLMs) in multilingual inference scenarios with unknown languages. Existing evaluations of modular MLMs exclude the involvement of language identification (LID) modules, which obscures the performance of real-case multilingual scenarios of modular MLMs. In this work, we showcase the effect of adding LID on the multilingual evaluation of modular MLMs and provide discussions for closing the performance gap of caused by the pipelined approach of LID and modular MLMs. 3 authors · Nov 21, 2023
- Improving Massively Multilingual ASR With Auxiliary CTC Objectives Multilingual Automatic Speech Recognition (ASR) models have extended the usability of speech technologies to a wide variety of languages. With how many languages these models have to handle, however, a key to understanding their imbalanced performance across different languages is to examine if the model actually knows which language it should transcribe. In this paper, we introduce our work on improving performance on FLEURS, a 102-language open ASR benchmark, by conditioning the entire model on language identity (LID). We investigate techniques inspired from recent Connectionist Temporal Classification (CTC) studies to help the model handle the large number of languages, conditioning on the LID predictions of auxiliary tasks. Our experimental results demonstrate the effectiveness of our technique over standard CTC/Attention-based hybrid models. Furthermore, our state-of-the-art systems using self-supervised models with the Conformer architecture improve over the results of prior work on FLEURS by a relative 28.4% CER. Trained models and reproducible recipes are available at https://github.com/espnet/espnet/tree/master/egs2/fleurs/asr1 . 6 authors · Feb 24, 2023
- An Open Dataset and Model for Language Identification Language identification (LID) is a fundamental step in many natural language processing pipelines. However, current LID systems are far from perfect, particularly on lower-resource languages. We present a LID model which achieves a macro-average F1 score of 0.93 and a false positive rate of 0.033 across 201 languages, outperforming previous work. We achieve this by training on a curated dataset of monolingual data, the reliability of which we ensure by auditing a sample from each source and each language manually. We make both the model and the dataset available to the research community. Finally, we carry out detailed analysis into our model's performance, both in comparison to existing open models and by language class. 4 authors · May 23, 2023
5 MaskLID: Code-Switching Language Identification through Iterative Masking We present MaskLID, a simple, yet effective, code-switching (CS) language identification (LID) method. MaskLID does not require any training and is designed to complement current high-performance sentence-level LIDs. Sentence-level LIDs are classifiers trained on monolingual texts to provide single labels, typically using a softmax layer to turn scores into probabilities. However, in cases where a sentence is composed in both L1 and L2 languages, the LID classifier often only returns the dominant label L1. To address this limitation, MaskLID employs a strategy to mask text features associated with L1, allowing the LID to classify the text as L2 in the next round. This method uses the LID itself to identify the features that require masking and does not rely on any external resource. In this work, we explore the use of MaskLID for two open-source LIDs (GlotLID and OpenLID), that are both based on the FastText architecture. Code and demo are available at https://github.com/cisnlp/MaskLID. 3 authors · Jun 10, 2024 1
- AfroLID: A Neural Language Identification Tool for African Languages Language identification (LID) is a crucial precursor for NLP, especially for mining web data. Problematically, most of the world's 7000+ languages today are not covered by LID technologies. We address this pressing issue for Africa by introducing AfroLID, a neural LID toolkit for 517 African languages and varieties. AfroLID exploits a multi-domain web dataset manually curated from across 14 language families utilizing five orthographic systems. When evaluated on our blind Test set, AfroLID achieves 95.89 F_1-score. We also compare AfroLID to five existing LID tools that each cover a small number of African languages, finding it to outperform them on most languages. We further show the utility of AfroLID in the wild by testing it on the acutely under-served Twitter domain. Finally, we offer a number of controlled case studies and perform a linguistically-motivated error analysis that allow us to both showcase AfroLID's powerful capabilities and limitations. 4 authors · Oct 21, 2022
- AfriHuBERT: A self-supervised speech representation model for African languages In this work, we present AfriHuBERT, an extension of mHuBERT-147, a state-of-the-art (SOTA) and compact self-supervised learning (SSL) model, originally pretrained on 147 languages. While mHuBERT-147 was pretrained on 16 African languages, we expand this to cover 39 African languages through continued pretraining on 6,500+ hours of speech data aggregated from diverse sources, including 23 newly added languages. We evaluate AfriHuBERT on two key speech tasks: Language Identification (LID) and Automatic Speech Recognition (ASR) using FLEURS dataset. Our results show a +4% F1 score improvement on average for LID and a -1.2% average Word Error Rate (WER) reduction for ASR. Further analysis shows that ASR models trained on AfriHuBERT exhibit improved cross-corpus generalization. Additionally, the analysis indicates that the FLEURS have data quality limitations that may affect their suitability for evaluating low-resource African languages, suggesting the need for better evaluation benchmarks for these languages. 4 authors · Sep 30, 2024
- Etalon: Holistic Performance Evaluation Framework for LLM Inference Systems Serving large language models (LLMs) in production can incur substantial costs, which has prompted recent advances in inference system optimizations. Today, these systems are evaluated against conventional latency and throughput metrics (eg. TTFT, TBT, Normalised Latency and TPOT). However, these metrics fail to fully capture the nuances of LLM inference, leading to an incomplete assessment of user-facing performance crucial for real-time applications such as chat and translation. In this paper, we first identify the pitfalls of current performance metrics in evaluating LLM inference systems. We then propose Etalon, a comprehensive performance evaluation framework that includes fluidity-index -- a novel metric designed to reflect the intricacies of the LLM inference process and its impact on real-time user experience. Finally, we evaluate various existing open-source platforms and model-as-a-service offerings using Etalon, discussing their strengths and weaknesses. Etalon is available at https://github.com/project-etalon/etalon. 8 authors · Jul 9, 2024
- VIRT: Vision Instructed Transformer for Robotic Manipulation Robotic manipulation, owing to its multi-modal nature, often faces significant training ambiguity, necessitating explicit instructions to clearly delineate the manipulation details in tasks. In this work, we highlight that vision instruction is naturally more comprehensible to recent robotic policies than the commonly adopted text instruction, as these policies are born with some vision understanding ability like human infants. Building on this premise and drawing inspiration from cognitive science, we introduce the robotic imagery paradigm, which realizes large-scale robotic data pre-training without text annotations. Additionally, we propose the robotic gaze strategy that emulates the human eye gaze mechanism, thereby guiding subsequent actions and focusing the attention of the policy on the manipulated object. Leveraging these innovations, we develop VIRT, a fully Transformer-based policy. We design comprehensive tasks using both a physical robot and simulated environments to assess the efficacy of VIRT. The results indicate that VIRT can complete very competitive tasks like ``opening the lid of a tightly sealed bottle'', and the proposed techniques boost the success rates of the baseline policy on diverse challenging tasks from nearly 0% to more than 65%. 8 authors · Oct 9, 2024